mirror of
https://github.com/gristlabs/grist-core.git
synced 2024-10-27 20:44:07 +00:00
0a34292536
Summary: Also fixes a few bugs with some telemetry events not being recorded. Test Plan: Manual. Reviewers: paulfitz Reviewed By: paulfitz Differential Revision: https://phab.getgrist.com/D3960
436 lines
14 KiB
TypeScript
436 lines
14 KiB
TypeScript
/**
|
|
* Module with functions used for AI formula assistance.
|
|
*/
|
|
|
|
import {AssistanceMessage, AssistanceRequest, AssistanceResponse} from 'app/common/AssistancePrompts';
|
|
import {delay} from 'app/common/delay';
|
|
import {DocAction} from 'app/common/DocActions';
|
|
import {ActiveDoc} from 'app/server/lib/ActiveDoc';
|
|
import {OptDocSession} from 'app/server/lib/DocSession';
|
|
import log from 'app/server/lib/log';
|
|
import fetch from 'node-fetch';
|
|
|
|
// These are mocked/replaced in tests.
|
|
// fetch is also replacing in the runCompletion script to add caching.
|
|
export const DEPS = { fetch, delayTime: 1000 };
|
|
|
|
/**
|
|
* An assistant can help a user do things with their document,
|
|
* by interfacing with an external LLM endpoint.
|
|
*/
|
|
interface Assistant {
|
|
apply(session: OptDocSession, doc: AssistanceDoc, request: AssistanceRequest): Promise<AssistanceResponse>;
|
|
}
|
|
|
|
/**
|
|
* Document-related methods for use in the implementation of assistants.
|
|
* Somewhat ad-hoc currently.
|
|
*/
|
|
interface AssistanceDoc extends ActiveDoc {
|
|
/**
|
|
* Generate a particular prompt coded in the data engine for some reason.
|
|
* It makes python code for some tables, and starts a function body with
|
|
* the given docstring.
|
|
* Marked "V1" to suggest that it is a particular prompt and it would
|
|
* be great to try variants.
|
|
*/
|
|
assistanceSchemaPromptV1(session: OptDocSession, options: AssistanceSchemaPromptV1Context): Promise<string>;
|
|
/**
|
|
* Some tweaks to a formula after it has been generated.
|
|
*/
|
|
assistanceFormulaTweak(txt: string): Promise<string>;
|
|
}
|
|
|
|
export interface AssistanceSchemaPromptV1Context {
|
|
tableId: string,
|
|
colId: string,
|
|
docString: string,
|
|
}
|
|
|
|
class SwitchToLongerContext extends Error {
|
|
}
|
|
|
|
class NonRetryableError extends Error {
|
|
}
|
|
|
|
class TokensExceededFirstMessage extends NonRetryableError {
|
|
constructor() {
|
|
super(
|
|
"Sorry, there's too much information for the AI to process. " +
|
|
"You'll need to either shorten your message or delete some columns."
|
|
);
|
|
}
|
|
}
|
|
|
|
class TokensExceededLaterMessage extends NonRetryableError {
|
|
constructor() {
|
|
super(
|
|
"Sorry, there's too much information for the AI to process. " +
|
|
"You'll need to either shorten your message, restart the conversation, or delete some columns."
|
|
);
|
|
}
|
|
}
|
|
|
|
class QuotaExceededError extends NonRetryableError {
|
|
constructor() {
|
|
super(
|
|
"Sorry, the assistant is facing some long term capacity issues. " +
|
|
"Maybe try again tomorrow."
|
|
);
|
|
}
|
|
}
|
|
|
|
class RetryableError extends Error {
|
|
constructor(message: string) {
|
|
super(
|
|
"Sorry, the assistant is unavailable right now. " +
|
|
"Try again in a few minutes. \n" +
|
|
`(${message})`
|
|
);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* A flavor of assistant for use with the OpenAI API.
|
|
* Tested primarily with gpt-3.5-turbo.
