2016-08-25 01:35:32 +00:00
|
|
|
|
/**
|
|
|
|
|
* TTTTTTTTTTTTTTTTTTTTTTTHHHHHHHHH HHHHHHHHHEEEEEEEEEEEEEEEEEEEEEE
|
|
|
|
|
* T:::::::::::::::::::::TH:::::::H H:::::::HE::::::::::::::::::::E
|
|
|
|
|
* T:::::::::::::::::::::TH:::::::H H:::::::HE::::::::::::::::::::E
|
|
|
|
|
* T:::::TT:::::::TT:::::THH::::::H H::::::HHEE::::::EEEEEEEEE::::E
|
|
|
|
|
* TTTTTT T:::::T TTTTTT H:::::H H:::::H E:::::E EEEEEE
|
|
|
|
|
* T:::::T H:::::H H:::::H E:::::E
|
|
|
|
|
* T:::::T H::::::HHHHH::::::H E::::::EEEEEEEEEE
|
|
|
|
|
* T:::::T H:::::::::::::::::H E:::::::::::::::E
|
|
|
|
|
* T:::::T H:::::::::::::::::H E:::::::::::::::E
|
|
|
|
|
* T:::::T H::::::HHHHH::::::H E::::::EEEEEEEEEE
|
|
|
|
|
* T:::::T H:::::H H:::::H E:::::E
|
|
|
|
|
* T:::::T H:::::H H:::::H E:::::E EEEEEE
|
|
|
|
|
* TT:::::::TT HH::::::H H::::::HHEE::::::EEEEEEEE:::::E
|
|
|
|
|
* T:::::::::T H:::::::H H:::::::HE::::::::::::::::::::E
|
|
|
|
|
* T:::::::::T H:::::::H H:::::::HE::::::::::::::::::::E
|
|
|
|
|
* TTTTTTTTTTT HHHHHHHHH HHHHHHHHHEEEEEEEEEEEEEEEEEEEEEE
|
|
|
|
|
*
|
|
|
|
|
* SSSSSSSSSSSSSSS UUUUUUUU UUUUUUUUPPPPPPPPPPPPPPPPP EEEEEEEEEEEEEEEEEEEEEERRRRRRRRRRRRRRRRR
|
|
|
|
|
* SS:::::::::::::::SU::::::U U::::::UP::::::::::::::::P E::::::::::::::::::::ER::::::::::::::::R
|
|
|
|
|
* S:::::SSSSSS::::::SU::::::U U::::::UP::::::PPPPPP:::::P E::::::::::::::::::::ER::::::RRRRRR:::::R
|
|
|
|
|
* S:::::S SSSSSSSUU:::::U U:::::UUPP:::::P P:::::PEE::::::EEEEEEEEE::::ERR:::::R R:::::R
|
|
|
|
|
* S:::::S U:::::U U:::::U P::::P P:::::P E:::::E EEEEEE R::::R R:::::R
|
|
|
|
|
* S:::::S U:::::U U:::::U P::::P P:::::P E:::::E R::::R R:::::R
|
|
|
|
|
* S::::SSSS U:::::U U:::::U P::::PPPPPP:::::P E::::::EEEEEEEEEE R::::RRRRRR:::::R
|
|
|
|
|
* SS::::::SSSSS U:::::U U:::::U P:::::::::::::PP E:::::::::::::::E R:::::::::::::RR
|
|
|
|
|
* SSS::::::::SS U:::::U U:::::U P::::PPPPPPPPP E:::::::::::::::E R::::RRRRRR:::::R
|
|
|
|
|
* SSSSSS::::S U:::::U U:::::U P::::P E::::::EEEEEEEEEE R::::R R:::::R
|
|
|
|
|
* S:::::S U:::::U U:::::U P::::P E:::::E R::::R R:::::R
|
|
|
|
|
* S:::::S U::::::U U::::::U P::::P E:::::E EEEEEE R::::R R:::::R
|
|
|
|
|
* SSSSSSS S:::::S U:::::::UUU:::::::U PP::::::PP EE::::::EEEEEEEE:::::ERR:::::R R:::::R
|
|
|
|
|
* S::::::SSSSSS:::::S UU:::::::::::::UU P::::::::P E::::::::::::::::::::ER::::::R R:::::R
|
|
|
|
|
* S:::::::::::::::SS UU:::::::::UU P::::::::P E::::::::::::::::::::ER::::::R R:::::R
|
|
|
|
|
* SSSSSSSSSSSSSSS UUUUUUUUU PPPPPPPPPP EEEEEEEEEEEEEEEEEEEEEERRRRRRRR RRRRRRR
|
|
|
|
|
*
|
|
|
|
|
* TTTTTTTTTTTTTTTTTTTTTTTIIIIIIIIIINNNNNNNN NNNNNNNNYYYYYYY YYYYYYY
|
|
|
|
|
* T:::::::::::::::::::::TI::::::::IN:::::::N N::::::NY:::::Y Y:::::Y
|
|
|
|
|
* T:::::::::::::::::::::TI::::::::IN::::::::N N::::::NY:::::Y Y:::::Y
|
|
|
|
|
* T:::::TT:::::::TT:::::TII::::::IIN:::::::::N N::::::NY::::::Y Y::::::Y
|
|
|
|
|
* TTTTTT T:::::T TTTTTT I::::I N::::::::::N N::::::NYYY:::::Y Y:::::YYY
|
|
|
|
|
* T:::::T I::::I N:::::::::::N N::::::N Y:::::Y Y:::::Y
|
|
|
|
|
* T:::::T I::::I N:::::::N::::N N::::::N Y:::::Y:::::Y
|
|
|
|
|
* T:::::T I::::I N::::::N N::::N N::::::N Y:::::::::Y
|
|
|
|
|
* T:::::T I::::I N::::::N N::::N:::::::N Y:::::::Y
|
|
|
|
|
* T:::::T I::::I N::::::N N:::::::::::N Y:::::Y
|
|
|
|
|
* T:::::T I::::I N::::::N N::::::::::N Y:::::Y
|
|
|
|
|
* T:::::T I::::I N::::::N N:::::::::N Y:::::Y
|
|
|
|
|
* TT:::::::TT II::::::IIN::::::N N::::::::N Y:::::Y
|
|
|
|
|
* T:::::::::T I::::::::IN::::::N N:::::::N YYYY:::::YYYY
|
|
|
|
|
* T:::::::::T I::::::::IN::::::N N::::::N Y:::::::::::Y
|
|
|
|
|
* TTTTTTTTTTT IIIIIIIIIINNNNNNNN NNNNNNN YYYYYYYYYYYYY
|
|
|
|
|
*
|
|
|
|
|
* CCCCCCCCCCCCC OOOOOOOOO MMMMMMMM MMMMMMMMPPPPPPPPPPPPPPPPP IIIIIIIIIILLLLLLLLLLL EEEEEEEEEEEEEEEEEEEEEERRRRRRRRRRRRRRRRR
|
|
|
|
|
* CCC::::::::::::C OO:::::::::OO M:::::::M M:::::::MP::::::::::::::::P I::::::::IL:::::::::L E::::::::::::::::::::ER::::::::::::::::R
|
|
|
|
|
* CC:::::::::::::::C OO:::::::::::::OO M::::::::M M::::::::MP::::::PPPPPP:::::P I::::::::IL:::::::::L E::::::::::::::::::::ER::::::RRRRRR:::::R
|
|
|
|
|
* C:::::CCCCCCCC::::CO:::::::OOO:::::::OM:::::::::M M:::::::::MPP:::::P P:::::PII::::::IILL:::::::LL EE::::::EEEEEEEEE::::ERR:::::R R:::::R
|
|
|
|
|
* C:::::C CCCCCCO::::::O O::::::OM::::::::::M M::::::::::M P::::P P:::::P I::::I L:::::L E:::::E EEEEEE R::::R R:::::R
|
|
|
|
|
* C:::::C O:::::O O:::::OM:::::::::::M M:::::::::::M P::::P P:::::P I::::I L:::::L E:::::E R::::R R:::::R
|
|
|
|
|
* C:::::C O:::::O O:::::OM:::::::M::::M M::::M:::::::M P::::PPPPPP:::::P I::::I L:::::L E::::::EEEEEEEEEE R::::RRRRRR:::::R
|
|
|
|
|
