gristlabs_grist-core/sandbox/grist/functions/date.py

783 lines
26 KiB
Python
Raw Normal View History

import calendar
import datetime
import dateutil.parser
import six
import moment
import docmodel
# pylint: disable=no-member
_excel_date_zero = datetime.datetime(1899, 12, 30)
def _make_datetime(value):
if isinstance(value, datetime.datetime):
return value
elif isinstance(value, datetime.date):
return datetime.datetime.combine(value, datetime.time())
elif isinstance(value, datetime.time):
return datetime.datetime.combine(datetime.date.today(), value)
elif isinstance(value, six.string_types):
return dateutil.parser.parse(value)
else:
raise ValueError('Invalid date %r' % (value,))
def _get_global_tz():
# If doc_info record is missing (e.g. in tests), default to UTC. We should not return None,
# since that would produce naive datetime objects, which is not what we want.
dm = docmodel.global_docmodel
return (dm.doc_info.lookupOne(id=1).tzinfo if dm else None) or moment.TZ_UTC
def _get_tzinfo(zonelabel):
"""
A helper that returns a `datetime.tzinfo` instance for zonelabel. Returns the global
document timezone if zonelabel is None.
"""
return moment.tzinfo(zonelabel) if zonelabel else _get_global_tz()
def DTIME(value, tz=None):
"""
Returns the value converted to a python `datetime` object. The value may be a
`string`, `date` (interpreted as midnight on that day), `time` (interpreted as a
time-of-day today), or an existing `datetime`.
The returned `datetime` will have its timezone set to the `tz` argument, or the
document's default timezone when `tz` is omitted or None. If the input is itself a
`datetime` with the timezone set, it is returned unchanged (no changes to its timezone).
>>> DTIME(datetime.date(2017, 1, 1))
datetime.datetime(2017, 1, 1, 0, 0, tzinfo=moment.tzinfo('America/New_York'))
>>> DTIME(datetime.date(2017, 1, 1), 'Europe/Paris')
datetime.datetime(2017, 1, 1, 0, 0, tzinfo=moment.tzinfo('Europe/Paris'))
>>> DTIME(datetime.datetime(2017, 1, 1))
datetime.datetime(2017, 1, 1, 0, 0, tzinfo=moment.tzinfo('America/New_York'))
>>> DTIME(datetime.datetime(2017, 1, 1, tzinfo=moment.tzinfo('UTC')))
datetime.datetime(2017, 1, 1, 0, 0, tzinfo=moment.tzinfo('UTC'))
>>> DTIME(datetime.datetime(2017, 1, 1, tzinfo=moment.tzinfo('UTC')), 'Europe/Paris')
datetime.datetime(2017, 1, 1, 0, 0, tzinfo=moment.tzinfo('UTC'))
>>> DTIME("1/1/2008")
datetime.datetime(2008, 1, 1, 0, 0, tzinfo=moment.tzinfo('America/New_York'))
"""
value = _make_datetime(value)
return value if value.tzinfo else value.replace(tzinfo=_get_tzinfo(tz))
def XL_TO_DATE(value, tz=None):
"""
Converts a provided Excel serial number representing a date into a `datetime` object.
Value is interpreted as the number of days since December 30, 1899.
(This corresponds to Google Sheets interpretation. Excel starts with Dec. 31, 1899 but wrongly
considers 1900 to be a leap year. Excel for Mac should be configured to use 1900 date system,
i.e. uncheck "Use the 1904 date system" option.)
The returned `datetime` will have its timezone set to the `tz` argument, or the
document's default timezone when `tz` is omitted or None.
