gristlabs_grist-core/app/client/components/ChartView.ts

1376 lines
51 KiB
TypeScript
Raw Permalink Normal View History

import BaseView from 'app/client/components/BaseView';
import {GristDoc} from 'app/client/components/GristDoc';
import {consolidateValues, formatPercent, sortByXValues, splitValuesByIndex,
uniqXValues} from 'app/client/lib/chartUtil';
import {Delay} from 'app/client/lib/Delay';
import {Disposable} from 'app/client/lib/dispose';
import {fromKoSave} from 'app/client/lib/fromKoSave';
import {loadPlotly, PlotlyType} from 'app/client/lib/imports';
import DataTableModel from 'app/client/models/DataTableModel';
import {ColumnRec, ViewFieldRec, ViewSectionRec} from 'app/client/models/DocModel';
import {reportError} from 'app/client/models/errors';
import {KoSaveableObservable, ObjObservable, setSaveValue} from 'app/client/models/modelUtil';
import {SortedRowSet} from 'app/client/models/rowset';
import {IPageWidget, toPageWidget} from 'app/client/ui/PageWidgetPicker';
import {cssLabel, cssRow, cssSeparator} from 'app/client/ui/RightPanelStyles';
import {cssFieldEntry, cssFieldLabel, IField, VisibleFieldsConfig } from 'app/client/ui/VisibleFieldsConfig';
import {IconName} from 'app/client/ui2018/IconList';
import {squareCheckbox} from 'app/client/ui2018/checkbox';
import {theme, vars} from 'app/client/ui2018/cssVars';
import {cssDragger} from 'app/client/ui2018/draggableList';
import {icon} from 'app/client/ui2018/icons';
import {IOptionFull, linkSelect, menu, menuItem, menuText, select} from 'app/client/ui2018/menus';
import {nativeCompare, unwrap} from 'app/common/gutil';
import {Sort} from 'app/common/SortSpec';
import {BaseFormatter} from 'app/common/ValueFormatter';
import {decodeObject} from 'app/plugin/objtypes';
import {Events as BackboneEvents} from 'backbone';
import {Computed, dom, DomContents, DomElementArg, fromKo, Disposable as GrainJSDisposable,
IDisposable, IOption, makeTestId, Observable, styled, UseCB} from 'grainjs';
import * as ko from 'knockout';
import clamp = require('lodash/clamp');
import debounce = require('lodash/debounce');
import defaults = require('lodash/defaults');
import defaultsDeep = require('lodash/defaultsDeep');
import isNumber = require('lodash/isNumber');
import merge = require('lodash/merge');
import sum = require('lodash/sum');
import union = require('lodash/union');
import type {Annotations, Config, Datum, ErrorBar, Layout, LayoutAxis, Margin,
PlotData as PlotlyPlotData} from 'plotly.js';
import {makeT} from 'app/client/lib/localization';
let Plotly: PlotlyType;
// When charting multiple series based on user data, limit the number of series given to plotly.
const MAX_SERIES_IN_CHART = 100;
const DONUT_DEFAULT_HOLE_SIZE = 0.75;
const DONUT_DEFAULT_TEXT_SIZE = 24;
const testId = makeTestId('test-chart-');
2022-12-09 15:46:03 +00:00
const t = makeT('ChartView');
function isPieLike(chartType: string) {
return ['pie', 'donut'].includes(chartType);
}
function firstFieldIsLabels(chartType: string) {
return ['pie', 'donut', 'kaplan_meier', 'scatter'].includes(chartType);
}
export function isNumericOnly(chartType: string) {
return ['bar', 'pie', 'donut', 'kaplan_meier', 'line', 'area', 'scatter'].includes(chartType);
}
// Returns the type of the visibleCol if col is of type `Ref`, otherwise returns the type of col.
function visibleColType(col: ColumnRec, use: UseCB = unwrap) {
const colType = use(col.pureType);
const isRef = colType === 'Ref';
return isRef ? use(use(col.visibleColModel).type) : colType;
}
// Returns true if col is one of 'Numeric', 'Int', 'Any'.
export function isNumericLike(col: ColumnRec, use: UseCB = unwrap) {
const colType = visibleColType(col, use);
return ['Numeric', 'Int', 'Any'].includes(colType);
}
interface ChartOptions {
multiseries?: boolean;
lineConnectGaps?: boolean;
lineMarkers?: boolean;
stacked?: boolean;
invertYAxis?: boolean;
logYAxis?: boolean;
// If "symmetric", one series after each Y series gives the length of the error bars around it. If
// "separate", two series after each Y series give the length of the error bars above and below it.
errorBars?: 'symmetric' | 'separate';
donutHoleSize?: number;
showTotal?: boolean;
textSize?: number;
isXAxisUndefined?: boolean;
orientation?: 'v'|'h';
aggregate?: boolean;
}
// tslint:disable:no-console
// We use plotly's Datum to describe the type of values in cells. Cells may not match this
// perfectly, but it's helpful for type-checking anyway.
type RowPropGetter = (rowId: number) => Datum;
// We convert Grist data to a list of Series first, from which we then construct Plotly traces.
interface Series {
label: string; // Corresponds to the column name.
group?: Datum; // The group value, when grouped.
values: Datum[];
isInSortSpec?: boolean; // Whether this series is present in sort spec for this chart.
}
function getSeriesName(series: Series, haveMultiple: boolean) {
if (series.group === undefined) {
return series.label;
}
// Let's show [Blank] instead of leaving the name empty for that series. There is a possibility
// to confuse user between a blank cell and a cell holding the `[Blank]` value. But that is rare
// enough, and confusion can easily be removed by the chart creator by editing blank cells
// directly in the the table to put something more meaningful instead.
const groupName = series.group === '' ? '[Blank]' : series.group;
if (haveMultiple) {
return `${groupName} \u2022 ${series.label}`; // the unicode character is "black circle"
} else {
return String(groupName);
}
}
type Data = Partial<PlotlyPlotData>;
// The output of a ChartFunc. Normally it just returns one or more Data[] series, but sometimes it
// includes layout information: e.g. a "Scatter Plot" returns a Layout with axis labels.
interface PlotData {
data: Data[];
layout?: Partial<Layout>;
config?: Partial<Config>;
}
// Data options to pass to chart functions.
interface DataOptions extends Data {
// Allows to set the pie sort option (see: https://plotly.com/javascript/reference/pie/#pie-sort).
