
ar
X

iv
:1

00
4.

42
40

v1
 [

cs
.D

S
]

23
 A

pr
 2

01
0

A Sparse Johnson–Lindenstrauss Transform

Anirban Dasgupta Ravi Kumar Tamás Sarlós
Yahoo! Research
701 First Avenue

Sunnyvale, CA 94089.
{anirban, ravikumar, stamas}@yahoo-inc.com

ABSTRACT
Dimension reduction is a key algorithmic tool with many applica-
tions including nearest-neighbor search, compressed sensing and
linear algebra in the streaming model. In this work we obtain
a sparseversion of the fundamental tool in dimension reduction
— the Johnson–Lindenstrauss transform. Using hashing and lo-
cal densification, we construct a sparse projection matrix with just
Õ(1

ǫ
) non-zero entries per column. We also show a matching lower

bound on the sparsity for a large class of projection matrices. Our
bounds are somewhat surprising, given the known lower bounds of
Ω(1

ǫ2
) both on the number of rows of any projection matrix and on

the sparsity of projection matrices generated by natural construc-
tions.

Using this, we achieve añO(1
ǫ
) update time per non-zero el-

ement for a(1 ± ǫ)-approximate projection, thereby substantially
outperforming thẽO(1

ǫ2
) update time required by prior approaches.

A variant of our method offers the same guarantees for sparsevec-
tors, yet itsÕ(d) worst case running time matches the best ap-
proach of Ailon and Liberty.

Categories and Subject Descriptors.F.2.0 [Theory of Computa-
tion]: Analysis of Algorithms and Problem Complexity—General;
G.3 [Mathematics of Computing]: Probability and Statistics—
Probabilistic algorithms

General Terms.Algorithms, Theory

Keywords. Johnson–Lindenstrauss transform, Dimensionality re-
duction

1. INTRODUCTION
Dimension reduction is a fundamental primitive with many al-

gorithmic applications including nearest-neighbor search [2, 19],
compressed sensing [11], data stream computations [5], computa-
tional geometry [13], numerical linear algebra [14,17,26,28], ma-
chine learning [8, 33], graph sparsification [30], and more;see the
monograph [32] for further applications. The seminal random pro-
jection method of Johnson and Lindenstrauss [20] consists of just
multiplying the input vector by a suitably sampled random projec-
tion matrix — n vectors ind-dimensional space can be mapped

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’10,June 5–8, 2010, Cambridge, Massachusetts, USA.
Copyright 2010 ACM 978-1-4503-0050-6/10/06 ...$10.00.

into anO(1
ǫ2

log n)-dimensional subspace such that the length of
each vector is distorted by at most(1± ǫ). This simple and elegant
method has the following desirable properties: (i) it is linear, (ii) it
is oblivious to the input, (iii) it works with high probability for a
given set of input points, and (iv) the target dimension isindepen-
dentof d.

Given its algorithmic importance, much effort has been devoted
to speeding up the mapping. One line of work achieves this goal
by making the projection matrix sparse, and hence its multiplica-
tion with the input vectors faster. Sparsity is typically achieved by
independently setting each matrix entry to zero with a certain prob-
ability [1, 2, 23]. There is however a limit on the extent of sparsity
achievable by this approach: a result of Matousek [23, Theorem
4.1] states that such matrices need to containΩ̃(α

2

ǫ2
) non-zeroes in

expectation per column, if they were to preserve the length of a unit
vector with infinity norm at mostα.

Our results. We obtain a sparse random projection matrix of size
k × d that hasO(1

ǫ
log2(k

δ
) log(1

δ
)) non-zero entries per column,

wherek = O(1
ǫ2

log(1
δ
)). This is thefirst construction witho(1

ǫ2
)

non-zero entries in the projection matrix. (For our resultsto be
improvements, we need to assume thatlog2(k

δ
) = o(1

ǫ
). Our anal-

ysis, however, does not need this assumption.)
A highlight of our approach is to construct the projection matrix

itself with care. Instead of using independent random variables, as
is typically done, we construct it out of a hash function thatentails
some dependency among the entries. This construction is implicit
in the work of Langford et al. [21] and Weinberger et al. [33],where
it played a role mostly as a practical heuristic. The hash-based
construction introduces new technical difficulties, but ensures that
we have exactly a fixed number of non-zero entries in each column,
thereby relaxing the requirements on the density of input vectors.

Specifically, whereas prior work requires that for a unit vector
x, ‖x‖∞ = O (ǫ), for a constant number of expected entries per
column of the projection matrix, we only need‖x‖∞ = O(

√
ǫ).