>>> XL_TO_DATE(41100.1875)
datetime.datetime(2012, 7, 10, 4, 30, tzinfo=moment.tzinfo('America/New_York'))
>>> XL_TO_DATE(39448)
datetime.datetime(2008, 1, 1, 0, 0, tzinfo=moment.tzinfo('America/New_York'))
>>> XL_TO_DATE(40982.0625)
datetime.datetime(2012, 3, 14, 1, 30, tzinfo=moment.tzinfo('America/New_York'))
More tests:
>>> XL_TO_DATE(0)
datetime.datetime(1899, 12, 30, 0, 0, tzinfo=moment.tzinfo('America/New_York'))
>>> XL_TO_DATE(-1)
datetime.datetime(1899, 12, 29, 0, 0, tzinfo=moment.tzinfo('America/New_York'))
>>> XL_TO_DATE(1)
datetime.datetime(1899, 12, 31, 0, 0, tzinfo=moment.tzinfo('America/New_York'))
>>> XL_TO_DATE(1.5)
datetime.datetime(1899, 12, 31, 12, 0, tzinfo=moment.tzinfo('America/New_York'))
>>> XL_TO_DATE(61.0)
datetime.datetime(1900, 3, 1, 0, 0, tzinfo=moment.tzinfo('America/New_York'))
"""
return DTIME(_excel_date_zero, tz) + datetime.timedelta(days=value)
def DATE_TO_XL(date_value):
"""
Converts a Python `date` or `datetime` object to the serial number as used by
Excel, with December 30, 1899 as serial number 1.
See XL_TO_DATE for more explanation.
>>> DATE_TO_XL(datetime.date(2008, 1, 1))
39448.0
>>> DATE_TO_XL(datetime.date(2012, 3, 14))
40982.0
>>> DATE_TO_XL(datetime.datetime(2012, 3, 14, 1, 30))
40982.0625
More tests:
>>> DATE_TO_XL(datetime.date(1900, 1, 1))
2.0
>>> DATE_TO_XL(datetime.datetime(1900, 1, 1))
2.0
>>> DATE_TO_XL(datetime.datetime(1900, 1, 1, 12, 0))
2.5
>>> DATE_TO_XL(datetime.datetime(1900, 1, 1, 12, 0, tzinfo=moment.tzinfo('America/New_York')))
2.5
>>> DATE_TO_XL(datetime.date(1900, 3, 1))
61.0
>>> DATE_TO_XL(datetime.datetime(2008, 1, 1))
39448.0
>>> DATE_TO_XL(XL_TO_DATE(39488))
39488.0
>>> dt_ny = XL_TO_DATE(39488)
>>> dt_paris = moment.tz(dt_ny, 'America/New_York').tz('Europe/Paris').datetime()
>>> DATE_TO_XL(dt_paris)
39488.0
"""
# If date_value is `naive` it's ok to pass tz to both DTIME as it won't affect the
# result.
return (DTIME(date_value) - DTIME(_excel_date_zero)).total_seconds() / 86400.
def DATE(year, month, day):
"""
Returns the `datetime.datetime` object that represents a particular date.
The DATE function is most useful in formulas where year, month, and day are formulas, not
constants.
If year is between 0 and 1899 (inclusive), adds 1900 to calculate the year.
>>> DATE(108, 1, 2)
datetime.date(2008, 1, 2)
>>> DATE(2008, 1, 2)
datetime.date(2008, 1, 2)
If month is greater than 12, rolls into the following year.
>>> DATE(2008, 14, 2)
datetime.date(2009, 2, 2)
If month is less than 1, subtracts that many months plus 1, from the first month in the year.
>>> DATE(2008, -3, 2)
datetime.date(2007, 9, 2)
If day is greater than the number of days in the given month, rolls into the following months.
>>> DATE(2008, 1, 35)
datetime.date(2008, 2, 4)
If day is less than 1, subtracts that many days plus 1, from the first day of the given month.
>>> DATE(2008, 1, -15)
datetime.date(2007, 12, 16)
More tests:
>>> DATE(1900, 1, 1)
datetime.date(1900, 1, 1)
>>> DATE(1900, 0, 0)
datetime.date(1899, 11, 30)
"""
if year < 1900:
year += 1900
norm_month = (month - 1) % 12 + 1
norm_year = year + (month - 1) // 12
return datetime.date(norm_year, norm_month, 1) + datetime.timedelta(days=day - 1)
def DATEDIF(start_date, end_date, unit):
"""
Calculates the number of days, months, or years between two dates.
Unit indicates the type of information that you want returned:
- "Y": The number of complete years in the period.
- "M": The number of complete months in the period.
- "D": The number of days in the period.
- "MD": The difference between the days in start_date and end_date. The months and years of the
dates are ignored.
- "YM": The difference between the months in start_date and end_date. The days and years of the
dates are ignored.
