mirror of
https://github.com/MikeMcl/decimal.js.git
synced 2024-10-27 20:34:12 +00:00
3982 lines
121 KiB
JavaScript
3982 lines
121 KiB
JavaScript
/*! decimal.js v3.0.0 https://github.com/MikeMcl/decimal.js/LICENCE */
|
||
;(function (global) {
|
||
'use strict';
|
||
|
||
|
||
/*
|
||
* decimal.js v3.0.0
|
||
* An arbitrary-precision Decimal type for JavaScript.
|
||
* https://github.com/MikeMcl/decimal.js
|
||
* Copyright (c) 2014 Michael Mclaughlin <M8ch88l@gmail.com>
|
||
* MIT Expat Licence
|
||
*/
|
||
|
||
|
||
var convertBase, crypto, DecimalConstructor, noConflict,
|
||
toString = Object.prototype.toString,
|
||
outOfRange,
|
||
id = 0,
|
||
external = true,
|
||
mathfloor = Math.floor,
|
||
mathpow = Math.pow,
|
||
BASE = 1e7,
|
||
LOGBASE = 7,
|
||
NUMERALS = '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ$_',
|
||
P = {},
|
||
|
||
/*
|
||
The maximum exponent magnitude.
|
||
The limit on the value of toExpNeg, toExpPos, minE and maxE.
|
||
*/
|
||
EXP_LIMIT = 9e15, // 0 to 9e15
|
||
|
||
/*
|
||
The limit on the value of precision, and on the argument to toDecimalPlaces,
|
||
toExponential, toFixed, toFormat, toPrecision and toSignificantDigits.
|
||
*/
|
||
MAX_DIGITS = 1E9, // 0 to 1e+9
|
||
|
||
/*
|
||
To decide whether or not to calculate x.pow(integer y) using the 'exponentiation by
|
||
squaring' algorithm or by exp(y*ln(x)), the number of significant digits of x is multiplied
|
||
by y. If this number is less than INT_POW_LIMIT then the former algorithm is used.
|
||
*/
|
||
INT_POW_LIMIT = 3000, // 0 to 5000
|
||
|
||
// The natural logarithm of 10 (1025 digits).
|
||
LN10 = '2.3025850929940456840179914546843642076011014886287729760333279009675726096773524802359972050895982983419677840422862486334095254650828067566662873690987816894829072083255546808437998948262331985283935053089653777326288461633662222876982198867465436674744042432743651550489343149393914796194044002221051017141748003688084012647080685567743216228355220114804663715659121373450747856947683463616792101806445070648000277502684916746550586856935673420670581136429224554405758925724208241314695689016758940256776311356919292033376587141660230105703089634572075440370847469940168269282808481184289314848524948644871927809676271275775397027668605952496716674183485704422507197965004714951050492214776567636938662976979522110718264549734772662425709429322582798502585509785265383207606726317164309505995087807523710333101197857547331541421808427543863591778117054309827482385045648019095610299291824318237525357709750539565187697510374970888692180205189339507238539205144634197265287286965110862571492198849978748873771345686209167058';
|
||
|
||
|
||
// Decimal prototype methods
|
||
|
||
|
||
/*
|
||
* Return a new Decimal whose value is the absolute value of this Decimal.
|
||
*
|
||
*/
|
||
P['absoluteValue'] = P['abs'] = function () {
|
||
var x = new this['constructor'](this);
|
||
|
||
if ( x['s'] < 0 ) {
|
||
x['s'] = 1;
|
||
}
|
||
|
||
return rnd(x);
|
||
};
|
||
|
||
|
||
/*
|
||
* Return a new Decimal whose value is the value of this Decimal rounded to a whole number in
|
||
* the direction of positive Infinity.
|
||
*
|
||
*/
|
||
P['ceil'] = function () {
|
||
|
||
return rnd( new this['constructor'](this), this['e'] + 1, 2 );
|
||
};
|
||
|
||
|
||
/*
|
||
* Return
|
||
* 1 if the value of this Decimal is greater than the value of Decimal(y, b),
|
||
* -1 if the value of this Decimal is less than the value of Decimal(y, b),
|
||
* 0 if they have the same value,
|
||
* null if the value of either Decimal is NaN.
|
||
*
|
||
*/
|
||
P['comparedTo'] = P['cmp'] = function ( y, b ) {
|
||
var a,
|
||
x = this,
|
||
xc = x['c'],
|
||
yc = ( id = -id, y = new x['constructor']( y, b ), y['c'] ),
|
||
i = x['s'],
|
||
j = y['s'],
|
||
k = x['e'],
|
||
l = y['e'];
|
||
|
||
// Either NaN?
|
||
if ( !i || !j ) {
|
||
return null;
|
||
}
|
||
|
||
a = xc && !xc[0];
|
||
b = yc && !yc[0];
|
||
|
||
// Either zero?
|
||
if ( a || b ) {
|
||
return a ? b ? 0 : -j : i;
|
||
}
|
||
|
||
// Signs differ?
|
||
if ( i != j ) {
|
||
return i;
|
||
}
|
||
|
||
a = i < 0;
|
||
|
||
// Either Infinity?
|
||
if ( !xc || !yc ) {
|
||
return k == l ? 0 : !xc ^ a ? 1 : -1;
|
||
}
|
||
|
||
// Compare exponents.
|
||
if ( k != l ) {
|
||
return k > l ^ a ? 1 : -1;
|
||
}
|
||
|
||
// Compare digit by digit.
|
||
for ( i = -1,
|
||
j = ( k = xc.length ) < ( l = yc.length ) ? k : l;
|
||
++i < j; ) {
|
||
|
||
if ( xc[i] != yc[i] ) {
|
||
return xc[i] > yc[i] ^ a ? 1 : -1;
|
||
}
|
||
}
|
||
|
||
// Compare lengths.
|
||
return k == l ? 0 : k > l ^ a ? 1 : -1;
|
||
};
|
||
|
||
|
||
/*
|
||
* Return the number of decimal places of the value of this Decimal.
|
||
*
|
||
*/
|
||
P['decimalPlaces'] = P['dp'] = function () {
|
||
var c, v,
|
||
n = null;
|
||
|
||
if ( c = this['c'] ) {
|
||
n = ( ( v = c.length - 1 ) - mathfloor( this['e'] / LOGBASE ) ) * LOGBASE;
|
||
|
||
if ( v = c[v] ) {
|
||
|
||
// Subtract the number of trailing zeros of the last number.
|
||
for ( ; v % 10 == 0; v /= 10, n-- );
|
||
}
|
||
|
||
if ( n < 0 ) {
|
||
n = 0;
|
||
}
|
||
}
|
||
|
||
return n;
|
||
};
|
||
|
||
|
||
/*
|
||
* n / 0 = I
|
||
* n / N = N
|
||
* n / I = 0
|
||
* 0 / n = 0
|
||
* 0 / 0 = N
|
||
* 0 / N = N
|
||
* 0 / I = 0
|
||
* N / n = N
|
||
* N / 0 = N
|
||
* N / N = N
|
||
* N / I = N
|
||
* I / n = I
|
||
* I / 0 = I
|
||
* I / N = N
|
||
* I / I = N
|
||
*
|
||
* Return a new Decimal whose value is the value of this Decimal divided by Decimal(y, b),
|
||
* rounded to precision significant digits using rounding mode rounding.
|
||
*
|
||
*/
|
||
P['dividedBy'] = P['div'] = function ( y, b ) {
|
||
id = 2;
|
||
|
||
return div( this, new this['constructor']( y, b ) );
|
||
};
|
||
|
||
|
||
/*
|
||
* Return a new Decimal whose value is the integer part of dividing the value of this Decimal by
|
||
* the value of Decimal(y, b), rounded to precision significant digits using rounding mode
|
||
* rounding.
|
||
*
|
||
*/
|
||
P['dividedToIntegerBy'] = P['divToInt'] = function ( y, b ) {
|
||
var x = this,
|
||
Decimal = x['constructor'];
|
||
id = 18;
|
||
|
||
return rnd(
|
||
div( x, new Decimal( y, b ), 0, 1, 1 ), Decimal['precision'], Decimal['rounding']
|
||
);
|
||
};
|
||
|
||
|
||
/*
|
||
* Return true if the value of this Decimal is equal to the value of Decimal(n, b), otherwise
|
||
* return false.
|
||
*
|
||
*/
|
||
P['equals'] = P['eq'] = function ( n, b ) {
|
||
id = 3;
|
||
|
||
return this['cmp']( n, b ) === 0;
|
||
};
|
||
|
||
|
||
/*
|
||
* Return a new Decimal whose value is the exponential of the value of this Decimal, i.e. the
|
||
* base e raised to the power the value of this Decimal, rounded to precision significant digits
|
||
* using rounding mode rounding.
|
||
*
|
||
*/
|
||
P['exponential'] = P['exp'] = function () {
|
||
|
||
return exp(this);
|
||
};
|
||
|
||
|
||
/*
|
||
* Return a new Decimal whose value is the value of this Decimal rounded to a whole number in
|
||
* the direction of negative Infinity.
|
||
*
|
||
*/
|
||
P['floor'] = function () {
|
||
|
||
return rnd( new this['constructor'](this), this['e'] + 1, 3 );
|
||
};
|
||
|
||
|
||
/*
|
||
* Return true if the value of this Decimal is greater than the value of Decimal(n, b), otherwise
|
||
* return false.
|
||
*
|
||
*/
|
||
P['greaterThan'] = P['gt'] = function ( n, b ) {
|
||
id = 4;
|
||
|
||
return this['cmp']( n, b ) > 0;
|
||
};
|
||
|
||
|
||
/*
|
||
* Return true if the value of this Decimal is greater than or equal to the value of
|
||
* Decimal(n, b), otherwise return false.
|
||
*
|
||
*/
|
||
P['greaterThanOrEqualTo'] = P['gte'] = function ( n, b ) {
|
||
id = 5;
|
||
b = this['cmp']( n, b );
|
||
|
||
return b == 1 || b === 0;
|
||
};
|
||
|
||
|
||
/*
|
||
* Return true if the value of this Decimal is a finite number, otherwise return false.
|
||
*
|
||
*/
|
||
P['isFinite'] = function () {
|
||
|
||
return !!this['c'];
|
||
};
|
||
|
||
|
||
/*
|
||
* Return true if the value of this Decimal is an integer, otherwise return false.
|
||
*
|
||
*/
|
||
P['isInteger'] = P['isInt'] = function () {
|
||
|
||
return !!this['c'] && mathfloor( this['e'] / LOGBASE ) > this['c'].length - 2;
|
||
};
|
||
|
||
|
||
/*
|
||
* Return true if the value of this Decimal is NaN, otherwise return false.
|
||
*
|
||
*/
|
||
P['isNaN'] = function () {
|
||
|
||
return !this['s'];
|
||
};
|
||
|
||
|
||
/*
|
||
* Return true if the value of this Decimal is negative, otherwise return false.
|
||
*
|
||
*/
|
||
P['isNegative'] = P['isNeg'] = function () {
|
||
|
||
return this['s'] < 0;
|
||
};
|
||
|
||
|
||
/*
|
||
* Return true if the value of this Decimal is 0 or -0, otherwise return false.
|
||
*
|
||
*/
|
||
P['isZero'] = function () {
|
||
|
||
return !!this['c'] && this['c'][0] == 0;
|
||
};
|
||
|
||
|
||
/*
|
||
* Return true if the value of this Decimal is less than Decimal(n, b), otherwise return false.
|
||
*
|
||
*/
|
||
P['lessThan'] = P['lt'] = function ( n, b ) {
|
||
id = 6;
|
||
|
||
return this['cmp']( n, b ) < 0;
|
||
};
|
||
|
||
|
||
/*
|
||
* Return true if the value of this Decimal is less than or equal to Decimal(n, b), otherwise
|
||
* return false.
|
||
*
|
||
*/
|
||
P['lessThanOrEqualTo'] = P['lte'] = function ( n, b ) {
|
||
id = 7;
|
||
b = this['cmp']( n, b );
|
||
|
||
return b == -1 || b === 0;
|
||
};
|
||
|
||
|
||
/*
|
||
* Return the logarithm of the value of this Decimal to the specified base, rounded
|
||
* to precision significant digits using rounding mode rounding.
|
||
*
|
||
* If no base is specified, return log[10](arg).
|
||
*
|
||
* log[base](arg) = ln(arg) / ln(base)
|
||
*
|
||
* The result will always be correctly rounded if the base of the log is 2 or 10, and
|
||
* 'almost always' if not:
|
||
*
|
||
* Depending on the rounding mode, the result may be incorrectly rounded if the first fifteen
|
||
* rounding digits are [49]99999999999999 or [50]00000000000000. In that case, the maximum error
|
||
* between the result and the correctly rounded result will be one ulp (unit in the last place).
|
||
*
|
||
* log[-b](a) = NaN
|
||
* log[0](a) = NaN
|
||
* log[1](a) = NaN
|
||
* log[NaN](a) = NaN
|
||
* log[Infinity](a) = NaN
|
||
* log[b](0) = -Infinity
|
||
* log[b](-0) = -Infinity
|
||
* log[b](-a) = NaN
|
||
* log[b](1) = 0
|
||
* log[b](Infinity) = Infinity
|
||
* log[b](NaN) = NaN
|
||
*
|
||
* [base] {number|string|Decimal} The base of the logarithm.
|
||
* [b] {number} The base of base.
|
||
*
|
||
*/
|
||
P['logarithm'] = P['log'] = function ( base, b ) {
|
||
var base10, c, denom, i, inf, num, sd, sd10, r,
|
||
arg = this,
|
||
Decimal = arg['constructor'],
|
||
pr = Decimal['precision'],
|
||
rm = Decimal['rounding'],
|
||
guard = 5;
|
||
|
||
// Default base is 10.
|
||
if ( base == null ) {
|
||
base = new Decimal(10);
|
||
base10 = true;
|
||
} else {
|
||
id = 15;
|
||
base = new Decimal( base, b );
|
||
c = base['c'];
|
||
|
||
// If base < 0 or +-Infinity/NaN or 0 or 1.
|
||
if ( base['s'] < 0 || !c || !c[0] || !base['e'] && c[0] == 1 && c.length == 1 ) {
|
||
|
||
return new Decimal(NaN);
|
||
}
|
||
base10 = base['eq'](10);
|
||
}
|
||
c = arg['c'];
|
||
|
||
// If arg < 0 or +-Infinity/NaN or 0 or 1.
|
||
if ( arg['s'] < 0 || !c || !c[0] || !arg['e'] && c[0] == 1 && c.length == 1 ) {
|
||
|
||
return new Decimal( c && !c[0] ? -1 / 0 : arg['s'] != 1 ? NaN : c ? 0 : 1 / 0 );
|
||
}
|
||
|
||
/*
|
||
The result will have an infinite decimal expansion if base is 10 and arg is not an
|
||
integer power of 10...
|
||
*/
|
||
inf = base10 && ( i = c[0], c.length > 1 || i != 1 && i != 10 &&
|
||
i != 1e2 && i != 1e3 && i != 1e4 && i != 1e5 && i != 1e6 );
|
||
/*
|
||
// or if base last digit's evenness is not the same as arg last digit's evenness...
|
||
// (FAILS when e.g. base.c[0] = 10 and c[0] = 1)
|
||
|| ( base['c'][ base['c'].length - 1 ] & 1 ) != ( c[ c.length - 1 ] & 1 )
|
||
// or if base is 2 and there is more than one 1 in arg in base 2.
|
||
// (SLOWS the method down significantly)
|
||
|| base['eq'](2) && arg.toString(2).replace( /[^1]+/g, '' ) != '1';
|
||
*/
|
||
|
||
external = false;
|
||
sd = pr + guard;
|
||
sd10 = sd + 10;
|
||
|
||
num = ln( arg, sd );
|
||
|
||
if (base10) {
|
||
|
||
if ( sd10 > LN10.length ) {
|
||
ifExceptionsThrow( Decimal, 1, sd10, 'log' );
|
||
}
|
||
denom = new Decimal( LN10.slice( 0, sd10 ) );
|
||
} else {
|
||
denom = ln( base, sd );
|
||
}
|
||
|
||
// The result will have 5 rounding digits.
|
||
r = div( num, denom, sd, 1 );
|
||
|
||
/*
|
||
If at a rounding boundary, i.e. the result's rounding digits are [49]9999 or [50]0000,
|
||
calculate 10 further digits.
|
||
|
||
If the result is known to have an infinite decimal expansion, repeat this until it is
|
||
clear that the result is above or below the boundary. Otherwise, if after calculating
|
||
the 10 further digits, the last 14 are nines, round up and assume the result is exact.
|
||
Also assume the result is exact if the last 14 are zero.
|
||
|
||
Example of a result that will be incorrectly rounded:
|
||
log[1048576](4503599627370502) = 2.60000000000000009610279511444746...
|
||
The above result correctly rounded using ROUND_CEIL to 1 decimal place should be 2.7,
|
||
but it will be given as 2.6 as there are 15 zeros immediately after the requested
|
||
decimal place, so the exact result would be assumed to be 2.6, which rounded using
|
||
ROUND_CEIL to 1 decimal place is still 2.6.
|
||
*/
|
||
if ( checkRoundingDigits( r['c'], i = pr, rm ) ) {
|
||
|
||
do {
|
||
sd += 10;
|
||
num = ln( arg, sd );
|
||
|
||
if (base10) {
|
||
sd10 = sd + 10;
|
||
|
||
if ( sd10 > LN10.length ) {
|
||
ifExceptionsThrow( Decimal, 1, sd10, 'log' );
|
||
}
|
||
denom = new Decimal( LN10.slice( 0, sd10 ) );
|
||
} else {
|
||
denom = ln( base, sd );
|
||
}
|
||
|
||
r = div( num, denom, sd, 1 );
|
||
|
||
if ( !inf ) {
|
||
|
||
// Check for 14 nines from the 2nd rounding digit, as the first may be 4.