In order to achieve this level of densification, we can use a simple
replication technique onx [33].

To manage the technical difficulties that arise from the depen-
dencies, we show that the contribution from each hash bucketis
bounded, and that the total amount of noise arising from the colli-
sions in each hash bucket is small. The reduction in overall variance
comes from the fact that each dimension is mapped toexactly one
hash bucket, and the lack of self-collisions (which would bepresent
if the entries in the matrix were i.i.d.) leads to a reductionin the
variance of the cross-product error. There are several subtleties in
analyzing this, in particular, the errors from different hash buckets
being correlated. We handle this by an application of the FKGin-
equality on the product of the moment generating function ofthe
random variables capturing the errors. This helps us in obtaining a

http://arxiv.org/abs/1004.4240v1

concentration on the sum of the errors. Our choice of±1 random
variables (instead of Gaussian random variables1) plays a critical
role in making our proofs work.

Implications for sparse vectors. The resulting running time for

an input vectorx havingnnz(x) non-zeros isÕ
(

nnz(x)
ǫ

)

— bet-

ter than the running time obtained by [22, 23] for sparse vectors in
terms of the sparsity rationnz(x)

d
as well as by the factor1

ǫ
. Fur-

thermore, using a block-Hadamard based preconditioner, instead of
a global Hadamard transform, we can actually ensure that ourrun-
ning time for all vectors is̃O(min(nnz

ǫ
, d)), which is once again an

improvement over existing results. The qualitative difference in the
running times is starker in the turnstile model of streaming. Since
the updates in the stream come as(i, vi), updating any sketch that
requires computing a global Hadamard transform is very expen-
sive, takingÕ(d) time per update. Our update time, on the other
hand, is onlyÕ(1

ǫ
) per entry.

Our technique speeds up nearest-neighbor computation for sparse
vectors as well. We can use our construction to preprocess the input
vectors before applying the algorithm as described in [2, Theorem
3.2]. The effective running time is theñO(nnz(x)

ǫ
+ 1

ǫ2
log n +

1
ǫ3

log n) instead ofO(d log d+ 1
ǫ3

log n). For sparse vectors, this
could represent a significant improvement.

Related work. Since the original Johnson–Lindenstrauss result,
several authors have shown that the projection matrix couldbe
constructed element-wise using Gaussian or uniform±1 variables

[1, 7, 16, 19]. Alon showed a lower bound ofΩ
(

log n

ǫ2 log(1
ǫ
)

)

on the

target dimensionality [4].
In order to circumvent the sparsity lower bound of Matousek

[23], the ingenious Fast Johnson–Lindenstrauss transform(FJLT)
of Ailon and Chazelle preconditions the input with a randomized
Hadamard transform thereby making it dense, and then applies a
sparse projection matrix [2]. The computation of the Hadamard
transform (via a fast Hadamard transform), however, forcesanÕ(d)
running timeirrespectiveof the number of non-zeros in the input
vector. This makes it less desirable for sparse input vectors.

Ailon and Liberty [3] showed that the sparse projection matrix in
[2] could be replaced by a dense, deterministic, but well-structured
code matrix, and improved the running time toO(d log k) over a
wide range of parameters; however, like before, the runningtime
of these methods are unable to take advantage of the sparsityof
the input vector. Liberty, Ailon, and Singer [22] proved that there
exists projection matrices that are applicable inO(d) time if the
input satisfies density conditions that are significantly stricter than
those required for hashing. Since hashing works in linear time,
our work improves upon these results. Finally we remark thatal-
though [3,22] contain a spectral condition derived from Talagrand’s
inequality that could be applied to our hashing construct2, but the
resulting bound is too weak; it fails to show that hashing improves
over even the most basic Johnson–Lindenstrauss transform.

Charikar, Chen, and Farach-Colton [12] introduced the COUNT

SKETCH data structure that used hash tables combined with pair-
wise independent±1 random variables for finding the most fre-
quent items in a data stream. Thorup and Zhang [31] observed
that this hashing trick could be used to speed up the celebrated
AMS sketch [5] for estimatingF2; this was also noted by Cormode
and Garofalakis [15]. Hashing decreases the update time from

1In fact, we need an average of1
ǫ2

Gaussians to get a(1 ± ǫ)-
approximation.
2It is not hard to see thatσ of [22] equals tomax{σi} studied in
Lemma 6.

