gristlabs_grist-core/app/server/lib/Assistance.ts

336 lines
11 KiB
TypeScript
Raw Normal View History

/**
* Module with functions used for AI formula assistance.
*/
import {AssistanceRequest, AssistanceResponse} from 'app/common/AssistancePrompts';
import {delay} from 'app/common/delay';
import {DocAction} from 'app/common/DocActions';
import {OptDocSession} from 'app/server/lib/DocSession';
import log from 'app/server/lib/log';
import fetch from 'node-fetch';
export const DEPS = { fetch };
/**
* An assistant can help a user do things with their document,
* by interfacing with an external LLM endpoint.
*/
export interface Assistant {
apply(session: OptDocSession, doc: AssistanceDoc, request: AssistanceRequest): Promise<AssistanceResponse>;
}
/**
* Document-related methods for use in the implementation of assistants.
* Somewhat ad-hoc currently.
*/
export interface AssistanceDoc {
/**
* Generate a particular prompt coded in the data engine for some reason.
* It makes python code for some tables, and starts a function body with
* the given docstring.
* Marked "V1" to suggest that it is a particular prompt and it would
* be great to try variants.
*/
assistanceSchemaPromptV1(session: OptDocSession, options: AssistanceSchemaPromptV1Context): Promise<string>;
/**
* Some tweaks to a formula after it has been generated.
*/
assistanceFormulaTweak(txt: string): Promise<string>;
}
export interface AssistanceSchemaPromptV1Context {
tableId: string,
colId: string,
docString: string,
}
/**
* A flavor of assistant for use with the OpenAI API.
(core) Modify prompt so that model may say it cannot help with certain requests. Summary: This tweaks the prompting so that the user's message is given on its own instead of as a docstring within Python. This is so that the prompt makes sense when: - the user asks a question such as "Can you write me a formula which does ...?" rather than describing their formula as a docstring would, or - the user sends a message that doesn't ask for a formula at all (https://grist.slack.com/archives/C0234CPPXPA/p1687699944315069?thread_ts=1687698078.832209&cid=C0234CPPXPA) Also added wording for the model to refuse when the user asks for something that the model cannot do. Because the code (and maybe in some cases the model) for non-ChatGPT models relies on the prompt consisting entirely of Python code produced by the data engine (which no longer contains the user's message) those code paths have been disabled for now. Updating them now seems like undesirable drag, I think it'd be better to revisit this when iteration/experimentation has slowed down and stabilised. Test Plan: Added entries to the formula dataset where the response shouldn't contain a formula, indicated by the value `1` for the new column `no_formula`. This is somewhat successful, as the model does refuse to help in some of the new test cases, but not all. Performance on existing entries also seems a bit worse, but it's hard to distinguish this from random noise. Hopefully this can be remedied in the future with more work, e.g. automatic followup messages containing example inputs and outputs. Reviewers: paulfitz Reviewed By: paulfitz Subscribers: dsagal Differential Revision: https://phab.getgrist.com/D3936
2023-06-27 11:39:15 +00:00
* Tested primarily with gpt-3.5-turbo.
