

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Aug 15, 2016

ELB-trees - Efficient Lock-free B+trees

Bonnichsen, Lars Frydendal; Karlsson, Sven ; Probst, Christian W.

Published in:
Proceedings of the 10th International Summer School on Advanced Computer Architecture and Compilation for
High-Performance and Embedded Systems (ACACES 2014)

Publication date:
2014

Link to publication

Citation (APA):
Bonnichsen, L. F., Karlsson, S., & Probst, C. W. (2014). ELB-trees - Efficient Lock-free B+trees. In Proceedings
of the 10th International Summer School on Advanced Computer Architecture and Compilation for High-
Performance and Embedded Systems (ACACES 2014).

http://orbit.dtu.dk/en/publications/elbtrees--efficient-lockfree-btrees(98001ef0-9b22-4898-91f0-827a7fd21751).html

Efficient Lock-free B+trees
Lars F. Bonnichsen, Sven Karlsson,
Christian W. Probst

ABSTRACT

As computer systems scale in the number of processors, data structures with good parallel per-
formance become increasingly important. Lock-free data structures promise improved parallel
performance at the expense of higher complexity and sequential execution time. We present ELB-
trees, a new lock-free dictionary with simple synchronization in the common case, making it al-
most 30 times faster than sequential library implementations at 24 threads.

1 Introduction

Modern computer systems routinely make use of multiple processors. However, software
generally scales poorly to multiple processors, due to the way underlying data structures are
designed or used. The current best practice is to use mutual exclusion to keep shared data
structures consistent. Mutual exclusion is a source of many problems, including deadlocks,
priority inversion, serialization of critical regions, and starvation. Lock-free data structures
remedy these problems, trading mutual exclusion for complex synchronization algorithms
using atomic operations. As a result of their complexity and overhead for atomic operations,
lock-free data structures tend to have high execution time overhead.

In this abstract, we introduce ELB-trees, a fast lock-free dictionary. The main contribu-
tions being the ELB-trees and their performance evaluation. An early form of ELB-trees,
supporting only priority queue operations were originally introduced in [2].

2 Background

Modern multiprocessors support synchronization with atomic operations, such as compare-
and-swap (CAS). CAS(a, b, c) atomically performs *a == b ? (*a = c, b) : *a. CAS
is powerful enough to implement any data structure in a lock-free manner [1], but naive use
of CAS can lead to the ABA problem [4]. Specifically, if a node is deallocated and reused for
a new node, then other threads may mistake the old and new nodes.

Hazard pointers solve the ABA problem by ensuring the nodes are only deallocated
when unaccessed through a memory-access policy: before accessing nodes, threads must spec-
ify that they will access them and verify that the they are reachable. Before deallocating nodes,
threads must ensure that the nodes are unreachable and not accessed by other threads. Threads
specify which nodes they access through a list of Hazard pointers, ie pointers to nodes. The
only complication with Hazard pointers, is checking whether nodes are reachable or not.

3 The design of ELB-trees

ELB-trees are structurally similar to B+trees, with separate representations for leaf and in-
ternal nodes. Key-value pairs (entries), are stored unordered in leaf nodes, while internal
nodes store child pointers and separator entries sorted to guide search. Keeping leaf nodes
unordered enables insertion and removal with a single CAS operation; simply locate a rele-
vant entry and modify it with CAS. Internal nodes can only be modified by changing a single
child pointer at a time, replacing the child. To enable replacing of the root, ELB-trees keep a
static "fake root" which points to the real root. While replacing entire nodes is expensive, it
is only neccessary for infrequent rebalancing.

As with B+trees, ELB-trees rebalance when nodes are too dense or sparse. Rebalancing
is achieved by splitting the node, merging it with its siblings, or evenly distributing the en-
tries between the node and its siblings. Such operations involve multiple nodes, which is
handled with a lock-free "help-locking" scheme: modification to the node and its closest rel-
atives is prevented, while providing details on how to finish rebalancing. If another thread is
prevented from making progress, it can help finish the rebalancing, ensuring lock-freedom.

