mirror of
https://github.com/gristlabs/grist-core.git
synced 2024-10-27 20:44:07 +00:00
51a195bd94
* add support for conversational state to assistance endpoint This refactors the assistance code somewhat, to allow carrying along some conversational state. It extends the OpenAI-flavored assistant to make use of that state to have a conversation. The front-end is tweaked a little bit to allow for replies that don't have any code in them (though I didn't get into formatting such replies nicely). Currently tested primarily through the runCompletion script, which has been extended a bit to allow testing simulated conversations (where an error is pasted in follow-up, or an expected-vs-actual comparison). Co-authored-by: George Gevoian <85144792+georgegevoian@users.noreply.github.com>
322 lines
10 KiB
TypeScript
322 lines
10 KiB
TypeScript
/**
|
|
* Module with functions used for AI formula assistance.
|
|
*/
|
|
|
|
import {AssistanceRequest, AssistanceResponse} from 'app/common/AssistancePrompts';
|
|
import {delay} from 'app/common/delay';
|
|
import {DocAction} from 'app/common/DocActions';
|
|
import log from 'app/server/lib/log';
|
|
import fetch from 'node-fetch';
|
|
|
|
export const DEPS = { fetch };
|
|
|
|
/**
|
|
* An assistant can help a user do things with their document,
|
|
* by interfacing with an external LLM endpoint.
|
|
*/
|
|
export interface Assistant {
|
|
apply(doc: AssistanceDoc, request: AssistanceRequest): Promise<AssistanceResponse>;
|
|
}
|
|
|
|
/**
|
|
* Document-related methods for use in the implementation of assistants.
|
|
* Somewhat ad-hoc currently.
|
|
*/
|
|
export interface AssistanceDoc {
|
|
/**
|
|
* Generate a particular prompt coded in the data engine for some reason.
|
|
* It makes python code for some tables, and starts a function body with
|
|
* the given docstring.
|
|
* Marked "V1" to suggest that it is a particular prompt and it would
|
|
* be great to try variants.
|
|
*/
|
|
assistanceSchemaPromptV1(options: AssistanceSchemaPromptV1Context): Promise<string>;
|
|
|
|
/**
|
|
* Some tweaks to a formula after it has been generated.
|
|
*/
|
|
assistanceFormulaTweak(txt: string): Promise<string>;
|
|
}
|
|
|
|
export interface AssistanceSchemaPromptV1Context {
|
|
tableId: string,
|
|
colId: string,
|
|
docString: string,
|
|
}
|
|
|
|
/**
|
|
* A flavor of assistant for use with the OpenAI API.
|
|
* Tested primarily with text-davinci-002 and gpt-3.5-turbo.
|
|
*/
|
|
export class OpenAIAssistant implements Assistant {
|
|
private _apiKey: string;
|
|
private _model: string;
|
|
private _chatMode: boolean;
|
|
private _endpoint: string;
|
|
|
|
public constructor() {
|
|
const apiKey = process.env.OPENAI_API_KEY;
|
|
if (!apiKey) {
|
|
throw new Error('OPENAI_API_KEY not set');
|
|
}
|
|
this._apiKey = apiKey;
|
|
this._model = process.env.COMPLETION_MODEL || "text-davinci-002";
|
|
this._chatMode = this._model.includes('turbo');
|
|
this._endpoint = `https://api.openai.com/v1/${this._chatMode ? 'chat/' : ''}completions`;
|
|
}
|
|
|
|
public async apply(doc: AssistanceDoc, request: AssistanceRequest): Promise<AssistanceResponse> {
|
|
const messages = request.state?.messages || [];
|
|
const chatMode = this._chatMode;
|
|
if (chatMode) {
|
|
if (messages.length === 0) {
|
|
messages.push({
|
|
role: 'system',
|
|
content: 'The user gives you one or more Python classes, ' +
|
|
'with one last method that needs completing. Write the ' +
|
|
'method body as a single code block, ' +
|
|
'including the docstring the user gave. ' +
|
|
'Just give the Python code as a markdown block, ' +
|
|
'do not give any introduction, that will just be ' +
|
|
'awkward for the user when copying and pasting. ' +
|
|
'You are working with Grist, an environment very like ' +
|
|
'regular Python except `rec` (like record) is used ' +
|
|
'instead of `self`. ' +
|
|
'Include at least one `return` statement or the method ' +
|
|
'will fail, disappointing the user. ' +
|
|
'Your answer should be the body of a single method, ' +
|
|
'not a class, and should not include `dataclass` or ' +
|
|
'`class` since the user is counting on you to provide ' +
|
|
'a single method. Thanks!'