* C:::::C O:::::O O:::::OM::::::M M::::M M::::M M::::::M P:::::::::::::PP I::::I L:::::L E:::::::::::::::E R:::::::::::::RR
|
|
|
|
|
* C:::::C O:::::O O:::::OM::::::M M::::M::::M M::::::M P::::PPPPPPPPP I::::I L:::::L E:::::::::::::::E R::::RRRRRR:::::R
|
|
|
|
|
* C:::::C O:::::O O:::::OM::::::M M:::::::M M::::::M P::::P I::::I L:::::L E::::::EEEEEEEEEE R::::R R:::::R
|
|
|
|
|
* C:::::C O:::::O O:::::OM::::::M M:::::M M::::::M P::::P I::::I L:::::L E:::::E R::::R R:::::R
|
|
|
|
|
* C:::::C CCCCCCO::::::O O::::::OM::::::M MMMMM M::::::M P::::P I::::I L:::::L LLLLLL E:::::E EEEEEE R::::R R:::::R
|
|
|
|
|
* C:::::CCCCCCCC::::CO:::::::OOO:::::::OM::::::M M::::::MPP::::::PP II::::::IILL:::::::LLLLLLLLL:::::LEE::::::EEEEEEEE:::::ERR:::::R R:::::R
|
|
|
|
|
* CC:::::::::::::::C OO:::::::::::::OO M::::::M M::::::MP::::::::P I::::::::IL::::::::::::::::::::::LE::::::::::::::::::::ER::::::R R:::::R
|
|
|
|
|
* CCC::::::::::::C OO:::::::::OO M::::::M M::::::MP::::::::P I::::::::IL::::::::::::::::::::::LE::::::::::::::::::::ER::::::R R:::::R
|
|
|
|
|
* CCCCCCCCCCCCC OOOOOOOOO MMMMMMMM MMMMMMMMPPPPPPPPPP IIIIIIIIIILLLLLLLLLLLLLLLLLLLLLLLLEEEEEEEEEEEEEEEEEEEEEERRRRRRRR RRRRRRR
|
|
|
|
|
*
|
|
|
|
|
* =======================================================================================================================================================================
|
|
|
|
|
* =======================================================================================================================================================================
|
|
|
|
|
* =======================================================================================================================================================================
|
|
|
|
|
* =======================================================================================================================================================================
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Today we're going to write a compiler together. But not just any compiler... A
|
|
|
|
|
* super duper teeny tiny compiler! A compiler that is so small that if you
|
|
|
|
|
* remove all the comments this file would only be ~200 lines of actual code.
|
|
|
|
|
*
|
|
|
|
|
* We're going to compile some lisp-like function calls into some C-like
|
|
|
|
|
* function calls.
|
|
|
|
|
*
|
|
|
|
|
* If you are not familiar with one or the other. I'll just give you a quick intro.
|
|
|
|
|
*
|
|
|
|
|
* If we had two functions `add` and `subtract` they would be written like this:
|
|
|
|
|
*
|
|
|
|
|
* LISP C
|
|
|
|
|
*
|
|
|
|
|
* 2 + 2 (add 2 2) add(2, 2)
|
|
|
|
|
* 4 - 2 (subtract 4 2) subtract(4, 2)
|
|
|
|
|
* 2 + (4 - 2) (add 2 (subtract 4 2)) add(2, subtract(4, 2))
|
|
|
|
|
*
|
|
|
|
|
* Easy peezy right?
|
|
|
|
|
*
|
|
|
|
|
* Well good, because this is exactly what we are going to compile. While this
|
|
|
|
|
* is neither a complete LISP or C syntax, it will be enough of the syntax to
|
|
|
|
|
* demonstrate many of the major pieces of a modern compiler.
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Most compilers break down into three primary stages: Parsing, Transformation,
|
|
|
|
|
* and Code Generation
|
|
|
|
|
*
|
|
|
|
|
* 1. *Parsing* is taking raw code and turning it into a more abstract
|
|
|
|
|
* representation of the code.
|
|
|
|
|
*
|
|
|
|
|
* 2. *Transformation* takes this abstract representation and manipulates to do
|
|
|
|
|
* whatever the compiler wants it to.
|
|
|
|
|
*
|
|
|
|
|
* 3. *Code Generation* takes the transformed representation of the code and
|
|
|
|
|
* turns it into new code.
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Parsing
|
|
|
|
|
* -------
|
|
|
|
|
*
|
|
|
|
|
* Parsing typically gets broken down into two phases: Lexical Analysis and
|
|
|
|
|
* Syntactic Analysis.
|
|
|
|
|
*
|
|
|
|
|
* 1. *Lexical Analysis* takes the raw code and splits it apart into these things
|
|
|
|
|
* called tokens by a thing called a tokenizer (or lexer).
|
|
|
|
|
*
|
|
|
|
|
* Tokens are an array of tiny little objects that describe an isolated piece
|
|
|
|
|
* of the syntax. They could be numbers, labels, punctuation, operators,
|
|
|
|
|
* whatever.
|
|
|
|
|
*
|
|
|
|
|
* 2. *Syntactic Analysis* takes the tokens and reformats them into a
|
|
|
|
|
* representation that describes each part of the syntax and their relation
|
|
|
|
|
* to one another. This is known as an intermediate representation or
|
|
|
|
|
* Abstract Syntax Tree.
|
|
|
|
|
*
|
|
|
|
|
* An Abstract Syntax Tree, or AST for short, is a deeply nested object that
|
|
|
|
|
* represents code in a way that is both easy to work with and tells us a lot
|
|
|
|
|
* of information.