Leaf node modification is prevented by setting a special freeze bit in all of its entries,
similar to the work of Bragisky et al [5]; entries cannot be modified when the bit is set,
forcing other threads instead to help rebalance. Modification of internal nodes is prevented
by setting a "status" field in the node, prior to modification of internal nodes, similar to
the work of Ellen et al [3]. The status field stores the details required to help a rebalancing.
Specifically it contains a pointer to the parent node, an entry stored in the unbalanced node,
the unbalanced nodes height, and the current nodes relation to the unbalanced node.

At a high level, rebalancing of a node is done as follows:

1. If an ancestor of the node is unbalanced, then balance the ancestor first.

2. Prevent modification of the grandparent and parent of the node, as well as the node
and its sibling, in that order.

3. Create balanced replacements of the node, its sibling, and their parent.

4. Using CAS, replace the parent and clear the status field of the grandparent.

help (step , chi ld , parent , gParent) :
goto s tep
STEP1 :

get hazard pointer to s i b l i n g .
CAS grandparent ’ s s t a t u s f i e l d to

{ key , parent , cHeight , STEP2 } .
i f s t a t u s f i e l d changed , goto FIND_HELP .
i f grandparent no longer conta ins parent ,

c l e a r grandparent ’ s s t a t u s f i e l d .
STEP2 :

CAS parent ’ s s t a t u s f i e l d to
{ key , parent , cHeight , STEP3 } .

i f s t a t u s f i e l d changed , goto FIND_HELP .
STEP3 :

i f node i s l e a f , f r e e z e i t , rebalance i t ,
r e p l a c e parent and return .

CAS node ’ s s t a t u s f i e l d to
{ key , parent , cHeight , STEP4 } .

i f s t a t u s f i e l d changed , goto FIND_HELP .

STEP4 :
i f node i s dense , s p l i t the node

r e p l a c e i t s parent and return .
CAS s i b l i n g ’ s s t a t u s f i e l d to

{ key , parent , cHeight , STEP5 } .
i f s t a t u s f i e l d changed , goto FIND_HELP .

STEP5 :
even out number of ch i ldren in the node and

i t s s i b l i n g .
r e p l a c e parent and return .

FIND_HELP :
f ind nodes r e l e v a n t to preventing operat ion .
i f the grandparents s t a t u s f i e l d does not

match or the parent does not match s t a t u s
f i e l d or s i b l i n g unreachable , then the
preventing operat ion has f in i shed , return .

goto s tep i n d i c a t e d by preventing operat ion .

Figure 1: High-level description of the helping scheme.

Table 1: Platforms used for the experiments. PCA supports hyper-threading.

Microprocessor and speed Cores L1 Size L2 Size L3 Size
PCA 2x Intel Xeon X5570 2.933 GHz 2x 4 8x 32 KB 8x 256 KB 2x 8 MB
PCB 2x AMD Opteron 1.9 GHz 2x 12 24x 64 KB 24x 512 KB 4x 6 MB

The helping scheme is implemented in a manner similar to Figure 1. Along the way, there
are a number of special cases that has to be dealt with, such as dense nodes, rebalancing
being finished by other threads, leaf nodes, the root node, and deciding on siblings. Nodes
are rebalanced with the sibling that permit the lowest entries. We use Quickselect when
rebalancing leaf nodes into two leaf nodes [6]. Nodes cannot be sparse, if they are the only
child of the real root.

Searching ELB-trees is similar to other trees, but with hazard pointers. The reachability
criterion is: The fake root is always reachable. The real root is reachable if the fake root points
to it. Other nodes are reachable if they are not being rebalanced, or the parent to a node being
rebalanced. When searching through nodes that are being rebalanced, the searching thread
helps the rebalancing.