O(1
ǫ2

log(1
δ
)) to O(log(1

δ
)). These estimators, however, are non-

linear: they return the median of estimates obtained fromO(log(1
δ
))

independent hash functions, which makes them less desirable for
some applications. Our results essentially show that by increasing
the update time tõO(1

ǫ
log(1

δ
)), the median could be replaced by

an average.
Lastly, we note that random projection using hashing has found

practical applications in machine learning [21,29,33]. Inparticular,
the densification by replication was suggested by Weinberger et al.
[33]. Although they claim a concentration bound for hashing-based
dimensionality reduction, unfortunately, their claim is false due to
an error in the application of Talagrand’s inequality.

2. MAIN RESULTS
Let k = 12

ǫ2
log(1

δ
) and c = 16

ǫ
log
(

1
δ

)

log2
(

k
δ

)

. Let r =
{rj}j∈[cd] be a set of i.i.d. random variables such that for each
j ∈ [cd], Pr[rj = 1] = Pr[rj = −1] = 1/2. Let δαβ = 1
iff α = β and zero otherwise. Letnnz(x) denote the number of
non-zero entries in vectorx.

Let h′ : [cd] → [k] be a hash function chosen uniformly at
random and letH ′ ∈ {0,±1}k×cd be defined asH ′

ij = δih′(j)rj .
Let thepre-conditionerP ∈ {0,±1}cd×d be defined as

Pij =

{

1√
c

for (j − 1)c+ 1 ≤ i ≤ jc,

0 otherwise.

LetΦ = H ′P .

Theorem 1 For any given vectorx ∈ R
d, with probability1− 4δ,

Φ satisfies the following property:

(1− ǫ)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + ǫ)‖x‖22. (1)

The time required to computeΦx isO
(

1
ǫ
log2(k

δ
) log(1

δ
)
)

·nnz(x).

This is easily implied by the following. Leth : [d] → [k] be a
hash function chosen uniformly at random. LetH ∈ {0,±1}k×d

be defined asHij = δih(j)rj ; note that the matrixH has onlyd
non-zero entries, exactly one per column.

Theorem 2 For any given vectorx ∈ R
d such that‖x‖∞ ≤ 1√

c
,

for ǫ < 1 and δ < 1
10

, with probability 1 − 3δ, H satisfies the
following property:

(1− ǫ)‖x‖22 ≤ ‖Hx‖22 ≤ (1 + ǫ)‖x‖22.

For dense vectors, Theorem 1 gives a run-time ofO(d
ǫ
log3(1

ǫδ
));

this, for a small enoughǫ, could be significantly worse than the
running time obtained by Ailon and Liberty in [3] and Matousek
in [23]. However, we can modify the construction of the precondi-
tioner so that we guarantee a running time ofO(d log c log log c)
for all vectors. Our new preconditioner is based on the randomized
Hadamard construction by Ailon et al. [2, 3].

Theorem 3 Let d > 6c log(3c
δ
). There exists a preconditioner

G ∈ ℜd×d such that for any input vectorx ∈ R
d, with probability

1− 4δ,

(1− ǫ)‖x‖22 ≤ ‖(HG)x‖22 ≤ (1 + ǫ)‖x‖22.

The time required to compute(HG)x is given by

O

(

min

(

nnz(x)

ǫ
log4

(

1

ǫδ

)

, d

)

log

(

1

ǫδ

))

.

3. PROOF OF THEOREM 2

3.1 Preliminaries
Without loss of generality, we can assume‖x‖2 = 1. Let Yi =

∑

j Hijxj =
∑

j δih(j)rjxj . and letσ2
i = Er[Y

2
i], whereEr

is the expectation taken with respect to the random variables r =
{rj}. Thus,

σ2
i = Er[Y

2
i] = Er









∑

j∈[d]

δih(j)rjxj





2

 =
∑

j∈[d]

δih(j)x
2
j ,

since the cross-product terms cancel out by the independence i.e.,
Er[rjrj′] = 0 for j 6= j′. LetZi = Y 2

i − Er[Y
2
i] = Y 2

i − σ2
i .

The outline of the proof is as follows. We need to prove that
∑

i Y
2
i is concentrated around‖x‖22 = 1. Instead of showing

concentration of
∑

i Y
2
i , we will show that

∑

i Zi is concentrated
around zero. Indeed, since our hash function guarantees that each
coordinatej ∈ [d] is mapped to one and exactly one hash bucket,
we have that

∑k
i=1 σ

2
i = ‖x‖22 = 1. Therefore,

∑k
i=1 Y

2
i =

∑

i σ
2
i +

∑

i Zi = 1 +
∑k

i=1 Zi. Showing that
∑

i Zi is concen-
trated around zero is thus enough.

