mirror of
https://github.com/gristlabs/grist-core.git
synced 2024-10-27 20:44:07 +00:00
e5eeb3ec80
Summary: The 'user' variable has a similar API to the one from access rules: it contains properties about a user, such as their full name and email address, as well as optional, user-defined attributes that are populated via user attribute tables. Test Plan: Python unit tests. Reviewers: alexmojaki, paulfitz, dsagal Reviewed By: alexmojaki, dsagal Subscribers: paulfitz, dsagal, alexmojaki Differential Revision: https://phab.getgrist.com/D2898
573 lines
24 KiB
Python
573 lines
24 KiB
Python
import difflib
|
|
import functools
|
|
import json
|
|
import unittest
|
|
from collections import namedtuple
|
|
|
|
import six
|
|
|
|
import actions
|
|
import column
|
|
import engine
|
|
import logger
|
|
import useractions
|
|
import testutil
|
|
|
|
log = logger.Logger(__name__, logger.DEBUG)
|
|
|
|
# These are for use in verifying metadata using assertTables/assertViews methods. E.g.
|
|
# self.assertViews([View(1, sections=[Section(1, parentKey="record", tableRef=1, fields=[
|
|
# Field(1, colRef=11) ]) ]) ])
|
|
Table = namedtuple('Table', ('id tableId primaryViewId summarySourceTable columns'))
|
|
Column = namedtuple('Column', ('id colId type isFormula formula summarySourceCol'))
|
|
View = namedtuple('View', 'id sections')
|
|
Section = namedtuple('Section', 'id parentKey tableRef fields')
|
|
Field = namedtuple('Field', 'id colRef')
|
|
|
|
unittest.TestCase.assertRaisesRegex = unittest.TestCase.assertRaisesRegexp
|
|
unittest.TestCase.assertRegex = unittest.TestCase.assertRegexpMatches
|
|
|
|
class EngineTestCase(unittest.TestCase):
|
|
"""
|
|
Provides functionality for verifying engine actions and data, which is general enough to be
|
|
useful for other tests. It is also used by TestEngine below.
|
|
"""
|
|
# Place to keep the original log handler (which we modify for the duration of the test).
|
|
# We can't use cls._orig_log_handler directly because then Python it's an actual class method.
|
|
_orig_log_handler = []
|
|
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
cls._orig_log_handler.append(logger.set_handler(testutil.limit_log_stderr(logger.WARN)))
|
|
|
|
@classmethod
|
|
def tearDownClass(cls):
|
|
logger.set_handler(cls._orig_log_handler.pop())
|
|
|
|
|
|
def setUp(self):
|
|
"""
|
|
Initial setup for each test case.
|
|
"""
|
|
self.engine = engine.Engine()
|
|
self.engine.load_empty()
|
|
|
|
# Set up call tracing to count calls (formula evaluations) for each column for each table.
|
|
self.call_counts = {}
|
|
def trace_call(col_obj, _rec):
|
|
# Ignore formulas in metadata tables for simplicity. Such formulas are mostly private, and
|
|
# it would be annoying to fix tests every time we change them.
|
|
if not col_obj.table_id.startswith("_grist_"):
|
|
tmap = self.call_counts.setdefault(col_obj.table_id, {})
|
|
tmap[col_obj.col_id] = tmap.get(col_obj.col_id, 0) + 1
|
|
self.engine.formula_tracer = trace_call
|
|
|
|
# This is set when a test case is wrapped by `test_engine.test_undo`.
|
|
self._undo_state_tracker = None
|
|
|
|
|
|
@classmethod
|
|
def _getEngineDataLines(cls, engine_data, col_names=[]):
|
|
"""
|
|
Helper for assertEqualEngineData, which returns engine data represented as lines of text
|
|
suitable for diffing. If col_names is given, it determines the order of columns (columns not
|
|
found in this list are included in the end and sorted by name).
