1
0
mirror of https://github.com/MikeMcl/decimal.js.git synced 2024-10-27 20:34:12 +00:00

bugfix: #26 wrong precision applied from ONE

This commit is contained in:
Michael Mclaughlin 2016-02-20 22:15:20 +00:00
parent 8df4a72aaa
commit 1a1a0ace51

View File

@ -100,7 +100,7 @@
// ----------------------------------- END OF EDITABLE DEFAULTS ------------------------------- //
inexact, noConflict, quadrant, HALF, ONE,
inexact, noConflict, quadrant,
cryptoObject = typeof crypto != 'undefined' ? crypto : null,
external = true,
@ -279,7 +279,7 @@
if (!x.d) return new Ctor(NaN);
// cos(0) = cos(-0) = 1
if (!x.d[0]) return new Ctor(ONE);
if (!x.d[0]) return new Ctor(1);
pr = Ctor.precision;
rm = Ctor.rounding;
@ -531,7 +531,7 @@
var k, n, pr, rm, len,
x = this,
Ctor = x.constructor,
one = new Ctor(ONE);
one = new Ctor(1);
if (!x.isFinite()) return new Ctor(x.s ? 1 / 0 : NaN);
if (x.isZero()) return one;
@ -555,7 +555,7 @@
n = '2.3283064365386962890625e-10';
}
x = taylorSeries(Ctor, 1, x.times(n), new Ctor(ONE), true);
x = taylorSeries(Ctor, 1, x.times(n), new Ctor(1), true);
// Reverse argument reduction
var cosh2_x,
@ -707,7 +707,7 @@
var halfPi,
x = this,
Ctor = x.constructor,
k = x.abs().cmp(ONE),
k = x.abs().cmp(1),
pr = Ctor.precision,
rm = Ctor.rounding;
@ -719,7 +719,7 @@
: new Ctor(NaN);
}
if (x.isZero()) return getPi(Ctor, pr + 4, rm).times(HALF);
if (x.isZero()) return getPi(Ctor, pr + 4, rm).times(0.5);
// TODO? Special case acos(0.5) = pi/3 and acos(-0.5) = 2*pi/3
@ -727,7 +727,7 @@
Ctor.rounding = 1;
x = x.asin();
halfPi = getPi(Ctor, pr + 4, rm).times(HALF);
halfPi = getPi(Ctor, pr + 4, rm).times(0.5);
Ctor.precision = pr;
Ctor.rounding = rm;
@ -760,7 +760,7 @@
x = this,
Ctor = x.constructor;
if (x.lte(ONE)) return new Ctor(x.eq(ONE) ? 0 : NaN);
if (x.lte(1)) return new Ctor(x.eq(1) ? 0 : NaN);
if (!x.isFinite()) return new Ctor(x);
pr = Ctor.precision;
@ -769,7 +769,7 @@
Ctor.rounding = 1;
external = false;
x = x.times(x).minus(ONE).sqrt().plus(x);
x = x.times(x).minus(1).sqrt().plus(x);
external = true;
Ctor.precision = pr;
@ -808,7 +808,7 @@
Ctor.rounding = 1;
external = false;
x = x.times(x).plus(ONE).sqrt().plus(x);
x = x.times(x).plus(1).sqrt().plus(x);
external = true;
Ctor.precision = pr;
@ -843,7 +843,7 @@
Ctor = x.constructor;
if (!x.isFinite()) return new Ctor(NaN);
if (x.e >= 0) return new Ctor(x.abs().eq(ONE) ? x.s / 0 : x.isZero() ? x : NaN);
if (x.e >= 0) return new Ctor(x.abs().eq(1) ? x.s / 0 : x.isZero() ? x : NaN);
pr = Ctor.precision;
rm = Ctor.rounding;
@ -853,7 +853,7 @@
Ctor.precision = wpr = xsd - x.e;
x = divide(x.plus(ONE), ONE.minus(x), wpr + pr, 1);
x = divide(x.plus(1), new Ctor(1).minus(x), wpr + pr, 1);
Ctor.precision = pr + 4;
Ctor.rounding = 1;
@ -863,7 +863,7 @@
Ctor.precision = pr;
Ctor.rounding = rm;
return x.times(HALF);
return x.times(0.5);
};
