Adding the trusting classifiers paper from the Seattle papers we love (#466)

chapter, presented on July 2017.
This commit is contained in:
Arunav Sanyal 2017-07-09 13:26:39 -07:00 committed by Darren_N
parent 9be6ccf42f
commit 15edd14773

View File

@ -15,6 +15,8 @@
* [Applications of Machine Learning to Location Data](http://www.berkkapicioglu.com/wp-content/uploads/2013/11/thesis_final.pdf) - Using machine learning to design and analyze novel algorithms that leverage location data. * [Applications of Machine Learning to Location Data](http://www.berkkapicioglu.com/wp-content/uploads/2013/11/thesis_final.pdf) - Using machine learning to design and analyze novel algorithms that leverage location data.
* ["Why Should I Trust You?" Explaining the Predictions of Any Classifier](http://www.kdd.org/kdd2016/papers/files/rfp0573-ribeiroA.pdf) - This paper introduces an explanation technique for any classifier in a interpretable manner.
## Hosted Papers ## Hosted Papers
* :scroll: **[A Sparse Johnson-Lindenstrauss Transform](dimensionality_reduction/a-sparse-johnson-lindenstrauss-transform.pdf)** * :scroll: **[A Sparse Johnson-Lindenstrauss Transform](dimensionality_reduction/a-sparse-johnson-lindenstrauss-transform.pdf)**