- "YD": The difference between the days of start_date and end_date. The years of the dates are
ignored.
Two complete years in the period (2)
>>> DATEDIF(DATE(2001, 1, 1), DATE(2003, 1, 1), "Y")
2
440 days between June 1, 2001, and August 15, 2002 (440)
>>> DATEDIF(DATE(2001, 6, 1), DATE(2002, 8, 15), "D")
440
75 days between June 1 and August 15, ignoring the years of the dates (75)
>>> DATEDIF(DATE(2001, 6, 1), DATE(2012, 8, 15), "YD")
75
The difference between 1 and 15, ignoring the months and the years of the dates (14)
>>> DATEDIF(DATE(2001, 6, 1), DATE(2002, 8, 15), "MD")
14
More tests:
>>> DATEDIF(DATE(1969, 7, 16), DATE(1969, 7, 24), "D")
8
>>> DATEDIF(DATE(2014, 1, 1), DATE(2015, 1, 1), "M")
12
>>> DATEDIF(DATE(2014, 1, 2), DATE(2015, 1, 1), "M")
11
>>> DATEDIF(DATE(2014, 1, 1), DATE(2024, 1, 1), "Y")
10
>>> DATEDIF(DATE(2014, 1, 2), DATE(2024, 1, 1), "Y")
9
>>> DATEDIF(DATE(1906, 10, 16), DATE(2004, 2, 3), "YM")
3
>>> DATEDIF(DATE(2016, 2, 14), DATE(2016, 3, 14), "YM")
1
>>> DATEDIF(DATE(2016, 2, 14), DATE(2016, 3, 13), "YM")
0
>>> DATEDIF(DATE(2008, 10, 16), DATE(2019, 12, 3), "MD")
17
>>> DATEDIF(DATE(2008, 11, 16), DATE(2019, 1, 3), "MD")
18
>>> DATEDIF(DATE(2016, 2, 29), DATE(2017, 2, 28), "Y")
0
>>> DATEDIF(DATE(2016, 2, 29), DATE(2017, 2, 29), "Y")
1
"""
if isinstance(start_date, datetime.datetime):
start_date = start_date.date()
if isinstance(end_date, datetime.datetime):
end_date = end_date.date()
if unit == 'D':
return (end_date - start_date).days
elif unit == 'M':
months = (end_date.year - start_date.year) * 12 + (end_date.month - start_date.month)
month_delta = 0 if start_date.day <= end_date.day else 1
return months - month_delta
elif unit == 'Y':
years = end_date.year - start_date.year
year_delta = 0 if (start_date.month, start_date.day) <= (end_date.month, end_date.day) else 1
return years - year_delta
elif unit == 'MD':
month_delta = 0 if start_date.day <= end_date.day else 1
return (end_date - DATE(end_date.year, end_date.month - month_delta, start_date.day)).days
elif unit == 'YM':
month_delta = 0 if start_date.day <= end_date.day else 1
return (end_date.month - start_date.month - month_delta) % 12
elif unit == 'YD':
year_delta = 0 if (start_date.month, start_date.day) <= (end_date.month, end_date.day) else 1
return (end_date - DATE(end_date.year - year_delta, start_date.month, start_date.day)).days
else:
raise ValueError('Invalid unit %s' % (unit,))
def DATEVALUE(date_string, tz=None):
"""
Converts a date that is stored as text to a `datetime` object.
>>> DATEVALUE("1/1/2008")
datetime.datetime(2008, 1, 1, 0, 0, tzinfo=moment.tzinfo('America/New_York'))
>>> DATEVALUE("30-Jan-2008")
datetime.datetime(2008, 1, 30, 0, 0, tzinfo=moment.tzinfo('America/New_York'))
>>> DATEVALUE("2008-12-11")
datetime.datetime(2008, 12, 11, 0, 0, tzinfo=moment.tzinfo('America/New_York'))
>>> DATEVALUE("5-JUL").replace(year=2000)
datetime.datetime(2000, 7, 5, 0, 0, tzinfo=moment.tzinfo('America/New_York'))
In case of ambiguity, prefer M/D/Y format.