@ -896,7 +896,7 @@
if (x.isZero()) return new Ctor(x);
k = x.abs().cmp(ONE);
k = x.abs().cmp(1);
pr = Ctor.precision;
rm = Ctor.rounding;
@ -904,7 +904,7 @@
// |x| is 1
if (k === 0) {
halfPi = getPi(Ctor, pr + 4, rm).times(HALF);
halfPi = getPi(Ctor, pr + 4, rm).times(0.5);
halfPi.s = x.s;
return halfPi;
}
@ -918,7 +918,7 @@
Ctor.precision = pr + 6;
Ctor.rounding = 1;
x = x.div(ONE.plus(Ctor.sqrt(ONE.minus(x.times(x))))).atan();
x = x.div(new Ctor(1).minus(x.times(x)).sqrt().plus(1)).atan();
Ctor.precision = pr;
Ctor.rounding = rm;
@ -955,13 +955,13 @@
if (!x.isFinite()) {
if (!x.s) return new Ctor(NaN);
if (pr + 4 <= PI_PRECISION) {
r = getPi(Ctor, pr + 4, rm).times(HALF);
r = getPi(Ctor, pr + 4, rm).times(0.5);
r.s = x.s;
return r;
}
} else if (x.isZero()) {
return new Ctor(x);
} else if (x.abs().eq(ONE) && pr + 4 <= PI_PRECISION) {
} else if (x.abs().eq(1) && pr + 4 <= PI_PRECISION) {
r = getPi(Ctor, pr + 4, rm).times(0.25);
r.s = x.s;
return r;
@ -978,7 +978,7 @@
k = Math.min(28, wpr / LOG_BASE + 2 | 0);
for (i = k; i; --i) x = x.div(x.times(x).plus(ONE).sqrt().plus(ONE));
for (i = k; i; --i) x = x.div(x.times(x).plus(1).sqrt().plus(1));
external = false;
@ -1126,7 +1126,7 @@
d = base.d;
// Return NaN if base is negative, or non-finite, or is 0 or 1.
if (base.s < 0 || !d || !d[0] || base.eq(ONE)) return new Ctor(NaN);
if (base.s < 0 || !d || !d[0] || base.eq(1)) return new Ctor(NaN);
isBase10 = base.eq(10);
}
@ -1134,7 +1134,7 @@
d = arg.d;
// Is arg negative, non-finite, 0 or 1?
if (arg.s < 0 || !d || !d[0] || arg.eq(ONE)) {
if (arg.s < 0 || !d || !d[0] || arg.eq(1)) {
return new Ctor(d && !d[0] ? -1 / 0 : arg.s != 1 ? NaN : d ? 0 : 1 / 0);
}
@ -1748,7 +1748,7 @@
// Newton-Raphson iteration.
for (;;) {
t = r;
r = t.plus(divide(x, t, sd + 2, 1)).times(HALF);
r = t.plus(divide(x, t, sd + 2, 1)).times(0.5);
// TODO? Replace with for-loop and checkRoundingDigits.
if (digitsToString(t.d).slice(0, sd) === (n = digitsToString(r.d)).slice(0, sd)) {
@ -1821,7 +1821,7 @@
x = x.sin();
x.s = 1;
x = divide(x, ONE.minus(x.times(x)).sqrt(), pr + 10, 0);
x = divide(x, new Ctor(1).minus(x.times(x)).sqrt(), pr + 10, 0);
Ctor.precision = pr;
Ctor.rounding = rm;
@ -2049,7 +2049,7 @@
if (!xd) return new Ctor(x);
n1 = d0 = new Ctor(ONE);
n1 = d0 = new Ctor(1);
d1 = n0 = new Ctor(0);
d = new Ctor(d1);
@ -2287,7 +2287,7 @@
// If x is not finite, return x.
if (!x.d) return x;
y = new Ctor(ONE);
y = new Ctor(1);
rm = Ctor.rounding;
} else {
y = new Ctor(y);
@ -2400,12 +2400,12 @@
x = new Ctor(x);
if (x.eq(ONE)) return x;
if (x.eq(1)) return x;
pr = Ctor.precision;
rm = Ctor.rounding;
if (y.eq(ONE)) return finalise(x, pr, rm);
if (y.eq(1)) return finalise(x, pr, rm);
e = mathfloor(y.e / LOG_BASE);
k = y.d.length - 1;
@ -2418,7 +2418,7 @@
// If y is a small integer use the 'exponentiation by squaring' algorithm.