|
|
|
|
|
*
|
|
|
|
|
* For the following syntax:
|
|
|
|
|
*
|
|
|
|
|
* (add 2 (subtract 4 2))
|
|
|
|
|
*
|
|
|
|
|
* Tokens might look something like this:
|
|
|
|
|
*
|
|
|
|
|
* [
|
|
|
|
|
* { type: 'paren', value: '(' },
|
|
|
|
|
* { type: 'name', value: 'add' },
|
|
|
|
|
* { type: 'number', value: '2' },
|
|
|
|
|
* { type: 'paren', value: '(' },
|
|
|
|
|
* { type: 'name', value: 'subtract' },
|
|
|
|
|
* { type: 'number', value: '4' },
|
|
|
|
|
* { type: 'number', value: '2' },
|
|
|
|
|
* { type: 'paren', value: ')' },
|
2016-12-31 20:31:43 +00:00
|
|
|
|
* { type: 'paren', value: ')' },
|
2016-08-25 01:35:32 +00:00
|
|
|
|
* ]
|
|
|
|
|
*
|
|
|
|
|
* And an Abstract Syntax Tree (AST) might look like this:
|
|
|
|
|
*
|
|
|
|
|
* {
|
|
|
|
|
* type: 'Program',
|
|
|
|
|
* body: [{
|
|
|
|
|
* type: 'CallExpression',
|
|
|
|
|
* name: 'add',
|
|
|
|
|
* params: [{
|
|
|
|
|
* type: 'NumberLiteral',
|
2016-12-31 20:31:43 +00:00
|
|
|
|
* value: '2',
|
2016-08-25 01:35:32 +00:00
|
|
|
|
* }, {
|
|
|
|
|
* type: 'CallExpression',
|
|
|
|
|
* name: 'subtract',
|
|
|
|
|
* params: [{
|
|
|
|
|
* type: 'NumberLiteral',
|
2016-12-31 20:31:43 +00:00
|
|
|
|
* value: '4',
|
2016-08-25 01:35:32 +00:00
|
|
|
|
* }, {
|
|
|
|
|
* type: 'NumberLiteral',
|
2016-12-31 20:31:43 +00:00
|
|
|
|
* value: '2',
|
2016-08-25 01:35:32 +00:00
|
|
|
|
* }]
|
|
|
|
|
* }]
|
|
|
|
|
* }]
|
|
|
|
|
* }
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Transformation
|
|
|
|
|
* --------------
|
|
|
|
|
*
|
|
|
|
|
* The next type of stage for a compiler is transformation. Again, this just
|
|
|
|
|
* takes the AST from the last step and makes changes to it. It can manipulate
|
|
|
|
|
* the AST in the same language or it can translate it into an entirely new
|
|
|
|
|
* language.
|
|
|
|
|
*
|
|
|
|
|
* Let’s look at how we would transform an AST.
|
|
|
|
|
*
|
|
|
|
|
* You might notice that our AST has elements within it that look very similar.
|
|
|
|
|
* There are these objects with a type property. Each of these are known as an
|
|
|
|
|
* AST Node. These nodes have defined properties on them that describe one
|
|
|
|
|
* isolated part of the tree.
|
|
|
|
|
*
|
|
|
|
|
* We can have a node for a "NumberLiteral":
|
|
|
|
|
*
|
|
|
|
|
* {
|
|
|
|
|
* type: 'NumberLiteral',
|
2016-12-31 20:31:43 +00:00
|
|
|
|
* value: '2',
|
2016-08-25 01:35:32 +00:00
|
|
|
|
* }
|
|
|
|
|
*
|
|
|
|
|
* Or maybe a node for a "CallExpression":
|
|
|
|
|
*
|
|
|
|
|
* {
|
|
|
|
|
* type: 'CallExpression',
|
|
|
|
|
* name: 'subtract',
|
2016-12-31 20:31:43 +00:00
|
|
|
|
* params: [...nested nodes go here...],
|
2016-08-25 01:35:32 +00:00
|
|
|
|
* }
|
|
|
|
|
*
|
|
|
|
|
* When transforming the AST we can manipulate nodes by
|
|
|
|
|
* adding/removing/replacing properties, we can add new nodes, remove nodes, or
|
|
|
|
|
* we could leave the existing AST alone and create an entirely new one based
|
|
|
|
|
* on it.
|
|
|
|
|
*
|
|
|
|
|
* Since we’re targeting a new language, we’re going to focus on creating an
|
|
|
|
|
* entirely new AST that is specific to the target language.
|
|
|
|
|
*
|
|
|
|
|
* Traversal
|
|
|
|
|
* ---------
|
|
|
|
|
*
|
|
|
|
|
* In order to navigate through all of these nodes, we need to be able to
|
|
|
|
|
* traverse through them. This traversal process goes to each node in the AST
|
|
|
|
|
* depth-first.
|
|
|
|
|
*
|
|
|
|
|
* {
|
|
|
|
|
* type: 'Program',
|
|
|
|
|
* body: [{
|
|
|
|
|
* type: 'CallExpression',
|
|
|
|
|
* name: 'add',
|
|
|
|
|
* params: [{
|
|
|
|
|
* type: 'NumberLiteral',
|
|
|
|
|
* value: '2'
|
|
|
|
|
* }, {
|
|
|
|
|
* type: 'CallExpression',
|
|
|
|
|
* name: 'subtract',
|
|
|
|
|
* params: [{
|
|
|
|
|
* type: 'NumberLiteral',
|
|
|
|
|
* value: '4'
|
|
|
|
|
* }, {
|
|
|
|
|
* type: 'NumberLiteral',
|
|
|
|
|
* value: '2'
|
|
|
|
|
* }]
|
|
|
|
|
* }]
|
|
|
|
|
* }]
|
|
|
|
|
* }
|
|
|
|
|
*
|
|
|
|
|
* So for the above AST we would go:
|
|
|
|
|
*
|
|
|
|
|
* 1. Program - Starting at the top level of the AST
|
|
|
|
|
* 2. CallExpression (add) - Moving to the first element of the Program's body
|
|
|
|
|
* 3. NumberLiteral (2) - Moving to the first element of CallExpression's params
|
|
|
|
|
* 4. CallExpression (subtract) - Moving to the second element of CallExpression's params
|
|
|
|
|
* 5. NumberLiteral (4) - Moving to the first element of CallExpression's params
|
|
|
|
|
* 6. NumberLiteral (2) - Moving to the second element of CallExpression's params
|
|
|
|
|
*
|
|
|
|
|
* If we were manipulating this AST directly, instead of creating a separate AST,
|
|
|
|
|
* we would likely introduce all sorts of abstractions here. But just visiting
|
2017-05-31 19:48:50 +00:00
|
|
|
|
* each node in the tree is enough for what we're trying to do.
|
2016-08-25 01:35:32 +00:00
|
|
|
|
*
|
2016-12-31 20:31:43 +00:00
|
|
|
|
* The reason I use the word "visiting" is because there is this pattern of how
|
2016-08-25 01:35:32 +00:00
|
|
|
|
* to represent operations on elements of an object structure.
|
|
|
|
|
*
|
|
|
|
|
* Visitors
|
|
|
|
|
* --------
|
|
|
|
|
*
|
|
|
|
|
* The basic idea here is that we are going to create a “visitor” object that
|
|
|
|
|
* has methods that will accept different node types.
|
|
|
|
|
*
|
|
|
|
|
* var visitor = {
|
|
|
|
|
* NumberLiteral() {},
|
2016-12-31 20:31:43 +00:00
|
|
|
|
* CallExpression() {},
|
2016-08-25 01:35:32 +00:00
|
|
|
|
* };
|
|
|
|
|
*
|
2017-01-04 17:21:30 +00:00
|
|
|
|
* When we traverse our AST, we will call the methods on this visitor whenever we
|
|
|
|
|
* "enter" a node of a matching type.
|
2016-08-25 01:35:32 +00:00
|
|
|
|
*
|
|
|
|
|
* In order to make this useful we will also pass the node and a reference to
|
|
|
|
|
* the parent node.
|
|
|
|
|
*
|
|
|
|
|
* var visitor = {
|
|
|
|
|
* NumberLiteral(node, parent) {},
|
2016-12-31 20:31:43 +00:00
|
|
|
|
* CallExpression(node, parent) {},
|
|
|
|
|
* };
|
|
|
|
|
*
|
2017-04-25 12:47:40 +00:00
|
|
|
|
* However, there also exists the possibility of calling things on "exit". Imagine
|
2017-01-04 17:21:30 +00:00
|
|
|
|
* our tree structure from before in list form:
|
2016-12-31 20:31:43 +00:00
|
|
|
|
*
|
|
|
|
|
* - Program
|
|
|
|
|
* - CallExpression
|
|
|
|
|
* - NumberLiteral
|
|
|
|
|
* - CallExpression
|
|
|
|
|
* - NumberLiteral
|
|
|
|
|
* - NumberLiteral
|
|
|
|
|
*
|
|
|
|
|
* As we traverse down, we're going to reach branches with dead ends. As we
|
|
|
|
|
* finish each branch of the tree we "exit" it. So going down the tree we
|
|
|
|
|
* "enter" each node, and going back up we "exit".