>>> DATEVALUE("1/2/3")
datetime.datetime(2003, 1, 2, 0, 0, tzinfo=moment.tzinfo('America/New_York'))
More tests:
>>> DATEVALUE("8/22/2011")
datetime.datetime(2011, 8, 22, 0, 0, tzinfo=moment.tzinfo('America/New_York'))
>>> DATEVALUE("22-MAY-2011")
datetime.datetime(2011, 5, 22, 0, 0, tzinfo=moment.tzinfo('America/New_York'))
>>> DATEVALUE("2011/02/23")
datetime.datetime(2011, 2, 23, 0, 0, tzinfo=moment.tzinfo('America/New_York'))
>>> DATEVALUE("11/3/2011")
datetime.datetime(2011, 11, 3, 0, 0, tzinfo=moment.tzinfo('America/New_York'))
>>> DATE_TO_XL(DATEVALUE("11/3/2011"))
40850.0
>>> DATEVALUE("asdf")
Traceback (most recent call last):
...
{}: Unknown string format: asdf
"""
return dateutil.parser.parse(date_string).replace(tzinfo=_get_tzinfo(tz))
DATEVALUE.__doc__ = DATEVALUE.__doc__.format(
"dateutil.parser._parser.ParserError" if six.PY3 else "ParserError"
)
def DAY(date):
"""
Returns the day of a date, as an integer ranging from 1 to 31. Same as `date.day`.
>>> DAY(DATE(2011, 4, 15))
15
>>> DAY("5/31/2012")
31
>>> DAY(datetime.datetime(1900, 1, 1))
1
"""
return _make_datetime(date).day
def DAYS(end_date, start_date):
"""
Returns the number of days between two dates. Same as `(end_date - start_date).days`.
>>> DAYS("3/15/11","2/1/11")
42
>>> DAYS(DATE(2011, 12, 31), DATE(2011, 1, 1))
364
>>> DAYS("2/1/11", "3/15/11")
-42
"""
return (_make_datetime(end_date) - _make_datetime(start_date)).days
def EDATE(start_date, months):
"""
Returns the date that is the given number of months before or after `start_date`. Use
EDATE to calculate maturity dates or due dates that fall on the same day of the month as the
date of issue.
>>> EDATE(DATE(2011, 1, 15), 1)
datetime.date(2011, 2, 15)
>>> EDATE(DATE(2011, 1, 15), -1)
datetime.date(2010, 12, 15)
>>> EDATE(DATE(2011, 1, 15), 2)
datetime.date(2011, 3, 15)
>>> EDATE(DATE(2012, 3, 1), 10)
datetime.date(2013, 1, 1)
>>> EDATE(DATE(2012, 5, 1), -2)
datetime.date(2012, 3, 1)
"""
return DATE(start_date.year, start_date.month + months, start_date.day)
def DATEADD(start_date, days=0, months=0, years=0, weeks=0):
"""
Returns the date a given number of days, months, years, or weeks away from `start_date`. You may
specify arguments in any order if you specify argument names. Use negative values to subtract.
For example, `DATEADD(date, 1)` is the same as `DATEADD(date, days=1)`, ands adds one day to
`date`. `DATEADD(date, years=1, days=-1)` adds one year minus one day.
>>> DATEADD(DATE(2011, 1, 15), 1)
datetime.date(2011, 1, 16)
>>> DATEADD(DATE(2011, 1, 15), months=1, days=-1)
datetime.date(2011, 2, 14)
>>> DATEADD(DATE(2011, 1, 15), years=-2, months=1, days=3, weeks=2)
datetime.date(2009, 3, 4)
>>> DATEADD(DATE(1975, 4, 30), years=50, weeks=-5)
datetime.date(2025, 3, 26)
"""
return DATE(start_date.year + years, start_date.month + months,
start_date.day + days + weeks * 7)
def EOMONTH(start_date, months):
"""
Returns the date for the last day of the month that is the indicated number of months before or
after start_date. Use EOMONTH to calculate maturity dates or due dates that fall on the last day
of the month.
