Updates from Overleaf

master
Thomas N Atkins 4 years ago
parent 1df7c9d154
commit 9b025ccd81

@ -3,6 +3,12 @@
\usepackage{amsmath}
\usepackage[bottom]{footmisc}
% Keywords command
\providecommand{\keywords}[1]
{
\small
\-\ \-\ \-\ \textbf{\textit{Keywords --}} #1
}
% Slides
%
@ -35,6 +41,8 @@ Green's Theorem\\
In which the authors investigate the historical origins and several mathematical applications of the commonly known Green's theorem. Discovered by George Green in the late 1820s, this theorem provides a relationship between the line integral of a particular curve and the surface integral of its enclosed region. Green's theorem is closely related to the divergence theorem, and is simply a specific case of the more general Stoke's theorem. Beyond basic applications to flux and surface integrals, Green's theorem can be reverse applied to calculate difficult-to-evaluate area calculations. It also plays an integral role (pun intended) in the proof of other important theorems such as Cauchy's.
\end{abstract}
\keywords{Green, Stoke, integration, vector calculus}
\section{Introduction}
Green's theorem is commonly defined as follows.\footnote{"Section 5-7: Green's Theorem" - Paul Dawkins, Lamar University - 02-22-2019. (http://tutorial.math.lamar.edu/Classes/CalcIII/GreensTheorem.aspx)} Let $C$ be a simple, smooth, closed, positive curve and $D$ the region enclosed by said curve. Assume $P'$, $Q'$ are continuous. Then, the following relationship holds:

Loading…
Cancel
Save