|
|
*/
|
|
export class OpenAIAssistant implements Assistant {
|
|
public static DEFAULT_MODEL = "gpt-3.5-turbo-0613";
|
|
public static LONGER_CONTEXT_MODEL = "gpt-3.5-turbo-16k-0613";
|
|
|
|
private _apiKey: string;
|
|
private _chatMode: boolean;
|
|
private _endpoint: string;
|
|
|
|
public constructor() {
|
|
const apiKey = process.env.OPENAI_API_KEY;
|
|
if (!apiKey) {
|
|
throw new Error('OPENAI_API_KEY not set');
|
|
}
|
|
this._apiKey = apiKey;
|
|
this._chatMode = true;
|
|
if (!this._chatMode) {
|
|
throw new Error('Only turbo models are currently supported');
|
|
}
|
|
this._endpoint = `https://api.openai.com/v1/${this._chatMode ? 'chat/' : ''}completions`;
|
|
}
|
|
|
|
public async apply(
|
|
optSession: OptDocSession, doc: AssistanceDoc, request: AssistanceRequest): Promise<AssistanceResponse> {
|
|
const messages = request.state?.messages || [];
|
|
const newMessages = [];
|
|
const chatMode = this._chatMode;
|
|
if (chatMode) {
|
|
if (messages.length === 0) {
|
|
newMessages.push({
|
|
role: 'system',
|
|
content: 'You are a helpful assistant for a user of software called Grist. ' +
|
|
'Below are one or more Python classes. ' +
|
|
'The last method needs completing. ' +
|
|
"The user will probably give a description of what they want the method (a 'formula') to return. " +
|
|
'If so, your response should include the method body as Python code in a markdown block. ' +
|
|
'Do not include the class or method signature, just the method body. ' +
|
|
'If your code starts with `class`, `@dataclass`, or `def` it will fail. Only give the method body. ' +
|
|
'You can import modules inside the method body if needed. ' +
|
|
'You cannot define additional functions or methods. ' +
|
|
'The method should be a pure function that performs some computation and returns a result. ' +
|
|
'It CANNOT perform any side effects such as adding/removing/modifying rows/columns/cells/tables/etc. ' +
|
|
'It CANNOT interact with files/databases/networks/etc. ' +
|
|
'It CANNOT display images/charts/graphs/maps/etc. ' +
|
|
'If the user asks for these things, tell them that you cannot help. ' +
|
|
'The method uses `rec` instead of `self` as the first parameter.\n\n' +
|
|
'```python\n' +
|
|
await makeSchemaPromptV1(optSession, doc, request) +
|
|
'\n```',
|
|
});
|
|
newMessages.push({
|
|
role: 'user', content: request.text,
|
|
});
|
|
} else {
|
|
if (request.regenerate) {
|
|
if (messages[messages.length - 1].role !== 'user') {
|
|
messages.pop();
|
|
}
|
|
}
|
|
newMessages.push({
|
|
role: 'user', content: request.text,
|
|
});
|
|
}
|
|
} else {
|
|
messages.length = 0;
|
|
newMessages.push({
|
|
role: 'user', content: await makeSchemaPromptV1(optSession, doc, request),
|
|
});
|
|
}
|
|
messages.push(...newMessages);
|
|
|
|
const newMessagesStartIndex = messages.length - newMessages.length;
|
|
for (const [index, {role, content}] of newMessages.entries()) {
|
|
doc.logTelemetryEvent(optSession, 'assistantSend', {
|
|
full: {
|
|
conversationId: request.conversationId,
|
|
context: request.context,
|
|
prompt: {
|
|
index: newMessagesStartIndex + index,
|
|
role,
|
|
content,
|
|
},
|
|
},
|
|
});
|
|
}
|
|
|
|
const completion: string = await this._getCompletion(messages);
|
|
const response = await completionToResponse(doc, request, completion, completion);
|
|
if (chatMode) {
|
|
response.state = {messages};
|
|
}
|
|
doc.logTelemetryEvent(optSession, 'assistantReceive', {
|
|
full: {
|
|
conversationId: request.conversationId,
|
|
context: request.context,
|
|
message: {
|
|
index: messages.length - 1,
|
|
content: completion,
|
|
},
|
|
suggestedFormula: (response.suggestedActions[0]?.[3] as any)?.formula,
|
|
},
|
|
});
|
|
return response;
|
|
}
|
|
|
|
private async _fetchCompletion(messages: AssistanceMessage[], longerContext: boolean) {
|
|
const apiResponse = await DEPS.fetch(
|
|
this._endpoint,
|
|
{
|
|
method: "POST",
|
|
headers: {
|
|
"Authorization": `Bearer ${this._apiKey}`,
|
|
"Content-Type": "application/json",
|
|
},
|
|
body: JSON.stringify({
|
|
...(!this._chatMode ? {
|
|
prompt: messages[messages.length - 1].content,
|
|
} : {messages}),
|
|
temperature: 0,
|
|