We will utilize the following form of the FKG inequality [6, The-
orem 6.2.1].

Theorem 4 (FKG inequality) LetL be a finite distributive lattice
and letµ : L → ℜ+ be a log-supermodular function. Then, for an
increasing functionf and a decreasing functiong, we have that

∑

x∈L

µ(x)f(x)g(x)
∑

x∈L

µ(x) ≤
∑

x∈L

µ(x)f(x)
∑

x∈L

µ(x)g(x).

3.2 Notation
Recall thatk = 12

ǫ2
log(1

δ
). Define

α = α(k) =
1

ǫ ln(k
δ
)
, σ2

∗ =
1 + α

k
, and θ =

4σ2
∗k

δ
;

we will assumeα ≥ 3. We define the following function as a
shorthand to denote the upper bound on conditional expectation of
the MGF with respect to the{rj} variables.

G(u, t) = 1 +
1

θ2
(exp(uθ)− 1− uθ)t+

4δ

k
.

Definition 5 (Goodness)A setA ⊆ [d] is goodif
∑

j∈A x2
j ≤ σ2

∗. Theith hash bucket isgood if h−1(i) is good,

i.e., ifσ2
i =

∑

j,h(j)=i x
2
j ≤ σ2

∗ and the hash functionh is goodif

h−1(i) is good for alli.

For a givenh, let Gi denote the event that theith hash bucket is
good. LetG be the event that the hash functionh is good. By abus-
ing notation we useG andGi to represent the indicator variables of
the corresponding events.

3.3 Proof details
Recall thatZi = Y 2

i −Er[Y
2
i], whereYi =

∑

j δih(j)rjxj , i.e.,

Zi =
∑

j 6=j′,j,j′∈[d]

δih(j)δih(j′)rjrj′xjxj′ .

Observe thatE [Zi] = 0 and our goal is to show that
∑

i Zi is
concentrated around0.

Here is an overview of the proof. We first show in Lemma 6 that
mosth are good. In Lemma 7, we bound the moment generating
function (MGF) of the random variableZi, for a fixedh. A usual
step at this point would be to remove the effect of the bad choice
of the random variables from the MGF by perhaps considering a
truncated random variablêZi = min(Zi,M). In our case, how-
ever, such a construction would introduce a dependence among the
{rj} andh variables, which appears to be insurmountable when
trying to apply the FKG inequality. We have to instead utilize the
notion of goodness ofh only in defining the truncated random vari-
able Ẑi. Using the result of Lemma 7, we first get Corollary 8
that gives the expected and the worst-case bounds on the MGF for
a good hash functionh. We utilize these bounds to definêZi in
(5). Next, in Lemma 9, we define two set functionsfs andgs and
show that they are monotone, in accordance with the requirements
of the FKG inequality (Theorem 4). These functions are then used
in Lemma 10 to show that the MGF of

∑

i Zi can be bound by the
product of the individual MGF’sZi. We then bound the probability
of anǫ-deviation for

∑

i Zi in Theorem 11. Subsequently, we use
Theorem 11 to prove Theorems 1 and 2. Section 4 gives the proof
of Theorem 3.

Lemma 6 If c = 16
ǫ
log(1

δ
) log2(k

δ
), thenPr[G] ≥ 1− δ.

The proof (Appendix 9.1) is an application of the Bernstein’s in-
equality [24, Theorem 2.7] and utilizes the fact that since‖x‖∞ ≤
1√
c
, and the hash function is random, with high probability, noσi

can be too large. In essence, this generalizes well-known facts
about the maximum load in the balls into bins problem for the
weighted case3.

The following lemma gives a bound on the MGF of the variable
Zi for a fixedh. The proof can be found in Appendix 9.2.

Lemma 7 If u < 1
4σ2

i
, then for a fixedh,

Er[exp(uZi)] ≤ G(u,Er[Z
2
i]). (2)

Lemma 7 leads to the following.

Corollary 8 If 0 < u < 1
4σ2

∗

, then the expectation of the MGF can

be bounded as

Eh,r[exp(uZi) | G] ≤ G(u,
1

k2
). (3)

Similarly,

max
h∈G

Er[exp(uZi)] ≤ G(u, σ4
∗). (4)

PROOF. By taking expectation overh and using

Eh[Er[Z
2
i | G]] ≤ 2E[Z2

i] ≤
2

k2
,

we have that

Er,h[exp(uZi) | G] ≤ 1 +
2

k2θ2
(exp(uθ)− 1− uθ) +

4δ

k

≤ exp

(

2

k2θ2
(exp(uθ)− 1− uθ) +

4δ

k

)

.