// Supports pie charts only.
sort?: boolean;
// Formatter to be used for the total inside donut charts.
totalFormatter?: BaseFormatter;
}
// Convert a list of Series into a set of Plotly traces.
type ChartFunc = (series: Series[], options: ChartOptions, dataOptions?: DataOptions) => PlotData;
// Helper for converting numeric Date/DateTime values (seconds since Epoch) to JS Date objects for
// use with plotly.
function dateGetter(getter: RowPropGetter): RowPropGetter {
return (r: number) => {
// 0's will turn into nulls, and non-numbers will turn into NaNs and then nulls. This prevents
// Plotly from including 1970-01-01 onto X axis, which usually makes the plot useless.
const val = (getter(r) as number) * 1000;
// Plotly recommends using strings for dates rather than Date objects or timestamps. They are
// interpreted more consistently. See https://github.com/plotly/plotly.js/issues/1532#issuecomment-290420534.
return val ? new Date(val).toISOString() : null;
};
}
// List of column types whose values are encoded has list, ie: ['L', 'foo', ...]. Such values
// require special treatment to show correctly in charts.
const LIST_TYPES = ['ChoiceList', 'RefList'];
/**
* ChartView component displays created charts.
*/
export class ChartView extends Disposable {
public viewPane: Element;
// These elements are defined in BaseView, from which we inherit with some hackery.
protected viewSection: ViewSectionRec;
protected sortedRows: SortedRowSet;
protected tableModel: DataTableModel;
protected gristDoc: GristDoc;
private _chartType: ko.Observable<string>;
private _options: ObjObservable<any>;
private _chartDom: HTMLElement;
private _update: () => void;
private _resize: () => void;
private _formatterComp: ko.Computed<BaseFormatter|undefined>;
// peek section's sort spec
private get _sortSpec() { return this.viewSection.activeSortSpec.peek(); }
public create(gristDoc: GristDoc, viewSectionModel: ViewSectionRec) {
BaseView.call(this as any, gristDoc, viewSectionModel);
this._chartDom = this.autoDispose(this.buildDom());
this._resize = this.autoDispose(Delay.untilAnimationFrame(this._resizeChart, this));
// Note that .viewPane is used by ViewLayout to insert the actual DOM into the document.
this.viewPane = this._chartDom;
this._chartType = this.viewSection.chartTypeDef;
this._options = this.viewSection.optionsObj;
// Computed that returns the formatter of the first series. This is useful to format the total
// within a donut chart.
this._formatterComp = this.autoDispose(ko.computed(() => {
const field = this.viewSection.viewFields().at(1);
return field?.visibleColFormatter();
}));
this._update = debounce(() => this._updateView(), 0);
let subs: IDisposable[] = [];
this.autoDispose(this._chartType.subscribe(this._update));
this.autoDispose(this._options.subscribe(this._update));
this.autoDispose(this.viewSection.viewFields().subscribe((viewFields: ViewFieldRec[]) => {
this._update();
subs.forEach((sub) => sub.dispose());
subs = [
...viewFields.map((field) => field.displayColModel.peek().type.subscribe(this._update)),
...viewFields.map((field) => field.visibleColModel.peek().type.subscribe(this._update)),
];
}));
this.listenTo(this.sortedRows, 'rowNotify', this._update);
this.autoDispose(this.sortedRows.getKoArray().subscribe(this._update));
this.autoDispose(this._formatterComp.subscribe(this._update));
this.autoDispose(this.gristDoc.currentTheme.addListener(() => this._update()));
}
public prepareToPrint(onOff: boolean) {
Plotly.relayout(this._chartDom, {}).catch(reportError);
}
protected onTableLoaded() {
(BaseView.prototype as any).onTableLoaded.call(this);
this._update();
}
protected onResize() {
this._resize();
}
protected buildDom() {
return dom('div.chart_container', testId('container'));
}
private listenTo(...args: any[]): void { /* replaced by Backbone */ }
private async _updateView() {
if (this.isDisposed()) { return; }
const chartFunc = chartTypes[this._chartType()];
if (typeof chartFunc !== 'function') {
console.warn("Unknown trace type %s", this._chartType());
return;
}
const fields: ViewFieldRec[] = this.viewSection.viewFields().all();
const rowIds: number[] = this.sortedRows.getKoArray().peek() as number[];
const startIndexForYAxis = this._options.prop('multiseries').peek() ? 2 : 1;
let series: Series[] = fields
.filter((field, i) => i < startIndexForYAxis || this._isCompatibleSeries(field.column.peek()))
.map((field) => {
// Use the colId of the displayCol, which may be different in case of Reference columns.
const colId: string = field.displayColModel.peek().colId.peek();
const getter = this.tableModel.tableData.getRowPropFunc(colId) as RowPropGetter;
const pureType = field.displayColModel().pureType();
const fullGetter = (pureType === 'Date' || pureType === 'DateTime') ? dateGetter(getter) : getter;
return {
label: field.label(),
values: rowIds.map(fullGetter),
isInSortSpec: Boolean(Sort.findCol(this._sortSpec, field.colRef.peek())),
};
});
for (let i = 0; i < series.length; ++i) {
if (i < fields.length && LIST_TYPES.includes(fields[i].column.peek().pureType.peek())) {
if (i < startIndexForYAxis) {
// For x-axis and group column data, split series we should split records.
series = splitValuesByIndex(series, i);
} else {
// For all y-axis, it's not sure what would be a sensible representation for choice list,
// simply stringify choice list values seems reasonable.
series[i].values = series[i].values.map((v) => String(decodeObject(v as any)));
}
}
}
const dataOptions: DataOptions = {};
const options: ChartOptions = this._options.peek() || {};
let plotData: PlotData = {data: []};
if (isPieLike(this._chartType.peek())) {
// Plotly's pie charts have a sort option that is enabled by default. Let's turn it off.
dataOptions.sort = false;
// This line is for labels to stay in order when value changes, which can happen when using
// charts with linked list.
sortByXValues(series);
}
if (this._chartType.peek() === 'donut') {
dataOptions.totalFormatter = this._formatterComp.peek();
}
if (!options.multiseries && series.length) {
plotData = chartFunc(series, options, dataOptions);
} else if (series.length > 1) {
// We need to group all series by the first column.