|
||
if ( +coefficientToString( r['c'] ).slice( i + 1, i + 15 ) + 1 == 1e14 ) {
|
||
r = rnd( r, pr + 1, 0 );
|
||
}
|
||
|
||
break;
|
||
}
|
||
} while ( checkRoundingDigits( r['c'], i += 10, rm ) );
|
||
}
|
||
external = true;
|
||
|
||
return rnd( r, pr, rm );
|
||
};
|
||
|
||
|
||
/*
|
||
* n - 0 = n
|
||
* n - N = N
|
||
* n - I = -I
|
||
* 0 - n = -n
|
||
* 0 - 0 = 0
|
||
* 0 - N = N
|
||
* 0 - I = -I
|
||
* N - n = N
|
||
* N - 0 = N
|
||
* N - N = N
|
||
* N - I = N
|
||
* I - n = I
|
||
* I - 0 = I
|
||
* I - N = N
|
||
* I - I = N
|
||
*
|
||
* Return a new Decimal whose value is the value of this Decimal minus Decimal(y, b), rounded
|
||
* to precision significant digits using rounding mode rounding.
|
||
*
|
||
*/
|
||
P['minus'] = function ( y, b ) {
|
||
var t, i, j, xLTy,
|
||
x = this,
|
||
Decimal = x['constructor'],
|
||
a = x['s'];
|
||
|
||
id = 8;
|
||
y = new Decimal( y, b );
|
||
b = y['s'];
|
||
|
||
// Either NaN?
|
||
if ( !a || !b ) {
|
||
|
||
return new Decimal(NaN);
|
||
}
|
||
|
||
// Signs differ?
|
||
if ( a != b ) {
|
||
y['s'] = -b;
|
||
|
||
return x['plus'](y);
|
||
}
|
||
|
||
var xc = x['c'],
|
||
yc = y['c'],
|
||
e = mathfloor( y['e'] / LOGBASE ),
|
||
k = mathfloor( x['e'] / LOGBASE ),
|
||
pr = Decimal['precision'],
|
||
rm = Decimal['rounding'];
|
||
|
||
if ( !k || !e ) {
|
||
|
||
// Either Infinity?
|
||
if ( !xc || !yc ) {
|
||
|
||
return xc ? ( y['s'] = -b, y ) : new Decimal( yc ? x : NaN );
|
||
}
|
||
|
||
// Either zero?
|
||
if ( !xc[0] || !yc[0] ) {
|
||
|
||
// Return y if y is non-zero, x if x is non-zero, or zero if both are zero.
|
||
x = yc[0] ? ( y['s'] = -b, y ) : new Decimal( xc[0] ? x :
|
||
|
||
// IEEE 754 (2008) 6.3: n - n = -0 when rounding to -Infinity
|
||
rm == 3 ? -0 : 0 );
|
||
|
||
return external ? rnd( x, pr, rm ) : x;
|
||
}
|
||
}
|
||
|
||
xc = xc.slice();
|
||
i = xc.length;
|
||
|
||
// Determine which is the bigger number. Prepend zeros to equalise exponents.
|
||
if ( a = k - e ) {
|
||
|
||
if ( xLTy = a < 0 ) {
|
||
a = -a;
|
||
t = xc;
|
||
i = yc.length;
|
||
} else {
|
||
e = k;
|
||
t = yc;
|
||
}
|
||
|
||
if ( ( k = Math.ceil( pr / LOGBASE ) ) > i ) {
|
||
i = k;
|
||
}
|
||
|
||
/*
|
||
Numbers with massively different exponents would result in a massive number of
|
||
zeros needing to be prepended, but this can be avoided while still ensuring correct
|
||
rounding by limiting the number of zeros to max( precision, i ) + 2, where pr is
|
||
precision and i is the length of the coefficient of whichever is greater x or y.
|
||
*/
|
||
if ( a > ( i += 2 ) ) {
|
||
a = i;
|
||
t.length = 1;
|
||
}
|
||
|
||
for ( t.reverse(), b = a; b--; t.push(0) );
|
||
t.reverse();
|
||
} else {
|
||
// Exponents equal. Check digits.
|
||
|
||
if ( xLTy = i < ( j = yc.length ) ) {
|
||
j = i;
|
||
}
|
||
|
||
for ( a = b = 0; b < j; b++ ) {
|
||
|
||
if ( xc[b] != yc[b] ) {
|
||
xLTy = xc[b] < yc[b];
|
||
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
// x < y? Point xc to the array of the bigger number.
|
||
if ( xLTy ) {
|
||
t = xc, xc = yc, yc = t;
|
||
y['s'] = -y['s'];
|
||
}
|
||
|
||
/*
|
||
Append zeros to xc if shorter. No need to add zeros to yc if shorter as subtraction only
|
||
needs to start at yc length.
|
||
*/
|
||
if ( ( b = -( ( j = xc.length ) - yc.length ) ) > 0 ) {
|
||
|
||
for ( ; b--; xc[j++] = 0 );
|
||
}
|
||
|
||
// Subtract yc from xc.
|
||
for ( k = BASE - 1, b = yc.length; b > a; ) {
|
||
|
||
if ( xc[--b] < yc[b] ) {
|
||
|
||
for ( i = b; i && !xc[--i]; xc[i] = k );
|
||
--xc[i];
|
||
xc[b] += BASE;
|
||
}
|
||
xc[b] -= yc[b];
|
||
}
|
||
|
||
// Remove trailing zeros.
|
||
for ( ; xc[--j] == 0; xc.pop() );
|
||
|
||
// Remove leading zeros and adjust exponent accordingly.
|
||
for ( ; xc[0] == 0; xc.shift(), --e );
|
||
|
||
if ( !xc[0] ) {
|
||
|
||
// Zero.
|
||
xc = [ e = 0 ];
|
||
|
||
// Following IEEE 754 (2008) 6.3, n - n = -0 when rounding towards -Infinity.
|
||
y['s'] = rm == 3 ? -1 : 1;
|
||
}
|
||
|
||
y['c'] = xc;
|
||
|
||
// Get the number of digits of xc[0].
|
||
for ( a = 1, b = xc[0]; b >= 10; b /= 10, a++ );
|
||
y['e'] = a + e * LOGBASE - 1;
|
||
|
||
return external ? rnd( y, pr, rm ) : y;
|
||
};
|
||
|
||
|
||
/*
|
||
* n % 0 = N
|
||
* n % N = N
|
||
* n % I = n
|
||
* 0 % n = 0
|
||
* -0 % n = -0
|
||
* 0 % 0 = N
|
||
* 0 % N = N
|
||
* 0 % I = 0
|
||
* N % n = N
|
||
* N % 0 = N
|
||
* N % N = N
|
||
* N % I = N
|
||
* I % n = N
|
||
* I % 0 = N
|
||
* I % N = N
|
||
* I % I = N
|
||
*
|
||
* Return a new Decimal whose value is the value of this Decimal modulo Decimal(y, b), rounded
|
||
* to precision significant digits using rounding mode rounding.
|
||
*
|
||
* The result depends on the modulo mode.
|
||
*
|
||
*/
|
||
P['modulo'] = P['mod'] = function ( y, b ) {
|
||
var n, q,
|
||
x = this,
|
||
Decimal = x['constructor'],
|
||
m = Decimal['modulo'];
|
||
|
||
id = 9;
|
||
y = new Decimal( y, b );
|
||
b = y['s'];
|
||
n = !x['c'] || !b || y['c'] && !y['c'][0];
|
||
|
||
/*
|
||
Return NaN if x is Infinity or NaN, or y is NaN or zero, else return x if y is Infinity
|
||
or x is zero.
|
||
*/
|
||
if ( n || !y['c'] || x['c'] && !x['c'][0] ) {
|
||
|
||
return n
|
||
? new Decimal(NaN)
|
||
: rnd( new Decimal(x), Decimal['precision'], Decimal['rounding'] );
|
||
}
|
||
|
||
external = false;
|
||
|
||
if ( m == 9 ) {
|
||
|
||
// Euclidian division: q = sign(y) * floor(x / abs(y))
|
||
// r = x - qy where 0 <= r < abs(y)
|
||
y['s'] = 1;
|
||
q = div( x, y, 0, 3, 1 );
|
||
y['s'] = b;
|
||
q['s'] *= b;
|
||
} else {
|
||
q = div( x, y, 0, m, 1 );
|
||
}
|
||
|
||
q = q['times'](y);
|
||
external = true;
|
||
|
||
return x['minus'](q);
|
||
};
|
||
|
||
|
||
/*
|
||
* Return a new Decimal whose value is the natural logarithm of the value of this Decimal,
|
||
* rounded to precision significant digits using rounding mode rounding.
|
||
*
|
||
*/
|
||
P['naturalLogarithm'] = P['ln'] = function () {
|
||
|
||
return ln(this);
|
||
};
|
||
|
||
|
||
/*
|
||
* Return a new Decimal whose value is the value of this Decimal negated, i.e. as if
|
||
* multiplied by -1.
|
||
*
|
||
*/
|
||
P['negated'] = P['neg'] = function () {
|
||
var x = new this['constructor'](this);
|
||
x['s'] = -x['s'] || null;
|
||
|
||
return rnd(x);
|
||
};
|
||
|
||
|
||
/*
|
||
* n + 0 = n
|
||
* n + N = N
|
||
* n + I = I
|
||
* 0 + n = n
|
||
* 0 + 0 = 0
|
||
* 0 + N = N
|
||
* 0 + I = I
|
||
* N + n = N
|
||
* N + 0 = N
|
||
* N + N = N
|
||
* N + I = N
|
||
* I + n = I
|
||
* I + 0 = I
|
||
* I + N = N
|
||
* I + I = I
|
||
*
|
||
* Return a new Decimal whose value is the value of this Decimal plus Decimal(y, b), rounded
|
||
* to precision significant digits using rounding mode rounding.
|
||
*
|
||
*/
|
||
P['plus'] = function ( y, b ) {
|
||
var t,
|
||
x = this,
|
||
Decimal = x['constructor'],
|
||
a = x['s'];
|
||
|
||
id = 10;
|
||
y = new Decimal( y, b );
|
||
b = y['s'];
|
||
|
||
// Either NaN?
|
||
if ( !a || !b ) {
|
||
|
||
return new Decimal(NaN);
|
||
}
|
||
|
||
// Signs differ?
|
||
if ( a != b ) {
|
||
y['s'] = -b;
|
||
|
||
return x['minus'](y);
|
||
}
|
||
|
||
var xc = x['c'],
|
||
yc = y['c'],
|
||
e = mathfloor( y['e'] / LOGBASE ),
|
||
k = mathfloor( x['e'] / LOGBASE ),
|
||
pr = Decimal['precision'],
|
||
rm = Decimal['rounding'];
|
||
|
||
if ( !k || !e ) {
|
||
|
||
// Either Infinity?
|
||
if ( !xc || !yc ) {
|
||
|
||
// Return +-Infinity.
|
||
return new Decimal( a / 0 );
|
||
}
|
||
|
||
// Either zero?
|
||
if ( !xc[0] || !yc[0] ) {
|
||
|
||
// Return y if y is non-zero, x if x is non-zero, or zero if both are zero.
|
||
x = yc[0] ? y: new Decimal( xc[0] ? x : a * 0 );
|
||
|
||
return external ? rnd( x, pr, rm ) : x;
|
||
}
|
||
}
|
||
|
||
xc = xc.slice();
|
||
|
||
// Prepend zeros to equalise exponents. Note: Faster to use reverse then do unshifts.
|
||
if ( a = k - e ) {
|
||
|
||
if ( a < 0 ) {
|
||
a = -a;
|
||
t = xc;
|
||
b = yc.length;
|
||
} else {
|
||
e = k;
|
||
t = yc;
|
||
b = xc.length;
|
||
}
|
||
|
||
if ( ( k = Math.ceil( pr / LOGBASE ) ) > b ) {
|
||
b = k;
|
||
}
|
||
|
||
// Limit number of zeros prepended to max( pr, b ) + 1.
|
||
if ( a > ++b ) {
|
||
a = b;
|
||
t.length = 1;
|
||
}
|
||
|
||
for ( t.reverse(); a--; t.push(0) );
|
||
t.reverse();
|
||
}
|
||
|
||
// Point xc to the longer array.
|
||
if ( xc.length - yc.length < 0 ) {
|
||
t = yc, yc = xc, xc = t;
|
||
}
|
||
|
||
// Only start adding at yc.length - 1 as the further digits of xc can be left as they are.
|
||
for ( a = yc.length, b = 0, k = BASE; a; xc[a] %= k ) {
|
||
b = ( xc[--a] = xc[a] + yc[a] + b ) / k | 0;
|
||
}
|
||
|
||
if (b) {
|
||
xc.unshift(b);
|
||
++e;
|
||
}
|
||
|
||
// Remove trailing zeros.
|
||
for ( a = xc.length; xc[--a] == 0; xc.pop() );
|
||
|
||
// No need to check for zero, as +x + +y != 0 && -x + -y != 0
|
||
|
||
y['c'] = xc;
|
||
|
||
// Get the number of digits of xc[0].
|
||
for ( a = 1, b = xc[0]; b >= 10; b /= 10, a++ );
|
||
y['e'] = a + e * LOGBASE - 1;
|
||
|
||
return external ? rnd( y, pr, rm ) : y;
|
||
};
|
||
|
||
|
||
/*
|
||
* Return the number of significant digits of this Decimal.
|
||
*
|
||
* z {boolean|number} Whether to count integer-part trailing zeros: true, false, 1 or 0.
|
||
*
|
||
*/
|
||
P['precision'] = P['sd'] = function (z) {
|
||
var n = null,
|
||
x = this;
|
||
|
||
if ( z != n ) {
|
||
|
||
if ( z !== !!z && z !== 1 && z !== 0 ) {
|
||
|
||
// 'precision() argument not a boolean or binary digit: {z}'
|
||
ifExceptionsThrow( x['constructor'], 'argument', z, 'precision', 1 );
|
||
}
|
||
}
|
||
|
||
if ( x['c'] ) {
|
||
n = getCoeffLength( x['c'] );
|
||
|
||
if ( z && x['e'] + 1 > n ) {
|
||
n = x['e'] + 1;
|
||
}
|
||
}
|
||
|
||
return n;
|
||
};
|
||
|
||
|
||
/*
|
||
* Return a new Decimal whose value is the value of this Decimal rounded to a whole number using
|
||
* rounding mode rounding.
|
||
*
|
||
*/
|
||
P['round'] = function () {
|
||
var x = this,
|
||
Decimal = x['constructor'];
|
||
|
||
return rnd( new Decimal(x), x['e'] + 1, Decimal['rounding'] );
|
||
};
|
||
|
||
|
||
/*
|
||
* sqrt(-n) = N
|
||
* sqrt( N) = N
|
||
* sqrt(-I) = N
|
||
* sqrt( I) = I
|
||
* sqrt( 0) = 0
|
||
* sqrt(-0) = -0
|
||
*
|
||
* Return a new Decimal whose value is the square root of this Decimal, rounded to precision
|
||
* significant digits using rounding mode rounding.
|
||
*
|
||
*/
|
||
P['squareRoot'] = P['sqrt'] = function () {
|
||
var m, n, sd, r, rep, t,
|
||
x = this,
|
||
c = x['c'],
|
||
s = x['s'],
|
||
e = x['e'],
|
||
Decimal = x['constructor'],
|
||
half = new Decimal(0.5);
|
||
|
||
// Negative/NaN/Infinity/zero?
|
||
if ( s !== 1 || !c || !c[0] ) {
|
||
|
||
return new Decimal( !s || s < 0 && ( !c || c[0] ) ? NaN : c ? x : 1 / 0 );
|
||
}
|
||
|
||
external = false;
|
||
|
||
// Initial estimate.
|
||
s = Math.sqrt( +x );
|
||
|
||
/*
|
||
Math.sqrt underflow/overflow?
|
||
Pass x to Math.sqrt as integer, then adjust the exponent of the result.
|
||
*/
|
||
if ( s == 0 || s == 1 / 0 ) {
|
||
n = coefficientToString(c);
|
||
|
||
if ( ( n.length + e ) % 2 == 0 ) {
|
||
n += '0';
|
||
}
|
||
|
||
s = Math.sqrt(n);
|
||
e = mathfloor( ( e + 1 ) / 2 ) - ( e < 0 || e % 2 );
|
||
|
||
if ( s == 1 / 0 ) {
|
||
n = '1e' + e;
|
||
} else {
|
||
n = s.toExponential();
|
||
n = n.slice( 0, n.indexOf('e') + 1 ) + e;
|
||
}
|
||
|
||
r = new Decimal(n);
|
||
} else {
|
||
r = new Decimal( s.toString() );
|
||
}
|
||
|
||
sd = ( e = Decimal['precision'] ) + 3;
|
||
|
||
// Newton-Raphson iteration.
|
||
for ( ; ; ) {
|
||
t = r;
|
||
r = half['times']( t['plus']( div( x, t, sd + 2, 1 ) ) );
|
||
|
||
if ( coefficientToString( t['c'] ).slice( 0, sd ) ===
|
||
( n = coefficientToString( r['c'] ) ).slice( 0, sd ) ) {
|
||
n = n.slice( sd - 3, sd + 1 );
|
||
|
||
/*
|
||
The 4th rounding digit may be in error by -1 so if the 4 rounding digits are
|
||
9999 or 4999 (i.e. approaching a rounding boundary) continue the iteration.
|
||
*/
|
||
if ( n == '9999' || !rep && n == '4999' ) {
|
||
|
||
/*
|
||
On the first iteration only, check to see if rounding up gives the exact result
|
||
as the nines may infinitely repeat.
|
||
*/
|
||
if ( !rep ) {
|
||
rnd( t, e + 1, 0 );
|
||
|
||
if ( t['times'](t)['eq'](x) ) {
|
||
r = t;
|
||
|
||
break;
|
||
}
|
||
}
|
||
sd += 4;
|
||
rep = 1;
|
||
} else {
|
||
|
||
/*
|
||
If the rounding digits are null, 0{0,4} or 50{0,3}, check for an exact result.
|
||
If not, then there are further digits and m will be truthy.