|
|
});
|
|
messages.push({
|
|
role: 'user', content: await makeSchemaPromptV1(doc, request),
|
|
});
|
|
} else {
|
|
if (request.regenerate) {
|
|
if (messages[messages.length - 1].role !== 'user') {
|
|
messages.pop();
|
|
}
|
|
}
|
|
messages.push({
|
|
role: 'user', content: request.text,
|
|
});
|
|
}
|
|
} else {
|
|
messages.length = 0;
|
|
messages.push({
|
|
role: 'user', content: await makeSchemaPromptV1(doc, request),
|
|
});
|
|
}
|
|
|
|
const apiResponse = await DEPS.fetch(
|
|
this._endpoint,
|
|
{
|
|
method: "POST",
|
|
headers: {
|
|
"Authorization": `Bearer ${this._apiKey}`,
|
|
"Content-Type": "application/json",
|
|
},
|
|
body: JSON.stringify({
|
|
...(!this._chatMode ? {
|
|
prompt: messages[messages.length - 1].content,
|
|
} : { messages }),
|
|
max_tokens: 1500,
|
|
temperature: 0,
|
|
model: this._model,
|
|
stop: this._chatMode ? undefined : ["\n\n"],
|
|
}),
|
|
},
|
|
);
|
|
if (apiResponse.status !== 200) {
|
|
log.error(`OpenAI API returned ${apiResponse.status}: ${await apiResponse.text()}`);
|
|
throw new Error(`OpenAI API returned status ${apiResponse.status}`);
|
|
}
|
|
const result = await apiResponse.json();
|
|
let completion: string = String(chatMode ? result.choices[0].message.content : result.choices[0].text);
|
|
const reply = completion;
|
|
const history = { messages };
|
|
if (chatMode) {
|
|
history.messages.push(result.choices[0].message);
|
|
// This model likes returning markdown. Code will typically
|
|
// be in a code block with ``` delimiters.
|
|
let lines = completion.split('\n');
|
|
if (lines[0].startsWith('```')) {
|
|
lines.shift();
|
|
completion = lines.join('\n');
|
|
const parts = completion.split('```');
|
|
if (parts.length > 1) {
|
|
completion = parts[0];
|
|
}
|
|
lines = completion.split('\n');
|
|
}
|
|
|
|
// This model likes repeating the function signature and
|
|
// docstring, so we try to strip that out.
|
|
completion = lines.join('\n');
|
|
while (completion.includes('"""')) {
|
|
const parts = completion.split('"""');
|
|
completion = parts[parts.length - 1];
|
|
}
|
|
|
|
// If there's no code block, don't treat the answer as a formula.
|
|
if (!reply.includes('```')) {
|
|
completion = '';
|
|
}
|
|
}
|
|
|
|
const response = await completionToResponse(doc, request, completion, reply);
|
|
if (chatMode) {
|
|
response.state = history;
|
|
}
|
|
return response;
|
|
}
|
|
}
|
|
|
|
export class HuggingFaceAssistant implements Assistant {
|
|
private _apiKey: string;
|
|
private _completionUrl: string;
|
|
|
|
public constructor() {
|
|
const apiKey = process.env.HUGGINGFACE_API_KEY;
|
|
if (!apiKey) {
|
|
throw new Error('HUGGINGFACE_API_KEY not set');
|
|
}
|
|
this._apiKey = apiKey;
|
|
// COMPLETION_MODEL values I've tried:
|
|
// - codeparrot/codeparrot
|
|
// - NinedayWang/PolyCoder-2.7B
|
|
// - NovelAI/genji-python-6B
|
|
let completionUrl = process.env.COMPLETION_URL;
|
|
if (!completionUrl) {
|
|
if (process.env.COMPLETION_MODEL) {
|
|
completionUrl = `https://api-inference.huggingface.co/models/${process.env.COMPLETION_MODEL}`;
|
|
} else {
|
|
completionUrl = 'https://api-inference.huggingface.co/models/NovelAI/genji-python-6B';
|
|
}
|
|
}
|
|
this._completionUrl = completionUrl;
|
|
|
|
}
|
|
|
|
public async apply(doc: AssistanceDoc, request: AssistanceRequest): Promise<AssistanceResponse> {
|
|
if (request.state) {
|
|
throw new Error("HuggingFaceAssistant does not support state");
|
|
}
|
|
const prompt = await makeSchemaPromptV1(doc, request);
|
|
const response = await DEPS.fetch(
|