>>> EOMONTH(DATE(2011, 1, 1), 1)
datetime.date(2011, 2, 28)
>>> EOMONTH(DATE(2011, 1, 15), -3)
datetime.date(2010, 10, 31)
>>> EOMONTH(DATE(2012, 3, 1), 10)
datetime.date(2013, 1, 31)
>>> EOMONTH(DATE(2012, 5, 1), -2)
datetime.date(2012, 3, 31)
"""
return DATE(start_date.year, start_date.month + months + 1, 1) - datetime.timedelta(days=1)
def HOUR(time):
"""
Returns the hour of a `datetime`, as an integer from 0 (12:00 A.M.) to 23 (11:00 P.M.).
Same as `time.hour`.
>>> HOUR(XL_TO_DATE(0.75))
18
>>> HOUR("7/18/2011 7:45")
7
>>> HOUR("4/21/2012")
0
"""
return _make_datetime(time).hour
def ISOWEEKNUM(date):
"""
Returns the ISO week number of the year for a given date.
>>> ISOWEEKNUM("3/9/2012")
10
>>> [ISOWEEKNUM(DATE(2000 + y, 1, 1)) for y in [0,1,2,3,4,5,6,7,8]]
[52, 1, 1, 1, 1, 53, 52, 1, 1]
"""
return _make_datetime(date).isocalendar()[1]
def MINUTE(time):
"""
Returns the minutes of `datetime`, as an integer from 0 to 59.
Same as `time.minute`.
>>> MINUTE(XL_TO_DATE(0.75))
0
>>> MINUTE("7/18/2011 7:45")
45
>>> MINUTE("12:59:00 PM")
59
>>> MINUTE(datetime.time(12, 58, 59))
58
"""
return _make_datetime(time).minute
def MONTH(date):
"""
Returns the month of a date represented, as an integer from from 1 (January) to 12 (December).
Same as `date.month`.
>>> MONTH(DATE(2011, 4, 15))
4
>>> MONTH("5/31/2012")
5
>>> MONTH(datetime.datetime(1900, 1, 1))
1
"""
return _make_datetime(date).month
def NOW(tz=None):
"""
Returns the `datetime` object for the current time.
"""
engine = docmodel.global_docmodel._engine
engine.use_current_time()
return datetime.datetime.now(_get_tzinfo(tz))
def SECOND(time):
"""
Returns the seconds of `datetime`, as an integer from 0 to 59.
Same as `time.second`.
>>> SECOND(XL_TO_DATE(0.75))
0
>>> SECOND("7/18/2011 7:45:13")
13
>>> SECOND(datetime.time(12, 58, 59))
59
"""
return _make_datetime(time).second
def TODAY(tz=None):
"""
Returns the `date` object for the current date.
"""
return NOW(tz=tz).date()
_weekday_type_map = {
# type: (first day of week (according to date.weekday()), number to return for it)
1: (6, 1),
2: (0, 1),
3: (0, 0),
11: (0, 1),
12: (1, 1),
13: (2, 1),
14: (3, 1),
15: (4, 1),
16: (5, 1),
17: (6, 1),
}
def WEEKDAY(date, return_type=1):
"""
Returns the day of the week corresponding to a date. The day is given as an integer, ranging
from 1 (Sunday) to 7 (Saturday), by default.
Return_type determines the type of the returned value.
- 1 (default) - Returns 1 (Sunday) through 7 (Saturday).
- 2 - Returns 1 (Monday) through 7 (Sunday).
- 3 - Returns 0 (Monday) through 6 (Sunday).
- 11 - Returns 1 (Monday) through 7 (Sunday).
- 12 - Returns 1 (Tuesday) through 7 (Monday).
- 13 - Returns 1 (Wednesday) through 7 (Tuesday).
- 14 - Returns 1 (Thursday) through 7 (Wednesday).
- 15 - Returns 1 (Friday) through 7 (Thursday).
- 16 - Returns 1 (Saturday) through 7 (Friday).
- 17 - Returns 1 (Sunday) through 7 (Saturday).