|
|
|
|
|
*
|
|
|
|
|
* -> Program (enter)
|
|
|
|
|
* -> CallExpression (enter)
|
|
|
|
|
* -> Number Literal (enter)
|
|
|
|
|
* <- Number Literal (exit)
|
|
|
|
|
* -> Call Expression (enter)
|
|
|
|
|
* -> Number Literal (enter)
|
|
|
|
|
* <- Number Literal (exit)
|
|
|
|
|
* -> Number Literal (enter)
|
|
|
|
|
* <- Number Literal (exit)
|
|
|
|
|
* <- CallExpression (exit)
|
|
|
|
|
* <- CallExpression (exit)
|
|
|
|
|
* <- Program (exit)
|
|
|
|
|
*
|
2017-01-04 17:21:30 +00:00
|
|
|
|
* In order to support that, the final form of our visitor will look like this:
|
2016-12-31 20:31:43 +00:00
|
|
|
|
*
|
|
|
|
|
* var visitor = {
|
|
|
|
|
* NumberLiteral: {
|
|
|
|
|
* enter(node, parent) {},
|
|
|
|
|
* exit(node, parent) {},
|
|
|
|
|
* }
|
2016-08-25 01:35:32 +00:00
|
|
|
|
* };
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Code Generation
|
|
|
|
|
* ---------------
|
|
|
|
|
*
|
|
|
|
|
* The final phase of a compiler is code generation. Sometimes compilers will do
|
|
|
|
|
* things that overlap with transformation, but for the most part code
|
|
|
|
|
* generation just means take our AST and string-ify code back out.
|
|
|
|
|
*
|
|
|
|
|
* Code generators work several different ways, some compilers will reuse the
|
|
|
|
|
* tokens from earlier, others will have created a separate representation of
|
2020-01-07 14:01:32 +00:00
|
|
|
|
* the code so that they can print nodes linearly, but from what I can tell most
|
2016-08-25 01:35:32 +00:00
|
|
|
|
* will use the same AST we just created, which is what we’re going to focus on.
|
|
|
|
|
*
|
|
|
|
|
* Effectively our code generator will know how to “print” all of the different
|
|
|
|
|
* node types of the AST, and it will recursively call itself to print nested
|
|
|
|
|
* nodes until everything is printed into one long string of code.
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* And that's it! That's all the different pieces of a compiler.
|
|
|
|
|
*
|
|
|
|
|
* Now that isn’t to say every compiler looks exactly like I described here.
|
|
|
|
|
* Compilers serve many different purposes, and they might need more steps than
|
|
|
|
|
* I have detailed.
|
|
|
|
|
*
|
|
|
|
|
* But now you should have a general high-level idea of what most compilers look
|
|
|
|
|
* like.
|
|
|
|
|
*
|
|
|
|
|
* Now that I’ve explained all of this, you’re all good to go write your own
|
|
|
|
|
* compilers right?
|
|
|
|
|
*
|
|
|
|
|
* Just kidding, that's what I'm here to help with :P
|
|
|
|
|
*
|
|
|
|
|
* So let's begin...
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* ============================================================================
|
|
|
|
|
* (/^▽^)/
|
|
|
|
|
* THE TOKENIZER!
|
|
|
|
|
* ============================================================================
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* We're gonna start off with our first phase of parsing, lexical analysis, with
|
|
|
|
|
* the tokenizer.
|
|
|
|
|
*
|
|
|
|
|
* We're just going to take our string of code and break it down into an array
|
|
|
|
|
* of tokens.
|
|
|
|
|
*
|
|
|
|
|
* (add 2 (subtract 4 2)) => [{ type: 'paren', value: '(' }, ...]
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
// We start by accepting an input string of code, and we're gonna set up two
|
|
|
|
|
// things...
|
|
|
|
|
function tokenizer(input) {
|
|
|
|
|
|
|
|
|
|
// A `current` variable for tracking our position in the code like a cursor.
|
2016-12-31 20:31:43 +00:00
|
|
|
|
let current = 0;
|
2016-08-25 01:35:32 +00:00
|
|
|
|
|
|
|
|
|
// And a `tokens` array for pushing our tokens to.
|
2016-12-31 20:31:43 +00:00
|
|
|
|
let tokens = [];
|
2016-08-25 01:35:32 +00:00
|
|
|
|
|
|
|
|
|
// We start by creating a `while` loop where we are setting up our `current`
|
|
|
|
|
// variable to be incremented as much as we want `inside` the loop.
|
|
|
|
|
//
|
|
|
|
|
// We do this because we may want to increment `current` many times within a
|
|
|
|
|
// single loop because our tokens can be any length.
|
|
|
|
|
while (current < input.length) {
|
|
|
|
|
|
|
|
|
|
// We're also going to store the `current` character in the `input`.
|
2016-12-31 20:31:43 +00:00
|
|
|
|
let char = input[current];
|
2016-08-25 01:35:32 +00:00
|
|
|
|
|
|
|
|
|
// The first thing we want to check for is an open parenthesis. This will
|
2016-12-31 20:31:43 +00:00
|
|
|
|
// later be used for `CallExpression` but for now we only care about the
|
2016-08-25 01:35:32 +00:00
|
|
|
|
// character.
|
|
|
|
|
//
|
|
|
|
|
// We check to see if we have an open parenthesis:
|
|
|
|
|
if (char === '(') {
|
|
|
|
|
|
|
|
|
|
// If we do, we push a new token with the type `paren` and set the value
|
|
|
|
|
// to an open parenthesis.
|
|
|
|
|
tokens.push({
|
|
|
|
|
type: 'paren',
|
2016-12-31 20:31:43 +00:00
|
|
|
|
value: '(',
|
2016-08-25 01:35:32 +00:00
|
|
|
|
});
|
|
|
|
|
|
|
|
|
|
// Then we increment `current`
|
|
|
|
|
current++;
|
|
|
|
|
|
|
|
|
|
// And we `continue` onto the next cycle of the loop.