|
this._completionUrl,
|
|
{
|
|
method: "POST",
|
|
headers: {
|
|
"Authorization": `Bearer ${this._apiKey}`,
|
|
"Content-Type": "application/json",
|
|
},
|
|
body: JSON.stringify({
|
|
inputs: prompt,
|
|
parameters: {
|
|
return_full_text: false,
|
|
max_new_tokens: 50,
|
|
},
|
|
}),
|
|
},
|
|
);
|
|
if (response.status === 503) {
|
|
log.error(`Sleeping for 10s - HuggingFace API returned ${response.status}: ${await response.text()}`);
|
|
await delay(10000);
|
|
}
|
|
if (response.status !== 200) {
|
|
const text = await response.text();
|
|
log.error(`HuggingFace API returned ${response.status}: ${text}`);
|
|
throw new Error(`HuggingFace API returned status ${response.status}: ${text}`);
|
|
}
|
|
const result = await response.json();
|
|
let completion = result[0].generated_text;
|
|
completion = completion.split('\n\n')[0];
|
|
return completionToResponse(doc, request, completion);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Instantiate an assistant, based on environment variables.
|
|
*/
|
|
function getAssistant() {
|
|
if (process.env.OPENAI_API_KEY) {
|
|
return new OpenAIAssistant();
|
|
}
|
|
if (process.env.HUGGINGFACE_API_KEY) {
|
|
return new HuggingFaceAssistant();
|
|
}
|
|
throw new Error('Please set OPENAI_API_KEY or HUGGINGFACE_API_KEY');
|
|
}
|
|
|
|
/**
|
|
* Service a request for assistance, with a little retry logic
|
|
* since these endpoints can be a bit flakey.
|
|
*/
|
|
export async function sendForCompletion(doc: AssistanceDoc,
|
|
request: AssistanceRequest): Promise<AssistanceResponse> {
|
|
const assistant = getAssistant();
|
|
|
|
let retries: number = 0;
|
|
|
|
let response: AssistanceResponse|null = null;
|
|
while(retries++ < 3) {
|
|
try {
|
|
response = await assistant.apply(doc, request);
|
|
break;
|
|
} catch(e) {
|
|
log.error(`Completion error: ${e}`);
|
|
await delay(1000);
|
|
}
|
|
}
|
|
if (!response) {
|
|
throw new Error('Failed to get response from assistant');
|
|
}
|
|
return response;
|
|
}
|
|
|
|
async function makeSchemaPromptV1(doc: AssistanceDoc, request: AssistanceRequest) {
|
|
if (request.context.type !== 'formula') {
|
|
throw new Error('makeSchemaPromptV1 only works for formulas');
|
|
}
|
|
return doc.assistanceSchemaPromptV1({
|
|
tableId: request.context.tableId,
|
|
colId: request.context.colId,
|
|
docString: request.text,
|
|
});
|
|
}
|
|
|
|
async function completionToResponse(doc: AssistanceDoc, request: AssistanceRequest,
|
|
completion: string, reply?: string): Promise<AssistanceResponse> {
|
|
if (request.context.type !== 'formula') {
|
|
throw new Error('completionToResponse only works for formulas');
|
|
}
|
|
completion = await doc.assistanceFormulaTweak(completion);
|
|
// A leading newline is common.
|
|
if (completion.charAt(0) === '\n') {
|
|
completion = completion.slice(1);
|
|
}
|
|
// If all non-empty lines have four spaces, remove those spaces.
|
|
// They are common for GPT-3.5, which matches the prompt carefully.
|
|
const lines = completion.split('\n');
|
|
const ok = lines.every(line => line === '\n' || line.startsWith(' '));
|
|
if (ok) {
|
|
completion = lines.map(line => line === '\n' ? line : line.slice(4)).join('\n');
|
|
}
|
|
|
|
// Suggest an action only if the completion is non-empty (that is,
|
|
// it actually looked like code).
|
|
const suggestedActions: DocAction[] = completion ? [[
|
|
"ModifyColumn",
|
|
request.context.tableId,
|
|
request.context.colId, {
|
|
formula: completion,
|
|
}
|
|
]] : [];
|
|
return {
|
|
suggestedActions,
|
|
reply,
|
|
};
|
|
}
|