>>> WEEKDAY(DATE(2008, 2, 14))
5
>>> WEEKDAY(DATE(2012, 3, 1))
5
>>> WEEKDAY(DATE(2012, 3, 1), 1)
5
>>> WEEKDAY(DATE(2012, 3, 1), 2)
4
>>> WEEKDAY("3/1/2012", 3)
3
More tests:
>>> WEEKDAY(XL_TO_DATE(10000), 1)
4
>>> WEEKDAY(DATE(1901, 1, 1))
3
>>> WEEKDAY(DATE(1901, 1, 1), 2)
2
>>> [WEEKDAY(DATE(2008, 2, d)) for d in [10, 11, 12, 13, 14, 15, 16, 17]]
[1, 2, 3, 4, 5, 6, 7, 1]
>>> [WEEKDAY(DATE(2008, 2, d), 1) for d in [10, 11, 12, 13, 14, 15, 16, 17]]
[1, 2, 3, 4, 5, 6, 7, 1]
>>> [WEEKDAY(DATE(2008, 2, d), 17) for d in [10, 11, 12, 13, 14, 15, 16, 17]]
[1, 2, 3, 4, 5, 6, 7, 1]
>>> [WEEKDAY(DATE(2008, 2, d), 2) for d in [10, 11, 12, 13, 14, 15, 16, 17]]
[7, 1, 2, 3, 4, 5, 6, 7]
>>> [WEEKDAY(DATE(2008, 2, d), 3) for d in [10, 11, 12, 13, 14, 15, 16, 17]]
[6, 0, 1, 2, 3, 4, 5, 6]
"""
if return_type not in _weekday_type_map:
raise ValueError("Invalid return type %s" % (return_type,))
(first, index) = _weekday_type_map[return_type]
return (_make_datetime(date).weekday() - first) % 7 + index
def WEEKNUM(date, return_type=1):
"""
Returns the week number of a specific date. For example, the week containing January 1 is the
first week of the year, and is numbered week 1.
Return_type determines which week is considered the first week of the year.
- 1 (default) - Week 1 is the first week starting Sunday that contains January 1.
- 2 - Week 1 is the first week starting Monday that contains January 1.
- 11 - Week 1 is the first week starting Monday that contains January 1.
- 12 - Week 1 is the first week starting Tuesday that contains January 1.
- 13 - Week 1 is the first week starting Wednesday that contains January 1.
- 14 - Week 1 is the first week starting Thursday that contains January 1.
- 15 - Week 1 is the first week starting Friday that contains January 1.
- 16 - Week 1 is the first week starting Saturday that contains January 1.
- 17 - Week 1 is the first week starting Sunday that contains January 1.
- 21 - ISO 8601 Approach: Week 1 is the first week starting Monday that contains January 4.
Equivalently, it is the week that contains the first Thursday of the year.
>>> WEEKNUM(DATE(2012, 3, 9))
10
>>> WEEKNUM(DATE(2012, 3, 9), 2)
11
>>> WEEKNUM('1/1/1900')
1
>>> WEEKNUM('2/1/1900')
5
More tests:
>>> WEEKNUM('2/1/1909', 2)
6
>>> WEEKNUM('1/1/1901', 21)
1
>>> [WEEKNUM(DATE(2012, 3, 9), t) for t in [1,2,11,12,13,14,15,16,17,21]]
[10, 11, 11, 11, 11, 11, 11, 10, 10, 10]
"""
if return_type == 21:
return ISOWEEKNUM(date)
if return_type not in _weekday_type_map:
raise ValueError("Invalid return type %s" % (return_type,))
(first, index) = _weekday_type_map[return_type]
date = _make_datetime(date)
jan1 = datetime.datetime(date.year, 1, 1)
week1_start = jan1 - datetime.timedelta(days=(jan1.weekday() - first) % 7)
return (date - week1_start).days // 7 + 1
def YEAR(date):
"""
Returns the year corresponding to a date as an integer.
Same as `date.year`.
>>> YEAR(DATE(2011, 4, 15))
2011
>>> YEAR("5/31/2030")
2030
>>> YEAR(datetime.datetime(1900, 1, 1))
1900
"""
return _make_datetime(date).year
def _date_360(y, m, d):
return y * 360 + m * 30 + d
def _last_of_feb(date):
return date.month == 2 and (date + datetime.timedelta(days=1)).month == 3
def YEARFRAC(start_date, end_date, basis=0):
"""
Calculates the fraction of the year represented by the number of whole days between two dates.
Basis is the type of day count basis to use.
* `0` (default) - US (NASD) 30/360
* `1` - Actual/actual
* `2` - Actual/360
* `3` - Actual/365
* `4` - European 30/360
* `-1` - Actual/actual (Google Sheets variation)
This function is useful for financial calculations. For compatibility with Excel, it defaults to
using the NASD standard calendar. For use in non-financial settings, option `-1` is
likely the best choice.
