This is a higher-level paper, but still a survey (so more readable). It ties together disparate areas like Platonic solids (A-D-E), Milnor’s exceptional fibre, and algebra.
It has pictures and you’ll get a better sense of what mathematics is like from skimming it.
Programmers work with graphs often (file system, greplin, trees, "graph isomorphism problem" (who cares) ). But have you ever tried to construct a simpler building-block (basis) with which graphs could be built? Or at least a different building block to build the same old things.
This <10-page paper also uses 𝔰𝔩₂(ℂ), a simple mathematical object you haven’t heard of, but which is a nice lead-in to an area of real mathematics—rep theory—that (1) contains actual insights (1a) that you aren’t using (2) is simple (3) isn’t pretentious.
I show this paper to college freshmen because
• it’s pictorial
• it’s about an object you mightn’t have considered mathematical
• no calculus, crypto, ML, or pretentious notation
• it’s short
• it’s a classification proof: “How can it be that you know something about _all possible_ X, even the xϵX you haven’t seen yet?’