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Next we're going to check for a closing parenthesis. We do the same exact
|
|
|
|
|
// thing as before: Check for a closing parenthesis, add a new token,
|
|
|
|
|
// increment `current`, and `continue`.
|
|
|
|
|
if (char === ')') {
|
|
|
|
|
tokens.push({
|
|
|
|
|
type: 'paren',
|
2016-12-31 20:31:43 +00:00
|
|
|
|
value: ')',
|
2016-08-25 01:35:32 +00:00
|
|
|
|
});
|
|
|
|
|
current++;
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Moving on, we're now going to check for whitespace. This is interesting
|
|
|
|
|
// because we care that whitespace exists to separate characters, but it
|
|
|
|
|
// isn't actually important for us to store as a token. We would only throw
|
|
|
|
|
// it out later.
|
|
|
|
|
//
|
|
|
|
|
// So here we're just going to test for existence and if it does exist we're
|
|
|
|
|
// going to just `continue` on.
|
2016-12-31 20:31:43 +00:00
|
|
|
|
let WHITESPACE = /\s/;
|
2016-08-25 01:35:32 +00:00
|
|
|
|
if (WHITESPACE.test(char)) {
|
|
|
|
|
current++;
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// The next type of token is a number. This is different than what we have
|
|
|
|
|
// seen before because a number could be any number of characters and we
|
|
|
|
|
// want to capture the entire sequence of characters as one token.
|
|
|
|
|
//
|
|
|
|
|
// (add 123 456)
|
|
|
|
|
// ^^^ ^^^
|
|
|
|
|
// Only two separate tokens
|
|
|
|
|
//
|
|
|
|
|
// So we start this off when we encounter the first number in a sequence.
|
2016-12-31 20:31:43 +00:00
|
|
|
|
let NUMBERS = /[0-9]/;
|
2016-08-25 01:35:32 +00:00
|
|
|
|
if (NUMBERS.test(char)) {
|
|
|
|
|
|
|
|
|
|
// We're going to create a `value` string that we are going to push
|
|
|
|
|
// characters to.
|
2016-12-31 20:31:43 +00:00
|
|
|
|
let value = '';
|
2016-08-25 01:35:32 +00:00
|
|
|
|
|
|
|
|
|
// Then we're going to loop through each character in the sequence until
|
|
|
|
|
// we encounter a character that is not a number, pushing each character
|
|
|
|
|
// that is a number to our `value` and incrementing `current` as we go.
|
|
|
|
|
while (NUMBERS.test(char)) {
|
|
|
|
|
value += char;
|
|
|
|
|
char = input[++current];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// After that we push our `number` token to the `tokens` array.
|
2016-12-31 20:31:43 +00:00
|
|
|
|
tokens.push({ type: 'number', value });
|
2016-08-25 01:35:32 +00:00
|
|
|
|
|
|
|
|
|
// And we continue on.
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
|
2016-12-31 20:31:43 +00:00
|
|
|
|
// We'll also add support for strings in our language which will be any
|
|
|
|
|
// text surrounded by double quotes (").
|
|
|
|
|
//
|
|
|
|
|
// (concat "foo" "bar")
|
|
|
|
|
// ^^^ ^^^ string tokens
|
|
|
|
|
//
|
|
|
|
|
// We'll start by checking for the opening quote:
|
|
|
|
|
if (char === '"') {
|
|
|
|
|
// Keep a `value` variable for building up our string token.
|
|
|
|
|
let value = '';
|
|
|
|
|
|
|
|
|
|
// We'll skip the opening double quote in our token.
|
|
|
|
|
char = input[++current];
|
|
|
|
|
|
|
|
|
|
// Then we'll iterate through each character until we reach another
|
|
|
|
|
// double quote.
|
|
|
|
|
while (char !== '"') {
|
|
|
|
|
value += char;
|
|
|
|
|
char = input[++current];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Skip the closing double quote.
|
|
|
|
|
char = input[++current];
|
|
|
|
|
|
|
|
|
|
// And add our `string` token to the `tokens` array.
|
|
|
|
|
tokens.push({ type: 'string', value });
|
|
|
|
|
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
|
2016-08-25 01:35:32 +00:00
|
|
|
|
// The last type of token will be a `name` token. This is a sequence of
|
|
|
|
|
// letters instead of numbers, that are the names of functions in our lisp
|
|
|
|
|
// syntax.
|
|
|
|
|
//
|
|
|
|
|
// (add 2 4)
|
|
|
|
|
// ^^^
|
|
|
|
|
// Name token
|
|
|
|
|
//
|
2016-12-31 20:31:43 +00:00
|
|
|
|
let LETTERS = /[a-z]/i;
|
2016-08-25 01:35:32 +00:00
|
|
|
|
if (LETTERS.test(char)) {
|
2016-12-31 20:31:43 +00:00
|
|
|
|
let value = '';
|
2016-08-25 01:35:32 +00:00
|
|
|
|
|
|
|
|
|
// Again we're just going to loop through all the letters pushing them to
|
|
|
|
|
// a value.
|
|
|
|
|
while (LETTERS.test(char)) {
|
|
|
|
|
value += char;
|
|
|
|
|
char = input[++current];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// And pushing that value as a token with the type `name` and continuing.
|
2016-12-31 20:31:43 +00:00
|
|
|
|
tokens.push({ type: 'name', value });
|
2016-08-25 01:35:32 +00:00
|
|
|
|
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Finally if we have not matched a character by now, we're going to throw
|
|
|
|
|
// an error and completely exit.
|
|
|
|
|
throw new TypeError('I dont know what this character is: ' + char);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Then at the end of our `tokenizer` we simply return the tokens array.
|
|
|
|
|
return tokens;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* ============================================================================
|
|
|
|
|
* ヽ/❀o ل͜ o\ノ
|
|
|
|
|
* THE PARSER!!!
|
|
|
|
|
* ============================================================================
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* For our parser we're going to take our array of tokens and turn it into an
|
|
|
|
|
* AST.
|
|
|
|
|
*
|
|
|
|
|
* [{ type: 'paren', value: '(' }, ...] => { type: 'Program', body: [...] }
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
// Okay, so we define a `parser` function that accepts our array of `tokens`.
|
|
|
|
|
function parser(tokens) {
|
|
|
|
|
|
|
|
|
|
// Again we keep a `current` variable that we will use as a cursor.
|
2016-12-31 20:31:43 +00:00
|
|
|
|
let current = 0;
|
2016-08-25 01:35:32 +00:00
|
|
|
|
|
|
|
|
|
// But this time we're going to use recursion instead of a `while` loop. So we
|
|
|
|
|
// define a `walk` function.
|
|
|
|
|
function walk() {
|
|
|
|
|
|
|
|
|
|
// Inside the walk function we start by grabbing the `current` token.
|
2016-12-31 20:31:43 +00:00
|
|
|
|
let token = tokens[current];
|
2016-08-25 01:35:32 +00:00
|
|
|
|
|
|
|
|
|
// We're going to split each type of token off into a different code path,
|
|
|
|
|
// starting off with `number` tokens.
|
|
|
|
|
//
|
|
|
|
|
// We test to see if we have a `number` token.
|
|
|
|
|
if (token.type === 'number') {
|
|
|
|
|
|
|
|
|
|
// If we have one, we'll increment `current`.
|
|
|
|
|
current++;
|
|
|
|
|
|
|
|
|
|
// And we'll return a new AST node called `NumberLiteral` and setting its
|
|
|
|
|
// value to the value of our token.
|
|
|
|
|
return {
|
|
|
|
|
type: 'NumberLiteral',
|
2016-12-31 20:31:43 +00:00
|
|
|
|
value: token.value,
|
|
|
|
|
};
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// If we have a string we will do the same as number and create a
|
|
|
|
|
// `StringLiteral` node.
|
|
|
|
|
if (token.type === 'string') {
|
|
|
|
|
current++;
|
|
|
|
|
|
|
|
|
|
return {
|
|
|
|
|
type: 'StringLiteral',
|
|
|
|
|
value: token.value,
|
2016-08-25 01:35:32 +00:00
|
|
|
|
};
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Next we're going to look for CallExpressions. We start this off when we
|
|
|
|
|
// encounter an open parenthesis.
|
|
|
|
|
if (
|
|
|
|
|
token.type === 'paren' &&
|
|
|
|
|
token.value === '('
|
|
|
|
|
) {
|
|
|
|
|
|
|
|
|
|
// We'll increment `current` to skip the parenthesis since we don't care
|
|
|
|
|
// about it in our AST.