|
|
"""
|
|
sort_keys = {c: i for i, c in enumerate(col_names)}
|
|
ret = []
|
|
for table_id, table_data in sorted(engine_data.items()):
|
|
ret.append("TABLE %s\n" % table_id)
|
|
col_items = sorted(table_data.columns.items(),
|
|
key=lambda c: (sort_keys.get(c[0], float('inf')), c))
|
|
col_items.insert(0, ('id', table_data.row_ids))
|
|
table_rows = zip(*[[col_id] + values for (col_id, values) in col_items])
|
|
ret.extend(json.dumps(row) + "\n" for row in table_rows)
|
|
return ret
|
|
|
|
def assertEqualDocData(self, observed, expected, col_names=[]):
|
|
"""
|
|
Compare full engine data, as a mapping of table_ids to TableData objects, and reporting
|
|
differences with a customized diff (similar to the JSON representation in the test script).
|
|
"""
|
|
enc_observed = actions.encode_objects(observed)
|
|
enc_expected = actions.encode_objects(expected)
|
|
if enc_observed != enc_expected:
|
|
o_lines = self._getEngineDataLines(enc_observed, col_names)
|
|
e_lines = self._getEngineDataLines(enc_expected, col_names)
|
|
self.fail("Observed data not as expected:\n" +
|
|
"".join(difflib.unified_diff(e_lines, o_lines,
|
|
fromfile="expected", tofile="observed")))
|
|
|
|
def assertCorrectEngineData(self, expected_data):
|
|
"""
|
|
Verifies that the data engine contains the same data as the given expected data,
|
|
which should be a dictionary mapping table names to TableData objects.
|
|
"""
|
|
expected_output = actions.decode_objects(expected_data)
|
|
|
|
meta_tables = self.engine.fetch_table("_grist_Tables")
|
|
output = {t: self.engine.fetch_table(t) for t in meta_tables.columns["tableId"]}
|
|
output = testutil.replace_nans(output)
|
|
|
|
self.assertEqualDocData(output, expected_output)
|
|
|
|
def getFullEngineData(self):
|
|
return testutil.replace_nans({t: self.engine.fetch_table(t) for t in self.engine.tables})
|
|
|
|
def assertPartialData(self, table_name, col_names, row_data):
|
|
"""
|
|
Verifies that the data engine contains the right data for the given col_names (ignoring any
|
|
other columns).
|
|
"""
|
|
expected = testutil.table_data_from_rows(table_name, col_names, row_data)
|
|
observed = self.engine.fetch_table(table_name, private=True)
|
|
ignore = set(observed.columns) - set(expected.columns)
|
|
for col_id in ignore:
|
|
del observed.columns[col_id]
|
|
self.assertEqualDocData({table_name: observed}, {table_name: expected})
|
|
|
|
|
|
action_group_action_fields = ("stored", "undo", "calc", "direct")
|
|
|
|
@classmethod
|
|
def _formatActionGroup(cls, action_group, use_repr=False):
|
|
"""
|
|
Helper for assertEqualActionGroups below.
|
|
"""
|
|
lines = ["{"]
|
|
for (k, action_list) in sorted(action_group.items()):
|
|
if k in cls.action_group_action_fields:
|
|
for a in action_list:
|
|
rep = repr(a) if use_repr else json.dumps(a, sort_keys=True)
|
|
lines.append("%s: %s," % (k, rep))
|
|
else:
|
|
lines.append("%s: %s," % (k, json.dumps(action_list)))
|
|
lines.append("}")
|
|
return lines
|
|
|
|
def assertEqualActionGroups(self, observed, expected):
|
|
"""
|
|
Compare grouped doc actions, reporting differences with a customized diff
|
|
(a bit more readable than unittest's usual diff).