|
||
*/
|
||
if ( !+n || !+n.slice(1) && n.charAt(0) == '5' ) {
|
||
|
||
// Truncate to the first rounding digit.
|
||
rnd( r, e + 1, 1 );
|
||
m = !r['times'](r)['eq'](x);
|
||
}
|
||
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
external = true;
|
||
|
||
return rnd( r, e, Decimal['rounding'], m );
|
||
};
|
||
|
||
|
||
/*
|
||
* n * 0 = 0
|
||
* n * N = N
|
||
* n * I = I
|
||
* 0 * n = 0
|
||
* 0 * 0 = 0
|
||
* 0 * N = N
|
||
* 0 * I = N
|
||
* N * n = N
|
||
* N * 0 = N
|
||
* N * N = N
|
||
* N * I = N
|
||
* I * n = I
|
||
* I * 0 = N
|
||
* I * N = N
|
||
* I * I = I
|
||
*
|
||
* Return a new Decimal whose value is this Decimal times Decimal(y), rounded to precision
|
||
* significant digits using rounding mode rounding.
|
||
*
|
||
*/
|
||
P['times'] = function ( y, b ) {
|
||
var c, e,
|
||
x = this,
|
||
Decimal = x['constructor'],
|
||
xc = x['c'],
|
||
yc = ( id = 11, y = new Decimal( y, b ), y['c'] ),
|
||
i = mathfloor( x['e'] / LOGBASE ),
|
||
j = mathfloor( y['e'] / LOGBASE ),
|
||
a = x['s'];
|
||
|
||
b = y['s'];
|
||
|
||
y['s'] = a == b ? 1 : -1;
|
||
|
||
// Either NaN/Infinity/0?
|
||
if ( !i && ( !xc || !xc[0] ) || !j && ( !yc || !yc[0] ) ) {
|
||
|
||
// Either NaN?
|
||
return new Decimal( !a || !b ||
|
||
|
||
// x is 0 and y is Infinity or y is 0 and x is Infinity?
|
||
xc && !xc[0] && !yc || yc && !yc[0] && !xc
|
||
|
||
// Return NaN.
|
||
? NaN
|
||
|
||
// Either Infinity?
|
||
: !xc || !yc
|
||
|
||
// Return +-Infinity.
|
||
? y['s'] / 0
|
||
|
||
// x or y is 0. Return +-0.
|
||
: y['s'] * 0 );
|
||
}
|
||
|
||
e = i + j;
|
||
a = xc.length;
|
||
b = yc.length;
|
||
|
||
if ( a < b ) {
|
||
|
||
// Swap.
|
||
c = xc, xc = yc, yc = c;
|
||
j = a, a = b, b = j;
|
||
}
|
||
|
||
for ( j = a + b, c = []; j--; c.push(0) );
|
||
|
||
// Multiply!
|
||
for ( i = b - 1; i > -1; i-- ) {
|
||
|
||
for ( b = 0, j = a + i; j > i; b = b / BASE | 0 ) {
|
||
b = c[j] + yc[i] * xc[j - i - 1] + b;
|
||
c[j--] = b % BASE | 0;
|
||
}
|
||
|
||
if (b) {
|
||
c[j] = ( c[j] + b ) % BASE;
|
||
}
|
||
}
|
||
|
||
if (b) {
|
||
++e;
|
||
}
|
||
|
||
// Remove any leading zero.
|
||
if ( !c[0] ) {
|
||
c.shift();
|
||
}
|
||
|
||
// Remove trailing zeros.
|
||
for ( j = c.length; !c[--j]; c.pop() );
|
||
|
||
y['c'] = c;
|
||
|
||
// Get the number of digits of c[0].
|
||
for ( a = 1, b = c[0]; b >= 10; b /= 10, a++ );
|
||
y['e'] = a + e * LOGBASE - 1;
|
||
|
||
return external ? rnd( y, Decimal['precision'], Decimal['rounding'] ) : y;
|
||
};
|
||
|
||
|
||
/*
|
||
* Return a new Decimal whose value is the value of this Decimal rounded to a maximum of dp
|
||
* decimal places using rounding mode rm or rounding if rm is omitted.
|
||
*
|
||
* If dp is omitted, return a new Decimal whose value is the value of this Decimal.
|
||
*
|
||
* [dp] {number} Decimal places. Integer, 0 to MAX_DIGITS inclusive.
|
||
* [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
|
||
*
|
||
* 'toDP() dp out of range: {dp}'
|
||
* 'toDP() dp not an integer: {dp}'
|
||
* 'toDP() rounding mode not an integer: {rm}'
|
||
* 'toDP() rounding mode out of range: {rm}'
|
||
*
|
||
*/
|
||
P['toDecimalPlaces'] = P['toDP'] = function ( dp, rm ) {
|
||
var x = this;
|
||
x = new x['constructor'](x);
|
||
|
||
return dp == null || !checkArg( x, dp, 'toDP' )
|
||
? x
|
||
: rnd( x, ( dp | 0 ) + x['e'] + 1, checkRM( x, rm, 'toDP' ) );
|
||
};
|
||
|
||
|
||
/*
|
||
* Return a string representing the value of this Decimal in exponential notation rounded to dp
|
||
* fixed decimal places using rounding mode rounding.
|
||
*
|
||
* [dp] {number} Decimal places. Integer, 0 to MAX_DIGITS inclusive.
|
||
* [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
|
||
*
|
||
* errors true: Throw if dp and rm are not undefined, null or integers in range.
|
||
* errors false: Ignore dp and rm if not numbers or not in range, and truncate non-integers.
|
||
*
|
||
* 'toExponential() dp not an integer: {dp}'
|
||
* 'toExponential() dp out of range: {dp}'
|
||
* 'toExponential() rounding mode not an integer: {rm}'
|
||
* 'toExponential() rounding mode out of range: {rm}'
|
||
*
|
||
*/
|
||
P['toExponential'] = function ( dp, rm ) {
|
||
var x = this;
|
||
|
||
return x['c']
|
||
? format( x, dp != null && checkArg( x, dp, 'toExponential' ) ? dp | 0 : null,
|
||
dp != null && checkRM( x, rm, 'toExponential' ), 1 )
|
||
: x.toString();
|
||
};
|
||
|
||
|
||
/*
|
||
* Return a string representing the value of this Decimal in normal (fixed-point) notation to
|
||
* dp fixed decimal places and rounded using rounding mode rm or rounding if rm is omitted.
|
||
*
|
||
* Note: as with JS numbers, (-0).toFixed(0) is '0', but e.g. (-0.00001).toFixed(0) is '-0'.
|
||
*
|
||
* [dp] {number} Decimal places. Integer, -MAX_DIGITS to MAX_DIGITS inclusive.
|
||
* [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
|
||
*
|
||
* errors true: Throw if dp and rm are not undefined, null or integers in range.
|
||
* errors false: Ignore dp and rm if not numbers or not in range, and truncate non-integers.
|
||
*
|
||
* 'toFixed() dp not an integer: {dp}'
|
||
* 'toFixed() dp out of range: {dp}'
|
||
* 'toFixed() rounding mode not an integer: {rm}'
|
||
* 'toFixed() rounding mode out of range: {rm}'
|
||
*
|
||
*/
|
||
P['toFixed'] = function ( dp, rm ) {
|
||
var str,
|
||
x = this,
|
||
Decimal = x['constructor'],
|
||
neg = Decimal['toExpNeg'],
|
||
pos = Decimal['toExpPos'];
|
||
|
||
if ( dp != null ) {
|
||
dp = checkArg( x, dp, str = 'toFixed' ) ? x['e'] + ( dp | 0 ) : null;
|
||
rm = checkRM( x, rm, str );
|
||
}
|
||
|
||
// Prevent toString returning exponential notation;
|
||
Decimal['toExpNeg'] = -( Decimal['toExpPos'] = 1 / 0 );
|
||
|
||
if ( dp == null || !x['c'] ) {
|
||
str = x.toString();
|
||
} else {
|
||
str = format( x, dp, rm );
|
||
|
||
// (-0).toFixed() is '0', but (-0.1).toFixed() is '-0'.
|
||
// (-0).toFixed(1) is '0.0', but (-0.01).toFixed(1) is '-0.0'.
|
||
if ( x['s'] < 0 && x['c'] ) {
|
||
|
||
// As e.g. (-0).toFixed(3), will wrongly be returned as -0.000 from toString.
|
||
if ( !x['c'][0] ) {
|
||
str = str.replace( '-', '' );
|
||
|
||
// As e.g. -0.5 if rounded to -0 will cause toString to omit the minus sign.
|
||
} else if ( str.indexOf('-') < 0 ) {
|
||
str = '-' + str;
|
||
}
|
||
}
|
||
}
|
||
Decimal['toExpNeg'] = neg;
|
||
Decimal['toExpPos'] = pos;
|
||
|
||
return str;
|
||
};
|
||
|
||
|
||
/*
|
||
* Return a string representing the value of this Decimal in normal notation rounded using
|
||
* rounding mode rounding to dp fixed decimal places, with the integer part of the number
|
||
* separated into thousands by string sep1 or ',' if sep1 is null or undefined, and the
|
||
* fraction part separated into groups of five digits by string sep2.
|
||
*
|
||
* [sep1] {string} The grouping separator of the integer part of the number.
|
||
* [sep2] {string} The grouping separator of the fraction part of the number.
|
||
* [dp] {number} Decimal places. Integer, -MAX_DIGITS to MAX_DIGITS inclusive.
|
||
*
|
||
* Non-breaking thin-space: \u202f
|
||
*
|
||
* If dp is invalid the error message will incorrectly give the method as toFixed.
|
||
*
|
||
*/
|
||
P['toFormat'] = function ( sep1, dp, sep2 ) {
|
||
var arr = this.toFixed(dp).split('.');
|
||
|
||
return arr[0].replace( /\B(?=(\d{3})+$)/g, sep1 == null ? ',' : sep1 + '' ) +
|
||
( arr[1] ? '.' + ( sep2 ? arr[1].replace( /\d{5}\B/g, '$&' + sep2 ) : arr[1] ) : '' );
|
||
};
|
||
|
||
|
||
/*
|
||
* Return a string array representing the value of this Decimal as a simple fraction with an
|
||
* integer numerator and an integer denominator.
|
||
*
|
||
* The denominator will be a positive non-zero value less than or equal to the specified
|
||
* maximum denominator. If a maximum denominator is not specified, the denominator will be
|
||
* the lowest value necessary to represent the number exactly.
|
||
*
|
||
* [maxD] {number|string|Decimal} Maximum denominator. Integer >= 1 and < Infinity.
|
||
*
|
||
*/
|
||
P['toFraction'] = function (maxD) {
|
||
var d0, d2, e, frac, n, n0, p, q,
|
||
x = this,
|
||
Decimal = x['constructor'],
|
||
n1 = d0 = new Decimal( Decimal['ONE'] ),
|
||
d1 = n0 = new Decimal(0),
|
||
xc = x['c'],
|
||
d = new Decimal(d1);
|
||
|
||
// NaN, Infinity.
|
||
if ( !xc ) {
|
||
|
||
return x.toString();
|
||
}
|
||
|
||
e = d['e'] = getCoeffLength(xc) - x['e'] - 1;
|
||
d['c'][0] = mathpow( 10, ( p = e % LOGBASE ) < 0 ? LOGBASE + p : p );
|
||
|
||
// If maxD is undefined or null...
|
||
if ( maxD == null ||
|
||
|
||
// or NaN...
|
||
( !( id = 12, n = new Decimal(maxD) )['s'] ||
|
||
|
||
// or less than 1, or Infinity...
|
||
( outOfRange = n['cmp'](n1) < 0 || !n['c'] ) ||
|
||
|
||
// or not an integer...
|
||
( Decimal['errors'] && mathfloor( n['e'] / LOGBASE ) < n['c'].length - 1 ) ) &&
|
||
|
||
// 'toFraction() max denominator not an integer: {maxD}'
|
||
// 'toFraction() max denominator out of range: {maxD}'
|
||
!ifExceptionsThrow( Decimal, 'max denominator', maxD, 'toFraction', 0 ) ||
|
||
|
||
// or greater than the maximum denominator needed to specify the value exactly.
|
||
( maxD = n )['cmp'](d) > 0 ) {
|
||
|
||
// d is 10**e, n1 is 1.
|
||
maxD = e > 0 ? d : n1;
|
||
}
|
||
|
||
external = false;
|
||
n = new Decimal( coefficientToString(xc) );
|
||
p = Decimal['precision'];
|
||
Decimal['precision'] = e = xc.length * LOGBASE * 2;
|
||
|
||
for ( ; ; ) {
|
||
q = div( n, d, 0, 1, 1 );
|
||
d2 = d0['plus']( q['times'](d1) );
|
||
|
||
if ( d2['cmp'](maxD) == 1 ) {
|
||
|
||
break;
|
||
}
|
||
d0 = d1, d1 = d2;
|
||
|
||
n1 = n0['plus']( q['times']( d2 = n1 ) );
|
||
n0 = d2;
|
||
|
||
d = n['minus']( q['times']( d2 = d ) );
|
||
n = d2;
|
||
}
|
||
|
||
d2 = div( maxD['minus'](d0), d1, 0, 1, 1 );
|
||
n0 = n0['plus']( d2['times'](n1) );
|
||
d0 = d0['plus']( d2['times'](d1) );
|
||
n0['s'] = n1['s'] = x['s'];
|
||
|
||
// Determine which fraction is closer to x, n0/d0 or n1/d1?
|
||
frac = div( n1, d1, e, 1 )['minus'](x)['abs']()['cmp'](
|
||
div( n0, d0, e, 1 )['minus'](x)['abs']() ) < 1
|
||
? [ n1 + '', d1 + '' ]
|
||
: [ n0 + '', d0 + '' ];
|
||
|
||
external = true;
|
||
Decimal['precision'] = p;
|
||
|
||
return frac;
|
||
};
|
||
|
||
|
||
/*
|
||
* Returns a new Decimal whose value is the nearest multiple of the magnitude of n to the value
|
||
* of this Decimal.
|
||
*
|
||
* If the value of this Decimal is equidistant from two multiples of n, the rounding mode rm,
|
||
* or rounding if rm is omitted or is null or undefined, determines the direction of the
|
||
* nearest multiple.
|
||
*
|
||
* In the context of this method, rounding mode 4 (ROUND_HALF_UP) is the same as rounding mode 0
|
||
* (ROUND_UP), and so on.
|
||
*
|
||
* The return value will always have the same sign as this Decimal, unless either this Decimal
|
||
* or n is NaN, in which case the return value will be also be NaN.
|
||
*
|
||
* The return value is not rounded to precision significant digits.
|
||
*
|
||
* n {number|string|Decimal} The magnitude to round to a multiple of.
|
||
* [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
|
||
*
|
||
* 'toNearest() rounding mode not an integer: {rm}'
|
||
* 'toNearest() rounding mode out of range: {rm}'
|
||
*
|
||
*/
|
||
P['toNearest'] = function ( n, rm ) {
|
||
var x = this,
|
||
Decimal = x['constructor'];
|
||
|
||
x = new Decimal(x);
|
||
|
||
if ( n == null ) {
|
||
n = new Decimal( Decimal['ONE'] );
|
||
rm = Decimal['rounding'];
|
||
} else {
|
||
id = 17;
|
||
n = new Decimal(n);
|
||
rm = checkRM( x, rm, 'toNearest' );
|
||
}
|
||
|
||
// If n is finite...
|
||
if ( n['c'] ) {
|
||
|
||
// If x is finite...
|
||
if ( x['c'] ) {
|
||
|
||
if ( n['c'][0] ) {
|
||
external = false;
|
||
x = div( x, n, 0, rm < 4 ? [4, 5, 7, 8][rm] : rm, 1 )['times'](n);
|
||
external = true;
|
||
rnd(x);
|
||
} else {
|
||
x['c'] = [ x['e'] = 0 ];
|
||
}
|
||
}
|
||
|
||
// n is NaN or +-Infinity. If x is not NaN...
|
||
} else if ( x['s'] ) {
|
||
|
||
// If n is +-Infinity...
|
||
if ( n['s'] ) {
|
||
n['s'] = x['s'];
|
||
}
|
||
x = n;
|
||
}
|
||
|
||
return x;
|
||
};
|
||
|
||
|
||
/*
|
||
* Return the value of this Decimal converted to a number primitive.
|
||
*
|
||
*/
|
||
P['toNumber'] = function () {
|
||
var x = this;
|
||
|
||
// Ensure zero has correct sign.
|
||
return +x || ( x['s'] ? 0 * x['s'] : NaN );
|
||
};
|
||
|
||
|
||
/*
|
||
* Return a new Decimal whose value is the value of this Decimal raised to the power
|
||
* Decimal(y, b), rounded to precision significant digits using rounding mode rounding.
|
||
*
|
||
* ECMAScript compliant.
|
||
*
|
||
* x is any value, including NaN.
|
||
* n is any number, including <20>Infinity unless stated.
|
||
*
|
||
* pow( x, NaN ) = NaN
|
||
* pow( x, <20>0 ) = 1
|
||
|
||
* pow( NaN, nonzero ) = NaN
|
||
* pow( abs(n) > 1, +Infinity ) = +Infinity
|
||
* pow( abs(n) > 1, -Infinity ) = +0
|
||
* pow( abs(n) == 1, <20>Infinity ) = NaN
|
||
* pow( abs(n) < 1, +Infinity ) = +0
|
||
* pow( abs(n) < 1, -Infinity ) = +Infinity
|
||
* pow( +Infinity, n > 0 ) = +Infinity
|
||
* pow( +Infinity, n < 0 ) = +0
|
||
* pow( -Infinity, odd integer > 0 ) = -Infinity
|
||
* pow( -Infinity, even integer > 0 ) = +Infinity
|
||
* pow( -Infinity, odd integer < 0 ) = -0
|
||
* pow( -Infinity, even integer < 0 ) = +0
|
||
* pow( +0, n > 0 ) = +0
|
||
* pow( +0, n < 0 ) = +Infinity
|
||
* pow( -0, odd integer > 0 ) = -0
|
||
* pow( -0, even integer > 0 ) = +0
|
||
* pow( -0, odd integer < 0 ) = -Infinity
|
||
* pow( -0, even integer < 0 ) = +Infinity
|
||
* pow( finite n < 0, finite non-integer ) = NaN
|
||
*
|
||
* For non-integer and larger exponents pow(x, y) is calculated using
|
||
*
|
||
* x^y = exp(y*ln(x))
|
||
*
|
||
* Assuming the first 15 rounding digits are each equally likely to be any digit 0-9, the
|
||
* probability of an incorrectly rounded result
|
||
* P( [49]9{14} | [50]0{14} ) = 2 * 0.2 * 10^-14 = 4e-15 = 1/2.5e+14
|
||
* i.e. 1 in 250,000,000,000,000
|
||
*
|
||
* If a result is incorrectly rounded the maximum error will be 1 ulp (unit in last place).
