Initial import

This commit is contained in:
Garrett Mills 2021-03-23 01:18:08 -05:00
commit a964199ee4
Signed by: garrettmills
GPG Key ID: D2BF5FBA8298F246
2 changed files with 83 additions and 0 deletions

7
README.md Normal file
View File

@ -0,0 +1,7 @@
# math
These are some miscellaneous math functions implemented in Javascript that helped me with various assignments.
## Distributions
The `distributions.js` file has some functions relating to Binomial and Poisson distributions of random variables.

76
distributions.js Normal file
View File

@ -0,0 +1,76 @@
/**
* Some functions for calculating distributions of random variables.
*/
/**
* Takes the factorial of n.
* @param {number} n
* @return {number}
*/
const fact = n => {
if ( n == 0 || n == 1 ) return 1
for ( let i = n - 1; i >= 1; i -= 1 ) {
n = n * i
}
return n
}
/**
* Compute the {n}\choose{k} value.
* @param {number} n the total number of items
* @param {number} k the number to take at a time
* @return {number}
*/
const choose = (n,k) => (fact(n))/(fact(k)*(fact(n-k)))
/**
* Calculate the binomial distribution of a random variable:
*
* b(x; n,p) for lower_x <= x <= upper_x
*/
const binom_range = (lower_x, upper_x, n, p) => {
let sum = 0
for ( let i = lower_x; i <= upper_x; i += 1 ) {
sum += choose(n, i) * Math.pow(p, i) * Math.pow(1-p, n-i)
}
return sum
}
/**
* Calculate the binomial distribution for some specific x.
*
* b(x; n,p)
*/
const binom_dist = (x, n, p) => choose(n, x) * Math.pow(p, x) * Math.pow(1-p, n-x)
/**
* Calculate the poisson distribution for some specific x.
*
* p(x, lambda * t)
*/
const poisson_dist = (x, lambda, t) => {
const numerator = Math.pow(Math.E, -1 * lambda * t) * Math.pow(lambda * t, x)
const denom = fact(x)
return numerator / denom
}
/**
* Calculate the poisson range for some specific x:
*
* p(x, lambda * t) for lower_x <= x <= upper_x.
*/
const poisson_range = (lower_x, upper_x, lambda, t) => {
let sum = 0
for ( let i = lower_x; i <= upper_x; i += 1 ) {
sum += poisson_dist(i, lambda, t)
}
return sum
}
module.exports = exports = {fact, choose, binom_range, binom_dist, poisson_dist, poisson_range}