2019-05-02 16:18:26 +00:00
|
|
|
### Paul Johnson
|
|
|
|
### 2017-07-20
|
|
|
|
|
|
|
|
### Garrett Mills
|
|
|
|
### 2019-05-02
|
|
|
|
|
|
|
|
### Demonstration of SNOW "Simple Network of Workstations" using MPI
|
|
|
|
### "Message Passing Interface" (OpenMPI implementation)
|
|
|
|
|
|
|
|
|
|
|
|
library(snow)
|
|
|
|
|
|
|
|
p <- rnorm(123, m = 33)
|
|
|
|
|
|
|
|
## Sub script asks for 18 cores, here cluster must
|
|
|
|
## be one smaller
|
2019-05-02 16:21:05 +00:00
|
|
|
CLUSTERSIZE <- Rmpi::mpi.universe.size()-1
|
2019-05-02 16:18:26 +00:00
|
|
|
|
|
|
|
cl <- makeCluster(CLUSTERSIZE, type = "MPI")
|
|
|
|
|
|
|
|
|
|
|
|
## One way to send function to each system.
|
|
|
|
## Could send identical arguments to nodes
|
|
|
|
clusterCall(cl, function() {
|
|
|
|
Sys.info()[c("nodename","machine")]
|
|
|
|
date()
|
|
|
|
}
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
timeFn <- function(){
|
|
|
|
y1 <- Sys.info()[c("nodename","machine")]
|
|
|
|
y2 <- date()
|
|
|
|
list(y1, y2)
|
|
|
|
}
|
|
|
|
|
|
|
|
## Send function to each node
|
|
|
|
clusterExport(cl, c("timeFn"))
|
|
|
|
|
|
|
|
## Evaluates a string on a node
|
|
|
|
x1 <- clusterEvalQ(cl, timeFn())
|
|
|
|
|
|
|
|
print(x1)
|
|
|
|
|
|
|
|
|
|
|
|
clusterCall(cl, function() rnorm(1, 33, 1) )
|
|
|
|
|
|
|
|
|
|
|
|
myNorms <- matrix(rnorm(100*CLUSTERSIZE), ncol = CLUSTERSIZE)
|
|
|
|
|
|
|
|
## goes column by column
|
|
|
|
mypapply <- parApply(cl, myNorms, 2, print)
|
|
|
|
|
|
|
|
attributes(mypapply)
|
|
|
|
|
|
|
|
mypapply <- parApply(cl, myNorms, 2, mean )
|
|
|
|
|
|
|
|
mypapply
|
|
|
|
|
|
|
|
myNorms <- matrix(rnorm(100*CLUSTERSIZE), ncol = CLUSTERSIZE)
|
|
|
|
|
|
|
|
mySum <- function( v ){
|
|
|
|
s <-Sys.info()[c("nodename")]
|
|
|
|
s[2] <- date()
|
|
|
|
ms <- sum(v)
|
|
|
|
list(s, ms)
|
|
|
|
}
|
|
|
|
|
|
|
|
mypcapply <- parApply(cl, myNorms, 2, mySum)
|
|
|
|
|
|
|
|
mypcapply
|
|
|
|
|
|
|
|
myNorms <- matrix(rnorm(2500*CLUSTERSIZE), ncol = CLUSTERSIZE)
|
|
|
|
|
|
|
|
## Add the system date (includes time) before and after
|
|
|
|
## calculations to vector s
|
|
|
|
myMeans <- function(v){
|
|
|
|
s <- Sys.info()[c("nodename")]
|
|
|
|
s[2] <- date()
|
|
|
|
ms <- mean(v)
|
|
|
|
## want to slow this down so you can study the cluster? uncomment this:
|
|
|
|
## x <- rnorm(50000000); x <- log(50+x); sum(x); mean(x); quantile(x); gg <- cut(x, quantile(x))
|
|
|
|
s[3] <- date()
|
|
|
|
list(s, ms)
|
|
|
|
}
|
|
|
|
|
|
|
|
mypcapply <- parApply(cl, myNorms, 2, myMeans )
|
|
|
|
|
|
|
|
mypcapply
|
|
|
|
|
|
|
|
|
|
|
|
library(snow)
|
|
|
|
stopCluster(cl)
|
|
|
|
Rmpi::mpi.quit()
|
|
|
|
|