model: longerContext ? OpenAIAssistant.LONGER_CONTEXT_MODEL : OpenAIAssistant.DEFAULT_MODEL,
|
|
stop: this._chatMode ? undefined : ["\n\n"],
|
|
}),
|
|
},
|
|
);
|
|
const resultText = await apiResponse.text();
|
|
const result = JSON.parse(resultText);
|
|
const errorCode = result.error?.code;
|
|
if (errorCode === "context_length_exceeded" || result.choices?.[0].finish_reason === "length") {
|
|
if (!longerContext) {
|
|
log.info("Switching to longer context model...");
|
|
throw new SwitchToLongerContext();
|
|
} else if (messages.length <= 2) {
|
|
throw new TokensExceededFirstMessage();
|
|
} else {
|
|
throw new TokensExceededLaterMessage();
|
|
}
|
|
}
|
|
if (errorCode === "insufficient_quota") {
|
|
log.error("OpenAI billing quota exceeded!!!");
|
|
throw new QuotaExceededError();
|
|
}
|
|
if (apiResponse.status !== 200) {
|
|
throw new Error(`OpenAI API returned status ${apiResponse.status}: ${resultText}`);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
private async _fetchCompletionWithRetries(messages: AssistanceMessage[], longerContext: boolean): Promise<any> {
|
|
const maxAttempts = 3;
|
|
for (let attempt = 1; ; attempt++) {
|
|
try {
|
|
return await this._fetchCompletion(messages, longerContext);
|
|
} catch (e) {
|
|
if (e instanceof SwitchToLongerContext) {
|
|
return await this._fetchCompletionWithRetries(messages, true);
|
|
} else if (e instanceof NonRetryableError) {
|
|
throw e;
|
|
} else if (attempt === maxAttempts) {
|
|
throw new RetryableError(e.toString());
|
|
}
|
|
log.warn(`Waiting and then retrying after error: ${e}`);
|
|
await delay(DEPS.delayTime);
|
|
}
|
|
}
|
|
}
|
|
|
|
private async _getCompletion(messages: AssistanceMessage[]) {
|
|
const result = await this._fetchCompletionWithRetries(messages, false);
|
|
const completion: string = String(this._chatMode ? result.choices[0].message.content : result.choices[0].text);
|
|
if (this._chatMode) {
|
|
messages.push(result.choices[0].message);
|
|
}
|
|
return completion;
|
|
}
|
|
}
|
|
|
|
export class HuggingFaceAssistant implements Assistant {
|
|
private _apiKey: string;
|
|
private _completionUrl: string;
|
|
|
|
public constructor() {
|
|
const apiKey = process.env.HUGGINGFACE_API_KEY;
|
|
if (!apiKey) {
|
|
throw new Error('HUGGINGFACE_API_KEY not set');
|
|
}
|
|
this._apiKey = apiKey;
|
|
// COMPLETION_MODEL values I've tried:
|
|
// - codeparrot/codeparrot
|
|
// - NinedayWang/PolyCoder-2.7B
|
|
// - NovelAI/genji-python-6B
|
|
let completionUrl = process.env.COMPLETION_URL;
|
|
if (!completionUrl) {
|
|
if (process.env.COMPLETION_MODEL) {
|
|
completionUrl = `https://api-inference.huggingface.co/models/${process.env.COMPLETION_MODEL}`;
|
|
} else {
|
|
completionUrl = 'https://api-inference.huggingface.co/models/NovelAI/genji-python-6B';
|
|
}
|
|
}
|
|
this._completionUrl = completionUrl;
|
|
|
|
}
|
|
|
|
public async apply(
|
|
optSession: OptDocSession, doc: AssistanceDoc, request: AssistanceRequest): Promise<AssistanceResponse> {
|
|
if (request.state) {
|
|
throw new Error("HuggingFaceAssistant does not support state");
|
|
}
|
|
const prompt = await makeSchemaPromptV1(optSession, doc, request);
|
|
const response = await DEPS.fetch(
|
|
this._completionUrl,
|
|
{
|
|
method: "POST",
|
|
headers: {
|
|
"Authorization": `Bearer ${this._apiKey}`,
|
|
"Content-Type": "application/json",
|
|
},
|
|
body: JSON.stringify({
|
|
inputs: prompt,
|
|
parameters: {
|
|
return_full_text: false,
|
|
max_new_tokens: 50,
|
|
},
|
|
}),
|
|
},
|
|
);
|
|
if (response.status === 503) {
|
|
log.error(`Sleeping for 10s - HuggingFace API returned ${response.status}: ${await response.text()}`);
|
|
await delay(10000);
|
|
}
|
|
if (response.status !== 200) {
|
|
const text = await response.text();
|
|
log.error(`HuggingFace API returned ${response.status}: ${text}`);
|
|
throw new Error(`HuggingFace API returned status ${response.status}: ${text}`);
|
|
}
|
|
const result = await response.json();
|
|
let completion = result[0].generated_text;
|
|
completion = completion.split('\n\n')[0];
|
|
return completionToResponse(doc, request, completion);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Test assistant that mimics ChatGPT and just returns the input.