|
||
*
|
||
* y {number|string|Decimal} The power to which to raise this Decimal.
|
||
* [b] {number} The base of y.
|
||
*
|
||
*/
|
||
P['toPower'] = P['pow'] = function ( y, b ) {
|
||
var a, e, n, r,
|
||
x = this,
|
||
Decimal = x['constructor'],
|
||
s = x['s'],
|
||
yN = +( id = 13, y = new Decimal( y, b ) ),
|
||
i = yN < 0 ? -yN : yN,
|
||
pr = Decimal['precision'],
|
||
rm = Decimal['rounding'];
|
||
|
||
// Handle +-Infinity, NaN and +-0.
|
||
if ( !x['c'] || !y['c'] || ( n = !x['c'][0] ) || !y['c'][0] ) {
|
||
|
||
// valueOf -0 is 0, so check for 0 then multiply it by the sign.
|
||
return new Decimal( mathpow( n ? s * 0 : +x, yN ) );
|
||
}
|
||
|
||
x = new Decimal(x);
|
||
a = x['c'].length;
|
||
|
||
// if x == 1
|
||
if ( !x['e'] && x['c'][0] == x['s'] && a == 1 ) {
|
||
|
||
return x;
|
||
}
|
||
|
||
b = y['c'].length - 1;
|
||
|
||
// if y == 1
|
||
if ( !y['e'] && y['c'][0] == y['s'] && !b ) {
|
||
r = rnd( x, pr, rm );
|
||
} else {
|
||
e = mathfloor( y['e'] / LOGBASE );
|
||
n = e >= b;
|
||
|
||
// If y is not an integer and x is negative, return NaN.
|
||
if ( !n && s < 0 ) {
|
||
r = new Decimal(NaN);
|
||
} else {
|
||
|
||
/*
|
||
If the approximate number of significant digits of x multiplied by abs(y) is less
|
||
than INT_POW_LIMIT use the 'exponentiation by squaring' algorithm.
|
||
*/
|
||
if ( n && a * LOGBASE * i < INT_POW_LIMIT ) {
|
||
r = intPow( Decimal, x, i );
|
||
|
||
if ( y['s'] < 0 ) {
|
||
|
||
return Decimal['ONE']['div'](r);
|
||
}
|
||
} else {
|
||
|
||
// Result is negative if x is negative and the last digit of integer y is odd.
|
||
s = s < 0 && y['c'][ Math.max( e, b ) ] & 1 ? -1 : 1;
|
||
|
||
b = mathpow( +x, yN );
|
||
|
||
/*
|
||
Estimate result exponent.
|
||
x^y = 10^e, where e = y * log10(x)
|
||
log10(x) = log10(x_significand) + x_exponent
|
||
log10(x_significand) = ln(x_significand) / ln(10)
|
||
*/
|
||
e = b == 0 || !isFinite(b)
|
||
? mathfloor( yN * (
|
||
Math.log( '0.' + coefficientToString( x['c'] ) ) / Math.LN10 + x['e'] + 1 ) )
|
||
: new Decimal( b + '' )['e'];
|
||
|
||
// Estimate may be incorrect e.g.: x: 0.999999999999999999, y: 2.29, e: 0, r.e:-1
|
||
|
||
// Overflow/underflow?
|
||
if ( e > Decimal['maxE'] + 1 || e < Decimal['minE'] - 1 ) {
|
||
|
||
return new Decimal( e > 0 ? s / 0 : 0 );
|
||
}
|
||
|
||
external = false;
|
||
Decimal['rounding'] = x['s'] = 1;
|
||
|
||
/*
|
||
Estimate extra digits needed from ln(x) to ensure five correct rounding digits
|
||
in result (i was unnecessary before max exponent was extended?).
|
||
Example of failure before i was introduced: (precision: 10),
|
||
new Decimal(2.32456).pow('2087987436534566.46411')
|
||
should be 1.162377823e+764914905173815, but is 1.162355823e+764914905173815
|
||
*/
|
||
i = Math.min( 12, ( e + '' ).length );
|
||
|
||
// r = x^y = exp(y*ln(x))
|
||
r = exp( y['times']( ln( x, pr + i ) ), pr );
|
||
|
||
// Truncate to the required precision plus five rounding digits.
|
||
r = rnd( r, pr + 5, 1 );
|
||
|
||
/*
|
||
If the rounding digits are [49]9999 or [50]0000 increase the precision by 10
|
||
and recalculate the result.
|
||
*/
|
||
if ( checkRoundingDigits( r['c'], pr, rm ) ) {
|
||
e = pr + 10;
|
||
|
||
// Truncate to the increased precision plus five rounding digits.
|
||
r = rnd( exp( y['times']( ln( x, e + i ) ), e ), e + 5, 1 );
|
||
|
||
/*
|
||
Check for 14 nines from the 2nd rounding digit (the first rounding digit
|
||
may be 4 or 9).
|
||
*/
|
||
if ( +coefficientToString( r['c'] ).slice( pr + 1, pr + 15 ) + 1 == 1e14 ) {
|
||
r = rnd( r, pr + 1, 0 );
|
||
}
|
||
}
|
||
|
||
r['s'] = s;
|
||
external = true;
|
||
Decimal['rounding'] = rm;
|
||
}
|
||
|
||
r = rnd( r, pr, rm );
|
||
}
|
||
}
|
||
|
||
return r;
|
||
};
|
||
|
||
|
||
/*
|
||
* Return a string representing the value of this Decimal rounded to sd significant digits
|
||
* using rounding mode rounding.
|
||
*
|
||
* Return exponential notation if sd is less than the number of digits necessary to represent
|
||
* the integer part of the value in normal notation.
|
||
*
|
||
* sd {number} Significant digits. Integer, 1 to MAX_DIGITS inclusive.
|
||
* [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
|
||
*
|
||
* errors true: Throw if sd and rm are not undefined, null or integers in range.
|
||
* errors false: Ignore sd and rm if not numbers or not in range, and truncate non-integers.
|
||
*
|
||
* 'toPrecision() sd not an integer: {sd}'
|
||
* 'toPrecision() sd out of range: {sd}'
|
||
* 'toPrecision() rounding mode not an integer: {rm}'
|
||
* 'toPrecision() rounding mode out of range: {rm}'
|
||
*
|
||
*/
|
||
P['toPrecision'] = function ( sd, rm ) {
|
||
var x = this;
|
||
|
||
return sd != null && checkArg( x, sd, 'toPrecision', 1 ) && x['c']
|
||
? format( x, --sd | 0, checkRM( x, rm, 'toPrecision' ), 2 )
|
||
: x.toString();
|
||
};
|
||
|
||
|
||
/*
|
||
* Return a new Decimal whose value is this Decimal rounded to a maximum of d significant
|
||
* digits using rounding mode rm, or to precision and rounding respectively if omitted.
|
||
*
|
||
* [d] {number} Significant digits. Integer, 1 to MAX_DIGITS inclusive.
|
||
* [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
|
||
*
|
||
* 'toSD() digits out of range: {d}'
|
||
* 'toSD() digits not an integer: {d}'
|
||
* 'toSD() rounding mode not an integer: {rm}'
|
||
* 'toSD() rounding mode out of range: {rm}'
|
||
*
|
||
*/
|
||
P['toSignificantDigits'] = P['toSD'] = function ( d, rm ) {
|
||
var x = this,
|
||
Decimal = x['constructor'];
|
||
|
||
x = new Decimal(x);
|
||
|
||
return d == null || !checkArg( x, d, 'toSD', 1 )
|
||
? rnd( x, Decimal['precision'], Decimal['rounding'] )
|
||
: rnd( x, d | 0, checkRM( x, rm, 'toSD' ) );
|
||
};
|
||
|
||
|
||
/*
|
||
* Return a string representing the value of this Decimal in base b, or base 10 if b is
|
||
* omitted. If a base is specified, including base 10, round to precision significant digits
|
||
* using rounding mode rounding.
|
||
*
|
||
* Return exponential notation if a base is not specified, and this Decimal has a positive
|
||
* exponent equal to or greater than toExpPos, or a negative exponent equal to or less than
|
||
* toExpNeg.
|
||
*
|
||
* [b] {number} Base. Integer, 2 to 64 inclusive.
|
||
*
|
||
*/
|
||
P['toString'] = function (b) {
|
||
var u, str, strL,
|
||
x = this,
|
||
Decimal = x['constructor'],
|
||
xe = x['e'];
|
||
|
||
// Infinity or NaN?
|
||
if ( xe === null ) {
|
||
str = x['s'] ? 'Infinity' : 'NaN';
|
||
|
||
// Exponential format?
|
||
} else if ( b === u && ( xe <= Decimal['toExpNeg'] || xe >= Decimal['toExpPos'] ) ) {
|
||
|
||
return format( x, null, Decimal['rounding'], 1 );
|
||
} else {
|
||
str = coefficientToString( x['c'] );
|
||
|
||
// Negative exponent?
|
||
if ( xe < 0 ) {
|
||
|
||
// Prepend zeros.
|
||
for ( ; ++xe; str = '0' + str );
|
||
str = '0.' + str;
|
||
|
||
// Positive exponent?
|
||
} else if ( strL = str.length, xe > 0 ) {
|
||
|
||
if ( ++xe > strL ) {
|
||
|
||
// Append zeros.
|
||
for ( xe -= strL; xe-- ; str += '0' );
|
||
|
||
} else if ( xe < strL ) {
|
||
str = str.slice( 0, xe ) + '.' + str.slice(xe);
|
||
}
|
||
|
||
// Exponent zero.
|
||
} else {
|
||
u = str.charAt(0);
|
||
|
||
if ( strL > 1 ) {
|
||
str = u + '.' + str.slice(1);
|
||
|
||
// Avoid '-0'
|
||
} else if ( u == '0' ) {
|
||
|
||
return u;
|
||
}
|
||
}
|
||
|
||
if ( b != null ) {
|
||
|
||
if ( !( outOfRange = !( b >= 2 && b < 65 ) ) &&
|
||
( b == (b | 0) || !Decimal['errors'] ) ) {
|
||
str = convertBase( Decimal, str, b | 0, 10, x['s'] );
|
||
|
||
// Avoid '-0'
|
||
if ( str == '0' ) {
|
||
|
||
return str;
|
||
}
|
||
} else {
|
||
|
||
// 'toString() base not an integer: {b}'
|
||
// 'toString() base out of range: {b}'
|
||
ifExceptionsThrow( Decimal, 'base', b, 'toString', 0 );
|
||
}
|
||
}
|
||
}
|
||
|
||
return x['s'] < 0 ? '-' + str : str;
|
||
};
|
||
|
||
|
||
/*
|
||
* Return a new Decimal whose value is the value of this Decimal truncated to a whole number.
|
||
*
|
||
*/
|
||
P['truncated'] = P['trunc'] = function () {
|
||
|
||
return rnd( new this['constructor'](this), this['e'] + 1, 1 );
|
||
};
|
||
|
||
|
||
/*
|
||
* Return as toString, but do not accept a base argument.
|
||
*
|
||
* Ensures that JSON.stringify() uses toString for serialization.
|
||
*
|
||
*/
|
||
P['valueOf'] = P['toJSON'] = function () {
|
||
|
||
return this.toString();
|
||
};
|
||
|
||
|
||
/*
|
||
// Add aliases to match BigDecimal method names.
|
||
P['add'] = P['plus'];
|
||
P['subtract'] = P['minus'];
|
||
P['multiply'] = P['times'];
|
||
P['divide'] = P['div'];
|
||
P['remainder'] = P['mod'];
|
||
P['compareTo'] = P['cmp'];
|
||
P['negate'] = P['neg'];
|
||
*/
|
||
|
||
|
||
// Private functions for Decimal.prototype methods.
|
||
|
||
|
||
/*
|
||
* coefficientToString
|
||
* checkRoundingDigits
|
||
* checkRM
|
||
* checkArg
|
||
* convertBase
|
||
* div
|
||
* exp
|
||
* format
|
||
* getCoeffLength
|
||
* ifExceptionsThrow
|
||
* intPow
|
||
* ln
|
||
* rnd
|
||
*/
|
||
|
||
|
||
function coefficientToString(a) {
|
||
var s, z,
|
||
i = 1,
|
||
j = a.length,
|
||
r = a[0] + '';
|
||
|
||
for ( ; i < j; i++ ) {
|
||
s = a[i] + '';
|
||
|
||
for ( z = LOGBASE - s.length; z--; ) {
|
||
s = '0' + s;
|
||
}
|
||
|
||
r += s;
|
||
}
|
||
|
||
for ( j = r.length; r.charAt(--j) == '0'; );
|
||
|
||
return r.slice( 0, j + 1 || 1 );
|
||
}
|
||
|
||
|
||
/*
|
||
* Check 5 rounding digits if repeating is null, 4 otherwise.
|
||
* repeating == null if caller is log or pow,
|
||
* repeating != null if caller is ln or exp.
|
||
*
|
||
*
|
||
// Previous, much simpler implementation when coefficient was base 10.
|
||
function checkRoundingDigits( c, i, rm, repeating ) {
|
||
return ( !repeating && rm > 3 && c[i] == 4 ||
|
||
( repeating || rm < 4 ) && c[i] == 9 ) && c[i + 1] == 9 && c[i + 2] == 9 &&
|
||
c[i + 3] == 9 && ( repeating != null || c[i + 4] == 9 ) ||
|
||
repeating == null && ( c[i] == 5 || !c[i] ) && !c[i + 1] && !c[i + 2] &&
|
||
!c[i + 3] && !c[i + 4];
|
||
}
|
||
*/
|
||
function checkRoundingDigits( c, i, rm, repeating ) {
|
||
var ci, k, n, r, rd;
|
||
|
||
// Get the length of the first element of the array c.
|
||
for ( k = 1, n = c[0]; n >= 10; n /= 10, k++ );
|
||
|
||
n = i - k;
|
||
|
||
// Is the rounding digit in the first element of c?
|
||
if ( n < 0 ) {
|
||
n += LOGBASE;
|
||
ci = 0;
|
||
} else {
|
||
ci = Math.ceil( ( n + 1 ) / LOGBASE );
|
||
n %= LOGBASE;
|
||
}
|
||
|
||
k =mathpow( 10, LOGBASE - n );
|
||
rd = c[ci] % k | 0;
|
||
|
||
if ( repeating == null ) {
|
||
|
||
if ( n < 3 ) {
|
||
|
||
if ( n == 0 ) {
|
||
rd = rd / 100 | 0;
|
||
} else if ( n == 1 ) {
|
||
rd = rd / 10 | 0;
|
||
}
|
||
|
||
r = rm < 4 && rd == 99999 || rm > 3 && rd == 49999 || rd == 50000 || rd == 0;
|
||
} else {
|
||
r = ( rm < 4 && rd + 1 == k || rm > 3 && rd + 1 == k / 2 ) &&
|
||
( c[ci + 1] / k / 100 | 0 ) == mathpow( 10, n - 2 ) - 1 ||
|
||
( rd == k / 2 || rd == 0 ) && ( c[ci + 1] / k / 100 | 0 ) == 0;
|
||
}
|
||
} else {
|
||
|
||
if ( n < 4 ) {
|
||
|
||
if ( n == 0 ) {
|
||
rd = rd / 1000 | 0;
|
||
} else if ( n == 1 ) {
|
||
rd = rd / 100 | 0;
|
||
} else if ( n == 2 ) {
|
||
rd = rd / 10 | 0;
|
||
}
|
||
|
||
r = ( repeating || rm < 4 ) && rd == 9999 || !repeating && rm > 3 && rd == 4999;
|
||
} else {
|
||
r = ( ( repeating || rm < 4 ) && rd + 1 == k ||
|
||
( !repeating && rm > 3 ) && rd + 1 == k / 2 ) &&
|
||
( c[ci + 1] / k / 1000 | 0 ) == mathpow( 10, n - 3 ) - 1;
|
||
}
|
||
}
|
||
|
||
return r;
|
||
}
|
||
|
||
|
||
/*
|
||
* Check and return rounding mode. If rm is invalid, return rounding mode rounding.
|
||
*/
|
||
function checkRM( x, rm, method ) {
|
||
var Decimal = x['constructor'];
|
||
|
||
return rm == null || ( ( outOfRange = rm < 0 || rm > 8 ) ||
|
||
rm !== 0 && ( Decimal['errors'] ? parseInt : parseFloat )(rm) != rm ) &&
|
||
!ifExceptionsThrow( Decimal, 'rounding mode', rm, method, 0 )
|
||
? Decimal['rounding'] : rm | 0;
|
||
}
|
||
|
||
|
||
/*
|
||
* Check that argument n is in range, return true or false.
|
||
*/
|
||
function checkArg( x, n, method, min ) {
|
||
var Decimal = x['constructor'];
|
||
|
||
return !( outOfRange = n < ( min || 0 ) || n >= MAX_DIGITS + 1 ) &&
|
||
|
||
/*
|
||
* Include 'n === 0' because Opera has 'parseFloat(-0) == -0' as false
|
||
* despite having 'parseFloat(-0) === -0 && parseFloat('-0') === -0 && 0 == -0' as true.