// Sort series alphabetically only if user has not defined a sort on this chart.
const shouldSort = !series[0].isInSortSpec;
const nseries = groupSeries(series[0].values, series.slice(1), shouldSort);
// This will be in the order in which nseries Map was created; concat() flattens the arrays.
const xvalues = Array.from(new Set(series[1].values));
for (const gSeries of nseries.values()) {
// All series have partial list of values, ie: if some may have Q1, Q2, Q3, Q4 as x values
// some others might only have Q1. This causes inconsistent result in regard of the order
// bars will be displayed by plotly (for bar charts). This eventually result in bars not
// following the sorting order. This line fixes that issue by consolidating all series to
// have at least on entry of each x values.
if (this._chartType.peek() === 'bar') {
if (this._sortSpec?.length) { consolidateValues(gSeries, xvalues); }
}
const part = chartFunc(gSeries, options, dataOptions);
part.data = plotData.data.concat(part.data);
plotData = part;
}
}
Plotly = Plotly || await loadPlotly();
// Loading plotly is asynchronous and it may happen that the chart view had been disposed in the
// meantime and cause error later. So let's check again.
if (this.isDisposed()) { return; }
const layout: Partial<Layout> = defaultsDeep(plotData.layout, this._getPlotlyLayout(options));
const config: Partial<Config> = {...plotData.config, displayModeBar: false};
// react() can be used in place of newPlot(), and is faster when updating an existing plot.
await Plotly.react(this._chartDom, plotData.data, layout, config);
this._resizeChart();
}
private _resizeChart() {
if (this.isDisposed() || !Plotly || !this._chartDom.parentNode) { return; }
// Check if the chart is visible before resizing. If it's not visible, Plotly will throw an error.
const display = window.getComputedStyle(this._chartDom).display;
if (!display || display === 'none') {
return;
}
Plotly.Plots.resize(this._chartDom);
}
private _isCompatibleSeries(col: ColumnRec) {
return isNumericOnly(this._chartType.peek()) ? isNumericLike(col) : true;
}
private _getPlotlyLayout(options: ChartOptions): Partial<Layout> {
// Note that each call to getPlotlyLayout() creates a new layout object. We are intentionally
// avoiding reuse because Plotly caches too many layout calculations when the object is reused.
const yaxis: Partial<LayoutAxis> = {automargin: true, title: {standoff: 0}};
const xaxis: Partial<LayoutAxis> = {automargin: true, title: {standoff: 0}};
if (options.logYAxis) { yaxis.type = 'log'; }
if (options.invertYAxis) { yaxis.autorange = 'reversed'; }
const layout = {
// Margins include labels, titles, legend, and may get auto-expanded beyond this.
margin: {
l: 50,
r: 50,
b: 40, // Space below chart which includes x-axis labels
t: 30, // Space above the chart (doesn't include any text)
pad: 4
} as Margin,
yaxis,
xaxis,
...(options.stacked ? {barmode: 'relative'} : {}),
};
return merge(layout, this._getPlotlyTheme());
}
private _getPlotlyTheme(): Partial<Layout> {
const appModel = this.gristDoc.docPageModel.appModel;
const {colors} = appModel.currentTheme.get();
return {
paper_bgcolor: colors['chart-bg'],
plot_bgcolor: colors['chart-bg'],
xaxis: {
color: colors['chart-x-axis'],
},
yaxis: {
color: colors['chart-y-axis'],
},
font: {
color: colors['chart-fg'],
},
legend: {
bgcolor: colors['chart-legend-bg'],
},
};
}
}
/**
* Group the given array of series by a column of group values. The groupColumn and each of the
* series should be arrays of the same length.
*
* For example, if groupColumn has CompanyID, and valueSeries contains [Date, Employees, Revenues]
* (each an array of values), then returns a map mapping each CompanyID to the array [Date,
* Employees, Revenue], each value of which is itself an array of values for that CompanyID.
*/
function groupSeries<T extends Datum>(groupColumn: T[], valueSeries: Series[], sort: boolean): Map<T, Series[]> {
const nseries = new Map<T, Series[]>();
// Limit the number if group values so as to limit the total number of series we pass into
// Plotly. Too many series are impossible to make sense of anyway, and can hang the browser.
// TODO: When not all data is shown, we should probably show some indicator, similar to when
// OnDemand data is truncated.
const maxGroups = Math.floor(MAX_SERIES_IN_CHART / valueSeries.length);
let groupValues: T[] = [...new Set(groupColumn)];
if (sort) {
groupValues.sort();
}
groupValues = groupValues.slice(0, maxGroups);
// Set up empty lists for each group.
for (const group of groupValues) {
nseries.set(group, valueSeries.map((s: Series) => ({
label: s.label,
group,
values: []
})));
}
// Now fill up the lists.
for (let row = 0; row < groupColumn.length; row++) {
const group = groupColumn[row];
const series: Series[]|undefined = nseries.get(group);
if (series) {
for (let i = 0; i < valueSeries.length; i++) {
series[i].values.push(valueSeries[i].values[row]);
}
}
}
return nseries;
}
// If errorBars are requested, removes error bar series from the 'series' list, adding instead a
// mapping from each main Y series to the corresponding plotly ErrorBar object.
function extractErrorBars(series: Series[], options: ChartOptions): Map<Series, ErrorBar> {
const result = new Map<Series, ErrorBar>();
if (options.errorBars) {
// We assume that series is of the form [X, Y1, Y1-bar, Y2, Y2-bar, ...] (if "symmetric") or
// [X, Y1, Y1-below, Y1-above, Y2, Y2-below, Y2-above, ...] (if "separate").
for (let i = 1; i < series.length; i++) {
result.set(series[i], {
type: 'data',
symmetric: (options.errorBars === 'symmetric'),
array: series[i + 1] && series[i + 1].values,
arrayminus: (options.errorBars === 'separate' ? series[i + 2] && series[i + 2].values : undefined),
thickness: 1,
width: 3,
});
series.splice(i + 1, (options.errorBars === 'symmetric' ? 1 : 2));
}
}
return result;
}
// Getting an ES6 class to work with old-style multiple base classes takes a little hacking.
defaults(ChartView.prototype, BaseView.prototype);
Object.assign(ChartView.prototype, BackboneEvents);
/**
* The grainjs component for side-pane configuration options for a Chart section.