|
|
"""
|
|
# Do some clean up on the observed data.
|
|
observed = testutil.replace_nans(observed)
|
|
|
|
# Convert observed and expected actions into a comparable form.
|
|
for k in self.action_group_action_fields:
|
|
if k in observed:
|
|
observed[k] = [get_comparable_repr(v) for v in observed[k]]
|
|
if k in expected:
|
|
expected[k] = [get_comparable_repr(v) for v in expected[k]]
|
|
|
|
if observed != expected:
|
|
o_lines = self._formatActionGroup(observed)
|
|
e_lines = self._formatActionGroup(expected)
|
|
self.fail(("Observed out actions not as expected:\n") +
|
|
"\n".join(difflib.unified_diff(e_lines, o_lines, n=3, lineterm="",
|
|
fromfile="expected", tofile="observed")))
|
|
|
|
def assertOutActions(self, out_action_group, expected_group):
|
|
"""
|
|
Compares action group returned from engine.apply_user_actions() to expected actions as listed
|
|
in testscript. The array of retValues is only checked if present in expected_group.
|
|
"""
|
|
for k in self.action_group_action_fields:
|
|
# For comparing full actions, treat omitted groups (e.g. "calc") as expected to be empty.
|
|
expected_group.setdefault(k, [])
|
|
|
|
observed = {k: getattr(out_action_group, k) for k in self.action_group_action_fields }
|
|
if "retValue" in expected_group:
|
|
observed["retValue"] = out_action_group.retValues
|
|
self.assertEqualActionGroups(observed, expected_group)
|
|
|
|
def assertPartialOutActions(self, out_action_group, expected_group):
|
|
"""
|
|
Compares a single action group as returned from engine.apply_user_actions() to expected
|
|
actions, checking only those fields that are included in the expected_group dict.
|
|
"""
|
|
observed = {k: getattr(out_action_group, k) for k in expected_group}
|
|
self.assertEqualActionGroups(observed, expected_group)
|
|
|
|
def dump_data(self):
|
|
"""
|
|
Prints a dump of all engine data, for help in writing / debugging tests.
|
|
"""
|
|
output = {t: self.engine.fetch_table(t) for t in self.engine.schema}
|
|
output = testutil.replace_nans(output)
|
|
output = actions.encode_objects(output)
|
|
print(''.join(self._getEngineDataLines(output)))
|
|
|
|
def dump_actions(self, out_actions):
|
|
"""
|
|
Prints out_actions in human-readable format, for help in writing / debugging tets.
|
|
"""
|
|
print("\n".join(self._formatActionGroup(out_actions.__dict__)))
|
|
|
|
def assertTableData(self, table_name, data=[], cols="all", rows="all", sort=None):
|
|
"""
|
|
Verify some or all of the data in the table named `table_name`.
|
|
- data: an array of rows, with first row containing column names starting with "id", and
|
|
other rows also all starting with row_id.
|
|
- cols: may be "all" (default) to match all columns, or "subset" to match only those listed.
|
|
- rows: may be "all" (default) to match all rows, or "subset" to match only those listed,
|
|
or a function called with a Record to return whether to include it.
|
|
- sort: optionally a key function called with a Record, for sorting observed rows.
|
|
"""
|
|
assert data[0][0] == 'id', "assertRecords requires 'id' as the first column"
|
|
col_names = data[0]
|
|
row_data = data[1:]
|
|
expected = testutil.table_data_from_rows(table_name, col_names, row_data)
|
|
|
|
table = self.engine.tables[table_name]
|
|
columns = [c for c in table.all_columns.values()
|
|
if c.col_id != "id" and not column.is_virtual_column(c.col_id)]
|
|
if cols == "all":
|
|
pass
|
|
elif cols == "subset":
|
|
columns = [c for c in columns if c.col_id in col_names]
|
|
else:
|
|
raise ValueError("assertRecords: invalid value for cols: %s" % (cols,))
|
|
|
|
if rows == "all":
|
|
row_ids = list(table.row_ids)
|
|
elif rows == "subset":
|
|
row_ids = [row[0] for row in row_data]
|
|
elif callable(rows):
|
|
row_ids = [r.id for r in table.user_table.all if rows(r)]
|
|
else:
|
|
raise ValueError("assertRecords: invalid value for rows: %s" % (rows,))
|
|
|
|
if sort:
|
|
row_ids.sort(key=lambda r: sort(table.get_record(r)))
|
|
|
|
observed_col_data = {c.col_id: [c.raw_get(r) for r in row_ids] for c in columns if c.col_id != "id"}
|
|
observed = actions.TableData(table_name, row_ids, observed_col_data)
|
|
self.assertEqualDocData({table_name: observed}, {table_name: expected},
|
|
col_names=col_names)
|
|
|
|
def assertTables(self, list_of_tables):
|
|
"""
|
|
Verifies that the given Table test-records correspond to the metadata for tables/columns.