|
||
*/
|
||
( n === 0 || ( Decimal['errors'] ? parseInt : parseFloat )(n) == n ) ||
|
||
ifExceptionsThrow( Decimal, 'argument', n, method, 0 );
|
||
}
|
||
|
||
|
||
/*
|
||
* Convert a numeric string of baseIn to a numeric string of baseOut.
|
||
*/
|
||
convertBase = (function () {
|
||
|
||
/*
|
||
* Convert string of baseIn to an array of numbers of baseOut.
|
||
* Eg. convertBase('255', 10, 16) returns [15, 15].
|
||
* Eg. convertBase('ff', 16, 10) returns [2, 5, 5].
|
||
*/
|
||
function toBaseOut( str, baseIn, baseOut ) {
|
||
var j,
|
||
arr = [0],
|
||
arrL,
|
||
i = 0,
|
||
strL = str.length;
|
||
|
||
for ( ; i < strL; ) {
|
||
|
||
for ( arrL = arr.length; arrL--; arr[arrL] *= baseIn );
|
||
|
||
arr[ j = 0 ] += NUMERALS.indexOf( str.charAt( i++ ) );
|
||
|
||
for ( ; j < arr.length; j++ ) {
|
||
|
||
if ( arr[j] > baseOut - 1 ) {
|
||
|
||
if ( arr[j + 1] == null ) {
|
||
arr[j + 1] = 0;
|
||
}
|
||
arr[j + 1] += arr[j] / baseOut | 0;
|
||
arr[j] %= baseOut;
|
||
}
|
||
}
|
||
}
|
||
|
||
return arr.reverse();
|
||
}
|
||
|
||
return function ( Decimal, str, baseOut, baseIn, sign ) {
|
||
var e, j, r, x, xc, y,
|
||
i = str.indexOf( '.' ),
|
||
pr = Decimal['precision'],
|
||
rm = Decimal['rounding'];
|
||
|
||
if ( baseIn < 37 ) {
|
||
str = str.toLowerCase();
|
||
}
|
||
|
||
// Non-integer.
|
||
if ( i >= 0 ) {
|
||
str = str.replace( '.', '' );
|
||
y = new Decimal(baseIn);
|
||
x = intPow( Decimal, y, str.length - i );
|
||
|
||
/*
|
||
Convert str as if an integer, then divide the result by its base raised to a power
|
||
such that the fraction part will be restored.
|
||
Use toFixed to avoid possible exponential notation.
|
||
*/
|
||
y['c'] = toBaseOut( x.toFixed(), 10, baseOut );
|
||
y['e'] = y['c'].length;
|
||
}
|
||
|
||
// Convert the number as integer.
|
||
xc = toBaseOut( str, baseIn, baseOut );
|
||
e = j = xc.length;
|
||
|
||
// Remove trailing zeros.
|
||
for ( ; xc[--j] == 0; xc.pop() );
|
||
|
||
if ( !xc[0] ) {
|
||
|
||
return '0';
|
||
}
|
||
|
||
if ( i < 0 ) {
|
||
e--;
|
||
} else {
|
||
x['c'] = xc;
|
||
x['e'] = e;
|
||
|
||
// sign is needed for correct rounding.
|
||
x['s'] = sign;
|
||
x = div( x, y, pr, rm, 0, baseOut );
|
||
xc = x['c'];
|
||
r = x['r'];
|
||
e = x['e'];
|
||
}
|
||
|
||
// The rounding digit, i.e. the digit after the digit that may be rounded up.
|
||
i = xc[pr];
|
||
j = baseOut / 2;
|
||
r = r || xc[pr + 1] != null;
|
||
|
||
if ( rm < 4
|
||
? ( i != null || r ) && ( rm == 0 || rm == ( x['s'] < 0 ? 3 : 2 ) )
|
||
: i > j || i == j && ( rm == 4 || r || rm == 6 && xc[pr - 1] & 1 ||
|
||
rm == ( x['s'] < 0 ? 8 : 7 ) ) ) {
|
||
|
||
xc.length = pr;
|
||
|
||
// Rounding up may mean the previous digit has to be rounded up and so on.
|
||
for ( --baseOut; ++xc[--pr] > baseOut; ) {
|
||
xc[pr] = 0;
|
||
|
||
if ( !pr ) {
|
||
++e;
|
||
xc.unshift(1);
|
||
}
|
||
}
|
||
} else {
|
||
xc.length = pr;
|
||
}
|
||
|
||
// Determine trailing zeros.
|
||
for ( j = xc.length; !xc[--j]; );
|
||
|
||
// E.g. [4, 11, 15] becomes 4bf.
|
||
for ( i = 0, str = ''; i <= j; str += NUMERALS.charAt( xc[i++] ) );
|
||
|
||
// Negative exponent?
|
||
if ( e < 0 ) {
|
||
|
||
// Prepend zeros.
|
||
for ( ; ++e; str = '0' + str );
|
||
|
||
str = '0.' + str;
|
||
|
||
// Positive exponent?
|
||
} else {
|
||
i = str.length;
|
||
|
||
if ( ++e > i ) {
|
||
|
||
// Append zeros.
|
||
for ( e -= i; e-- ; str += '0' );
|
||
|
||
} else if ( e < i ) {
|
||
str = str.slice( 0, e ) + '.' + str.slice(e);
|
||
}
|
||
}
|
||
|
||
// No negative numbers: the caller will add the sign.
|
||
return str;
|
||
}
|
||
})();
|
||
|
||
|
||
/*
|
||
* Perform division in the specified base. Called by div and convertBase.
|
||
*/
|
||
var div = ( function () {
|
||
|
||
// Assumes non-zero x and k, and hence non-zero result.
|
||
function multiplyInteger( x, k, base ) {
|
||
var temp,
|
||
carry = 0,
|
||
i = x.length;
|
||
|
||
for ( x = x.slice(); i--; ) {
|
||
temp = x[i] * k + carry;
|
||
x[i] = temp % base | 0;
|
||
carry = temp / base | 0;
|
||
}
|
||
|
||
if (carry) {
|
||
x.unshift(carry);
|
||
}
|
||
|
||
return x;
|
||
}
|
||
|
||
function compare( a, b, aL, bL ) {
|
||
var i, cmp;
|
||
|
||
if ( aL != bL ) {
|
||
cmp = aL > bL ? 1 : -1;
|
||
} else {
|
||
|
||
for ( i = cmp = 0; i < aL; i++ ) {
|
||
|
||
if ( a[i] != b[i] ) {
|
||
cmp = a[i] > b[i] ? 1 : -1;
|
||
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
return cmp;
|
||
}
|
||
|
||
function subtract( a, b, aL, base ) {
|
||
var i = 0;
|
||
|
||
// Subtract b from a.
|
||
for ( ; aL--; ) {
|
||
a[aL] -= i;
|
||
i = a[aL] < b[aL] ? 1 : 0;
|
||
a[aL] = i * base + a[aL] - b[aL];
|
||
}
|
||
|
||
// Remove leading zeros.
|
||
for ( ; !a[0] && a.length > 1; a.shift() );
|
||
}
|
||
|
||
// x: dividend, y: divisor.
|
||
return function ( x, y, pr, rm, dp, base ) {
|
||
var cmp, e, i, logbase, more, n, prod, prodL, q, qc, rem, remL, rem0, t, xi, xL, yc0,
|
||
yL, yz,
|
||
Decimal = x['constructor'],
|
||
s = x['s'] == y['s'] ? 1 : -1,
|
||
xc = x['c'],
|
||
yc = y['c'];
|
||
|
||
// Either NaN, Infinity or 0?
|
||
if ( !xc || !xc[0] || !yc || !yc[0] ) {
|
||
|
||
return new Decimal(
|
||
|
||
// Return NaN if either NaN, or both Infinity or 0.
|
||
!x['s'] || !y['s'] || ( xc ? yc && xc[0] == yc[0] : !yc ) ? NaN :
|
||
|
||
// Return +-0 if x is 0 or y is +-Infinity, or return +-Infinity as y is 0.
|
||
xc && xc[0] == 0 || !yc ? s * 0 : s / 0
|
||
);
|
||
}
|
||
|
||
if (base) {
|
||
logbase = 1;
|
||
e = x['e'] - y['e'];
|
||
} else {
|
||
base = BASE;
|
||
logbase = LOGBASE;
|
||
e = mathfloor( x['e'] / logbase ) - mathfloor( y['e'] / logbase );
|
||
}
|
||
|
||
yL = yc.length;
|
||
xL = xc.length;
|
||
q = new Decimal(s);
|
||
qc = q['c'] = [];
|
||
|
||
// Result exponent may be one less then the current value of e.
|
||
// The coefficients of the Decimals from convertBase may have trailing zeros.
|
||
for ( i = 0; yc[i] == ( xc[i] || 0 ); i++ );
|
||
|
||
if ( yc[i] > ( xc[i] || 0 ) ) {
|
||
e--;
|
||
}
|
||
|
||
if ( pr == null ) {
|
||
s = pr = Decimal['precision'];
|
||
rm = Decimal['rounding'];
|
||
} else if (dp) {
|
||
s = pr + ( x['e'] - y['e'] ) + 1;
|
||
} else {
|
||
s = pr;
|
||
}
|
||
|
||
if ( s < 0 ) {
|
||
qc.push(1);
|
||
more = true;
|
||
} else {
|
||
|
||
// Convert base 10 decimal places to base 1e7 decimal places.
|
||
s = s / logbase + 2 | 0;
|
||
i = 0;
|
||
|
||
// divisor < 1e7
|
||
if ( yL == 1 ) {
|
||
n = 0;
|
||
yc = yc[0];
|
||
s++;
|
||
|
||
// 'n' is the carry.
|
||
for ( ; ( i < xL || n ) && s--; i++ ) {
|
||
t = n * base + ( xc[i] || 0 );
|
||
qc[i] = t / yc | 0;
|
||
n = t % yc | 0;
|
||
}
|
||
|
||
more = n || i < xL;
|
||
|
||
// divisor >= 1e7
|
||
} else {
|
||
|
||
// Normalise xc and yc so highest order digit of yc is >= base/2
|
||
n = base / ( yc[0] + 1 ) | 0;
|
||
|
||
if ( n > 1 ) {
|
||
yc = multiplyInteger( yc, n, base );
|
||
xc = multiplyInteger( xc, n, base );
|
||
yL = yc.length;
|
||
xL = xc.length;
|
||
}
|
||
|
||
xi = yL;
|
||
rem = xc.slice( 0, yL );
|
||
remL = rem.length;
|
||
|
||
// Add zeros to make remainder as long as divisor.
|
||
for ( ; remL < yL; rem[remL++] = 0 );
|
||
|
||
yz = yc.slice();
|
||
yz.unshift(0);
|
||
yc0 = yc[0];
|
||
|
||
if ( yc[1] >= base / 2 ) {
|
||
yc0++;
|
||
}
|
||
|
||
do {
|
||
n = 0;
|
||
|
||
// Compare divisor and remainder.
|
||
cmp = compare( yc, rem, yL, remL );
|
||
|
||
// If divisor < remainder.
|
||
if ( cmp < 0 ) {
|
||
|
||
// Calculate trial digit, n.
|
||
rem0 = rem[0];
|
||
|
||
if ( yL != remL ) {
|
||
rem0 = rem0 * base + ( rem[1] || 0 );
|
||
}
|
||
|
||
// n will be how many times the divisor goes into the current remainder.
|
||
n = rem0 / yc0 | 0;
|
||
|
||
/*
|
||
Algorithm:
|
||
1. product = divisor * trial digit (n)
|
||
2. if product > remainder: product -= divisor, n--
|
||
3. remainder -= product
|
||
4. if product was < remainder at 2:
|
||
5. compare new remainder and divisor
|
||
6. If remainder > divisor: remainder -= divisor, n++
|
||
*/
|
||
|
||
if ( n > 1 ) {
|
||
|
||
if ( n >= base ) {
|
||
n = base - 1;
|
||
}
|
||
|
||
// product = divisor * trial digit.
|
||
prod = multiplyInteger( yc, n, base );
|
||
prodL = prod.length;
|
||
remL = rem.length;
|
||
|
||
// Compare product and remainder.
|
||
cmp = compare( prod, rem, prodL, remL );
|
||
|
||
// product > remainder.
|
||
if ( cmp == 1 ) {
|
||
n--;
|
||
|
||
// Subtract divisor from product.
|
||
subtract( prod, yL < prodL ? yz : yc, prodL, base );
|
||
}
|
||
} else {
|
||
|
||
// cmp is -1.
|
||
// If n is 0, there is no need to compare yc and rem again below, so change cmp to 1 to avoid it.
|
||
// If n is 1 there IS a need to compare yc and rem again below.
|
||
if ( n == 0 ) {
|
||
cmp = n = 1;
|
||
}
|
||
prod = yc.slice();
|
||
}
|
||
prodL = prod.length;
|
||
|
||
if ( prodL < remL ) {
|
||
prod.unshift(0);
|
||
}
|
||
|
||
// Subtract product from remainder.
|
||
subtract( rem, prod, remL, base );
|
||
|
||
// If product was < previous remainder.
|
||
if ( cmp == -1 ) {
|
||
remL = rem.length;
|
||
|
||
// Compare divisor and new remainder.
|
||
cmp = compare( yc, rem, yL, remL );
|
||
|
||
// If divisor < new remainder, subtract divisor from remainder.
|
||
if ( cmp < 1 ) {
|
||
n++;
|
||
|
||
// Subtract divisor from remainder.
|
||
subtract( rem, yL < remL ? yz : yc, remL, base );
|
||
}
|
||
}
|
||
|
||
remL = rem.length;
|
||
|
||
} else if ( cmp === 0 ) {
|
||
n++;
|
||
rem = [0];
|
||
} // if cmp === 1, n will be 0
|
||
|
||
// Add the next digit, n, to the result array.
|
||
qc[i++] = n;
|
||
|
||
// Update the remainder.
|
||
if ( cmp && rem[0] ) {
|
||
rem[remL++] = xc[xi] || 0;
|
||
} else {
|
||
rem = [ xc[xi] ];
|
||
remL = 1;
|
||
}
|
||
|
||
} while ( ( xi++ < xL || rem[0] != null ) && s-- );
|
||
|
||
more = rem[0] != null;
|
||
}
|
||
|
||
// Leading zero?
|
||
if ( !qc[0] ) {
|
||
qc.shift();
|
||
}
|
||
}
|
||
|
||
// If div is being used for base conversion.
|
||
if ( logbase == 1 ) {
|
||
q['e'] = e;
|
||
q['r'] = +more;
|
||
} else {
|
||
|
||
// To calculate q.e, first get the number of digits of qc[0].
|
||
for ( i = 1, s = qc[0]; s >= 10; s /= 10, i++ );
|
||
q['e'] = i + e * logbase - 1;
|
||
|
||
rnd( q, dp ? pr + q['e'] + 1 : pr, rm, more );
|
||
}
|
||
|
||
return q;
|
||
}
|
||
})();
|
||
|
||
|
||
/*
|
||
* Taylor/Maclaurin series.
|
||
*
|
||
* exp(x) = x^0/0! + x^1/1! + x^2/2! + x^3/3! + ...
|
||
*
|
||
* Argument reduction:
|
||
* Repeat x = x / 32, k += 5, until |x| < 0.1
|
||
* exp(x) = exp(x / 2^k)^(2^k)
|
||
*
|
||
* Previously, the argument was initially reduced by
|
||
* exp(x) = exp(r) * 10^k where r = x - k * ln10, k = floor(x / ln10)
|
||
* to first put r in the range [0, ln10], before dividing by 32 until |x| < 0.1, but this was
|
||
* found to be slower than just dividing repeatedly by 32 as above.
|
||
*
|
||
* Max integer argument: exp('20723265836946413') = 6.3e+9000000000000000
|
||
* Min integer argument: exp('-20723265836946411') = 1.2e-9000000000000000
|
||
* ( Math object integer min/max: Math.exp(709) = 8.2e+307, Math.exp(-745) = 5e-324 )
|
||
*
|
||
* exp(Infinity) = Infinity
|
||
* exp(-Infinity) = 0
|
||
* exp(NaN) = NaN
|
||
* exp(+-0) = 1
|
||
*
|
||
* exp(x) is non-terminating for any finite, non-zero x.
|
||
*
|
||
* The result will always be correctly rounded.
|
||
*
|
||
*/
|
||
function exp( x, pr ) {
|
||
var denom, guard, j, pow, sd, sum, t,
|
||
rep = 0,
|
||
i = 0,
|
||
k = 0,
|
||
Decimal = x['constructor'],
|
||
one = Decimal['ONE'],
|
||
rm = Decimal['rounding'],
|
||
precision = Decimal['precision'];
|
||
|
||
// 0/NaN/Infinity?
|
||
if ( !x['c'] || !x['c'][0] || x['e'] > 17 ) {
|
||
|
||
return new Decimal( x['c']
|
||
? !x['c'][0] ? one : x['s'] < 0 ? 0 : 1 / 0
|
||
: x['s'] ? x['s'] < 0 ? 0 : x : NaN );
|
||
}
|
||
|
||
if ( pr == null ) {
|
||
|
||
/*
|
||
Estimate result exponent.
|
||
e^x = 10^j, where j = x * log10(e) and
|
||
log10(e) = ln(e) / ln(10) = 1 / ln(10),
|
||
so j = x / ln(10)
|
||
j = mathfloor( x / Math.LN10 );
|
||
|
||
// Overflow/underflow? Estimate may be +-1 of true value.
|
||
if ( j > Decimal['maxE'] + 1 || j < Decimal['minE'] - 1 ) {
|
||
|
||
return new Decimal( j > 0 ? 1 / 0 : 0 );
|
||
}
|
||
*/
|
||
|
||
external = false;
|
||
sd = precision;
|
||
} else {
|
||
sd = pr;
|
||
}
|
||
|
||
t = new Decimal(0.03125);
|
||
|
||
// while abs(x) >= 0.1
|
||
while ( x['e'] > -2 ) {
|
||
|
||
// x = x / 2^5
|
||
x = x['times'](t);
|
||
k += 5;
|
||
}
|
||
|
||
/*
|
||
Use 2 * log10(2^k) + 5 to estimate the increase in precision necessary to ensure the first
|
||
4 rounding digits are correct.