See <https://en.wikipedia.org/wiki/360-day_calendar> for explanation of
the US 30/360 and European 30/360 methods. See <http://www.dwheeler.com/yearfrac/> for analysis of
Excel's particular implementation.
Basis `-1` is similar to `1`, but differs from Excel when dates span both leap and non-leap years.
It matches the calculation in Google Sheets, counting the days in each year as a fraction of
that year's length.
Fraction of the year between 1/1/2012 and 7/30/12, omitting the Basis argument.
>>> "%.8f" % YEARFRAC(DATE(2012, 1, 1), DATE(2012, 7, 30))
'0.58055556'
Fraction between same dates, using the Actual/Actual basis argument. Because 2012 is a Leap
year, it has a 366 day basis.
>>> "%.8f" % YEARFRAC(DATE(2012, 1, 1), DATE(2012, 7, 30), 1)
'0.57650273'
Fraction between same dates, using the Actual/365 basis argument. Uses a 365 day basis.
>>> "%.8f" % YEARFRAC(DATE(2012, 1, 1), DATE(2012, 7, 30), 3)
'0.57808219'
More tests:
>>> round(YEARFRAC(DATE(2012, 1, 1), DATE(2012, 6, 30)), 10)
0.4972222222
>>> round(YEARFRAC(DATE(2012, 1, 1), DATE(2012, 6, 30), 0), 10)
0.4972222222
>>> round(YEARFRAC(DATE(2012, 1, 1), DATE(2012, 6, 30), 1), 10)
0.4945355191
>>> round(YEARFRAC(DATE(2012, 1, 1), DATE(2012, 6, 30), 2), 10)
0.5027777778
>>> round(YEARFRAC(DATE(2012, 1, 1), DATE(2012, 6, 30), 3), 10)
0.495890411
>>> round(YEARFRAC(DATE(2012, 1, 1), DATE(2012, 6, 30), 4), 10)
0.4972222222
>>> [YEARFRAC(DATE(2012, 1, 1), DATE(2012, 1, 1), t) for t in [0, 1, -1, 2, 3, 4]]
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
>>> [round(YEARFRAC(DATE(1985, 3, 15), DATE(2016, 2, 29), t), 6) for t in [0, 1, -1, 2, 3, 4]]
[30.955556, 30.959617, 30.961202, 31.411111, 30.980822, 30.955556]
>>> [round(YEARFRAC(DATE(2001, 2, 28), DATE(2016, 3, 31), t), 6) for t in [0, 1, -1, 2, 3, 4]]
[15.086111, 15.085558, 15.086998, 15.305556, 15.09589, 15.088889]
>>> [round(YEARFRAC(DATE(1968, 4, 7), DATE(2011, 2, 14), t), 6) for t in [0, 1, -1, 2, 3, 4]]
[42.852778, 42.855578, 42.855521, 43.480556, 42.884932, 42.852778]
Here we test "basis 1" on leap and non-leap years.
>>> [round(YEARFRAC(DATE(2015, 1, 1), DATE(2015, 3, 1), t), 6) for t in [1, -1]]
[0.161644, 0.161644]
>>> [round(YEARFRAC(DATE(2016, 1, 1), DATE(2016, 3, 1), t), 6) for t in [1, -1]]
[0.163934, 0.163934]
>>> [round(YEARFRAC(DATE(2015, 1, 1), DATE(2016, 1, 1), t), 6) for t in [1, -1]]
[1.0, 1.0]
>>> [round(YEARFRAC(DATE(2016, 1, 1), DATE(2017, 1, 1), t), 6) for t in [1, -1]]
[1.0, 1.0]
>>> [round(YEARFRAC(DATE(2016, 2, 29), DATE(2017, 1, 1), t), 6) for t in [1, -1]]
[0.838798, 0.838798]
>>> [round(YEARFRAC(DATE(2014, 12, 15), DATE(2015, 3, 15), t), 6) for t in [1, -1]]
[0.246575, 0.246575]
For these examples, Google Sheets differs from Excel, and we match Excel here.