} else if ((k = yn < 0 ? -yn : yn) <= MAX_SAFE_INTEGER) {
r = intPow(Ctor, x, k, pr);
return y.s < 0 ? new Ctor(ONE).div(r) : finalise(r, pr, rm);
return y.s < 0 ? new Ctor(1).div(r) : finalise(r, pr, rm);
}
// Result is negative if x is negative and the last digit of integer y is odd.
@ -2778,12 +2778,12 @@
Ctor.precision += k;
x = taylorSeries(Ctor, 1, x.times(y), new Ctor(ONE));
x = taylorSeries(Ctor, 1, x.times(y), new Ctor(1));
// Reverse argument reduction
for (var i = k; i--;) {
var cos2x = x.times(x);
x = cos2x.times(cos2x).minus(cos2x).times(8).plus(ONE);
x = cos2x.times(cos2x).minus(cos2x).times(8).plus(1);
}
Ctor.precision -= k;
@ -3326,7 +3326,7 @@
*/
function intPow(Ctor, x, n, pr) {
var isTruncated,
r = new Ctor(ONE),
r = new Ctor(1),
// Max n of 9007199254740991 takes 53 loop iterations.
// Maximum digits array length; leaves [28, 34] guard digits.
@ -3430,7 +3430,7 @@
if (!x.d || !x.d[0] || x.e > 17) {
return new Ctor(x.d
? !x.d[0] ? ONE : x.s < 0 ? 0 : 1 / 0
? !x.d[0] ? 1 : x.s < 0 ? 0 : 1 / 0
: x.s ? x.s < 0 ? 0 : x : 0 / 0);
}
@ -3455,7 +3455,7 @@
// necessary to ensure the first 4 rounding digits are correct.
guard = Math.log(mathpow(2, k)) / Math.LN10 * 2 + 5 | 0;
wpr += guard;
denominator = pow = sum = new Ctor(ONE);
denominator = pow = sum = new Ctor(1);
Ctor.precision = wpr;
for (;;) {
@ -3476,7 +3476,7 @@
if (rep < 3 && checkRoundingDigits(sum.d, wpr - guard, rm, rep)) {
Ctor.precision = wpr += 10;
denominator = pow = t = new Ctor(ONE);
denominator = pow = t = new Ctor(1);
i = 0;
rep++;
} else {
@ -3580,7 +3580,7 @@
// Taylor series.
// ln(y) = ln((1 + x)/(1 - x)) = 2(x + x^3/3 + x^5/5 + x^7/7 + ...)
// where x = (y - 1)/(y + 1) (|x| < 1)
sum = numerator = x = divide(x.minus(ONE), x.plus(ONE), wpr, 1);
sum = numerator = x = divide(x.minus(1), x.plus(1), wpr, 1);
x2 = finalise(x.times(x), wpr, 1);
denominator = 3;
@ -3605,7 +3605,7 @@
if (sd == null) {
if (checkRoundingDigits(sum.d, wpr - guard, rm, rep)) {
Ctor.precision = wpr += guard;
t = numerator = x = divide(x1.minus(ONE), x1.plus(ONE), wpr, 1);
t = numerator = x = divide(x1.minus(1), x1.plus(1), wpr, 1);
x2 = finalise(x.times(x), wpr, 1);
denominator = rep = 1;
} else {
@ -3865,7 +3865,7 @@
var t,
isNeg = x.s < 0,
pi = getPi(Ctor, Ctor.precision, 1),
halfPi = pi.times(HALF);
halfPi = pi.times(0.5);
x = x.abs();
@ -3941,7 +3941,7 @@
// Non-integer.
if (i >= 0) {
str = str.replace('.', '');
y = new Ctor(ONE);
y = new Ctor(1);
y.e = str.length - i;
y.d = convertBase(finiteToString(y), 10, base);
y.e = y.d.length;
@ -4230,7 +4230,7 @@
// y is ±Infinity or x is ±0
} else if (!y.d || x.isZero()) {
r = getPi(this, wpr, 1).times(HALF);
r = getPi(this, wpr, 1).times(0.5);
r.s = y.s;
// Both non-zero and finite
@ -4766,7 +4766,7 @@
function random(sd) {
var d, e, k, n,
i = 0,
r = new this(ONE),
r = new this(1),
rd = [];
if (sd === void 0) sd = this.precision;
@ -4977,9 +4977,7 @@
// Create and configure initial Decimal constructor.
Decimal = clone(Decimal);
// Internal constants.
HALF = new Decimal(0.5);
ONE = new Decimal(1);
// Create the internal constants from their string values.
LN10 = new Decimal(LN10);
PI = new Decimal(PI);