|
|
|
|
|
token = tokens[++current];
|
|
|
|
|
|
|
|
|
|
// We create a base node with the type `CallExpression`, and we're going
|
|
|
|
|
// to set the name as the current token's value since the next token after
|
|
|
|
|
// the open parenthesis is the name of the function.
|
2016-12-31 20:31:43 +00:00
|
|
|
|
let node = {
|
2016-08-25 01:35:32 +00:00
|
|
|
|
type: 'CallExpression',
|
|
|
|
|
name: token.value,
|
2016-12-31 20:31:43 +00:00
|
|
|
|
params: [],
|
2016-08-25 01:35:32 +00:00
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
// We increment `current` *again* to skip the name token.
|
|
|
|
|
token = tokens[++current];
|
|
|
|
|
|
|
|
|
|
// And now we want to loop through each token that will be the `params` of
|
|
|
|
|
// our `CallExpression` until we encounter a closing parenthesis.
|
|
|
|
|
//
|
|
|
|
|
// Now this is where recursion comes in. Instead of trying to parse a
|
|
|
|
|
// potentially infinitely nested set of nodes we're going to rely on
|
|
|
|
|
// recursion to resolve things.
|
|
|
|
|
//
|
|
|
|
|
// To explain this, let's take our Lisp code. You can see that the
|
|
|
|
|
// parameters of the `add` are a number and a nested `CallExpression` that
|
|
|
|
|
// includes its own numbers.
|
|
|
|
|
//
|
|
|
|
|
// (add 2 (subtract 4 2))
|
|
|
|
|
//
|
|
|
|
|
// You'll also notice that in our tokens array we have multiple closing
|
|
|
|
|
// parenthesis.
|
|
|
|
|
//
|
|
|
|
|
// [
|
|
|
|
|
// { type: 'paren', value: '(' },
|
|
|
|
|
// { type: 'name', value: 'add' },
|
|
|
|
|
// { type: 'number', value: '2' },
|
|
|
|
|
// { type: 'paren', value: '(' },
|
|
|
|
|
// { type: 'name', value: 'subtract' },
|
|
|
|
|
// { type: 'number', value: '4' },
|
|
|
|
|
// { type: 'number', value: '2' },
|
|
|
|
|
// { type: 'paren', value: ')' }, <<< Closing parenthesis
|
2016-12-31 20:31:43 +00:00
|
|
|
|
// { type: 'paren', value: ')' }, <<< Closing parenthesis
|
2016-08-25 01:35:32 +00:00
|
|
|
|
// ]
|
|
|
|
|
//
|
|
|
|
|
// We're going to rely on the nested `walk` function to increment our
|
2016-12-31 20:31:43 +00:00
|
|
|
|
// `current` variable past any nested `CallExpression`.
|
2016-08-25 01:35:32 +00:00
|
|
|
|
|
|
|
|
|
// So we create a `while` loop that will continue until it encounters a
|
|
|
|
|
// token with a `type` of `'paren'` and a `value` of a closing
|
|
|
|
|
// parenthesis.
|
|
|
|
|
while (
|
|
|
|
|
(token.type !== 'paren') ||
|
|
|
|
|
(token.type === 'paren' && token.value !== ')')
|
|
|
|
|
) {
|
|
|
|
|
// we'll call the `walk` function which will return a `node` and we'll
|
|
|
|
|
// push it into our `node.params`.
|
|
|
|
|
node.params.push(walk());
|
|
|
|
|
token = tokens[current];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Finally we will increment `current` one last time to skip the closing
|
|
|
|
|
// parenthesis.
|
|
|
|
|
current++;
|
|
|
|
|
|
|
|
|
|
// And return the node.
|
|
|
|
|
return node;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Again, if we haven't recognized the token type by now we're going to
|
|
|
|
|
// throw an error.
|
|
|
|
|
throw new TypeError(token.type);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Now, we're going to create our AST which will have a root which is a
|
|
|
|
|
// `Program` node.
|
2016-12-31 20:31:43 +00:00
|
|
|
|
let ast = {
|
2016-08-25 01:35:32 +00:00
|
|
|
|
type: 'Program',
|
2016-12-31 20:31:43 +00:00
|
|
|
|
body: [],
|
2016-08-25 01:35:32 +00:00
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
// And we're going to kickstart our `walk` function, pushing nodes to our
|
|
|
|
|
// `ast.body` array.
|
|
|
|
|
//
|
|
|
|
|
// The reason we are doing this inside a loop is because our program can have
|
2016-12-31 20:31:43 +00:00
|
|
|
|
// `CallExpression` after one another instead of being nested.
|
2016-08-25 01:35:32 +00:00
|
|
|
|
//
|
|
|
|
|
// (add 2 2)
|
|
|
|
|
// (subtract 4 2)
|
|
|
|
|
//
|
|
|
|
|
while (current < tokens.length) {
|
|
|
|
|
ast.body.push(walk());
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// At the end of our parser we'll return the AST.
|
|
|
|
|
return ast;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* ============================================================================
|
|
|
|
|
* ⌒(❀>◞౪◟<❀)⌒
|
|
|
|
|
* THE TRAVERSER!!!
|
|
|
|
|
* ============================================================================
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* So now we have our AST, and we want to be able to visit different nodes with
|
|
|
|
|
* a visitor. We need to be able to call the methods on the visitor whenever we
|
|
|
|
|
* encounter a node with a matching type.
|
|
|
|
|
*
|
|
|
|
|
* traverse(ast, {
|
2017-10-13 05:37:37 +00:00
|
|
|
|
* Program: {
|
|
|
|
|
* enter(node, parent) {
|
|
|
|
|
* // ...
|
|
|
|
|
* },
|
|
|
|
|
* exit(node, parent) {
|
|
|
|
|
* // ...
|
|
|
|
|
* },
|
2016-08-25 01:35:32 +00:00
|
|
|
|
* },
|
|
|
|
|
*
|
2017-10-13 05:37:37 +00:00
|
|
|
|
* CallExpression: {
|
|
|
|
|
* enter(node, parent) {
|
|
|
|
|
* // ...
|
|
|
|
|
* },
|
|
|
|
|
* exit(node, parent) {
|
|
|
|
|
* // ...
|
|
|
|
|
* },
|
2016-08-25 01:35:32 +00:00
|
|
|
|
* },
|
|
|
|
|
*
|
2017-10-13 05:37:37 +00:00
|
|
|
|
* NumberLiteral: {
|
|
|
|
|
* enter(node, parent) {
|
|
|
|
|
* // ...
|
|
|
|
|
* },
|
|
|
|
|
* exit(node, parent) {
|
|
|
|
|
* // ...
|
|
|
|
|
* },
|
2016-12-31 20:31:43 +00:00
|
|
|
|
* },
|
2016-08-25 01:35:32 +00:00
|
|
|
|
* });
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
// So we define a traverser function which accepts an AST and a
|
|
|
|
|
// visitor. Inside we're going to define two functions...
|
|
|
|
|
function traverser(ast, visitor) {
|
|
|
|
|
|
|
|
|
|
// A `traverseArray` function that will allow us to iterate over an array and
|
|
|
|
|
// call the next function that we will define: `traverseNode`.
|
|
|
|
|
function traverseArray(array, parent) {
|
2016-12-31 20:31:43 +00:00
|
|
|
|
array.forEach(child => {
|
2016-08-25 01:35:32 +00:00
|
|
|
|
traverseNode(child, parent);
|
|
|
|
|
});
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// `traverseNode` will accept a `node` and its `parent` node. So that it can
|
|
|
|
|
// pass both to our visitor methods.