>>> [round(YEARFRAC(DATE(2015, 12, 15), DATE(2016, 3, 15), t), 6) for t in [1, -1]]
[0.248634, 0.248761]
>>> [round(YEARFRAC(DATE(2015, 1, 1), DATE(2016, 2, 29), t), 6) for t in [1, -1]]
[1.160055, 1.161202]
>>> [round(YEARFRAC(DATE(2015, 1, 1), DATE(2016, 2, 28), t), 6) for t in [1, -1]]
[1.157319, 1.15847]
>>> [round(YEARFRAC(DATE(2015, 3, 1), DATE(2016, 2, 29), t), 6) for t in [1, -1]]
[0.997268, 0.999558]
>>> [round(YEARFRAC(DATE(2015, 3, 1), DATE(2016, 2, 28), t), 6) for t in [1, -1]]
[0.99726, 0.996826]
>>> [round(YEARFRAC(DATE(2016, 3, 1), DATE(2017, 1, 1), t), 6) for t in [1, -1]]
[0.838356, 0.836066]
>>> [round(YEARFRAC(DATE(2015, 1, 1), DATE(2017, 1, 1), t), 6) for t in [1, -1]]
[2.000912, 2.0]
"""
# pylint: disable=too-many-return-statements
# This function is actually completely crazy. The rules are strange too. We'll follow the logic
# in http://www.dwheeler.com/yearfrac/excel-ooxml-yearfrac.pdf
if start_date == end_date:
return 0.0
if start_date > end_date:
start_date, end_date = end_date, start_date
d1, m1, y1 = start_date.day, start_date.month, start_date.year
d2, m2, y2 = end_date.day, end_date.month, end_date.year
if basis == 0:
if d1 == 31:
d1 = 30
if d1 == 30 and d2 == 31:
d2 = 30
if _last_of_feb(start_date):
d1 = 30
if _last_of_feb(end_date):
d2 = 30
return (_date_360(y2, m2, d2) - _date_360(y1, m1, d1)) / 360.0
elif basis == 1:
# This implements Excel's convoluted logic.
if (y1 + 1, m1, d1) >= (y2, m2, d2):
# Less than or equal to one year.
if y1 == y2 and calendar.isleap(y1):
year_length = 366.0
elif (y1, m1, d1) < (y2, 2, 29) <= (y2, m2, d2) and calendar.isleap(y2):
year_length = 366.0
elif (y1, m1, d1) <= (y1, 2, 29) < (y2, m2, d2) and calendar.isleap(y1):
year_length = 366.0
else:
year_length = 365.0
else:
year_length = (datetime.date(y2 + 1, 1, 1) - datetime.date(y1, 1, 1)).days / (y2 + 1.0 - y1)
return (end_date - start_date).days / year_length
elif basis == -1:
# This is Google Sheets implementation. Call it an overkill, but I think it's more sensible.
#
# Excel's logic has the unfortunate property that YEARFRAC(a, b) + YEARFRAC(b, c) is not
# always equal to YEARFRAC(a, c). Google Sheets implements a variation that does have this
# property, counting the days in each year as a fraction of that year's length (as if each day
# is counted as 1/365 or 1/366 depending on the year).
#
# The one redeeming quality of Excel's logic is that YEARFRAC for two days that differ by
# exactly one year is 1.0 (not always true for GS). But in GS version, YEARFRAC between any
# two Jan 1 is always a whole number (not always true in Excel).
if y1 == y2:
return _one_year_frac(start_date, end_date)
return (
+ _one_year_frac(start_date, datetime.date(y1 + 1, 1, 1))
+ (y2 - y1 - 1)
+ _one_year_frac(datetime.date(y2, 1, 1), end_date)
)
elif basis == 2:
return (end_date - start_date).days / 360.0
elif basis == 3:
return (end_date - start_date).days / 365.0
elif basis == 4:
if d1 == 31:
d1 = 30
if d2 == 31:
d2 = 30
return (_date_360(y2, m2, d2) - _date_360(y1, m1, d1)) / 360.0
raise ValueError('Invalid basis argument %r' % (basis,))
def _one_year_frac(start_date, end_date):
year_length = 366.0 if calendar.isleap(start_date.year) else 365.0
return (end_date - start_date).days / year_length