|
||
*/
|
||
guard = Math.log( mathpow( 2, k ) ) / Math.LN10 * 2 + 5 | 0;
|
||
sd += guard;
|
||
|
||
denom = pow = sum = new Decimal(one);
|
||
Decimal['precision'] = sd;
|
||
|
||
for ( ; ; ) {
|
||
pow = rnd( pow['times'](x), sd, 1 );
|
||
denom = denom['times'](++i);
|
||
t = sum['plus']( div( pow, denom, sd, 1 ) );
|
||
|
||
if ( coefficientToString( t['c'] ).slice( 0, sd ) ===
|
||
coefficientToString( sum['c'] ).slice( 0, sd ) ) {
|
||
j = k;
|
||
|
||
while ( j-- ) {
|
||
sum = rnd( sum['times'](sum), sd, 1 );
|
||
}
|
||
|
||
/*
|
||
Check to see if the first 4 rounding digits are [49]999.
|
||
If so, repeat the summation with a higher precision, otherwise
|
||
E.g. with precision: 18, rounding: 1
|
||
exp(18.404272462595034083567793919843761) = 98372560.1229999999
|
||
when it should be 98372560.123
|
||
|
||
sd - guard is the index of first rounding digit.
|
||
*/
|
||
if ( pr == null ) {
|
||
|
||
if ( rep < 3 && checkRoundingDigits( sum['c'], sd - guard, rm, rep ) ) {
|
||
Decimal['precision'] = sd += 10;
|
||
denom = pow = t = new Decimal(one);
|
||
i = 0;
|
||
rep++;
|
||
} else {
|
||
|
||
return rnd( sum, Decimal['precision'] = precision, rm, external = true );
|
||
}
|
||
} else {
|
||
Decimal['precision'] = precision;
|
||
|
||
return sum;
|
||
}
|
||
}
|
||
sum = t;
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
* Return a string representing the value of Decimal n in normal or exponential notation
|
||
* rounded to the specified decimal places or significant digits.
|
||
* Called by toString, toExponential (k is 1), toFixed, and toPrecision (k is 2).
|
||
* i is the index (with the value in normal notation) of the digit that may be rounded up.
|
||
* j is the rounding mode, then the number of digits required including fraction-part trailing
|
||
* zeros.
|
||
*/
|
||
function format( n, i, j, k ) {
|
||
var s, z,
|
||
Decimal = n['constructor'],
|
||
e = ( n = new Decimal(n) )['e'];
|
||
|
||
// i == null when toExponential(no arg), or toString() when x >= toExpPos etc.
|
||
if ( i == null ) {
|
||
j = 0;
|
||
} else {
|
||
rnd( n, ++i, j );
|
||
|
||
// If toFixed, n['e'] may have changed if the value was rounded up.
|
||
j = k ? i : i + n['e'] - e;
|
||
}
|
||
|
||
e = n['e'];
|
||
s = coefficientToString( n['c'] );
|
||
|
||
/*
|
||
toPrecision returns exponential notation if the number of significant digits specified
|
||
is less than the number of digits necessary to represent the integer part of the value
|
||
in normal notation.
|
||
*/
|
||
|
||
// Exponential notation.
|
||
if ( k == 1 || k == 2 && ( i <= e || e <= Decimal['toExpNeg'] ) ) {
|
||
|
||
// Append zeros?
|
||
for ( ; s.length < j; s += '0' );
|
||
|
||
if ( s.length > 1 ) {
|
||
s = s.charAt(0) + '.' + s.slice(1);
|
||
}
|
||
|
||
s += ( e < 0 ? 'e' : 'e+' ) + e;
|
||
|
||
// Normal notation.
|
||
} else {
|
||
k = s.length;
|
||
|
||
// Negative exponent?
|
||
if ( e < 0 ) {
|
||
z = j - k;
|
||
|
||
// Prepend zeros.
|
||
for ( ; ++e; s = '0' + s );
|
||
s = '0.' + s;
|
||
|
||
// Positive exponent?
|
||
} else {
|
||
|
||
if ( ++e > k ) {
|
||
z = j - e;
|
||
|
||
// Append zeros.
|
||
for ( e -= k; e-- ; s += '0' );
|
||
|
||
if ( z > 0 ) {
|
||
s += '.';
|
||
}
|
||
|
||
} else {
|
||
z = j - k;
|
||
|
||
if ( e < k ) {
|
||
s = s.slice( 0, e ) + '.' + s.slice(e);
|
||
} else if ( z > 0 ) {
|
||
s += '.';
|
||
}
|
||
}
|
||
}
|
||
|
||
// Append more zeros?
|
||
if ( z > 0 ) {
|
||
|
||
for ( ; z--; s += '0' );
|
||
}
|
||
}
|
||
|
||
return n['s'] < 0 && n['c'][0] ? '-' + s : s;
|
||
}
|
||
|
||
|
||
function getCoeffLength(c) {
|
||
var v = c.length - 1,
|
||
n = v * LOGBASE + 1;
|
||
|
||
if ( v = c[v] ) {
|
||
|
||
// Subtract the number of trailing zeros of the last number.
|
||
for ( ; v % 10 == 0; v /= 10, n-- );
|
||
|
||
// Add the number of digits of the first number.
|
||
for ( v = c[0]; v >= 10; v /= 10, n++ );
|
||
}
|
||
|
||
return n;
|
||
}
|
||
|
||
|
||
/*
|
||
* Assemble error messages. Throw Decimal Errors.
|
||
*/
|
||
function ifExceptionsThrow( Decimal, message, arg, method, more ) {
|
||
|
||
if ( Decimal['errors'] ) {
|
||
var error = new Error( ( method || [
|
||
'new Decimal', 'cmp', 'div', 'eq', 'gt', 'gte', 'lt', 'lte', 'minus', 'mod',
|
||
'plus', 'times', 'toFraction', 'pow', 'random', 'log', 'sqrt', 'toNearest', 'divToInt'
|
||
][ id ? id < 0 ? -id : id : 1 / id < 0 ? 1 : 0 ] ) + '() ' + ( [
|
||
'number type has more than 15 significant digits', 'LN10 out of digits' ][message]
|
||
|| message + ( [ outOfRange ? ' out of range' : ' not an integer',
|
||
' not a boolean or binary digit' ][more] || '' ) ) + ': ' + arg
|
||
);
|
||
error['name'] = 'Decimal Error';
|
||
outOfRange = id = 0;
|
||
|
||
throw error;
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
* Use 'exponentiation by squaring' for small integers. Called by convertBase and pow.
|
||
*/
|
||
function intPow( Decimal, x, i ) {
|
||
var r = new Decimal( Decimal['ONE'] );
|
||
|
||
for ( external = false; ; ) {
|
||
|
||
if ( i & 1 ) {
|
||
r = r['times'](x);
|
||
}
|
||
i >>= 1;
|
||
|
||
if ( !i ) {
|
||
|
||
break;
|
||
}
|
||
x = x['times'](x);
|
||
}
|
||
external = true;
|
||
|
||
return r;
|
||
}
|
||
|
||
|
||
/*
|
||
* ln(-n) = NaN
|
||
* ln(0) = -Infinity
|
||
* ln(-0) = -Infinity
|
||
* ln(1) = 0
|
||
* ln(Infinity) = Infinity
|
||
* ln(-Infinity) = NaN
|
||
* ln(NaN) = NaN
|
||
*
|
||
* ln(n) (n != 1) is non-terminating.
|
||
*
|
||
*/
|
||
function ln( y, pr ) {
|
||
var c, c0, denom, e, num, rep, sd, sum, t, x1, x2,
|
||
n = 1,
|
||
guard = 10,
|
||
x = y,
|
||
xc = x['c'],
|
||
Decimal = x['constructor'],
|
||
one = Decimal['ONE'],
|
||
rm = Decimal['rounding'],
|
||
precision = Decimal['precision'];
|
||
|
||
// x < 0 or +-Infinity/NaN or 0 or 1.
|
||
if ( x['s'] < 0 || !xc || !xc[0] || !x['e'] && xc[0] == 1 && xc.length == 1 ) {
|
||
|
||
return new Decimal( xc && !xc[0] ? -1 / 0 : x['s'] != 1 ? NaN : xc ? 0 : x );
|
||
}
|
||
|
||
if ( pr == null ) {
|
||
external = false;
|
||
sd = precision;
|
||
} else {
|
||
sd = pr;
|
||
}
|
||
|
||
Decimal['precision'] = sd += guard;
|
||
|
||
c = coefficientToString(xc);
|
||
c0 = c.charAt(0);
|
||
|
||
if ( Math.abs( e = x['e'] ) < 1.5e15 ) {
|
||
|
||
/*
|
||
Argument reduction.
|
||
The series converges faster the closer the argument is to 1, so using
|
||
ln(a^b) = b * ln(a), ln(a) = ln(a^b) / b
|
||
multiply the argument by itself until the leading digits of the significand are 7, 8,
|
||
9, 10, 11, 12 or 13, recording the number of multiplications so the sum of the series
|
||
can later be divided by this number, then separate out the power of 10 using
|
||
ln(a*10^b) = ln(a) + b*ln(10).
|
||
*/
|
||
|
||
// max n is 21 ( gives 0.9, 1.0 or 1.1 ) ( 9e15 / 21 = 4.2e14 ).
|
||
//while ( c0 < 9 && c0 != 1 || c0 == 1 && c.charAt(1) > 1 ) {
|
||
// max n is 6 ( gives 0.7 - 1.3 )
|
||
while ( c0 < 7 && c0 != 1 || c0 == 1 && c.charAt(1) > 3 ) {
|
||
x = x['times'](y);
|
||
c = coefficientToString( x['c'] );
|
||
c0 = c.charAt(0);
|
||
n++;
|
||
}
|
||
|
||
e = x['e'];
|
||
|
||
if ( c0 > 1 ) {
|
||
x = new Decimal( '0.' + c );
|
||
e++;
|
||
} else {
|
||
x = new Decimal( c0 + '.' + c.slice(1) );
|
||
}
|
||
} else {
|
||
|
||
/*
|
||
The argument reduction method above may result in overflow if the argument y is a
|
||
massive number with exponent >= 1500000000000000 ( 9e15 / 6 = 1.5e15 ), so instead
|
||
recall this function using ln(x*10^e) = ln(x) + e*ln(10).
|
||
*/
|
||
x = new Decimal( c0 + '.' + c.slice(1) );
|
||
|
||
if ( sd + 2 > LN10.length ) {
|
||
ifExceptionsThrow( Decimal, 1, sd + 2, 'ln' );
|
||
}
|
||
|
||
x = ln( x, sd - guard )['plus'](
|
||
new Decimal( LN10.slice( 0, sd + 2 ) )['times']( e + '' )
|
||
);
|
||
|
||
Decimal['precision'] = precision;
|
||
|
||
return pr == null ? rnd( x, precision, rm, external = true ) : x;
|
||
}
|
||
|
||
// x1 is x reduced to a value near 1.
|
||
x1 = x;
|
||
|
||
/*
|
||
Taylor series.
|
||
ln(y) = ln( (1 + x)/(1 - x) ) = 2( x + x^3/3 + x^5/5 + x^7/7 + ... )
|
||
where
|
||
x = (y - 1)/(y + 1) ( |x| < 1 )
|
||
*/
|
||
sum = num = x = div( x['minus'](one), x['plus'](one), sd, 1 );
|
||
x2 = rnd( x['times'](x), sd, 1 );
|
||
denom = 3;
|
||
|
||
for ( ; ; ) {
|
||
num = rnd( num['times'](x2), sd, 1 );
|
||
t = sum['plus']( div( num, new Decimal(denom), sd, 1 ) );
|
||
|
||
if ( coefficientToString( t['c'] ).slice( 0, sd ) ===
|
||
coefficientToString( sum['c'] ).slice( 0, sd ) ) {
|
||
sum = sum['times'](2);
|
||
|
||
/*
|
||
Reverse the argument reduction. Check that e is not 0 because, as well as
|
||
preventing an unnecessary calculation, -0 + 0 = +0 and to ensure correct
|
||
rounding later -0 needs to stay -0.
|
||
*/
|
||
if ( e !== 0 ) {
|
||
|
||
if ( sd + 2 > LN10.length ) {
|
||
ifExceptionsThrow( Decimal, 1, sd + 2, 'ln' );
|
||
}
|
||
|
||
sum = sum['plus'](
|
||
new Decimal( LN10.slice( 0, sd + 2 ) )['times']( e + '' )
|
||
);
|
||
}
|
||
|
||
sum = div( sum, new Decimal(n), sd, 1 );
|
||
|
||
/*
|
||
Is rm > 3 and the first 4 rounding digits 4999, or rm < 4 (or the summation has
|
||
been repeated previously) and the first 4 rounding digits 9999?
|
||
|
||
If so, restart the summation with a higher precision, otherwise
|
||
E.g. with precision: 12, rounding: 1
|
||
ln(135520028.6126091714265381533) = 18.7246299999 when it should be 18.72463.
|
||
|
||
sd - guard is the index of first rounding digit.
|
||
*/
|
||
if ( pr == null ) {
|
||
|
||
if ( checkRoundingDigits( sum['c'], sd - guard, rm, rep ) ) {
|
||
Decimal['precision'] = sd += guard;
|
||
t = num = x = div( x1['minus'](one), x1['plus'](one), sd, 1 );
|
||
x2 = rnd( x['times'](x), sd, 1 );
|
||
denom = rep = 1;
|
||
} else {
|
||
|
||
return rnd( sum, Decimal['precision'] = precision, rm, external = true );
|
||
}
|
||
} else {
|
||
Decimal['precision'] = precision;
|
||
|
||
return sum;
|
||
}
|
||
}
|
||
|
||
sum = t;
|
||
denom += 2;
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
* Round x to sd significant digits using rounding mode rm. Check for over/under-flow.
|
||
*/
|
||
function rnd( x, sd, rm, r ) {
|
||
var digits, i, j, k, n, rd, xc, xci,
|
||
Decimal = x['constructor'];
|
||
|
||
// Don't round if sd is null or undefined.
|
||
r: if ( sd != i ) {
|
||
|
||
// Infinity/NaN.
|
||
if ( !( xc = x['c'] ) ) {
|
||
|
||
return x;
|
||
}
|
||
|
||
/*
|
||
rd, the rounding digit, i.e. the digit after the digit that may be rounded up,
|
||
n, a base 1e7 number, the element of xc containing rd,
|
||
xci, the index of n within xc,
|
||
digits, the number of digits of n,
|
||
i, what would be the index of rd within n if all the numbers were 7 digits long (i.e. they had leading zeros)
|
||
j, if > 0, the actual index of rd within n (if < 0, rd is a leading zero),
|
||
nLeadingZeros, the number of leading zeros n would have if it were 7 digits long.
|
||
*/
|
||
|
||
// Get the length of the first element of the coefficient array xc.
|
||
for ( digits = 1, k = xc[0]; k >= 10; k /= 10, digits++ );
|
||
|
||
i = sd - digits;
|
||
|
||
// Is the rounding digit in the first element of xc?
|
||
if ( i < 0 ) {
|
||
i += LOGBASE;
|
||
j = sd;
|
||
n = xc[ xci = 0 ];
|
||
|
||
// Get the rounding digit at index j of n.
|
||
rd = n / mathpow( 10, digits - j - 1 ) % 10 | 0;
|
||
} else {
|
||
xci = Math.ceil( ( i + 1 ) / LOGBASE );
|
||
|
||
if ( xci >= xc.length ) {
|
||
|
||
if (r) {
|
||
|
||
// Needed by exp, ln and sqrt.
|
||
for ( ; xc.length <= xci; xc.push(0) );
|
||
|
||
n = rd = 0;
|
||
digits = 1;
|
||
i %= LOGBASE;
|
||
j = i - LOGBASE + 1;
|
||
} else {
|
||
|
||
break r;
|
||
}
|
||
} else {
|
||
n = k = xc[xci];
|
||
|
||
// Get the number of digits of n.
|
||
for ( digits = 1; k >= 10; k /= 10, digits++ );
|
||
|
||
// Get the index of rd within n.
|
||
i %= LOGBASE;
|
||
|
||
// Get the index of rd within n, adjusted for leading zeros.
|
||
// The number of leading zeros of n is given by LOGBASE - digits.
|
||
j = i - LOGBASE + digits;
|
||
|
||
// Get the rounding digit at index j of n.
|
||
// Floor using Math.floor instead of | 0 as rd may be outside int range.
|
||
rd = j < 0 ? 0 : mathfloor( n / mathpow( 10, digits - j - 1 ) % 10 );
|
||
}
|
||
}
|
||
|
||
r = r || sd < 0 ||
|
||
// Are there any non-zero digits after the rounding digit?
|
||
xc[xci + 1] != null || ( j < 0 ? n : n % mathpow( 10, digits - j - 1 ) );
|
||
|
||
/*
|
||
The expression n % mathpow( 10, digits - j - 1 ) returns all the digits of n to the
|
||
right of the digit at (left-to-right) index j,
|
||
e.g. if n is 908714 and j is 2, the expression will give 714.
|
||
*/
|
||
|
||
r = rm < 4
|
||
? ( rd || r ) && ( rm == 0 || rm == ( x['s'] < 0 ? 3 : 2 ) )
|
||
: rd > 5 || rd == 5 && ( rm == 4 || r ||
|
||
// Check whether the digit to the left of the rounding digit is odd.
|
||
rm == 6 && ( ( i > 0 ? j > 0 ? n / mathpow( 10, digits - j ) : 0 : xc[xci - 1] ) % 10 ) & 1 ||
|
||
rm == ( x['s'] < 0 ? 8 : 7 ) );
|
||
|
||
if ( sd < 1 || !xc[0] ) {
|
||
xc.length = 0;
|
||
|
||
if (r) {
|
||
|
||
// Convert sd to decimal places.
|
||
sd -= x['e'] + 1;
|
||
|
||
// 1, 0.1, 0.01, 0.001, 0.0001 etc.