*/
export class ChartConfig extends GrainJSDisposable {
private static _instanceMap = new WeakMap<ViewSectionRec, ChartConfig>();
// helper to build the draggable field list
private _configFieldsHelper = VisibleFieldsConfig.create(this, this._gristDoc, this._section);
// The index for the x-axis in the list visible fields. Could be eigther 0 or 1 or -1 depending on
// whether multiseries and isXAxisUndefined are set.
private _xAxisFieldIndex = Computed.create(
this,
fromKo(this._optionsObj.prop('multiseries')),
fromKo(this._optionsObj.prop('isXAxisUndefined')), (_use, multiseries, isUndefined) => (
isUndefined ? -1 : (multiseries ? 1 : 0)
)
);
// The colId of the grouping column, or "" if multiseries is disabled or there are no viewFields,
// for example during section removal.
private _groupDataColId: Computed<string> = Computed.create(this, (use) => {
const multiseries = use(this._optionsObj.prop('multiseries'));
const viewFields = use(use(this._section.viewFields).getObservable());
if (!multiseries || viewFields.length === 0) { return ""; }
return use(use(viewFields[0].column).colId);
})
.onWrite((colId) => this._setGroupDataColumn(colId));
// Updating the group data column involves several changes of the list of view fields which could
// leave the x-axis field index momentarily point to the wrong column. The freeze x axis
// observable is part of a hack to fix this issue.
private _freezeXAxis = Observable.create(this, false);
private _freezeYAxis = Observable.create(this, false);
// The colId of the x-axis, or "" is x axis is undefined.
private _xAxis: Computed<string> = Computed.create(
this, this._xAxisFieldIndex, this._freezeXAxis, (use, i, freeze) => {
if (freeze) { return this._xAxis.get(); }
const viewFields = use(use(this._section.viewFields).getObservable());
if (-1 < i && i < viewFields.length) {
return use(use(viewFields[i].column).colId);
}
return "";
})
.onWrite((colId) => this._setXAxis(colId));
// Whether value is aggregated or not
private _isValueAggregated = Computed.create(this, (use) => this._isSummaryTable(use))
.onWrite((val) => this._setAggregation(val));
// Columns options
private _columnsOptions: Computed<Array<IOptionFull<string>>> = Computed.create(
this, this._freezeXAxis, (use, freeze) => {
if (freeze) { return this._columnsOptions.get(); }
const columns = use(this._isValueAggregated) ?
this._getSummarySourceColumns(use) :
this._getColumns(use);
return columns
// filter out hidden column (ie: manualsort ...)
.filter((col) => !col.isHiddenCol.peek())
.map((col) => ({
value: col.colId(), label: col.label.peek(), icon: 'FieldColumn' as IconName,
}));
}
);
// The list of available columns for the group data picker.
private _groupDataOptions = Computed.create<Array<IOption<string>>>(this, (use) => [
{value: "", label: 'Pick a column'},
...use(this._columnsOptions)
]);
// Force checking/unchecking of the group data checkbox option.
private _groupDataForce = Observable.create(null, false);
// State for the group data option checkbox. True, if a group data column is set or if the user
// forced it. False otherwise.
private _groupData = Computed.create(
this, this._groupDataColId, this._groupDataForce, (_use, colId, force) => {
if (colId) { return true; }
return force;
}).onWrite((val) => {
if (val === false) {
this._groupDataColId.set("");
}
this._groupDataForce.set(val);
});
// The label to show for the first field in the axis configurator.
private _firstFieldLabel = Computed.create(this, fromKo(this._section.chartTypeDef), (
(_use, chartType) => firstFieldIsLabels(chartType) ? 'LABEL' : 'X-AXIS'
));
// A computed that returns `this._section.chartTypeDef` and that takes care of removing the group
// data option when type is switched to 'pie'.
private _chartType = Computed.create(this, (use) => use(this._section.chartTypeDef))
.onWrite((val) => {
return this._gristDoc.docData.bundleActions('switched chart type', async () => {
await this._section.chartTypeDef.saveOnly(val);
// When switching chart type to 'pie' makes sure to remove the group data option.
if (isPieLike(val)) {
await this._setGroupDataColumn("");
this._groupDataForce.set(false);
}
});
});
constructor(private _gristDoc: GristDoc, private _section: ViewSectionRec) {
super();
ChartConfig._instanceMap.set(_section, this);
}
private get _optionsObj() { return this._section.optionsObj; }
public buildDom(): DomContents {
if (this._section.parentKey() !== 'chart') { return null; }
return [
cssRow(
select(this._chartType, [
{value: 'bar', label: 'Bar Chart', icon: 'ChartBar' },
{value: 'pie', label: 'Pie Chart', icon: 'ChartPie' },
{value: 'donut', label: 'Donut Chart', icon: 'ChartDonut' },
{value: 'area', label: 'Area Chart', icon: 'ChartArea' },
{value: 'line', label: 'Line Chart', icon: 'ChartLine' },
{value: 'scatter', label: 'Scatter Plot', icon: 'ChartLine' },
{value: 'kaplan_meier', label: 'Kaplan-Meier Plot', icon: 'ChartKaplan'},
]),
testId("type"),
),
dom.maybe((use) => !isPieLike(use(this._section.chartTypeDef)), () => [
// These options don't make much sense for a pie chart.