3Sanders [27] contains a proof of the expected load for the
weighted ball-and-bins problem, but does not contain a proof of
the high probability statement.

The upper bound onEr[exp(uZi) | G] is given by

max
h∈G

Er[exp(uZi)]

≤ 1 +
1

θ2
(exp(uθ) − 1− uθ)max

h
Er[Z

2
i | G] + 4δ

k

≤ 1 +
1

θ2
(exp(uθ) − 1− uθ)σ4

∗ +
4δ

k
,

where we useEr[Z
2
i] < σ4

∗.

Next, we have to handle the fact that theZi variables are not inde-
pendent. Yet, intuitively, sinceZi is roughly related to the cross-
product of the set of entriesxj that map into theith hash bucket,
conditioned on the fact that one of theZi variables has achieved a
large value, the probability that anotherZi′ is also large decreases.
In fact, we show that we can apply the FKG inequality (Theorem
4) on the MGF of theZi random variables. Note that this situation
is more involved that the simple negative dependence obtained on a
set of random variables by conditioning their sum to be a constant
— we cannot make such claims on

∑

i Zi. For alli = 1, . . . , k let
us define

Ẑi =

{

Zi if Gi,
1
u
logG(u, σ4

∗) else.
(5)

We first need the following lemma in preparation for the appli-
cation of the FKG inequality (Theorem 4).

Lemma 9 For 1 ≤ s ≤ k, u < 1
4σ2

∗

andA ⊆ [d], let us define

fs(A) = Er

[

exp
(

uẐs

)

| h−1(s) = A
]

and

gs(A) = Eh,r

[

exp

(

u

s−1
∑

i=1

Ẑi

)

| h−1(s) = A

]

.

Thenfs is an increasing andgs is a decreasing set function.

PROOF. First we prove thatfs is increasing by showing that for
all A ⊆ [d] and for alla ∈ [d] \ A, it holds thatfs (A ∪ {a}) ≥
fs(A).

Observe that ifh−1(s) is good (i.e., ifGs holds), then by Corol-
lary 8, we haveEr[exp(uZs)] ≤ G(u, σ4

∗). Thus for allh ands, it
holds from (5) that

Er[exp(uẐs)] ≤ G(u, σ4
∗). (6)

There are two cases to consider. SupposeA ∪ {a} is bad. Then,
Ẑs = 1

u
logG(u, σ4

∗) and hencefs (A ∪ {a}) = G(u, σ4
∗) ≥

fs(A) from (6).
SupposeA ∪ {a} is good. Now, let us define

VA =
∑

j,g∈A,j 6=g

rjrgxjxg and WA = xa

∑

j∈A

xjrj .

Also note that ifh−1(s) = A ∪ {a} and thesth bucket is good,
thenẐs = Zs = VA + raWA holds. Therefore we have that

fs (A ∪ {a}) = Er

[

exp
(

uẐs

)

| h−1(s) = A ∪ {a}
]

= Er

[

exp (uVA + u · raWA) | h−1(s) = A ∪ {a}
]

= Er[Er

[

exp (uVA + u · raWA) | h−1(s) = A ∪ {a}, {rj}j∈A

]

| h−1(s) = A ∪ {a}]

≥ Er[exp
(

Er

[

uVA + u · raWA | h−1(s) = A ∪ {a}, {rj}j∈A

])

| h−1(s) = A ∪ {a}].
(By Jensen’s inequality,E[exp(x)] ≥ exp(E[x]))

(a)
= Er

[

exp (uVA) | h−1(s) = A ∪ {a}
]

(b)
= Er

[

exp (uVA) | h−1(s) = A
]

(c)
= fs (A) .

Here, (a) follows since onlyra is random in the inner expectation
and

Er

[

uVA + u · raWA | h−1(s) = A ∪ {a}, {rj}j∈A

]

= uVA.

And, (b) follows sincea /∈ A andVA does not depend onh(a)
by the independence of the values ofr andh. Finally, (c) follows
since ifA ∪ {a} is good then so isA; therefore ifh−1(s) = A,
then we have that̂Zs = Zs = VA. The proof thatfs is increasing
is complete.

The proof ofgs being a decreasing function is similar, and can
be found in Appendix 9.3.

Given our construction of the two functions,fs andgs, we can
now proceed to apply the FKG inequality (Theorem 4) to show
that the MGF of the random variable

∑k
i=1 Ẑi is bounded by the

product of the MGF’s of eacĥZi variable.