|
||
xc[0] = mathpow( 10, sd % LOGBASE );
|
||
x['e'] = -sd || 0;
|
||
} else {
|
||
|
||
// Zero.
|
||
xc[0] = x['e'] = 0;
|
||
}
|
||
|
||
return x;
|
||
}
|
||
|
||
// Remove excess digits.
|
||
|
||
if ( i == 0 ) {
|
||
xc.length = xci;
|
||
k = 1;
|
||
xci--;
|
||
} else {
|
||
xc.length = xci + 1;
|
||
k = mathpow( 10, LOGBASE - i );
|
||
|
||
// E.g. 56700 becomes 56000 if 7 is the rounding digit.
|
||
// j > 0 means i > number of leading zeros of n.
|
||
xc[xci] = j > 0 ? ( n / mathpow( 10, digits - j ) % mathpow( 10, j ) | 0 ) * k : 0;
|
||
}
|
||
|
||
// Round up?
|
||
if (r) {
|
||
|
||
for ( ; ; ) {
|
||
|
||
// Is the digit to be rounded up in the first element of xc.
|
||
if ( xci == 0 ) {
|
||
|
||
// i will be the length of xc[0] before k is added.
|
||
for ( i = 1, j = xc[0]; j >= 10; j /= 10, i++ );
|
||
|
||
j = xc[0] += k;
|
||
|
||
for ( k = 1; j >= 10; j /= 10, k++ );
|
||
|
||
// if i != k the length has increased.
|
||
if ( i != k ) {
|
||
x['e']++;
|
||
|
||
if ( xc[0] == BASE ) {
|
||
xc[0] = 1;
|
||
}
|
||
}
|
||
|
||
break;
|
||
} else {
|
||
xc[xci] += k;
|
||
|
||
if ( xc[xci] != BASE ) {
|
||
|
||
break;
|
||
}
|
||
|
||
xc[xci--] = 0;
|
||
k = 1;
|
||
}
|
||
}
|
||
}
|
||
|
||
// Remove trailing zeros.
|
||
for ( i = xc.length; xc[--i] === 0; xc.pop() );
|
||
}
|
||
|
||
if (external) {
|
||
|
||
// Overflow?
|
||
if ( x['e'] > Decimal['maxE'] ) {
|
||
|
||
// Infinity.
|
||
x['c'] = x['e'] = null;
|
||
|
||
// Underflow?
|
||
} else if ( x['e'] < Decimal['minE'] ) {
|
||
|
||
// Zero.
|
||
x['c'] = [ x['e'] = 0 ];
|
||
}
|
||
}
|
||
|
||
return x;
|
||
}
|
||
|
||
|
||
DecimalConstructor = (function () {
|
||
|
||
|
||
// Private functions used by static Decimal methods.
|
||
|
||
|
||
/*
|
||
* The following emulations or wrappers of Math object functions are currently
|
||
* commented-out and not in the public API.
|
||
*
|
||
* abs
|
||
* acos
|
||
* asin
|
||
* atan
|
||
* atan2
|
||
* ceil
|
||
* cos
|
||
* floor
|
||
* round
|
||
* sin
|
||
* tan
|
||
* trunc
|
||
*/
|
||
|
||
|
||
/*
|
||
* Return a new Decimal whose value is the absolute value of n.
|
||
*
|
||
* n {number|string|Decimal}
|
||
*
|
||
function abs(n) { return new this(n)['abs']() }
|
||
*/
|
||
|
||
|
||
/*
|
||
* Return a new Decimal whose value is the arccosine in radians of n.
|
||
*
|
||
* n {number|string|Decimal}
|
||
*
|
||
function acos(n) { return new this( Math.acos(n) + '' ) }
|
||
*/
|
||
|
||
|
||
/*
|
||
* Return a new Decimal whose value is the arcsine in radians of n.
|
||
*
|
||
* n {number|string|Decimal}
|
||
*
|
||
function asin(n) { return new this( Math.asin(n) + '' ) }
|
||
*/
|
||
|
||
|
||
/*
|
||
* Return a new Decimal whose value is the arctangent in radians of n.
|
||
*
|
||
* n {number|string|Decimal}
|
||
*
|
||
function atan(n) { return new this( Math.atan(n) + '' ) }
|
||
*/
|
||
|
||
|
||
/*
|
||
* Return a new Decimal whose value is the arctangent in radians of y/x in the range
|
||
* -PI to PI (inclusive).
|
||
*
|
||
* y {number|string|Decimal} The y-coordinate.
|
||
* x {number|string|Decimal} The x-coordinate.
|
||
*
|
||
function atan2( y, x ) { return new this( Math.atan2( y, x ) + '' ) }
|
||
*/
|
||
|
||
|
||
/*
|
||
* Return a new Decimal whose value is n round to an integer using ROUND_CEIL.
|
||
*
|
||
* n {number|string|Decimal}
|
||
*
|
||
function ceil(n) { return new this(n)['ceil']() }
|
||
*/
|
||
|
||
|
||
/*
|
||
* Configure global settings for a Decimal constructor.
|
||
*
|
||
* obj is an object with any of the following properties,
|
||
*
|
||
* precision {number}
|
||
* rounding {number}
|
||
* toExpNeg {number}
|
||
* toExpPos {number}
|
||
* minE {number}
|
||
* maxE {number}
|
||
* errors {boolean|number}
|
||
* crypto {boolean|number}
|
||
* modulo {number}
|
||
*
|
||
* E.g.
|
||
* Decimal.config({ precision: 20, rounding: 4 })
|
||
*
|
||
*/
|
||
function config(obj) {
|
||
var p, u, v,
|
||
Decimal = this,
|
||
c = 'config',
|
||
parse = Decimal['errors'] ? parseInt : parseFloat;
|
||
|
||
if ( obj == u || typeof obj != 'object' &&
|
||
!ifExceptionsThrow( Decimal, 'object expected', obj, c ) ) {
|
||
|
||
return Decimal;
|
||
}
|
||
|
||
// precision {number|number[]} Integer, 1 to MAX_DIGITS inclusive.
|
||
if ( ( v = obj[ p = 'precision' ] ) != u ) {
|
||
|
||
if ( !( outOfRange = v < 1 || v > MAX_DIGITS ) && parse(v) == v ) {
|
||
Decimal[p] = v | 0;
|
||
} else {
|
||
|
||
// 'config() precision not an integer: {v}'
|
||
// 'config() precision out of range: {v}'
|
||
ifExceptionsThrow( Decimal, p, v, c, 0 );
|
||
}
|
||
}
|
||
|
||
// rounding {number} Integer, 0 to 8 inclusive.
|
||
if ( ( v = obj[ p = 'rounding' ] ) != u ) {
|
||
|
||
if ( !( outOfRange = v < 0 || v > 8 ) && parse(v) == v ) {
|
||
Decimal[p] = v | 0;
|
||
} else {
|
||
|
||
// 'config() rounding not an integer: {v}'
|
||
// 'config() rounding out of range: {v}'
|
||
ifExceptionsThrow( Decimal, p, v, c, 0 );
|
||
}
|
||
}
|
||
|
||
// toExpNeg {number} Integer, -EXP_LIMIT to 0 inclusive.
|
||
if ( ( v = obj[ p = 'toExpNeg' ] ) != u ) {
|
||
|
||
if ( !( outOfRange = v < -EXP_LIMIT || v > 0 ) && parse(v) == v ) {
|
||
Decimal[p] = mathfloor(v);
|
||
} else {
|
||
|
||
// 'config() toExpNeg not an integer: {v}'
|
||
// 'config() toExpNeg out of range: {v}'
|
||
ifExceptionsThrow( Decimal, p, v, c, 0 );
|
||
}
|
||
}
|
||
|
||
// toExpPos {number} Integer, 0 to EXP_LIMIT inclusive.
|
||
if ( ( v = obj[ p = 'toExpPos' ] ) != u ) {
|
||
|
||
if ( !( outOfRange = v < 0 || v > EXP_LIMIT ) && parse(v) == v ) {
|
||
Decimal[p] = mathfloor(v);
|
||
} else {
|
||
|
||
// 'config() toExpPos not an integer: {v}'
|
||
// 'config() toExpPos out of range: {v}'
|
||
ifExceptionsThrow( Decimal, p, v, c, 0 );
|
||
}
|
||
}
|
||
|
||
// minE {number} Integer, -EXP_LIMIT to 0 inclusive.
|
||
if ( ( v = obj[ p = 'minE' ] ) != u ) {
|
||
|
||
if ( !( outOfRange = v < -EXP_LIMIT || v > 0 ) && parse(v) == v ) {
|
||
Decimal[p] = mathfloor(v);
|
||
} else {
|
||
|
||
// 'config() minE not an integer: {v}'
|
||
// 'config() minE out of range: {v}'
|
||
ifExceptionsThrow( Decimal, p, v, c, 0 );
|
||
}
|
||
}
|
||
|
||
// maxE {number} Integer, 0 to EXP_LIMIT inclusive.
|
||
if ( ( v = obj[ p = 'maxE' ] ) != u ) {
|
||
|
||
if ( !( outOfRange = v < 0 || v > EXP_LIMIT ) && parse(v) == v ) {
|
||
Decimal[p] = mathfloor(v);
|
||
} else {
|
||
|
||
// 'config() maxE not an integer: {v}'
|
||
// 'config() maxE out of range: {v}'
|
||
ifExceptionsThrow( Decimal, p, v, c, 0 );
|
||
}
|
||
}
|
||
|
||
// errors {boolean|number} true, false, 1 or 0.
|
||
if ( ( v = obj[ p = 'errors' ] ) != u ) {
|
||
|
||
if ( v === !!v || v === 1 || v === 0 ) {
|
||
outOfRange = id = 0;
|
||
Decimal[p] = !!v;
|
||
} else {
|
||
|
||
// 'config() errors not a boolean or binary digit: {v}'
|
||
ifExceptionsThrow( Decimal, p, v, c, 1 );
|
||
}
|
||
}
|
||
|
||
// crypto {boolean|number} true, false, 1 or 0.
|
||
if ( ( v = obj[ p = 'crypto' ] ) != u ) {
|
||
|
||
if ( v === !!v || v === 1 || v === 0 ) {
|
||
Decimal[p] = !!( v && crypto && typeof crypto == 'object' );
|
||
} else {
|
||
|
||
// 'config() crypto not a boolean or binary digit: {v}'
|
||
ifExceptionsThrow( Decimal, p, v, c, 1 );
|
||
}
|
||
}
|
||
|
||
// modulo {number} Integer, 0 to 9 inclusive.
|
||
if ( ( v = obj[ p = 'modulo' ] ) != u ) {
|
||
|
||
if ( !( outOfRange = v < 0 || v > 9 ) && parse(v) == v ) {
|
||
Decimal[p] = v | 0;
|
||
} else {
|
||
|
||
// 'config() modulo not an integer: {v}'
|
||
// 'config() modulo out of range: {v}'
|
||
ifExceptionsThrow( Decimal, p, v, c, 0 );
|
||
}
|
||
}
|
||
|
||
return Decimal;
|
||
}
|
||
|
||
|
||
/*
|
||
* Return a new Decimal whose value is the cosine of n.
|
||
*
|
||
* n {number|string|Decimal} A number given in radians.
|
||
*
|
||
function cos(n) { return new this( Math.cos(n) + '' ) }
|
||
*/
|
||
|
||
|
||
/*
|
||
* Return a new Decimal whose value is the exponential of n,
|
||
*
|
||
* n {number|string|Decimal} The power to which to raise the base of the natural log.
|
||
*
|
||
*/
|
||
function exp(n) { return new this(n)['exp']() }
|
||
|
||
|
||
/*
|
||
* Return a new Decimal whose value is n round to an integer using ROUND_FLOOR.
|
||
*
|
||
* n {number|string|Decimal}
|
||
*
|
||
function floor(n) { return new this(n)['floor']() }
|
||
*/
|
||
|
||
|
||
/*
|
||
* Return a new Decimal whose value is the natural logarithm of n.
|
||
*
|
||
* n {number|string|Decimal}
|
||
*
|
||
*/
|
||
function ln(n) { return new this(n)['ln']() }
|
||
|
||
|
||
/*
|
||
* Return a new Decimal whose value is the log of x to the base y, or to base 10 if no
|
||
* base is specified.
|
||
*
|
||
* log[y](x)
|
||
*
|
||
* x {number|string|Decimal} The argument of the logarithm.
|
||
* y {number|string|Decimal} The base of the logarithm.
|
||
*
|
||
*/
|
||
function log( x, y ) { return new this(x)['log'](y) }
|
||
|
||
|
||
/*
|
||
* Handle max and min. ltgt is 'lt' or 'gt'.
|
||
*/
|
||
function maxOrMin( Decimal, args, ltgt ) {
|
||
var m, n,
|
||
i = 0;
|
||
|
||
if ( toString.call( args[0] ) == '[object Array]' ) {
|
||
args = args[0];
|
||
}
|
||
|
||
m = new Decimal( args[0] );
|
||
|
||
for ( ; ++i < args.length; ) {
|
||
n = new Decimal( args[i] );
|
||
|
||
if ( !n['s'] ) {
|
||
m = n;
|
||
|
||
break;
|
||
} else if ( m[ltgt](n) ) {
|
||
m = n;
|
||
}
|
||
}
|
||
|
||
return m;
|
||
}
|
||
|
||
|
||
/*
|
||
* Return a new Decimal whose value is the maximum of the arguments.
|
||
*
|
||
* arguments {number|string|Decimal}
|
||
*
|
||
*/
|
||
function max() { return maxOrMin( this, arguments, 'lt' ) }
|
||
|
||
|
||
/*
|
||
* Return a new Decimal whose value is the minimum of the arguments.
|
||
*
|
||
* arguments {number|string|Decimal}
|
||
*
|
||
*/
|
||
function min() { return maxOrMin( this, arguments, 'gt' ) }
|
||
|
||
|
||
/*
|
||
* Parse the value of a new Decimal from a number or string.
|
||
*/
|
||
var parseDecimal = (function () {
|
||
var isValid = /^-?(\d+(\.\d*)?|\.\d+)(e[+-]?\d+)?$/i,
|
||
trim = String.prototype.trim || function () {return this.replace(/^\s+|\s+$/g, '')};
|
||
|
||
return function ( Decimal, x, n, b ) {
|
||
var d, e, i, isNum, orig, valid;
|
||
|
||
if ( typeof n != 'string' ) {
|
||
|
||
// TODO: modify so regex test below is avoided if type is number.
|
||
// If n is a number, check if minus zero.
|
||
n = ( isNum = typeof n == 'number' || toString.call(n) == '[object Number]' ) &&
|
||
n === 0 && 1 / n < 0 ? '-0' : n + '';
|
||
}
|
||
orig = n;
|
||
|
||
if ( b == e && isValid.test(n) ) {
|
||
|
||
// Determine sign.
|
||
x['s'] = n.charAt(0) == '-' ? ( n = n.slice(1), -1 ) : 1;
|
||
|
||
// Either n is not a valid Decimal or a base has been specified.
|
||
} else {
|
||
|
||
/*
|
||
Enable exponential notation to be used with base 10 argument.
|
||
Ensure return value is rounded to precision as with other bases.
|
||
*/
|
||
if ( b == 10 ) {
|
||
|
||
return rnd( new Decimal(n), Decimal['precision'], Decimal['rounding'] );
|
||
}
|
||
|
||
n = trim.call(n).replace( /^\+(?!-)/, '' );
|
||
|
||
x['s'] = n.charAt(0) == '-' ? ( n = n.replace( /^-(?!-)/, '' ), -1 ) : 1;
|
||
|
||
if ( b != e ) {
|
||
|
||
if ( ( b == (b | 0) || !Decimal['errors'] ) &&
|
||
!( outOfRange = !( b >= 2 && b < 65 ) ) ) {
|
||
d = '[' + NUMERALS.slice( 0, b = b | 0 ) + ']+';
|
||
|
||
// Remove the `.` from e.g. '1.', and replace e.g. '.1' with '0.1'.
|
||
n = n.replace( /\.$/, '' ).replace( /^\./, '0.' );
|
||
|
||
// Any number in exponential form will fail due to the e+/-.
|
||
if ( valid = new RegExp(
|
||
'^' + d + '(?:\\.' + d + ')?$', b < 37 ? 'i' : '' ).test(n)
|
||
) {
|
||
|
||
if (isNum) {
|
||
|
||
if ( n.replace( /^0\.0*|\./, '' ).length > 15 ) {
|
||
|
||
// '{method} number type has more than 15 significant digits: {n}'
|
||
ifExceptionsThrow( Decimal, 0, orig );
|
||
}
|
||
|
||
// Prevent later check for length on converted number.
|
||
isNum = !isNum;
|
||
}
|
||
n = convertBase( Decimal, n, 10, b, x['s'] );
|
||
|
||
} else if ( n != 'Infinity' && n != 'NaN' ) {
|
||
|
||
// '{method} not a base {b} number: {n}'
|
||
ifExceptionsThrow( Decimal, 'not a base ' + b + ' number', orig );
|
||
n = 'NaN';
|
||
}
|
||
} else {
|
||
|
||
// '{method} base not an integer: {b}'
|
||
// '{method} base out of range: {b}'
|
||
ifExceptionsThrow( Decimal, 'base', b, 0, 0 );
|
||
|
||
// Ignore base.
|
||
valid = isValid.test(n);
|
||
}
|
||
} else {
|
||
valid = isValid.test(n);
|
||
}
|
||
|
||
if ( !valid ) {
|
||
|
||
// Infinity/NaN
|
||
x['c'] = x['e'] = null;
|
||
|
||
// NaN
|
||
if ( n != 'Infinity' ) {
|
||
|
||
// No exception on NaN.
|
||
if ( n != 'NaN' ) {
|
||
|
||
// '{method} not a number: {n}'
|
||
ifExceptionsThrow( Decimal, 'not a number', orig );
|
||
}
|
||
x['s'] = null;
|
||
}
|
||
id = 0;
|
||
|
||
return x;
|
||
}
|
||
}
|
||
|
||
// Decimal point?