*/
export class OpenAIAssistant implements Assistant {
private _apiKey: string;
private _model: string;
private _chatMode: boolean;
private _endpoint: string;
public constructor() {
const apiKey = process.env.OPENAI_API_KEY;
if (!apiKey) {
throw new Error('OPENAI_API_KEY not set');
}
this._apiKey = apiKey;
(core) Modify prompt so that model may say it cannot help with certain requests. Summary: This tweaks the prompting so that the user's message is given on its own instead of as a docstring within Python. This is so that the prompt makes sense when: - the user asks a question such as "Can you write me a formula which does ...?" rather than describing their formula as a docstring would, or - the user sends a message that doesn't ask for a formula at all (https://grist.slack.com/archives/C0234CPPXPA/p1687699944315069?thread_ts=1687698078.832209&cid=C0234CPPXPA) Also added wording for the model to refuse when the user asks for something that the model cannot do. Because the code (and maybe in some cases the model) for non-ChatGPT models relies on the prompt consisting entirely of Python code produced by the data engine (which no longer contains the user's message) those code paths have been disabled for now. Updating them now seems like undesirable drag, I think it'd be better to revisit this when iteration/experimentation has slowed down and stabilised. Test Plan: Added entries to the formula dataset where the response shouldn't contain a formula, indicated by the value `1` for the new column `no_formula`. This is somewhat successful, as the model does refuse to help in some of the new test cases, but not all. Performance on existing entries also seems a bit worse, but it's hard to distinguish this from random noise. Hopefully this can be remedied in the future with more work, e.g. automatic followup messages containing example inputs and outputs. Reviewers: paulfitz Reviewed By: paulfitz Subscribers: dsagal Differential Revision: https://phab.getgrist.com/D3936
2023-06-27 11:39:15 +00:00
this._model = process.env.COMPLETION_MODEL || "gpt-3.5-turbo-0613";
this._chatMode = this._model.includes('turbo');
(core) Modify prompt so that model may say it cannot help with certain requests. Summary: This tweaks the prompting so that the user's message is given on its own instead of as a docstring within Python. This is so that the prompt makes sense when: - the user asks a question such as "Can you write me a formula which does ...?" rather than describing their formula as a docstring would, or - the user sends a message that doesn't ask for a formula at all (https://grist.slack.com/archives/C0234CPPXPA/p1687699944315069?thread_ts=1687698078.832209&cid=C0234CPPXPA) Also added wording for the model to refuse when the user asks for something that the model cannot do. Because the code (and maybe in some cases the model) for non-ChatGPT models relies on the prompt consisting entirely of Python code produced by the data engine (which no longer contains the user's message) those code paths have been disabled for now. Updating them now seems like undesirable drag, I think it'd be better to revisit this when iteration/experimentation has slowed down and stabilised. Test Plan: Added entries to the formula dataset where the response shouldn't contain a formula, indicated by the value `1` for the new column `no_formula`. This is somewhat successful, as the model does refuse to help in some of the new test cases, but not all. Performance on existing entries also seems a bit worse, but it's hard to distinguish this from random noise. Hopefully this can be remedied in the future with more work, e.g. automatic followup messages containing example inputs and outputs. Reviewers: paulfitz Reviewed By: paulfitz Subscribers: dsagal Differential Revision: https://phab.getgrist.com/D3936
2023-06-27 11:39:15 +00:00
if (!this._chatMode) {
throw new Error('Only turbo models are currently supported');
}
this._endpoint = `https://api.openai.com/v1/${this._chatMode ? 'chat/' : ''}completions`;
}
public async apply(
optSession: OptDocSession, doc: AssistanceDoc, request: AssistanceRequest): Promise<AssistanceResponse> {
const messages = request.state?.messages || [];
const chatMode = this._chatMode;
if (chatMode) {
if (messages.length === 0) {
messages.push({
role: 'system',
