You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
tobspr_shapez.io/src/js/core/perlin_noise.js

176 lines
5.1 KiB

import { perlinNoiseData } from "./perlin_noise_data";
import { Math_sqrt } from "./builtins";
class Grad {
constructor(x, y, z) {
this.x = x;
this.y = y;
this.z = z;
}
dot2(x, y) {
return this.x * x + this.y * y;
}
dot3(x, y, z) {
return this.x * x + this.y * y + this.z * z;
}
}
function fade(t) {
return t * t * t * (t * (t * 6 - 15) + 10);
}
function lerp(a, b, t) {
return (1 - t) * a + t * b;
}
const F2 = 0.5 * (Math_sqrt(3) - 1);
const G2 = (3 - Math_sqrt(3)) / 6;
const F3 = 1 / 3;
const G3 = 1 / 6;
export class PerlinNoise {
constructor(seed) {
this.perm = new Array(512);
this.gradP = new Array(512);
this.grad3 = [
new Grad(1, 1, 0),
new Grad(-1, 1, 0),
new Grad(1, -1, 0),
new Grad(-1, -1, 0),
new Grad(1, 0, 1),
new Grad(-1, 0, 1),
new Grad(1, 0, -1),
new Grad(-1, 0, -1),
new Grad(0, 1, 1),
new Grad(0, -1, 1),
new Grad(0, 1, -1),
new Grad(0, -1, -1),
];
this.seed = seed;
this.initializeFromSeed(seed);
}
initializeFromSeed(seed) {
const P = perlinNoiseData;
if (seed > 0 && seed < 1) {
// Scale the seed out
seed *= 65536;
}
seed = Math.floor(seed);
if (seed < 256) {
seed |= seed << 8;
}
for (let i = 0; i < 256; i++) {
let v;
if (i & 1) {
v = P[i] ^ (seed & 255);
} else {
v = P[i] ^ ((seed >> 8) & 255);
}
this.perm[i] = this.perm[i + 256] = v;
this.gradP[i] = this.gradP[i + 256] = this.grad3[v % 12];
}
}
/**
* 2d Perlin Noise
* @param {number} x
* @param {number} y
* @returns {number}
*/
computePerlin2(x, y) {
// Find unit grid cell containing point
let X = Math.floor(x),
Y = Math.floor(y);
// Get relative xy coordinates of point within that cell
x = x - X;
y = y - Y;
// Wrap the integer cells at 255 (smaller integer period can be introduced here)
X = X & 255;
Y = Y & 255;
// Calculate noise contributions from each of the four corners
let n00 = this.gradP[X + this.perm[Y]].dot2(x, y);
let n01 = this.gradP[X + this.perm[Y + 1]].dot2(x, y - 1);
let n10 = this.gradP[X + 1 + this.perm[Y]].dot2(x - 1, y);
let n11 = this.gradP[X + 1 + this.perm[Y + 1]].dot2(x - 1, y - 1);
// Compute the fade curve value for x
let u = fade(x);
// Interpolate the four results
return lerp(lerp(n00, n10, u), lerp(n01, n11, u), fade(y));
}
computeSimplex2(xin, yin) {
var n0, n1, n2; // Noise contributions from the three corners
// Skew the input space to determine which simplex cell we're in
var s = (xin + yin) * F2; // Hairy factor for 2D
var i = Math.floor(xin + s);
var j = Math.floor(yin + s);
var t = (i + j) * G2;
var x0 = xin - i + t; // The x,y distances from the cell origin, unskewed.
var y0 = yin - j + t;
// For the 2D case, the simplex shape is an equilateral triangle.
// Determine which simplex we are in.
var i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords
if (x0 > y0) {
// lower triangle, XY order: (0,0)->(1,0)->(1,1)
i1 = 1;
j1 = 0;
} else {
// upper triangle, YX order: (0,0)->(0,1)->(1,1)
i1 = 0;
j1 = 1;
}
// A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
// a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
// c = (3-sqrt(3))/6
var x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords
var y1 = y0 - j1 + G2;
var x2 = x0 - 1 + 2 * G2; // Offsets for last corner in (x,y) unskewed coords
var y2 = y0 - 1 + 2 * G2;
// Work out the hashed gradient indices of the three simplex corners
i &= 255;
j &= 255;
var gi0 = this.gradP[i + this.perm[j]];
var gi1 = this.gradP[i + i1 + this.perm[j + j1]];
var gi2 = this.gradP[i + 1 + this.perm[j + 1]];
// Calculate the contribution from the three corners
var t0 = 0.5 - x0 * x0 - y0 * y0;
if (t0 < 0) {
n0 = 0;
} else {
t0 *= t0;
n0 = t0 * t0 * gi0.dot2(x0, y0); // (x,y) of grad3 used for 2D gradient
}
var t1 = 0.5 - x1 * x1 - y1 * y1;
if (t1 < 0) {
n1 = 0;
} else {
t1 *= t1;
n1 = t1 * t1 * gi1.dot2(x1, y1);
}
var t2 = 0.5 - x2 * x2 - y2 * y2;
if (t2 < 0) {
n2 = 0;
} else {
t2 *= t2;
n2 = t2 * t2 * gi2.dot2(x2, y2);
}
// Add contributions from each corner to get the final noise value.
// The result is scaled to return values in the interval [-1,1].
return 70 * (n0 + n1 + n2);
}
}