|
|
|
|
|
function traverseNode(node, parent) {
|
|
|
|
|
|
|
|
|
|
// We start by testing for the existence of a method on the visitor with a
|
|
|
|
|
// matching `type`.
|
2016-12-31 20:31:43 +00:00
|
|
|
|
let methods = visitor[node.type];
|
2016-08-25 01:35:32 +00:00
|
|
|
|
|
2016-12-31 20:31:43 +00:00
|
|
|
|
// If there is an `enter` method for this node type we'll call it with the
|
|
|
|
|
// `node` and its `parent`.
|
|
|
|
|
if (methods && methods.enter) {
|
|
|
|
|
methods.enter(node, parent);
|
2016-08-25 01:35:32 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Next we are going to split things up by the current node type.
|
|
|
|
|
switch (node.type) {
|
|
|
|
|
|
|
|
|
|
// We'll start with our top level `Program`. Since Program nodes have a
|
|
|
|
|
// property named body that has an array of nodes, we will call
|
|
|
|
|
// `traverseArray` to traverse down into them.
|
|
|
|
|
//
|
|
|
|
|
// (Remember that `traverseArray` will in turn call `traverseNode` so we
|
|
|
|
|
// are causing the tree to be traversed recursively)
|
|
|
|
|
case 'Program':
|
|
|
|
|
traverseArray(node.body, node);
|
|
|
|
|
break;
|
|
|
|
|
|
2016-12-31 20:31:43 +00:00
|
|
|
|
// Next we do the same with `CallExpression` and traverse their `params`.
|
2016-08-25 01:35:32 +00:00
|
|
|
|
case 'CallExpression':
|
|
|
|
|
traverseArray(node.params, node);
|
|
|
|
|
break;
|
|
|
|
|
|
2016-12-31 20:31:43 +00:00
|
|
|
|
// In the cases of `NumberLiteral` and `StringLiteral` we don't have any
|
|
|
|
|
// child nodes to visit, so we'll just break.
|
2016-08-25 01:35:32 +00:00
|
|
|
|
case 'NumberLiteral':
|
2016-12-31 20:31:43 +00:00
|
|
|
|
case 'StringLiteral':
|
2016-08-25 01:35:32 +00:00
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
// And again, if we haven't recognized the node type then we'll throw an
|
|
|
|
|
// error.
|
|
|
|
|
default:
|
|
|
|
|
throw new TypeError(node.type);
|
|
|
|
|
}
|
2016-12-31 20:31:43 +00:00
|
|
|
|
|
|
|
|
|
// If there is an `exit` method for this node type we'll call it with the
|
|
|
|
|
// `node` and its `parent`.
|
|
|
|
|
if (methods && methods.exit) {
|
|
|
|
|
methods.exit(node, parent);
|
|
|
|
|
}
|
2016-08-25 01:35:32 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Finally we kickstart the traverser by calling `traverseNode` with our ast
|
|
|
|
|
// with no `parent` because the top level of the AST doesn't have a parent.
|
|
|
|
|
traverseNode(ast, null);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* ============================================================================
|
|
|
|
|
* ⁽(◍˃̵͈̑ᴗ˂̵͈̑)⁽
|
|
|
|
|
* THE TRANSFORMER!!!
|
|
|
|
|
* ============================================================================
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Next up, the transformer. Our transformer is going to take the AST that we
|
|
|
|
|
* have built and pass it to our traverser function with a visitor and will
|
|
|
|
|
* create a new ast.
|
|
|
|
|
*
|
|
|
|
|
* ----------------------------------------------------------------------------
|
|
|
|
|
* Original AST | Transformed AST
|
|
|
|
|
* ----------------------------------------------------------------------------
|
|
|
|
|
* { | {
|
|
|
|
|
* type: 'Program', | type: 'Program',
|
|
|
|
|
* body: [{ | body: [{
|
|
|
|
|
* type: 'CallExpression', | type: 'ExpressionStatement',
|
|
|
|
|
* name: 'add', | expression: {
|
|
|
|
|
* params: [{ | type: 'CallExpression',
|
|
|
|
|
* type: 'NumberLiteral', | callee: {
|
|
|
|
|
* value: '2' | type: 'Identifier',
|
|
|
|
|
* }, { | name: 'add'
|
|
|
|
|
* type: 'CallExpression', | },
|
|
|
|
|
* name: 'subtract', | arguments: [{
|
|
|
|
|
* params: [{ | type: 'NumberLiteral',
|
|
|
|
|
* type: 'NumberLiteral', | value: '2'
|
|
|
|
|
* value: '4' | }, {
|
|
|
|
|
* }, { | type: 'CallExpression',
|
|
|
|
|
* type: 'NumberLiteral', | callee: {
|
|
|
|
|
* value: '2' | type: 'Identifier',
|
|
|
|
|
* }] | name: 'subtract'
|
|
|
|
|
* }] | },
|
|
|
|
|
* }] | arguments: [{
|
|
|
|
|
* } | type: 'NumberLiteral',
|
|
|
|
|
* | value: '4'
|
|
|
|
|
* ---------------------------------- | }, {
|
|
|
|
|
* | type: 'NumberLiteral',
|
|
|
|
|
* | value: '2'
|
|
|
|
|
* | }]
|
|
|
|
|
* (sorry the other one is longer.) | }
|
|
|
|
|
* | }
|
|
|
|
|
* | }]
|
|
|
|
|
* | }
|
|
|
|
|
* ----------------------------------------------------------------------------
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
// So we have our transformer function which will accept the lisp ast.
|
|
|
|
|
function transformer(ast) {
|
|
|
|
|
|
|
|
|
|
// We'll create a `newAst` which like our previous AST will have a program
|
|
|
|
|
// node.
|
2016-12-31 20:31:43 +00:00
|
|
|
|
let newAst = {
|
2016-08-25 01:35:32 +00:00
|
|
|
|
type: 'Program',
|
2016-12-31 20:31:43 +00:00
|
|
|
|
body: [],
|
2016-08-25 01:35:32 +00:00
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
// Next I'm going to cheat a little and create a bit of a hack. We're going to
|
|
|
|
|
// use a property named `context` on our parent nodes that we're going to push
|
|
|
|
|
// nodes to their parent's `context`. Normally you would have a better
|
|
|
|
|
// abstraction than this, but for our purposes this keeps things simple.
|
|
|
|
|
//
|
|
|
|
|
// Just take note that the context is a reference *from* the old ast *to* the
|
|
|
|
|
// new ast.
|
|
|
|
|
ast._context = newAst.body;
|
|
|
|
|
|
|
|
|
|
// We'll start by calling the traverser function with our ast and a visitor.
|
|
|
|
|
traverser(ast, {
|
|
|
|
|
|
2016-12-31 20:31:43 +00:00
|
|
|
|
// The first visitor method accepts any `NumberLiteral`
|
|
|
|
|
NumberLiteral: {
|
|
|
|
|
// We'll visit them on enter.
|
|
|
|
|
enter(node, parent) {
|
|
|
|
|
// We'll create a new node also named `NumberLiteral` that we will push to
|
|
|
|
|
// the parent context.
|
|
|
|
|
parent._context.push({
|
|
|
|
|
type: 'NumberLiteral',
|
|
|
|
|
value: node.value,
|
|
|
|
|
});
|
|
|
|
|
},
|
2016-08-25 01:35:32 +00:00
|
|
|
|
},
|
|
|
|
|
|
2016-12-31 20:31:43 +00:00
|
|
|
|
// Next we have `StringLiteral`
|
|
|
|
|
StringLiteral: {
|
|
|
|
|
enter(node, parent) {
|
|
|
|
|
parent._context.push({
|
|
|
|
|
type: 'StringLiteral',
|
|
|
|
|
value: node.value,
|
|
|
|
|
});
|
|
|
|
|
},
|
|
|
|
|
},
|
2016-08-25 01:35:32 +00:00
|
|
|
|
|
2016-12-31 20:31:43 +00:00
|
|
|
|
// Next up, `CallExpression`.
