mirror of
https://github.com/papers-we-love/papers-we-love.git
synced 2024-10-27 20:34:20 +00:00
Adding the trusting classifiers paper from the Seattle papers we love (#466)
chapter, presented on July 2017.
This commit is contained in:
parent
9be6ccf42f
commit
15edd14773
@ -15,6 +15,8 @@
|
|||||||
|
|
||||||
* [Applications of Machine Learning to Location Data](http://www.berkkapicioglu.com/wp-content/uploads/2013/11/thesis_final.pdf) - Using machine learning to design and analyze novel algorithms that leverage location data.
|
* [Applications of Machine Learning to Location Data](http://www.berkkapicioglu.com/wp-content/uploads/2013/11/thesis_final.pdf) - Using machine learning to design and analyze novel algorithms that leverage location data.
|
||||||
|
|
||||||
|
* ["Why Should I Trust You?" Explaining the Predictions of Any Classifier](http://www.kdd.org/kdd2016/papers/files/rfp0573-ribeiroA.pdf) - This paper introduces an explanation technique for any classifier in a interpretable manner.
|
||||||
|
|
||||||
## Hosted Papers
|
## Hosted Papers
|
||||||
|
|
||||||
* :scroll: **[A Sparse Johnson-Lindenstrauss Transform](dimensionality_reduction/a-sparse-johnson-lindenstrauss-transform.pdf)**
|
* :scroll: **[A Sparse Johnson-Lindenstrauss Transform](dimensionality_reduction/a-sparse-johnson-lindenstrauss-transform.pdf)**
|
||||||
|
Loading…
Reference in New Issue
Block a user