cssCheckboxRowObs('Split series', this._groupData),
cssCheckboxRow('Invert Y-axis', this._optionsObj.prop('invertYAxis')),
cssRow(
cssRowLabel('Orientation'),
dom('div', linkSelect(fromKoSave(this._optionsObj.prop('orientation')), [
{value: 'v', label: 'Vertical'},
{value: 'h', label: 'Horizontal'}
], {defaultLabel: 'Vertical'})),
testId('orientation'),
),
cssCheckboxRow('Log scale Y-axis', this._optionsObj.prop('logYAxis')),
]),
dom.maybeOwned((use) => use(this._section.chartTypeDef) === 'donut', (owner) => [
cssSlideRow(
'Hole Size',
Computed.create(owner, (use) => use(this._optionsObj.prop('donutHoleSize')) ?? DONUT_DEFAULT_HOLE_SIZE),
(val: number) => this._optionsObj.prop('donutHoleSize').saveOnly(val),
testId('option')
),
cssCheckboxRow('Show Total', this._optionsObj.prop('showTotal')),
dom.maybe(this._optionsObj.prop('showTotal'), () => (
cssNumberWithSpinnerRow(
'Text Size',
Computed.create(owner, (use) => use(this._optionsObj.prop('textSize')) ?? DONUT_DEFAULT_TEXT_SIZE),
(val: number) => this._optionsObj.prop('textSize').saveOnly(val),
testId('option')
)
))
]),
dom.maybe((use) => use(this._section.chartTypeDef) === 'line', () => [
cssCheckboxRow('Connect gaps', this._optionsObj.prop('lineConnectGaps')),
cssCheckboxRow('Show markers', this._optionsObj.prop('lineMarkers')),
]),
dom.maybe((use) => ['line', 'bar'].includes(use(this._section.chartTypeDef)), () => [
cssCheckboxRow('Stack series', this._optionsObj.prop('stacked')),
cssRow(
cssRowLabel('Error bars'),
dom('div', linkSelect(fromKoSave(this._optionsObj.prop('errorBars')), [
{value: '', label: 'None'},
{value: 'symmetric', label: 'Symmetric'},
{value: 'separate', label: 'Above+Below'},
], {defaultLabel: 'None'})),
testId('error-bars'),
),
dom.domComputed(this._optionsObj.prop('errorBars'), (value: ChartOptions["errorBars"]) =>
value === 'symmetric' ? cssRowHelp(t("Each Y series is followed by a series for the length of error bars.")) :
value === 'separate' ? cssRowHelp(
t("Each Y series is followed by two series, for top and bottom error bars.")
)
2023-01-03 16:45:14 +00:00
: null
),
]),
cssSeparator(),
dom.maybe(this._groupData, () => [
cssLabel('Split Series'),
cssRow(
select(this._groupDataColId, this._groupDataOptions),
testId('group-by-column'),
),
cssHintRow(t("Create separate series for each value of the selected column.")),
]),
// TODO: user should select x axis before widget reach page
cssLabel(dom.text(this._firstFieldLabel), testId('first-field-label')),
cssRow(
select(
this._xAxis, this._columnsOptions,
{ defaultLabel: t("Pick a column") }
),
testId('x-axis'),
),
cssCheckboxRowObs('Aggregate values', this._isValueAggregated),
cssLabel('SERIES'),
this._buildYAxis(),
cssRow(
cssAddYAxis(
cssAddIcon('Plus'), 'Add Series',
menu(() => {
const hiddenColumns = this._section.hiddenColumns.peek();
const filterFunc = this._isCompatibleSeries.bind(this);
const nonNumericCount = hiddenColumns.filter((col) => !filterFunc(col)).length;
return [
...hiddenColumns
.filter((col) => filterFunc(col))
.map((col) => menuItem(
() => this._configFieldsHelper.addField(col),
col.label.peek(),
)),
nonNumericCount ? menuText(
`${nonNumericCount} ` + (
nonNumericCount > 1 ?
`non-numeric columns are not shown` :
`non-numeric column is not shown`
),
testId('yseries-picker-message'),
) : null,
];
}),
testId('add-y-axis'),
)
),
];
}
private async _setXAxis(colId: string) {
const optionsObj = this._section.optionsObj;
const findColumn = () => this._getColumns().find((c) => c.colId() === colId);
const viewFields = this._section.viewFields.peek();
await this._gristDoc.docData.bundleActions('selected new x-axis', async () => {
this._freezeYAxis.set(true);
this._freezeXAxis.set(true);
try {
// first remove the current field
if (this._xAxisFieldIndex.get() !== -1 && this._xAxisFieldIndex.get() < viewFields.peek().length) {
await this._configFieldsHelper.removeField(viewFields.peek()[this._xAxisFieldIndex.get()]);
}
// if x axis was undefined, set option to false
await setSaveValue(this._optionsObj.prop('isXAxisUndefined'), false);
// if new field was used to split series, disable multiseries
const fieldIndex = viewFields.peek().findIndex((f) => f.column.peek().colId() === colId);
if (fieldIndex === 0 && optionsObj.prop('multiseries').peek()) {
await optionsObj.prop('multiseries').setAndSave(false);
return;
}
// if values aggregation is 'on' update the grouped by columns before findColumn()
// call. This will make sure that colId is not missing from the summary table's columns (as
// could happen if it were a non-numeric for instance).
if (this._isValueAggregated.get()) {
const splitColId = this._groupDataColId.get();
const cols = splitColId === colId ? [colId] : [splitColId, colId];
await this._setGroupByColumns(cols);
}
// if the new column for the x axis is already visible, make it the first visible column,
// else add it as the first visible field. The field will be first because it will be
// inserted before current xAxis column (which is already first (or second if we have
// multi-series option checked))
const xAxisField = viewFields.peek()[this._xAxisFieldIndex.get()];
if (fieldIndex > -1) {
await this._configFieldsHelper.changeFieldPosition(viewFields.peek()[fieldIndex], xAxisField);
} else {
const col = findColumn();
if (col) {
await this._configFieldsHelper.addField(col, xAxisField);
}
}
} finally {
this._freezeYAxis.set(false);
this._freezeXAxis.set(false);
}
});
}
private async _setGroupDataColumn(colId: string) {
const viewFields = this._section.viewFields.peek().peek();
await this._gristDoc.docData.bundleActions(t("selected new group data columns"), async () => {
this._freezeXAxis.set(true);
this._freezeYAxis.set(true);
try {
// if grouping was already set, first remove the current field
if (this._groupDataColId.get()) {
await this._configFieldsHelper.removeField(viewFields[0]);
}
// if values aggregation is 'on' update the grouped by columns first. This will make sure
// that colId is not missing from the summary table's columns (as could happen if it were a
// non-numeric for instance).