(core) Modify prompt so that model may say it cannot help with certain requests. Summary: This tweaks the prompting so that the user's message is given on its own instead of as a docstring within Python. This is so that the prompt makes sense when: - the user asks a question such as "Can you write me a formula which does ...?" rather than describing their formula as a docstring would, or - the user sends a message that doesn't ask for a formula at all (https://grist.slack.com/archives/C0234CPPXPA/p1687699944315069?thread_ts=1687698078.832209&cid=C0234CPPXPA) Also added wording for the model to refuse when the user asks for something that the model cannot do. Because the code (and maybe in some cases the model) for non-ChatGPT models relies on the prompt consisting entirely of Python code produced by the data engine (which no longer contains the user's message) those code paths have been disabled for now. Updating them now seems like undesirable drag, I think it'd be better to revisit this when iteration/experimentation has slowed down and stabilised. Test Plan: Added entries to the formula dataset where the response shouldn't contain a formula, indicated by the value `1` for the new column `no_formula`. This is somewhat successful, as the model does refuse to help in some of the new test cases, but not all. Performance on existing entries also seems a bit worse, but it's hard to distinguish this from random noise. Hopefully this can be remedied in the future with more work, e.g. automatic followup messages containing example inputs and outputs. Reviewers: paulfitz Reviewed By: paulfitz Subscribers: dsagal Differential Revision: https://phab.getgrist.com/D3936
2023-06-27 11:39:15 +00:00
content: 'You are a helpful assistant for a user of software called Grist. ' +
'Below are one or more Python classes. ' +
'The last method needs completing. ' +
"The user will probably give a description of what they want the method (a 'formula') to return. " +
'If so, your response should include the method body as Python code in a markdown block. ' +
'Do not include the class or method signature, just the method body. ' +
'If your code starts with `class`, `@dataclass`, or `def` it will fail. Only give the method body. ' +
'You can import modules inside the method body if needed. ' +
'You cannot define additional functions or methods. ' +
'The method should be a pure function that performs some computation and returns a result. ' +
'It CANNOT perform any side effects such as adding/removing/modifying rows/columns/cells/tables/etc. ' +
'It CANNOT interact with files/databases/networks/etc. ' +
'It CANNOT display images/charts/graphs/maps/etc. ' +
'If the user asks for these things, tell them that you cannot help. ' +
'The method uses `rec` instead of `self` as the first parameter.\n\n' +
'```python\n' +
await makeSchemaPromptV1(optSession, doc, request) +
(core) Modify prompt so that model may say it cannot help with certain requests. Summary: This tweaks the prompting so that the user's message is given on its own instead of as a docstring within Python. This is so that the prompt makes sense when: - the user asks a question such as "Can you write me a formula which does ...?" rather than describing their formula as a docstring would, or - the user sends a message that doesn't ask for a formula at all (https://grist.slack.com/archives/C0234CPPXPA/p1687699944315069?thread_ts=1687698078.832209&cid=C0234CPPXPA) Also added wording for the model to refuse when the user asks for something that the model cannot do. Because the code (and maybe in some cases the model) for non-ChatGPT models relies on the prompt consisting entirely of Python code produced by the data engine (which no longer contains the user's message) those code paths have been disabled for now. Updating them now seems like undesirable drag, I think it'd be better to revisit this when iteration/experimentation has slowed down and stabilised. Test Plan: Added entries to the formula dataset where the response shouldn't contain a formula, indicated by the value `1` for the new column `no_formula`. This is somewhat successful, as the model does refuse to help in some of the new test cases, but not all. Performance on existing entries also seems a bit worse, but it's hard to distinguish this from random noise. Hopefully this can be remedied in the future with more work, e.g. automatic followup messages containing example inputs and outputs. Reviewers: paulfitz Reviewed By: paulfitz Subscribers: dsagal Differential Revision: https://phab.getgrist.com/D3936
2023-06-27 11:39:15 +00:00
'\n```',
});
messages.push({