|
|
"""
|
|
self.assertPartialData('_grist_Tables',
|
|
["id", "tableId", "primaryViewId", "summarySourceTable"],
|
|
sorted((tbl.id, tbl.tableId, tbl.primaryViewId, tbl.summarySourceTable)
|
|
for tbl in list_of_tables))
|
|
self.assertPartialData('_grist_Tables_column',
|
|
["id", "parentId", "colId", "type",
|
|
"isFormula", "formula", "summarySourceCol"],
|
|
sorted((col.id, tbl.id, col.colId, col.type,
|
|
col.isFormula, col.formula, col.summarySourceCol)
|
|
for tbl in list_of_tables
|
|
for col in tbl.columns))
|
|
|
|
def assertViews(self, list_of_views):
|
|
"""
|
|
Verifies that the given View test-records correspond to the metadata for views/sections/fields.
|
|
"""
|
|
self.assertPartialData('_grist_Views', ["id"],
|
|
[[view.id] for view in list_of_views])
|
|
self.assertPartialData('_grist_Views_section', ["id", "parentId", "parentKey", "tableRef"],
|
|
sorted((sec.id, view.id, sec.parentKey, sec.tableRef)
|
|
for view in list_of_views
|
|
for sec in view.sections))
|
|
self.assertTableData('_grist_Views_section_field', sort=(lambda r: r.parentPos),
|
|
cols="subset",
|
|
data=[["id", "parentId", "colRef"]] + sorted(
|
|
((field.id, sec.id, field.colRef)
|
|
for view in list_of_views
|
|
for sec in view.sections
|
|
for field in sec.fields), key=lambda t: t[1])
|
|
)
|
|
|
|
|
|
def load_sample(self, sample):
|
|
"""
|
|
Load the data engine with given sample data. The sample is a dict with keys "SCHEMA" and
|
|
"DATA", each a dictionary mapping table names to actions.TableData objects. "SCHEMA" contains
|
|
"_grist_Tables" and "_grist_Tables_column" tables.
|
|
"""
|
|
schema = sample["SCHEMA"]
|
|
self.engine.load_meta_tables(schema['_grist_Tables'], schema['_grist_Tables_column'])
|
|
for data in six.itervalues(sample["DATA"]):
|
|
self.engine.load_table(data)
|
|
# We used to call load_done() at the end; in practice, Grist's ActiveDoc does not call
|
|
# load_done, but applies the "Calculate" user action. Do that for more realistic tests.
|
|
self.apply_user_action(['Calculate'])
|
|
|
|
# The following are convenience methods for tests deriving from EngineTestCase.
|
|
def add_column(self, table_name, col_name, **kwargs):
|
|
return self.apply_user_action(['AddColumn', table_name, col_name, kwargs])
|
|
|
|
def modify_column(self, table_name, col_name, **kwargs):
|
|
return self.apply_user_action(['ModifyColumn', table_name, col_name, kwargs])
|
|
|
|
def remove_column(self, table_name, col_name):
|
|
return self.apply_user_action(['RemoveColumn', table_name, col_name])
|
|
|
|
def update_record(self, table_name, row_id, **kwargs):
|
|
return self.apply_user_action(['UpdateRecord', table_name, row_id, kwargs])
|
|
|
|
def add_record(self, table_name, row_id=None, **kwargs):
|
|
return self.apply_user_action(['AddRecord', table_name, row_id, kwargs])
|
|
|
|
def remove_record(self, table_name, row_id):
|
|
return self.apply_user_action(['RemoveRecord', table_name, row_id])
|
|
|
|
def update_records(self, table_name, col_names, row_data):
|
|
return self.apply_user_action(
|
|
('BulkUpdateRecord',) + testutil.table_data_from_rows(table_name, col_names, row_data))
|
|
|
|
@classmethod
|
|
def add_records_action(cls, table_name, data):
|
|
"""
|
|
Creates a BulkAddRecord action; data should be an array of rows, with first row containing
|
|
column names, with "id" column optional.