if (this._isValueAggregated.get()) {
const xAxisColId = this._xAxis.get();
const cols = xAxisColId === colId ? [colId] : [colId, xAxisColId];
await this._setGroupByColumns(cols);
}
if (colId) {
const col = this._getColumns().find((c) => c.colId() === colId)!;
const field = viewFields.find((f) => f.column.peek().colId() === colId);
// if new field is already visible, moves the fields to the first place else add the field to the first
// place
if (field) {
await this._configFieldsHelper.changeFieldPosition(field, viewFields[0]);
} else {
await this._configFieldsHelper.addField(col, viewFields[0]);
}
// if this column is used as xAxis, set the xAxis to undefined (show Pick a column label)
if (colId === this._xAxis.get()) {
await this._optionsObj.prop('isXAxisUndefined').setAndSave(true);
}
}
await this._optionsObj.prop('multiseries').setAndSave(Boolean(colId));
} finally {
this._freezeXAxis.set(false);
this._freezeYAxis.set(false);
}
}, {nestInActiveBundle: true});
}
private _getColumns(use: UseCB = unwrap) {
const table = use(this._section.table);
return use(use(table.columns).getObservable());
}
private _getSummarySourceColumns(use: UseCB = unwrap) {
let table = use(this._section.table);
table = use(table.summarySource);
return use(use(table.columns).getObservable());
}
private _buildField(col: IField) {
return cssFieldEntry(
cssFieldLabel(dom.text(col.label)),
cssRemoveIcon(
'Remove',
dom.on('click', () => this._configFieldsHelper.removeField(col)),
testId('ref-select-remove'),
),
testId('y-axis'),
);
}
private _buildYAxis(): DomContents {
// The y-axis are all visible fields that comes after the x-axis and maybe the group data
// column. Hence the draggable list of y-axis needs to skip either one or two visible fields.
const skipFirst = Computed.create(this,
fromKo(this._optionsObj.prop('multiseries')),
fromKo(this._optionsObj.prop('isXAxisUndefined')),
(_use, multiseries, isUndefined) => (
(isUndefined ? 0 : 1) + (multiseries ? 1 : 0)
));
return dom.domComputed((use) => {
const filterFunc = (field: ViewFieldRec) => this._isCompatibleSeries(use(field.column), use);
return this._configFieldsHelper.buildVisibleFieldsConfigHelper({
itemCreateFunc: (field) => this._buildField(field),
draggableOptions: {
removeButton: false,
drag_indicator: cssDragger,
}, skipFirst, freeze: this._freezeYAxis, filterFunc
});
});
}
private _isCompatibleSeries(col: ColumnRec, use: UseCB = unwrap) {
return isNumericOnly(use(this._chartType)) ? isNumericLike(col, use) : true;
}
private async _setAggregation(val: boolean) {
try {
this._freezeXAxis.set(true);
await this._gristDoc.docData.bundleActions(t("Toggle chart aggregation"), async () => {
if (val) {
await this._doAggregation();
} else {
await this._undoAggregation();
}
});
} finally {
if (!this.isDisposed()) {
this._freezeXAxis.set(false);
}
}
}
// Do the aggregation: if not a summary table, turns into one; else update groupby columns to
// match the X-Axis and Split-series columns.
private async _doAggregation(): Promise<void> {
if (!this._isSummaryTable()) {
await this._toggleSummaryTable();
} else {
await this._setGroupByColumns([this._xAxis.get(), this._groupDataColId.get()]);
}
}
// Undo the aggregation.
private async _undoAggregation() {
if (this._isSummaryTable()) {
await this._toggleSummaryTable();
}
}
private _isSummaryTable(use: UseCB = unwrap) {
return Boolean(use(use(this._section.table).summarySourceTable));
}
// Toggle whether section table is a summary table. Must use with care: this function calls
// `this.dispose()` as a side effect. Conveniently returns the ChartConfig instance of the new
// view section that replaces the old one.
private async _toggleSummaryTable(): Promise<ChartConfig> {
const colIds = [this._xAxis.get(), this._groupDataColId.get()];
const pageWidget = toPageWidget(this._section);
pageWidget.summarize = !this._isSummaryTable();
pageWidget.columns = this._getColumnIds(colIds);
this._ensureValidLinkingIfAny(pageWidget);
const newSection = await this._gristDoc.saveViewSection(this._section, pageWidget);
return ChartConfig._instanceMap.get(newSection)!;
}
private async _setGroupByColumns(groupByCols: string[]) {
const pageWidget = toPageWidget(this._section);
pageWidget.columns = this._getColumnIds(groupByCols);
this._ensureValidLinkingIfAny(pageWidget);
return this._gristDoc.saveViewSection(this._section, pageWidget);
}
// If section is linked to a summary table, makes sure that pageWidget describes a summary table
// that is more detailed than the source summary table. Function mutates `pageWidget`.
private _ensureValidLinkingIfAny(pageWidget: IPageWidget) {
if (!pageWidget.summarize) { return; }
if (!this._section.linkSrcSection().getRowId()) { return; }
const srcPageWidget = toPageWidget(this._section.linkSrcSection());
pageWidget.columns = union(pageWidget.columns, srcPageWidget.columns);
}
// Returns column ids corresponding to each colIds in the selected table (or corresponding summary
// source table, if select table is a summary table).
private _getColumnIds(colIds: string[]) {
const cols = this._isSummaryTable() ?
this._section.table().summarySource().columns().all() :
this._section.table().columns().all();
const columns = colIds
.map((colId) => colId && cols.find(c => c.colId() === colId))
.filter((col): col is ColumnRec => Boolean(col))
.map(col => col.id());
return columns;
}
}
// Row for a numeric option. User can change value using spinners or directly using keyboard. In
// case of invalid values, the field reverts to the saved one.
function cssNumberWithSpinnerRow(label: string, value: Computed<number>, save: (val: number) => Promise<void>,
...args: DomElementArg[]) {
const minValue = 1;
let input: HTMLInputElement;
// Set the input's value to the value that's saved on the server.
function reset() {
input.value = value.get() + "px";
}
async function onChange(val: string, func: (val: number) => number = (v) => v) {
let fvalue = parseFloat(val);
if (isFinite(fvalue)) {
fvalue = clamp(func(fvalue), minValue, Infinity);
await save(fvalue);
}
// Reset is needed if value were not a valid number.