Lemma 10 It holds that

E

[

exp

(

u
k
∑

i=1

Ẑi

)]

≤
k
∏

i=1

E
[

exp
(

uẐi

)]

,

where the expectation is taken over bothh andr = {rj}.

PROOF. For all1 ≤ s ≤ k, we prove

E

[

exp

(

u

s
∑

i=1

Ẑi

)]

≤
s
∏

i=1

E
[

exp
(

uẐi

)]

, (7)

by induction ons. The base case ofs = 1 is obvious.
Now assume that the inductive hypothesis (7) holds fors − 1.

For allA ⊆ [d] let us define

µs(A) = Pr
[

h−1(s) = A
]

=
∏

j∈A

Pr[h(j) = s]
∏

j /∈A

Pr[h(j) 6= s].

It is easy to check thatµs is a log-supermodular measure4 over the
subsets of[d]. Recalling the definition of the increasing functionfs
and the decreasing functiongs from Lemma 9 it follows from the
FKG inequality (Theorem 4) that

Eµs [fsgs] ≤ Eµs [fs] Eµs [gs] .

4See [6, Section 6.2, page 87] for a precise definition and proof of
this fact.

Furthermore, observe that for any random variableX we have

Eµs

[

E
[

X | h−1(s) = A
]]

=
∑

A⊆[d]

Pr
[

h−1(s) = A
]

E
[

X | h−1(s) = A
]

= E [X] ,

and consequently,

E[exp (u
s−1
∑

i=1

Ẑi) exp (uẐs)] ≤ E[exp (u
s−1
∑

i=1

Ẑi)]E[exp (uẐs)].

Combining the latter with the induction hypothesis fors − 1 con-
cludes the proof.

Theorem 11 For the variablesZi we have

(i) Pr

[

∑

i

Zi ≥ ǫ

]

≤ exp

(

−3kǫ2

4(3 + (1 + α)ǫ ln(k
δ
))

+ 4δ

)

+ δ,

(ii) Pr

[

∑

i

Zi < −ǫ

]

< exp

(

− ǫ2k

12

)

+ δ.

The proof of Theorem 11 involves a standard but tedious calcula-
tion that is similar to one done by Matousek [23]. The proof can
be found in Appendix 9.4. Finally, we are ready to prove the main
result.

PROOF. (of Theorem 2). Recall thatYi =
∑

j Hijxj , thus

‖Hx‖22 =
∑

i Y
2
i . Also recall thatσ2

i = Er[Y
2
i]. Thus,

∑k
i=1 σ

2
i =

‖x‖22 = 1. Therefore,
∑k

i=1 Y
2
i =

∑

i σ
2
i +

∑

i Zi = 1 +
∑k

i=1 Zi. Recall thatk = 12
ǫ2

log(1
δ
), andα = 1

ǫ log(k
δ
)
. Plugging

these values in Theorem 11(i), we have
∑

i Zi > ǫ, with probabil-
ity at mostexp(− 9

5
ln(1

δ
) + 4δ) + δ < 2δ, for δ < 1

10
. Similarly,

from Theorem 11(ii), we have
∑

i Zi < −ǫ with probability at
most2δ. Putting them together, with probability at least1 − 4δ,
|∑i Y

2
i − 1| = |∑i Zi| < ǫ, and hence|‖Hx‖22 − ‖x‖22| <

ǫ‖x‖22.

PROOF. (of Theorem 1). Theorem 1 easily follows from Theo-
rem 2 by noting that ify = Px, then‖y‖2 = 1 and‖y‖∞ ≤ 1√

c
.

The running time is obtained as computing bothy = Px andHy
requiresO(c · nnz(x)) time.

4. PROOF OF THEOREM 3

Definition 12 (Randomized Hadamard matrix [2].) Construct the
m × m Hadamard matrixF asFij = m−1/2(−1)〈i−1,j−1〉 and
the diagonal matrixD by choosing eachDii independently from
{−1, 1} with probability1/2 for each value. The matrixA = FD
is defined to be anm×m randomized Hadamard matrix.

Using multiple small copies the randomized Hadamard matrix,
we create the following preconditioner. Without loss of generality,
we assume thatd

b
is an integer, for the given value ofb. We note

that [3] also contains a similar construct; here we present amore
straightforward analysis using a different vector norm.