|
|
"""
|
|
col_names, row_data = data[0], data[1:]
|
|
if "id" not in col_names:
|
|
col_names = ["id"] + col_names
|
|
row_data = [[None] + r for r in row_data]
|
|
return ('BulkAddRecord',) + testutil.table_data_from_rows(table_name, col_names, row_data)
|
|
|
|
def add_records(self, table_name, col_names, row_data):
|
|
return self.apply_user_action(self.add_records_action(table_name, [col_names] + row_data))
|
|
|
|
def apply_user_action(self, user_action_repr, is_undo=False, user=None):
|
|
if not is_undo:
|
|
log.debug("Applying user action %r" % (user_action_repr,))
|
|
if self._undo_state_tracker is not None:
|
|
doc_state = self.getFullEngineData()
|
|
|
|
self.call_counts.clear()
|
|
out_actions = self.engine.apply_user_actions([useractions.from_repr(user_action_repr)], user)
|
|
out_actions.calls = self.call_counts.copy()
|
|
|
|
if not is_undo and self._undo_state_tracker is not None:
|
|
self._undo_state_tracker.append((doc_state, out_actions.undo[:]))
|
|
return out_actions
|
|
|
|
def apply_undo_actions(self, undo_actions):
|
|
"""
|
|
Applies all doc_actions together (as happens e.g. for undo).
|
|
"""
|
|
action = ["ApplyUndoActions", [actions.get_action_repr(a) for a in undo_actions]]
|
|
return self.apply_user_action(action, is_undo=True)
|
|
|
|
|
|
def test_undo(test_method):
|
|
"""
|
|
If a test method is decorated with `@test_engine.test_undo`, then we will store the state before
|
|
each apply_user_action() call, and at the end of the test, undo each user-action and compare the
|
|
state. This makes for a fairly comprehensive test of undo.
|
|
"""
|
|
@functools.wraps(test_method)
|
|
def wrapped(self):
|
|
self._undo_state_tracker = []
|
|
test_method(self)
|
|
for (expected_engine_data, undo_actions) in reversed(self._undo_state_tracker):
|
|
log.debug("Applying undo actions %r" % (undo_actions,))
|
|
self.apply_undo_actions(undo_actions)
|
|
self.assertEqualDocData(self.getFullEngineData(), expected_engine_data)
|
|
return wrapped
|
|
|
|
|
|
class TestEngine(EngineTestCase):
|
|
samples = {}
|
|
|
|
#----------------------------------------------------------------------
|
|
# Implementations of the actual script steps.
|
|
#----------------------------------------------------------------------
|
|
def process_apply_step(self, data):
|
|
"""
|
|
Processes the "APPLY" step of a test script, applying a user action, and checking the
|
|
resulting action group's return value (if present)
|
|
"""
|
|
if "USER_ACTION" in data:
|
|
user_actions = [useractions.from_repr(data.pop("USER_ACTION"))]
|
|
else:
|
|
user_actions = [useractions.from_repr(u) for u in data.pop("USER_ACTIONS")]
|
|
|
|
expected_call_counts = data.pop("CHECK_CALL_COUNTS", None)
|
|
expected_actions = data.pop("ACTIONS", {})
|
|
expected_actions.setdefault("stored", [])
|
|
expected_actions.setdefault("calc", [])
|
|
expected_actions.setdefault("undo", [])
|
|
|
|
if data:
|
|
raise ValueError("Unrecognized key %s in APPLY step" % data.popitem()[0])
|
|
|
|
self.call_counts.clear()
|
|
out_actions = self.engine.apply_user_actions(user_actions)
|
|
|
|
self.assertOutActions(out_actions, expected_actions)
|
|
if expected_call_counts:
|
|
self.assertEqual(self.call_counts, expected_call_counts)
|
|
return out_actions
|
|
|
|
#----------------------------------------------------------------------
|
|
# The runner for scripted test cases.
|
|
#----------------------------------------------------------------------
|
|
def _run_test_body(self, _name, body):
|
|
"""
|
|
Runs the actual script defined in the JSON test-script file.