(core) Modify prompt so that model may say it cannot help with certain requests. Summary: This tweaks the prompting so that the user's message is given on its own instead of as a docstring within Python. This is so that the prompt makes sense when: - the user asks a question such as "Can you write me a formula which does ...?" rather than describing their formula as a docstring would, or - the user sends a message that doesn't ask for a formula at all (https://grist.slack.com/archives/C0234CPPXPA/p1687699944315069?thread_ts=1687698078.832209&cid=C0234CPPXPA) Also added wording for the model to refuse when the user asks for something that the model cannot do. Because the code (and maybe in some cases the model) for non-ChatGPT models relies on the prompt consisting entirely of Python code produced by the data engine (which no longer contains the user's message) those code paths have been disabled for now. Updating them now seems like undesirable drag, I think it'd be better to revisit this when iteration/experimentation has slowed down and stabilised. Test Plan: Added entries to the formula dataset where the response shouldn't contain a formula, indicated by the value `1` for the new column `no_formula`. This is somewhat successful, as the model does refuse to help in some of the new test cases, but not all. Performance on existing entries also seems a bit worse, but it's hard to distinguish this from random noise. Hopefully this can be remedied in the future with more work, e.g. automatic followup messages containing example inputs and outputs. Reviewers: paulfitz Reviewed By: paulfitz Subscribers: dsagal Differential Revision: https://phab.getgrist.com/D3936
2023-06-27 11:39:15 +00:00
role: 'user', content: request.text,
});
} else {
if (request.regenerate) {
if (messages[messages.length - 1].role !== 'user') {
messages.pop();
}
}
messages.push({
role: 'user', content: request.text,
});
}
} else {
messages.length = 0;
messages.push({
role: 'user', content: await makeSchemaPromptV1(optSession, doc, request),
});
}
const apiResponse = await DEPS.fetch(
this._endpoint,
{
method: "POST",
headers: {
"Authorization": `Bearer ${this._apiKey}`,
"Content-Type": "application/json",
},
body: JSON.stringify({
...(!this._chatMode ? {
prompt: messages[messages.length - 1].content,
} : { messages }),
max_tokens: 1500,
temperature: 0,
model: this._model,
stop: this._chatMode ? undefined : ["\n\n"],
}),
},
);
if (apiResponse.status !== 200) {
log.error(`OpenAI API returned ${apiResponse.status}: ${await apiResponse.text()}`);
throw new Error(`OpenAI API returned status ${apiResponse.status}`);
}
const result = await apiResponse.json();
const completion: string = String(chatMode ? result.choices[0].message.content : result.choices[0].text);
const history = { messages };
if (chatMode) {
history.messages.push(result.choices[0].message);
}
const response = await completionToResponse(doc, request, completion, completion);
if (chatMode) {
response.state = history;
}
return response;
}
}
export class HuggingFaceAssistant implements Assistant {
private _apiKey: string;
private _completionUrl: string;
public constructor() {
const apiKey = process.env.HUGGINGFACE_API_KEY;
if (!apiKey) {
throw new Error('HUGGINGFACE_API_KEY not set');
}
this._apiKey = apiKey;
// COMPLETION_MODEL values I've tried:
// - codeparrot/codeparrot
// - NinedayWang/PolyCoder-2.7B
// - NovelAI/genji-python-6B
let completionUrl = process.env.COMPLETION_URL;
if (!completionUrl) {
if (process.env.COMPLETION_MODEL) {
completionUrl = `https://api-inference.huggingface.co/models/${process.env.COMPLETION_MODEL}`;
} else {
completionUrl = 'https://api-inference.huggingface.co/models/NovelAI/genji-python-6B';
}
}
this._completionUrl = completionUrl;
}
public async apply(
optSession: OptDocSession, doc: AssistanceDoc, request: AssistanceRequest): Promise<AssistanceResponse> {
if (request.state) {
throw new Error("HuggingFaceAssistant does not support state");
}
const prompt = await makeSchemaPromptV1(optSession, doc, request);
const response = await DEPS.fetch(
this._completionUrl,
{
method: "POST",
headers: {
"Authorization": `Bearer ${this._apiKey}`,
"Content-Type": "application/json",
},
body: JSON.stringify({
inputs: prompt,
parameters: {
return_full_text: false,
max_new_tokens: 50,
},
}),
},
);
if (response.status === 503) {
log.error(`Sleeping for 10s - HuggingFace API returned ${response.status}: ${await response.text()}`);
await delay(10000);
}
if (response.status !== 200) {
const text = await response.text();
log.error(`HuggingFace API returned ${response.status}: ${text}`);
throw new Error(`HuggingFace API returned status ${response.status}: ${text}`);
}
const result = await response.json();
let completion = result[0].generated_text;
completion = completion.split('\n\n')[0];
return completionToResponse(doc, request, completion);
}
}
/**
* Test assistant that mimics ChatGPT and just returns the input.