Lemma 13 Let x ∈ ℜd, ‖x‖ = 1, and1 > δ > 0, andc ≥ 1.
Defineb = 6c log(3c

δ
) and assumeb ≤ d. ConstructG ∈ ℜd×d to

be a random block-diagonal matrix, where each of thed/b diagonal
blocks ofG consist of an independent copy of ab × b randomized
Hadamard matrix. Then we have that

Pr

[

‖Gx‖∞ ≥ 1√
c

]

≤ δ.

PROOF. If A is b×b randomized Hadamard matrix, then for any
b-dimensional vectorz with ‖z‖2 = 1 it holds that‖Az‖2 = 1.
Using a Chernoff-type argument Ailon and Chazelle [2] showed

Pr [‖Az‖∞ ≥ s] ≤ 2b exp

(

−s2b

2

)

. (8)

holds as well. Observe that the previous inequality trivially holds
for ‖z‖2 ≤ 1 as well. Lety = Gx, andGj denote thejth diagonal
block ofG, and partitionx andy into d

b
blocksxj and defineyj =

Gjxj . Now for a blockj, if ‖xj‖2 ≤ 1√
c
, then‖yj‖∞ ≤ ‖yj‖2 ≤

1√
c

holds as well, sinceGj is an isometry. Sincex is unit length,

there could be at mostc blocks j such that‖xj‖2 ≥ 1√
c
. Thus

settings to 1√
c

in (8) and taking the union bound over these at most
c blocks, we have that

Pr

[

‖Gx‖∞ ≥ 1√
c

]

≤ 2bc exp

(

− b

2c

)

=
12c2 log(c

δ
)δ3

27c3
≤ δ,

establishing the claim.

Using the block-Hadamard preconditioner, we are ready to prove
Theorem 3. Theǫ-approximation guarantee of the projection ma-
trix Φ follows trivially from the statements of Theorem 2 and of
Lemma 13.

In order to bound the running time, letnnzb(x) denote the num-
ber of blocks that have non-zero coordinates inx. Then the running
time of the block-Hadamard based hashing isO(nnzb(x) ·b log b+
nnzb(x) · b). Now,

nnzb(x) · b log b ≤ min(nnz(x)b, d) log b

= O(min(nnz(x)c log(
c

δ
), d) log(

c

δ
))

Now, c log(c
δ
) = O(1

ǫ
log(1

δ
) log2 k

δ
log(1

ǫδ
)). Hence the final

running time is

O

(

min

(

nnz(x)

ǫ
log

(

1

δ

)

log2
(

k

δ

)

log

(

1

ǫδ

)

, d

)

log

(

1

ǫδ

))

.

Note that ifδ is not too small then the running time of Theo-
rem 3 is comparable to the best existing methods for dense vec-
tors [3] yet it is much faster for sparse vectors. We remark that the
localized Hadamard preconditioner presented in this section could
also be combined with suitably sparse random matrices from [23]
by makingb larger, approximately equal tok. This variant would
reproduce the results of [3], but it fails to show any improvement
for sparse vectors over the naive construction as the running time
would beΩ̃(1

ǫ2
) per non-zero element.

5. A LOWER BOUND
A random matrixΦ is said to have theJL propertyif for every

vectorx, Φx satisfies (1) with probability1− δ over the choice of
Φ.

We show a lower bound on the sparsity for a class of construc-
tions of matrices with the JL property. The construction of the ma-
trix is modeled as a two stage process: first, the set of indices that
have non-zero entries is chosen, and then each column is chosen in-
dependently random. Note that we do not assume that the random
variables are independent within a column.

The lower bound argument of Matousek [23] shows that if the
set of non-zero indices in the first stage is chosen by independent
coin tosses and if the random variables in the second stage are in-
dependent (scaled)±1 with equal probability, in expectation, then

Ω̃(
‖x‖2

∞

ǫ2
) non-zero entries per column are needed to guarantee that

the resulting matrix has the JL property.
We show a lower bound on the sparsity for the case when the

non-zero indices are chosen arbitrarily. As mentioned earlier, if the
random variables in the second stage areN(0, 1), then it is easy to
obtain a lower bound of̃Ω(1

ǫ2
) on the number of non-zero entries

per column: indeed, the lower bound follows sinceΩ̃(1
ǫ2
) such

random variables are needed so that their sum is(1± ǫ), w.h.p.
Under mild technical conditions on the random variables, wecan

prove the following lower bound stated in Theorem 14. It is easy
to see that the conditions of Theorem 14 are satisfied if the random
entries are independent (scaled)±1 or when they are generated
by the replicated hashing construct of Theorem 1. Thus the upper
bound of Theorem 1 is tight with respect toǫ. The bound on the
number of non-zeros per column implies a bound on the worst case
update time over all vectors as well.