|
|
"""
|
|
undo_actions = []
|
|
loaded_sample = None
|
|
for line, step, data in body:
|
|
try:
|
|
if step == "LOAD_SAMPLE":
|
|
if loaded_sample:
|
|
# pylint: disable=unsubscriptable-object
|
|
self._verify_undo_all(undo_actions, loaded_sample["DATA"])
|
|
loaded_sample = self.samples[data]
|
|
self.load_sample(loaded_sample)
|
|
elif step == "APPLY":
|
|
action_group = self.process_apply_step(data)
|
|
undo_actions.extend(action_group.undo)
|
|
elif step == "CHECK_OUTPUT":
|
|
expected_data = {}
|
|
if "USE_SAMPLE" in data:
|
|
sample = self.samples[data.pop("USE_SAMPLE")]
|
|
expected_data = sample["DATA"].copy()
|
|
expected_data.update({t: testutil.table_data_from_rows(t, tdata[0], tdata[1:])
|
|
for (t, tdata) in six.iteritems(data)})
|
|
self.assertCorrectEngineData(expected_data)
|
|
else:
|
|
raise ValueError("Unrecognized step %s in test script" % step)
|
|
except Exception as e:
|
|
prefix = "LINE %s: " % line
|
|
e.args = (prefix + e.args[0],) + e.args[1:] if e.args else (prefix,)
|
|
raise
|
|
|
|
self._verify_undo_all(undo_actions, loaded_sample["DATA"])
|
|
|
|
def _verify_undo_all(self, undo_actions, expected_data):
|
|
"""
|
|
At the end of each test, undo all and verify we get back to the originally loaded sample.
|
|
"""
|
|
self.apply_undo_actions(undo_actions)
|
|
del undo_actions[:]
|
|
self.assertCorrectEngineData(expected_data)