*/
export class EchoAssistant implements Assistant {
public async apply(sess: OptDocSession, doc: AssistanceDoc, request: AssistanceRequest): Promise<AssistanceResponse> {
if (request.text === "ERROR") {
throw new Error(`ERROR`);
}
const messages = request.state?.messages || [];
if (messages.length === 0) {
messages.push({
role: 'system',
content: ''
});
messages.push({
role: 'user', content: request.text,
});
} else {
if (request.regenerate) {
if (messages[messages.length - 1].role !== 'user') {
messages.pop();
}
}
messages.push({
role: 'user', content: request.text,
});
}
const completion = request.text;
const history = { messages };
history.messages.push({
role: 'assistant',
content: completion,
});
const response = await completionToResponse(doc, request, completion, completion);
response.state = history;
return response;
}
}
/**
* Instantiate an assistant, based on environment variables.
*/
export function getAssistant() {
if (process.env.OPENAI_API_KEY === 'test') {
return new EchoAssistant();
}
if (process.env.OPENAI_API_KEY) {
return new OpenAIAssistant();
}
(core) Modify prompt so that model may say it cannot help with certain requests. Summary: This tweaks the prompting so that the user's message is given on its own instead of as a docstring within Python. This is so that the prompt makes sense when: - the user asks a question such as "Can you write me a formula which does ...?" rather than describing their formula as a docstring would, or - the user sends a message that doesn't ask for a formula at all (https://grist.slack.com/archives/C0234CPPXPA/p1687699944315069?thread_ts=1687698078.832209&cid=C0234CPPXPA) Also added wording for the model to refuse when the user asks for something that the model cannot do. Because the code (and maybe in some cases the model) for non-ChatGPT models relies on the prompt consisting entirely of Python code produced by the data engine (which no longer contains the user's message) those code paths have been disabled for now. Updating them now seems like undesirable drag, I think it'd be better to revisit this when iteration/experimentation has slowed down and stabilised. Test Plan: Added entries to the formula dataset where the response shouldn't contain a formula, indicated by the value `1` for the new column `no_formula`. This is somewhat successful, as the model does refuse to help in some of the new test cases, but not all. Performance on existing entries also seems a bit worse, but it's hard to distinguish this from random noise. Hopefully this can be remedied in the future with more work, e.g. automatic followup messages containing example inputs and outputs. Reviewers: paulfitz Reviewed By: paulfitz Subscribers: dsagal Differential Revision: https://phab.getgrist.com/D3936
2023-06-27 11:39:15 +00:00
// Maintaining this is too much of a burden for now.
// if (process.env.HUGGINGFACE_API_KEY) {
// return new HuggingFaceAssistant();
// }
throw new Error('Please set OPENAI_API_KEY');
}
/**
* Service a request for assistance, with a little retry logic
* since these endpoints can be a bit flakey.
*/
export async function sendForCompletion(
optSession: OptDocSession,
doc: AssistanceDoc,
request: AssistanceRequest): Promise<AssistanceResponse> {
const assistant = getAssistant();
let retries: number = 0;
let response: AssistanceResponse|null = null;
while(retries++ < 3) {
try {
response = await assistant.apply(optSession, doc, request);
break;
} catch(e) {
log.error(`Completion error: ${e}`);
await delay(1000);
}
}
if (!response) {
throw new Error('Failed to get response from assistant');
}
return response;
}
async function makeSchemaPromptV1(session: OptDocSession, doc: AssistanceDoc, request: AssistanceRequest) {
if (request.context.type !== 'formula') {
throw new Error('makeSchemaPromptV1 only works for formulas');
}
return doc.assistanceSchemaPromptV1(session, {
tableId: request.context.tableId,
colId: request.context.colId,
docString: request.text,
});
}
async function completionToResponse(doc: AssistanceDoc, request: AssistanceRequest,
completion: string, reply?: string): Promise<AssistanceResponse> {
if (request.context.type !== 'formula') {
throw new Error('completionToResponse only works for formulas');
}
completion = await doc.assistanceFormulaTweak(completion);
// Suggest an action only if the completion is non-empty (that is,
// it actually looked like code).
const suggestedActions: DocAction[] = completion ? [[
"ModifyColumn",
request.context.tableId,
request.context.colId, {
formula: completion,
}
]] : [];
return {
suggestedActions,
reply,
};
}