reset();
}
return cssRow(
cssRowLabel(label),
cssNumberWithSpinner(
input = cssNumberInput(
{type: 'text'},
dom.prop('value', (use) => use(value) + "px"),
dom.on('change', (_ev, el) => onChange(el.value)),
dom.onKeyDown({
ArrowDown: (_ev, el) => onChange(el.value, (val) => val - 1),
ArrowUp: (_ev, el) => onChange(el.value, (val) => val + 1),
}),
),
// We add spinners as overlay in order to support showing the unit 'px' next to the value.
cssSpinners(
'input',
{type: 'number', step: '1', min: String(minValue)},
dom.prop('value', value),
dom.on('change', (_ev, el) => onChange(el.value)),
),
),
...args
);
}
// Row for a numeric option that leaves between 0 and 1. User can change value using a slider, or
// spinners or by directly using keyboard. Value is shown as percent. If user enter an invalid
// value, field reverts to the saved value.
function cssSlideRow(label: string, value: Computed<number>, save: (val: number) => Promise<void>,
...args: DomElementArg[]) {
let input: HTMLInputElement;
// Set the input's value to the value that's saved on the server.
function reset() {
input.value = formatPercent(value.get());
}
async function onChange(val: string, func: (val: number) => number = (v) => v) {
let fvalue = parseFloat(val);
if (isFinite(fvalue)) {
fvalue = clamp(func(fvalue), 0, 99) / 100;
await save(fvalue);
}
// Reset is needed if value were not a valid number.
reset();
}
return cssRow(
cssRowLabel(label),
cssRangeInput(
{type: 'range', min: "0", max: "1", step: "0.01"},
dom.prop('value', value),
dom.on('change', (_ev, el) => save(Number(el.value)))
),
cssNumberWithSpinner(
input = cssNumberInput(
{type: 'text'},
dom.prop('value', (use) => formatPercent(use(value))),
dom.on('change', (_ev, el) => onChange(el.value)),
dom.onKeyDown({
ArrowDown: (_ev, el) => onChange(el.value, (val) => val - 1),
ArrowUp: (_ev, el) => onChange(el.value, (val) => val + 1),
}),
),
// We add spinners as overlay in order to support showing the unit '%' next to the value.
cssSpinners(
'input',
{type: 'number', step: '0.01', min: '0', max: '0.99'},
dom.prop('value', value),
dom.on('change', (_ev, el) => save(Number(el.value))),
)
),
...args
);
}
function cssCheckboxRow(label: string, value: KoSaveableObservable<unknown>, ...args: DomElementArg[]) {
return cssCheckboxRowObs(label, fromKoSave(value), ...args);
}
function cssCheckboxRowObs(label: string, value: Observable<boolean>, ...args: DomElementArg[]) {
return dom('label', cssRow.cls(''),
cssRowLabel(label),
squareCheckbox(value, ...args),
);
}
function basicPlot(series: Series[], options: ChartOptions, dataOptions: Data): PlotData {
trimNonNumericData(series);
const errorBars = extractErrorBars(series, options);
if (dataOptions.type === 'bar') {
// Plotly has weirdness when redundant values shows up on the x-axis: the values that shows
// up on hover is different than the value on the y-axis. It seems that one is the sum of all
// values with same x-axis value, while the other is the last of them. To fix this, we force
// unique values for the x-axis.
uniqXValues(series);
}
const [axis1, axis2] = options.orientation === 'h' ? ['y', 'x'] : ['x', 'y'];
const dataSeries = series.slice(1).map((line: Series): Data => ({
name: getSeriesName(line, series.length > 2),
[axis1]: replaceEmptyLabels(series[0].values),
[axis2]: line.values,
[`error_${axis2}`]: errorBars.get(line),
orientation: options.orientation,
...dataOptions,
stackgroup: makeRelativeStackGroup(dataOptions.stackgroup, line.values),
}));
// When stacking, stackgroup will be non-empty (an arbitrary value, set to "A" for line-charts).
// We further separate positive series from negative ones, by changing stackgroup to a different
// value ("-A") for series which look probably negative. This keeps positive ones above the
// x-axis, and negative ones below, as for barmode=relative (which only applies to bar charts).
function makeRelativeStackGroup(stackgroup: string|undefined, values: Datum[]) {
if (!stackgroup) { return stackgroup; }
const firstNonZero = values.find(v => v && (v > 0 || v < 0));
const isNegative = firstNonZero && firstNonZero < 0;
return isNegative ? "-" + stackgroup : stackgroup;
}
return {
data: dataSeries,
layout: {
[`${axis1}axis`]: {title: series.length > 0 ? {text: series[0].label}: {}},
// Include yaxis title for a single y-value series only (2 series total);
// If there are fewer than 2 total series, there is no y-series to display.
// If there are multiple y-series, a legend will be included instead, and the yaxis title
// is less meaningful, so omit it.
[`${axis2}axis`]: {title: series.length === 2 ? {text: series[1].label} : {}},
},
};
}
// Most chart types take a list of series and then use the first series for the X-axis, and each
// subsequent series for their Y-axis values, allowing for multiple lines on the same plot.
// Each series should have the form {label, values}.
export const chartTypes: {[name: string]: ChartFunc} = {
// TODO There is a lot of code duplication across chart types. Some refactoring is in order.
bar(series: Series[], options: ChartOptions): PlotData {
return basicPlot(series, options, {type: 'bar'});
},
line(series: Series[], options: ChartOptions): PlotData {
sortByXValues(series);
return basicPlot(series, options, {
type: 'scatter',
connectgaps: options.lineConnectGaps,
mode: options.lineMarkers ? 'lines+markers' : 'lines',
stackgroup: (options.stacked ? "A" : ""),
});
},
area(series: Series[], options: ChartOptions): PlotData {
sortByXValues(series);
return basicPlot(series, options, {
type: 'scatter',
fill: 'tozeroy',
line: {shape: 'spline'},
});
},
scatter(series: Series[], options: ChartOptions): PlotData {
return basicPlot(series.slice(1), options, {
type: 'scatter',
mode: 'text+markers',
text: series[0].values as string[],
textposition: "bottom center",
});
},
pie(series: Series[], _options: ChartOptions, dataOptions: DataOptions = {}): PlotData {
let line: Series;
if (series.length === 0) {
return {data: []};
}
if (series.length > 1) {
trimNonNumericData(series);
line = series[1];
} else {
// When there is only one series of labels, simply count their occurrences.
line = {label: 'Count', values: series[0].values.map(() => 1)};
}
return {
data: [{
type: 'pie',
name: getSeriesName(line, false),
// nulls cause JS errors when pie charts resize, so replace with blanks.