|
||
if ( ( e = n.indexOf('.') ) > -1 ) {
|
||
n = n.replace( '.', '' );
|
||
}
|
||
|
||
// Exponential form?
|
||
if ( ( i = n.search( /e/i ) ) > 0 ) {
|
||
|
||
// Determine exponent.
|
||
if ( e < 0 ) {
|
||
e = i;
|
||
}
|
||
e += +n.slice( i + 1 );
|
||
n = n.substring( 0, i );
|
||
|
||
} else if ( e < 0 ) {
|
||
|
||
// Integer.
|
||
e = n.length;
|
||
}
|
||
|
||
// Determine leading zeros.
|
||
for ( i = 0; n.charAt(i) == '0'; i++ );
|
||
|
||
// Determine trailing zeros.
|
||
for ( b = n.length; n.charAt(--b) == '0'; );
|
||
|
||
n = n.slice( i, b + 1 );
|
||
|
||
if (n) {
|
||
b = n.length;
|
||
|
||
// Disallow numbers with over 15 significant digits if number type.
|
||
if ( isNum && b > 15 ) {
|
||
|
||
// '{method} number type has more than 15 significant digits: {n}'
|
||
ifExceptionsThrow( Decimal, 0, orig );
|
||
}
|
||
|
||
x['e'] = e = e - i - 1;
|
||
x['c'] = [];
|
||
|
||
// Transform base
|
||
|
||
// e is the base 10 exponent.
|
||
// i is where to slice n to get the first element of the coefficient array.
|
||
i = ( e + 1 ) % LOGBASE;
|
||
|
||
if ( e < 0 ) {
|
||
i += LOGBASE;
|
||
}
|
||
|
||
// b is n.length.
|
||
if ( i < b ) {
|
||
|
||
if (i) {
|
||
x['c'].push( +n.slice( 0, i ) );
|
||
}
|
||
|
||
for ( b -= LOGBASE; i < b; ) {
|
||
x['c'].push( +n.slice( i, i += LOGBASE ) );
|
||
}
|
||
|
||
n = n.slice(i);
|
||
i = LOGBASE - n.length;
|
||
} else {
|
||
i -= b;
|
||
}
|
||
|
||
for ( ; i--; n += '0' );
|
||
|
||
x['c'].push( +n );
|
||
|
||
if (external) {
|
||
|
||
// Overflow?
|
||
if ( x['e'] > Decimal['maxE'] ) {
|
||
|
||
// Infinity.
|
||
x['c'] = x['e'] = null;
|
||
|
||
// Underflow?
|
||
} else if ( x['e'] < Decimal['minE'] ) {
|
||
|
||
// Zero.
|
||
x['c'] = [ x['e'] = 0 ];
|
||
}
|
||
}
|
||
} else {
|
||
|
||
// Zero.
|
||
x['c'] = [ x['e'] = 0 ];
|
||
}
|
||
|
||
id = 0;
|
||
}
|
||
})();
|
||
|
||
|
||
/*
|
||
* Return a new Decimal whose value is x raised to the power y.
|
||
*
|
||
* x {number|string|Decimal} The base.
|
||
* y {number|string|Decimal} The exponent.
|
||
*
|
||
*/
|
||
function pow( x, y ) { return new this(x)['pow'](y) }
|
||
|
||
|
||
/*
|
||
* Returns a new Decimal with a random value equal to or greater than 0 and less than 1, and
|
||
* with dp, or Decimal.precision if dp is omitted, decimal places (or less if trailing
|
||
* zeros are produced).
|
||
*
|
||
* [dp] {number} Decimal places. Integer, 0 to MAX_DIGITS inclusive.
|
||
*
|
||
*/
|
||
function random(dp) {
|
||
var a, n, v,
|
||
i = 0,
|
||
r = [],
|
||
Decimal = this,
|
||
rand = new Decimal( Decimal['ONE'] );
|
||
|
||
if ( dp == null || !checkArg( rand, dp, 'random' ) ) {
|
||
dp = Decimal['precision'];
|
||
} else {
|
||
dp |= 0;
|
||
}
|
||
|
||
n = Math.ceil( dp / LOGBASE );
|
||
|
||
if ( Decimal['crypto'] ) {
|
||
|
||
// Browsers supporting crypto.getRandomValues.
|
||
if ( crypto && crypto['getRandomValues'] ) {
|
||
|
||
a = crypto['getRandomValues']( new Uint32Array(n) );
|
||
|
||
for ( ; i < n; ) {
|
||
v = a[i];
|
||
|
||
// 0 >= v < 4294967296
|
||
// Probability that v >= 4.29e9, is 4967296 / 4294967296 = 0.00116 (1 in 865).
|
||
if ( v >= 4.29e9 ) {
|
||
|
||
a[i] = crypto['getRandomValues']( new Uint32Array(1) )[0];
|
||
} else {
|
||
|
||
// 0 <= v <= 4289999999
|
||
// 0 <= ( v % 1e7 ) <= 9999999
|
||
r[i++] = v % 1e7;
|
||
}
|
||
}
|
||
|
||
// Node.js supporting crypto.randomBytes.
|
||
} else if ( crypto && crypto['randomBytes'] ) {
|
||
|
||
// buffer
|
||
a = crypto['randomBytes']( n *= 4 );
|
||
|
||
for ( ; i < n; ) {
|
||
|
||
// 0 <= v < 2147483648
|
||
v = a[i] + ( a[i + 1] << 8 ) + ( a[i + 2] << 16 ) +
|
||
( ( a[i + 3] & 0x7f ) << 24 );
|
||
|
||
// Probability that v >= 2.14e9, is 7483648 / 2147483648 = 0.0035 (1 in 286).
|
||
if ( v >= 2.14e9 ) {
|
||
crypto['randomBytes'](4).copy( a, i );
|
||
} else {
|
||
|
||
// 0 <= v <= 4289999999
|
||
// 0 <= ( v % 1e7 ) <= 9999999
|
||
r.push( v % 1e7 );
|
||
i += 4;
|
||
}
|
||
}
|
||
i = n / 4;
|
||
|
||
} else {
|
||
ifExceptionsThrow( Decimal, 'crypto unavailable', crypto, 'random' );
|
||
}
|
||
}
|
||
|
||
// Use Math.random: either Decimal.crypto is false or crypto is unavailable and errors is false.
|
||
if (!i) {
|
||
|
||
for ( ; i < n; ) {
|
||
r[i++] = Math.random() * 1e7 | 0;
|
||
}
|
||
}
|
||
|
||
n = r[--i];
|
||
dp %= LOGBASE;
|
||
|
||
// Convert trailing digits to zeros according to dp.
|
||
if ( n && dp ) {
|
||
v = mathpow( 10, LOGBASE - dp );
|
||
r[i] = ( n / v | 0 ) * v;
|
||
}
|
||
|
||
// Remove trailing elements which are zero.
|
||
for ( ; r[i] === 0; i-- ) {
|
||
r.pop();
|
||
}
|
||
|
||
// Zero?
|
||
if ( i < 0 ) {
|
||
r = [ n = 0 ];
|
||
} else {
|
||
n = -1;
|
||
|
||
// Remove leading elements which are zero and adjust exponent accordingly.
|
||
for ( ; r[0] === 0; ) {
|
||
r.shift();
|
||
n -= LOGBASE;
|
||
}
|
||
|
||
// Count the digits of the first element of r to determine leading zeros.
|
||
for ( i = 1, v = r[0]; v >= 10; ) {
|
||
v /= 10;
|
||
i++;
|
||
}
|
||
|
||
// Adjust the exponent for leading zeros of the first element of r.
|
||
if ( i < LOGBASE ) {
|
||
n -= LOGBASE - i;
|
||
}
|
||
}
|
||
|
||
rand['e'] = n;
|
||
rand['c'] = r;
|
||
|
||
return rand;
|
||
}
|
||
|
||
|
||
/*
|
||
* Return a new Decimal whose value is n round to an integer using rounding mode rounding.
|
||
*
|
||
* To emulate Math.round, set rounding to 7 (ROUND_HALF_CEIL).
|
||
*
|
||
* n {number|string|Decimal}
|
||
*
|
||
function round(n) {
|
||
var x = new this(n);
|
||
|
||
return rnd( x, x['e'] + 1, this['rounding'] );
|
||
}
|
||
*/
|
||
|
||
|
||
/*
|
||
* Return a new Decimal whose value is the sine of n.
|
||
*
|
||
* n {number|string|Decimal} A number given in radians.
|
||
*
|
||
function sin(n) { return new this( Math.sin(n) + '' ) }
|
||
*/
|
||
|
||
|
||
/*
|
||
* Return a new Decimal whose value is the square root of n.
|
||
*
|
||
* n {number|string|Decimal}
|
||
*
|
||
*/
|
||
function sqrt(n) { return new this(n)['sqrt']() }
|
||
|
||
|
||
/*
|
||
* Return a new Decimal whose value is the tangent of n.
|
||
*
|
||
* n {number|string|Decimal} A number given in radians.
|
||
*
|
||
function tan(n) { return new this( Math.tan(n) + '' ) }
|
||
*/
|
||
|
||
|
||
/*
|
||
* Return a new Decimal whose value is n truncated to an integer.
|
||
*
|
||
* n {number|string|Decimal}
|
||
*
|
||
function trunc(n) { return new this(n)['trunc']() }
|
||
*/
|
||
|
||
|
||
/*
|
||
* Create and return a new Decimal constructor.
|
||
*
|
||
*/
|
||
function DecimalFactory(obj) {
|
||
|
||
/*
|
||
* The Decimal constructor.
|
||
* Create and return a new instance of a Decimal object.
|
||
*
|
||
* n {number|string|Decimal} A numeric value.
|
||
* [b] {number} The base of n. Integer, 2 to 64 inclusive.
|
||
*
|
||
*/
|
||
function Decimal( n, b ) {
|
||
var x = this;
|
||
|
||
// Constructor called without new.
|
||
if ( !( x instanceof Decimal ) ) {
|
||
ifExceptionsThrow( Decimal, 'Decimal called without new', n );
|
||
|
||
return new Decimal( n, b );
|
||
}
|
||
|
||
// Duplicate.
|
||
if ( n instanceof Decimal ) {
|
||
|
||
if ( b == null ) {
|
||
id = 0;
|
||
x['constructor'] = n['constructor'];
|
||
x['s'] = n['s'];
|
||
x['e'] = n['e'];
|
||
x['c'] = ( n = n['c'] ) ? n.slice() : n;
|
||
|
||
return;
|
||
} else if ( b == 10 ) {
|
||
|
||
return rnd( new Decimal(n), Decimal['precision'], Decimal['rounding'] );
|
||
} else {
|
||
n += '';
|
||
}
|
||
}
|
||
|
||
return parseDecimal( x['constructor'] = Decimal, x, n, b );
|
||
}
|
||
|
||
|
||
/* ************************ CONSTRUCTOR DEFAULT PROPERTIES *****************************
|
||
|
||
|
||
These default values must be integers within the stated ranges (inclusive).
|
||
Most of these values can be changed during run-time using Decimal.config.
|
||
*/
|
||
|
||
/*
|
||
The maximum number of significant digits of the result of a calculation or base
|
||
conversion.
|
||
E.g. Decimal.config({ precision: 20 })
|
||
*/
|
||
Decimal['precision'] = 20; // 1 to MAX_DIGITS
|
||
|
||
/*
|
||
The rounding mode used when rounding to precision.
|
||
|
||
ROUND_UP 0 Away from zero.
|
||
ROUND_DOWN 1 Towards zero.
|
||
ROUND_CEIL 2 Towards +Infinity.
|
||
ROUND_FLOOR 3 Towards -Infinity.
|
||
ROUND_HALF_UP 4 Towards nearest neighbour. If equidistant, up.
|
||
ROUND_HALF_DOWN 5 Towards nearest neighbour. If equidistant, down.
|
||
ROUND_HALF_EVEN 6 Towards nearest neighbour. If equidistant, towards even neighbour.
|
||
ROUND_HALF_CEIL 7 Towards nearest neighbour. If equidistant, towards +Infinity.
|
||
ROUND_HALF_FLOOR 8 Towards nearest neighbour. If equidistant, towards -Infinity.
|
||
|
||
E.g.
|
||
Decimal.rounding = 4;
|
||
Decimal.rounding = Decimal.ROUND_HALF_UP;
|
||
*/
|
||
Decimal['rounding'] = 4; // 0 to 8
|
||
|
||
/*
|
||
The modulo mode used when calculating the modulus: a mod n.
|
||
The quotient (q = a / n) is calculated according to the corresponding rounding mode.
|
||
The remainder (r) is calculated as: r = a - n * q.
|
||
|
||
UP 0 The remainder is positive if the dividend is negative, else is negative.
|
||
DOWN 1 The remainder has the same sign as the dividend.
|
||
This modulo mode is commonly known as "truncated division" and matches
|
||
as closely as possible, the behaviour of JS remainder operator (a % n).
|
||
FLOOR 3 The remainder has the same sign as the divisor (Python %).
|
||
HALF_EVEN 6 This modulo mode implements the IEEE 754 remainder function.
|
||
EUCLID 9 Euclidian division. q = sign(n) * floor(a / abs(n)).
|
||
The remainder is always positive.
|
||
|
||
The above modes - truncated division, floored division, Euclidian division and IEEE 754
|
||
remainder - are commonly used for the modulus operation. Although any other of the
|
||
rounding modes can be used, they may not give useful results.
|
||
*/
|
||
Decimal['modulo'] = 1; // 0 to 9
|
||
|
||
// The exponent value at and beneath which toString returns exponential notation.
|
||
// Number type: -7
|
||
Decimal['toExpNeg'] = -7; // 0 to -EXP_LIMIT
|
||
|
||
// The exponent value at and above which toString returns exponential notation.
|
||
// Number type: 21
|
||
Decimal['toExpPos'] = 21; // 0 to EXP_LIMIT
|
||
|
||
// The minimum exponent value, beneath which underflow to zero occurs.
|
||
// Number type: -324 (5e-324)
|
||
Decimal['minE'] = -EXP_LIMIT; // -1 to -EXP_LIMIT
|
||
|
||
// The maximum exponent value, above which overflow to Infinity occurs.
|
||
// Number type: 308 (1.7976931348623157e+308)
|
||
Decimal['maxE'] = EXP_LIMIT; // 1 to EXP_LIMIT
|
||
|
||
// Whether Decimal Errors are ever thrown.
|
||
Decimal['errors'] = true; // true/false
|
||
|
||
// Whether to use cryptographically-secure random number generation, if available.
|
||
Decimal['crypto'] = false; // true/false
|
||
|
||
|
||
/* ********************** END OF CONSTRUCTOR DEFAULT PROPERTIES ********************* */
|
||
|
||
|
||
Decimal.prototype = P;
|
||
|
||
Decimal['ONE'] = new Decimal(1);
|
||
|
||
/*
|
||
// Pi to 80 s.d.
|
||
Decimal['PI'] = new Decimal(
|
||
'3.1415926535897932384626433832795028841971693993751058209749445923078164062862089'
|
||
);
|
||
*/
|
||
|
||
Decimal['ROUND_UP'] = 0;
|
||
Decimal['ROUND_DOWN'] = 1;
|
||
Decimal['ROUND_CEIL'] = 2;
|
||
Decimal['ROUND_FLOOR'] = 3;
|
||
Decimal['ROUND_HALF_UP'] = 4;
|
||
Decimal['ROUND_HALF_DOWN'] = 5;
|
||
Decimal['ROUND_HALF_EVEN'] = 6;
|
||
Decimal['ROUND_HALF_CEIL'] = 7;
|
||
Decimal['ROUND_HALF_FLOOR'] = 8;
|
||
|
||
// modulo mode
|
||
Decimal['EUCLID'] = 9;
|
||
|
||
//Decimal['abs'] = abs;
|
||
//Decimal['acos'] = acos;
|
||
//Decimal['asin'] = asin;
|
||
//Decimal['atan'] = atan;
|
||
//Decimal['atan2'] = atan2;
|
||
//Decimal['ceil'] = ceil;
|
||
//Decimal['cos'] = cos;
|
||
//Decimal['floor'] = floor;
|
||
//Decimal['round'] = round;
|
||
//Decimal['sin'] = sin;
|
||
//Decimal['tan'] = tan;
|
||
//Decimal['trunc'] = trunc;
|
||
|
||
Decimal['config'] = config;
|
||
Decimal['constructor'] = DecimalFactory;
|
||
Decimal['exp'] = exp;
|
||
Decimal['ln'] = ln;
|
||
Decimal['log'] = log;
|
||
Decimal['max'] = max;
|
||
Decimal['min'] = min;
|
||
Decimal['pow'] = pow;
|
||
Decimal['sqrt'] = sqrt;
|
||
Decimal['random'] = random;
|
||
|
||
if ( obj != null ) {
|
||
Decimal['config'](obj);
|
||
}
|
||
|
||
return Decimal;
|
||
}
|
||
|
||
return DecimalFactory();
|
||
})();
|
||
|
||
|
||
// Export.
|
||
|
||
|
||
// AMD.
|
||
if ( typeof define == 'function' && define.amd ) {
|
||
crypto = global['crypto'];
|
||
|
||
define(function () {
|
||
|
||
return DecimalConstructor;
|
||
});
|
||
|
||
// Node and other CommonJS-like environments that support module.exports.
|
||
} else if ( typeof module != 'undefined' && module && module.exports ) {
|
||
module.exports = DecimalConstructor;
|
||
|
||
if ( typeof require == 'function' ) {
|
||
crypto = require('crypto');
|
||
}
|
||
|
||
// Browser.
|
||
} else {
|
||
crypto = global['crypto'];
|
||
noConflict = global['Decimal'];
|
||
|
||
DecimalConstructor['noConflict'] = function () {
|
||
global['Decimal'] = noConflict;
|
||
|
||
return DecimalConstructor;
|
||
};
|
||
|
||
global['Decimal'] = DecimalConstructor;
|
||
}
|
||
})(this);
|