|
|
*/
|
|
class EchoAssistant implements Assistant {
|
|
public async apply(sess: OptDocSession, doc: AssistanceDoc, request: AssistanceRequest): Promise<AssistanceResponse> {
|
|
if (request.text === "ERROR") {
|
|
throw new Error(`ERROR`);
|
|
}
|
|
const messages = request.state?.messages || [];
|
|
if (messages.length === 0) {
|
|
messages.push({
|
|
role: 'system',
|
|
content: ''
|
|
});
|
|
messages.push({
|
|
role: 'user', content: request.text,
|
|
});
|
|
} else {
|
|
if (request.regenerate) {
|
|
if (messages[messages.length - 1].role !== 'user') {
|
|
messages.pop();
|
|
}
|
|
}
|
|
messages.push({
|
|
role: 'user', content: request.text,
|
|
});
|
|
}
|
|
const completion = request.text;
|
|
const history = { messages };
|
|
history.messages.push({
|
|
role: 'assistant',
|
|
content: completion,
|
|
});
|
|
const response = await completionToResponse(doc, request, completion, completion);
|
|
response.state = history;
|
|
return response;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Instantiate an assistant, based on environment variables.
|
|
*/
|
|
export function getAssistant() {
|
|
if (process.env.OPENAI_API_KEY === 'test') {
|
|
return new EchoAssistant();
|
|
}
|
|
if (process.env.OPENAI_API_KEY) {
|
|
return new OpenAIAssistant();
|
|
}
|
|
// Maintaining this is too much of a burden for now.
|
|
// if (process.env.HUGGINGFACE_API_KEY) {
|
|
// return new HuggingFaceAssistant();
|
|
// }
|
|
throw new Error('Please set OPENAI_API_KEY');
|
|
}
|
|
|
|
/**
|
|
* Service a request for assistance.
|
|
*/
|
|
export async function sendForCompletion(
|
|
optSession: OptDocSession,
|
|
doc: AssistanceDoc,
|
|
request: AssistanceRequest,
|
|
): Promise<AssistanceResponse> {
|
|
const assistant = getAssistant();
|
|
return await assistant.apply(optSession, doc, request);
|
|
}
|
|
|
|
async function makeSchemaPromptV1(session: OptDocSession, doc: AssistanceDoc, request: AssistanceRequest) {
|
|
if (request.context.type !== 'formula') {
|
|
throw new Error('makeSchemaPromptV1 only works for formulas');
|
|
}
|
|
return doc.assistanceSchemaPromptV1(session, {
|
|
tableId: request.context.tableId,
|
|
colId: request.context.colId,
|
|
docString: request.text,
|
|
});
|
|
}
|
|
|
|
async function completionToResponse(doc: AssistanceDoc, request: AssistanceRequest,
|
|
completion: string, reply?: string): Promise<AssistanceResponse> {
|
|
if (request.context.type !== 'formula') {
|
|
throw new Error('completionToResponse only works for formulas');
|
|
}
|
|
completion = await doc.assistanceFormulaTweak(completion);
|
|
// Suggest an action only if the completion is non-empty (that is,
|
|
// it actually looked like code).
|
|
const suggestedActions: DocAction[] = completion ? [[
|
|
"ModifyColumn",
|
|
request.context.tableId,
|
|
request.context.colId, {
|
|
formula: completion,
|
|
}
|
|
]] : [];
|
|
return {
|
|
suggestedActions,
|
|
reply,
|
|
};
|
|
}
|