// (a falsy value would cause plotly to show its index, like "2" which is more confusing).
labels: replaceEmptyLabels(series[0].values),
values: line.values,
...dataOptions,
}]
};
},
donut(series: Series[], options: ChartOptions, dataOptions: DataOptions = {}): PlotData {
const hole = isNumber(options.donutHoleSize) ? options.donutHoleSize : DONUT_DEFAULT_HOLE_SIZE;
const annotations: Array<Partial<Annotations>> = [];
const plotData: PlotData = chartTypes.pie(series, options, {...dataOptions, hole});
function format(val: number) {
if (dataOptions.totalFormatter) {
return dataOptions.totalFormatter.formatAny(val);
}
return String(val);
}
if (options.showTotal) {
annotations.push({
text: format(
series.length > 1 ?
sum(series[1].values.filter(isNumber)) :
plotData.data[0].labels!.length,
),
showarrow: false,
font: {
size: options.textSize ?? DONUT_DEFAULT_TEXT_SIZE,
}
} as any);
}
return defaultsDeep(
plotData,
{layout: {annotations}}
);
},
kaplan_meier(series: Series[]): PlotData {
// For this plot, the first series names the category of each point, and the second the
// survival time for that point. We turn that into as many series as there are categories.
if (series.length < 2) { return {data: []}; }
const newSeries = groupIntoSeries(series[0].values, series[1].values);
return {
data: newSeries.map((line: Series): Data => {
const points = kaplanMeierPlot(line.values as number[]);
return {
type: 'scatter',
mode: 'lines',
line: {shape: 'hv'},
name: getSeriesName(line, false),
x: points.map(p => p.x),
y: points.map(p => p.y),
} as Data;
})
};
},
};
/**
* Assumes a list of series of the form [xValues, yValues1, yValues2, ...]. Remove from all series
* those points for which all of the y-values are non-numeric (e.g. null or a string).
*/
function trimNonNumericData(series: Series[]): void {
const values = series.slice(1).map((s) => s.values);
for (const s of series) {
s.values = s.values.filter((_, i) => values.some(v => typeof v[i] === 'number'));
}
}
/**
* Replace empty values with "-", which is relevant for labels in Pie Charts and for X-axis in
* other chart types.
*
* In pie charts, nulls cause JS errors. In other types, nulls in X-axis cause that point to be
* omitted (but still affect the Y scale, causing confusion). Replace with "-" rather than blank
* because plotly replaces falsy values by their index (eg "2") in Pie charts, which is confusing.
*/
function replaceEmptyLabels(values: Datum[]): Datum[] {
return values.map(v => (v == null || v === "") ? "-" : v);
}
// Given two parallel arrays, returns an array of series of the form
// {label: category, values: array-of-values}
function groupIntoSeries(categoryList: Datum[], valueList: Datum[]): Series[] {
const groups = new Map();
for (const [i, cat] of categoryList.entries()) {
if (!groups.has(cat)) { groups.set(cat, []); }
groups.get(cat).push(valueList[i]);
}
return Array.from(groups, ([label, values]) => ({label, values}));
}
// Given a list of survivalValues, returns a list of {x, y} pairs for the kaplanMeier plot.
function kaplanMeierPlot(survivalValues: number[]): Array<{x: number, y: number}> {
// First get a distribution of survivalValue -> count.
const dist = new Map<number, number>();
for (const v of survivalValues) {
dist.set(v, (dist.get(v) || 0) + 1);
}
// Sort the distinct values.
const distinctValues = Array.from(dist.keys());
distinctValues.sort(nativeCompare);
// Now generate plot values, with 'x' for survivalValue and 'y' the number of surviving points.
let y = survivalValues.length;
const points = [{x: 0, y}];
for (const x of distinctValues) {
y -= dist.get(x)!;
points.push({x, y});
}
return points;
}
const cssRowLabel = styled('div', `
flex: 1 0 0px;
margin-right: 8px;
font-weight: initial; /* negate bootstrap */
color: ${theme.text};
overflow: hidden;
text-overflow: ellipsis;
user-select: none;
`);
const cssRowHelp = styled(cssRow, `
font-size: ${vars.smallFontSize};
color: ${theme.lightText};
`);
const cssAddIcon = styled(icon, `
margin-right: 4px;
`);
const cssAddYAxis = styled('div', `
display: flex;
cursor: pointer;
color: ${theme.controlFg};
--icon-color: ${theme.controlFg};
&:not(:first-child) {
margin-top: 8px;
}
&:hover, &:focus, &:active {
color: ${theme.controlHoverFg};
--icon-color: ${theme.controlHoverFg};
}
`);
const cssRemoveIcon = styled(icon, `
display: none;
cursor: pointer;
flex: none;
margin-left: 8px;
.${cssFieldEntry.className}:hover & {
display: block;
}
`);
const cssHintRow = styled('div', `
margin: -4px 16px 8px 16px;
color: ${theme.lightText};
`);
const cssRangeInput = styled('input', `
input& {
width: 82px;
margin-right: 4px;
}
`);
const cssNumberWithSpinner = styled('div', `
position: relative;
`);
const cssNumberInput = styled('input', `
width: 55px;
`);
const cssSpinners = styled('input', `
width: 19px;
position: absolute;
top: 2px;
right: 1px;
border: none;
outline: none;
appearance: none;
-moz-appearance: none;
visibility: hidden;
.${cssNumberWithSpinner.className}:hover & {
visibility: visible;
}
/* needed for chrome to show spinners, indeed the cursor could be outside of spinners' input
element */
&[type=number]::-webkit-inner-spin-button {
opacity: 1;
}
`);