|
|
|
|
# TODO We need several more tests.
|
|
# 1. After a bunch of schema actions, create a new engine from the resulting schema, ensure that
|
|
# modified engine and new engine produce the same results AND the same dep_graph.
|
|
# 2. Build up a table by adding one column at a time, in "good" order and in "bad" order (with
|
|
# references to columns that will be added later)
|
|
# 3. Tear down a table in both of the orders above.
|
|
# 4. At each intermediate state of 2 and 3, new engine should produce same results as the
|
|
# modified engine (and have the same state such as dep_graph).
|
|
|
|
sample1 = {
|
|
"SCHEMA": [
|
|
[1, "Address", [
|
|
[11, "city", "Text", False, "", "", ""],
|
|
[12, "state", "Text", False, "", "", ""],
|
|
[13, "amount", "Numeric", False, "", "", ""],
|
|
]]
|
|
],
|
|
"DATA": {
|
|
"Address": [
|
|
["id", "city", "state", "amount" ],
|
|
[ 21, "New York", "NY" , 1 ],
|
|
[ 22, "Albany", "NY" , 2 ],
|
|
]
|
|
}
|
|
}
|
|
|
|
def test_no_private_fields(self):
|
|
self.load_sample(testutil.parse_test_sample(self.sample1))
|
|
|
|
data = self.engine.fetch_table("_grist_Tables", private=True)
|
|
self.assertIn('tableId', data.columns)
|
|
self.assertIn('columns', data.columns)
|
|
self.assertIn('viewSections', data.columns)
|
|
|
|
data = self.engine.fetch_table("_grist_Tables")
|
|
self.assertIn('tableId', data.columns)
|
|
self.assertNotIn('columns', data.columns)
|
|
self.assertNotIn('viewSections', data.columns)
|
|
|
|
def test_fetch_table_query(self):
|
|
self.load_sample(testutil.parse_test_sample(self.sample1))
|
|
|
|
col_names = ["id", "city", "state", "amount" ]
|
|
data = self.engine.fetch_table('Address', query={'state': ['NY']})
|
|
self.assertEqualDocData({'Address': data},
|
|
{'Address': testutil.table_data_from_rows('Address', col_names, [
|
|
[ 21, "New York", "NY" , 1 ],
|
|
[ 22, "Albany", "NY" , 2 ],
|
|
])})
|
|
|
|
data = self.engine.fetch_table('Address', query={'city': ['New York'], 'state': ['NY']})
|
|
self.assertEqualDocData({'Address': data},
|
|
{'Address': testutil.table_data_from_rows('Address', col_names, [
|
|
[ 21, "New York", "NY" , 1 ],
|
|
])})
|
|
|
|
data = self.engine.fetch_table('Address', query={'amount': [2.0]})
|
|
self.assertEqualDocData({'Address': data},
|
|
{'Address': testutil.table_data_from_rows('Address', col_names, [
|
|
[ 22, "Albany", "NY" , 2 ],
|
|
])})
|
|
|
|
data = self.engine.fetch_table('Address', query={'city': ['New York'], 'amount': [2.0]})
|
|
self.assertEqualDocData({'Address': data},
|
|
{'Address': testutil.table_data_from_rows('Address', col_names, [])})
|
|
|
|
data = self.engine.fetch_table('Address', query={'city': ['New York'], 'amount': [1.0, 2.0]})
|
|
self.assertEqualDocData({'Address': data},
|
|
{'Address': testutil.table_data_from_rows('Address', col_names, [
|
|
[ 21, "New York", "NY" , 1 ],
|
|
])})
|
|
|
|
# Ensure empty filter list works too.
|
|
data = self.engine.fetch_table('Address', query={'city': ['New York'], 'amount': []})
|
|
self.assertEqualDocData({'Address': data},
|
|
{'Address': testutil.table_data_from_rows('Address', col_names, [])})
|
|
|
|
def test_schema_restore_on_error(self):
|
|
# Simulate an error inside a DocAction, and make sure we restore the schema (don't leave it in
|
|
# inconsistent with metadata).
|
|
self.load_sample(testutil.parse_test_sample(self.sample1))
|
|
with self.assertRaisesRegex(AttributeError, r"'BAD'"):
|
|
self.add_column('Address', 'bad', isFormula=False, type="BAD")
|
|
self.engine.assert_schema_consistent()
|
|
|
|
|
|
def create_tests_from_script(samples, test_cases):
|
|
"""
|
|
Dynamically create tests from a file containing a JSON spec for test cases. The reason for doing
|
|
it this way is because the same JSON spec is used to test Python and JS code.
|
|
|
|
Tests are created as methods to a TestCase. It's done on import, so that python unittest feature
|
|
to run only particular test cases can apply to these cases too.
|
|
"""
|
|
TestEngine.samples = samples
|
|
for case in test_cases:
|
|
create_test_case("test_" + case["TEST_CASE"], case["BODY"])
|
|
|
|
def create_test_case(name, body):
|
|
"""
|
|
Helper for create_tests_from_script, which creates a single test case.
|
|
"""
|
|
def run(self):
|
|
self._run_test_body(name, body)
|
|
setattr(TestEngine, name, run)
|
|
|
|
# Convert observed/expected action into a comparable form.
|
|
def get_comparable_repr(a):
|
|
if isinstance(a, (list, int)):
|
|
return a
|
|
return actions.get_action_repr(a)
|
|
|
|
# Parse and create test cases on module load. This way the python unittest feature to run only
|
|
# particular test cases can apply to these cases too.
|
|
create_tests_from_script(*testutil.parse_testscript())
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|