4 Results

We evaluate ELB-trees on two systems summarized in Table 1. Both platforms run Linux; De-
bian 6.0.6 with kernel 2.6.38.6 on PCA, and Scientific Linux 6.1 with kernel 2.6.32 on PCB. We
compile with GCC 4.6.1 using the flags: -Ofast -flto -fwhole-program -fopenmp.
All memory is preallocated to prevent memory allocation overhead from influencing the
results. Each data point is the average of 160 runs presented with 95% confidence intervals.

The experiment is laid out as follows: p threads each perform n/p operations on a dic-
tionary with n entries. 20% of the operations are insertions, 20% are removals, and 60% are
searches. The keys used for the operations and initial entries are sampled from the discrete
key distribution U(1, 2d1+log2(N)e). Nodes have 32 entries or child pointers, and are consid-
dered sparse when containing 4 or fewer entries or child pointers. Leaf nodes are consid-
dered dense when they have more than 26 entries. Allowing such sparse nodes may seem
inefficient, but we found that the ELB-trees used significantly less memory than the compet-
ing data structure, likely due to B+trees having few internal nodes.

Fig. 2 displays the results of this experiment. When compared to the single-threaded case,
PCA achieves a peak speedup of 9.9, 10.9, and 12.1 for n = 104, n = 105, and 106, respectively.
On PCB the same figures are 8.8, 13.7, and 17.6. This is almost 30 times faster than GCC’s
STL multimap implementation.

ELB-trees are ≈ 25% slower in the single-threaded case than the multimap for n = 104,
but roughly 60% faster for n = 106. The performance at n = 104 is due to synchronization
and ELB-trees executing 5.9 times as many instructions per operation. The STL-multimap
causes 6.9 times as many L1 cache misses, which helps explain why ELB-trees are only 25%
slower. The improved performance when n = 106 is due to ELB-trees only executing 3.4
times as many instructions, and the STL-multimap causing 5 times as many TLB misses. The

●

●

●

●
●

●

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4

10,000 operations

Threads

To
ta

l r
un

tim
e

(s
ec

on
ds

)

1 2 4 8 16 24

●

●

●

●
●

●

●

●

●

● ●

● ●
●

●

●

●

0
5

10
15

20
25

30

10,000 operations

Threads

S
pe

ed
up

1 2 4 8 16 24

● ●
●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

0.
00

0.
01

0.
02

0.
03

0.
04

100,000 operations

Threads

To
ta

l r
un

tim
e

(s
ec

on
ds

)

1 2 4 8 16 24

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

0
5

10
15

20
25

30

100,000 operations

Threads

S
pe

ed
up

1 2 4 8 16 24

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

0.
0

0.
2

0.
4

0.
6

0.
8

1,000,000 operations

Threads

To
ta

l r
un

tim
e

(s
ec

on
ds

)

1 2 4 8 16 24

●

●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

0
5

10
15

20
25

30

1,000,000 operations

Threads

S
pe

ed
up

1 2 4 8 16 24

●
●

●

●

●

●
●

●

●

●

●

Figure 2: Dictionary runtime and speedup relative to libstdc++-v3 multimap. Solid line is
from PCA, dashed is PCB.

improved performance for large trees occurs, as searching unordered leafs is less expensive,
and cache locality is more important.

5 Conclusion

We have presented and evaluated ELB-trees, a new lock-free dictionary. ELB-trees are almost
30 times faster than sequential library implementations at 24 threads, corresponding to a 17.6
times speedup over the single threaded case.

References

[1] M. Herlihy. Wait-free synchronization. TOPLAS ’91.

[2] L. F. Bonnichsen. Contention resistant non-blocking priority queues. MSc thesis 2012.

[3] F. Ellen et al. Non-blocking binary search trees. PODC ’10.

[4] M. M. Michael. Hazard Pointers: Reclamation for Lock-Free Objects. TOPLAS ’04.

[5] A. Braginsky, E. Petrank. A Lock-Free B+tree. SPAA ’12.

[6] C. A. R. Hoare. Algorithm 65: Find. Commun. ACM ’64.

	Introduction
	Background
	The design of ELB-trees
	Results
	Conclusion