|
|
|
|
|
CallExpression: {
|
|
|
|
|
enter(node, parent) {
|
|
|
|
|
|
|
|
|
|
// We start creating a new node `CallExpression` with a nested
|
|
|
|
|
// `Identifier`.
|
|
|
|
|
let expression = {
|
|
|
|
|
type: 'CallExpression',
|
|
|
|
|
callee: {
|
|
|
|
|
type: 'Identifier',
|
|
|
|
|
name: node.name,
|
|
|
|
|
},
|
|
|
|
|
arguments: [],
|
2016-08-25 01:35:32 +00:00
|
|
|
|
};
|
|
|
|
|
|
2016-12-31 20:31:43 +00:00
|
|
|
|
// Next we're going to define a new context on the original
|
|
|
|
|
// `CallExpression` node that will reference the `expression`'s arguments
|
|
|
|
|
// so that we can push arguments.
|
|
|
|
|
node._context = expression.arguments;
|
|
|
|
|
|
|
|
|
|
// Then we're going to check if the parent node is a `CallExpression`.
|
|
|
|
|
// If it is not...
|
|
|
|
|
if (parent.type !== 'CallExpression') {
|
|
|
|
|
|
|
|
|
|
// We're going to wrap our `CallExpression` node with an
|
|
|
|
|
// `ExpressionStatement`. We do this because the top level
|
|
|
|
|
// `CallExpression` in JavaScript are actually statements.
|
|
|
|
|
expression = {
|
|
|
|
|
type: 'ExpressionStatement',
|
|
|
|
|
expression: expression,
|
|
|
|
|
};
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Last, we push our (possibly wrapped) `CallExpression` to the `parent`'s
|
|
|
|
|
// `context`.
|
|
|
|
|
parent._context.push(expression);
|
|
|
|
|
},
|
2016-08-25 01:35:32 +00:00
|
|
|
|
}
|
|
|
|
|
});
|
|
|
|
|
|
|
|
|
|
// At the end of our transformer function we'll return the new ast that we
|
|
|
|
|
// just created.
|
|
|
|
|
return newAst;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* ============================================================================
|
|
|
|
|
* ヾ(〃^∇^)ノ♪
|
|
|
|
|
* THE CODE GENERATOR!!!!
|
|
|
|
|
* ============================================================================
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Now let's move onto our last phase: The Code Generator.
|
|
|
|
|
*
|
|
|
|
|
* Our code generator is going to recursively call itself to print each node in
|
|
|
|
|
* the tree into one giant string.
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
function codeGenerator(node) {
|
|
|
|
|
|
|
|
|
|
// We'll break things down by the `type` of the `node`.
|
|
|
|
|
switch (node.type) {
|
|
|
|
|
|
|
|
|
|
// If we have a `Program` node. We will map through each node in the `body`
|
|
|
|
|
// and run them through the code generator and join them with a newline.
|
|
|
|
|
case 'Program':
|
|
|
|
|
return node.body.map(codeGenerator)
|
|
|
|
|
.join('\n');
|
|
|
|
|
|
2016-12-31 20:31:43 +00:00
|
|
|
|
// For `ExpressionStatement` we'll call the code generator on the nested
|
2016-08-25 01:35:32 +00:00
|
|
|
|
// expression and we'll add a semicolon...
|
|
|
|
|
case 'ExpressionStatement':
|
|
|
|
|
return (
|
|
|
|
|
codeGenerator(node.expression) +
|
|
|
|
|
';' // << (...because we like to code the *correct* way)
|
|
|
|
|
);
|
|
|
|
|
|
2016-12-31 20:31:43 +00:00
|
|
|
|
// For `CallExpression` we will print the `callee`, add an open
|
2016-08-25 01:35:32 +00:00
|
|
|
|
// parenthesis, we'll map through each node in the `arguments` array and run
|
|
|
|
|
// them through the code generator, joining them with a comma, and then
|
|
|
|
|
// we'll add a closing parenthesis.
|
|
|
|
|
case 'CallExpression':
|
|
|
|
|
return (
|
|
|
|
|
codeGenerator(node.callee) +
|
|
|
|
|
'(' +
|
|
|
|
|
node.arguments.map(codeGenerator)
|
|
|
|
|
.join(', ') +
|
|
|
|
|
')'
|
|
|
|
|
);
|
|
|
|
|
|
2016-12-31 20:31:43 +00:00
|
|
|
|
// For `Identifier` we'll just return the `node`'s name.
|
2016-08-25 01:35:32 +00:00
|
|
|
|
case 'Identifier':
|
|
|
|
|
return node.name;
|
|
|
|
|
|
2016-12-31 20:31:43 +00:00
|
|
|
|
// For `NumberLiteral` we'll just return the `node`'s value.
|
2016-08-25 01:35:32 +00:00
|
|
|
|
case 'NumberLiteral':
|
|
|
|
|
return node.value;
|
|
|
|
|
|
2016-12-31 20:31:43 +00:00
|
|
|
|
// For `StringLiteral` we'll add quotations around the `node`'s value.
|
|
|
|
|
case 'StringLiteral':
|
|
|
|
|
return '"' + node.value + '"';
|
|
|
|
|
|
2016-08-25 01:35:32 +00:00
|
|
|
|
// And if we haven't recognized the node, we'll throw an error.
|
|
|
|
|
default:
|
|
|
|
|
throw new TypeError(node.type);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* ============================================================================
|
|
|
|
|
* (۶* ‘ヮ’)۶”
|
|
|
|
|
* !!!!!!!!THE COMPILER!!!!!!!!
|
|
|
|
|
* ============================================================================
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* FINALLY! We'll create our `compiler` function. Here we will link together
|
|
|
|
|
* every part of the pipeline.
|
|
|
|
|
*
|
|
|
|
|
* 1. input => tokenizer => tokens
|
|
|
|
|
* 2. tokens => parser => ast
|
|
|
|
|
* 3. ast => transformer => newAst
|
|
|
|
|
* 4. newAst => generator => output
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
function compiler(input) {
|
2016-12-31 20:31:43 +00:00
|
|
|
|
let tokens = tokenizer(input);
|
|
|
|
|
let ast = parser(tokens);
|
|
|
|
|
let newAst = transformer(ast);
|
|
|
|
|
let output = codeGenerator(newAst);
|
2016-08-25 01:35:32 +00:00
|
|
|
|
|
|
|
|
|
// and simply return the output!
|
|
|
|
|
return output;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* ============================================================================
|
|
|
|
|
* (๑˃̵ᴗ˂̵)و
|
|
|
|
|
* !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!YOU MADE IT!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
|
|
|
|
* ============================================================================
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
// Now I'm just exporting everything...
|
2021-06-19 11:55:45 +00:00
|
|
|
|
export {
|
2016-12-31 20:31:43 +00:00
|
|
|
|
tokenizer,
|
|
|
|
|
parser,
|
|
|
|
|
traverser,
|
|
|
|
|
transformer,
|
|
|
|
|
codeGenerator,
|
|
|
|
|
compiler,
|
2016-08-25 01:35:32 +00:00
|
|
|
|
};
|