Theorem 14 Let 1 ≤ c ≤ k < d be integers andM be an ar-
bitrary, fixed or random,k × d 0-1 matrix with at mostc non-
zeroes per column. LetP be ak × d random matrix of the fol-

lowing formPij =

{

0 if Mij = 0

Uij if Mij = 1.
Here the vector valued

U∗j random variables are independent and for eachj it holds that
E[
∑

i P
2
ij] = 1 and thatE[

∑

i P
4
ij] = O(1

c
).

Let 0 < ǫ ≤ 1/4. If P has JL property with probability at least
1− o(1)

d2
, then

c = Ω

(

min

{

1

ǫ2
,

√

logk(d)

ǫ

})

.

PROOF. For all i = 1, . . . , d let Ci = {s ∈ [k]|Msi 6= 0}
denote the index set of non-zeros in theith column ofP . Further-
more, letV = {e1, . . . , ed}, whereei denotes theith unit vector.
For i 6= j we also defineXij = Ci∩Cj andS =

∑

t∈Xij
UtiUtj .

Then we have that

‖P (ei + ej)‖22 = ‖Pei‖22 + ‖Pej‖22 + 2S. (9)

Using the fourth moment method [9], we show thatS has a large
deviation with constant probability unlessc is large enough. To-
wards this goal for allt ∈ Xij setYt = UtiUtj and letxij = |Xij |.

W.l.o.g. we can assume that each column ofM contains exactly
c non-zeroes and ifMti = 1 thenE[U2

ti] = 1
c

andE[U4
ti] =

O(1
c2
) hold as well; otherwise we replaceP with a copy ofP

whose rows are randomly permuted. Furthermore we can also as-
sume thatE[UsiUti] = 0 holds as multiplying each row ofP with
independent uniformly distributed±1 random variables does not
change (9) or the theorem’s conditions. Finally, w.l.o.g. we can
assume that for alls, t1, t2, t3 wheres /∈ {t1, t2, t3} it holds that
E[YsYt1Yt2Yt3] = 0 as multiplying the rows ofP with random
±1 ensures the latter condition as well.

Now observe thatE[S2] = E[
∑

t Y
2
t] +

∑

s6=t E[YsYt] =
xij

c2

holds, sinceE[Y 2
t] = E[U2

tiU
2
tj] = E[U2

ti]E[U
2
tj] = 1

c2
by the

independence of columns. Moreover ifs 6= t then we have that
E[YsYt] = E[UsiUtiUsjUtj] = E[UsiUti]E[UsjUtj] = 0 by in-
dependence again.

Similarly note that

E[S4] = E[
∑

t

Y 4
t] +

∑

s6=t

E[Y 2
s Y

2
t] +

∑

s/∈{t1,t2,t3}
E[YsYt1Yt2Yt3]

= O

(

x2
ij

c4

)

.

By our assumptions it holds thatE[Y 4
t] = E[U4

ti]E[U
4
tj] = O(1

c4
).

If s 6= t thenE[Y 2
s Y

2
t] = E[U2

siU
2
ti]E[U

2
sjU

2
tj] holds by indepen-

dence and hence from Hölder’s inequality we have thatE[U2
siU

2
ti] ≤

√

E[U4
si]E[U

4
ti]. Thus it holds thatE[Y 2

s Y
2
t] ≤ O(1

c4
). Lastly, re-

call that that for alls, t1, t2, t3 wheres /∈ {t1, t2, t3} we have that
E[YsYt1Yt2Yt3] = 0.

Now [9, Theorem 3.5] states that

Pr

[

|S| ≥ 1

2

√

E[S2]

]

≥ (3/4)2

E[S4]

E[S2]2
− 7

16

.

Therefore we have that

Pr

[

|S| ≥
√
xij

2c

]

≥ (3/4)2

O(1) − 7
16

= Ω(1). (10)

On the other hand, it follows from the assumed JL property ofP
that with probability1− o(1), for all 1 ≤ i < j ≤ d, we have that
∣

∣‖P (ei + ej)‖22 − 2
∣

∣ ≤ 2ǫ and that
∣

∣‖P (ei‖2 + ‖Pej)‖22 − 2
∣

∣ ≤ 2ǫ.

Therefore from combining equality (9) with inequality (10)it fol-
lows that

√
xij

c
≤ 4ǫ must hold for alli 6= j, or equivalently

|Ci ∩ Cj | ≤ z with z = 16ǫ2c2 for all i 6= j.
If z < 1, then theCi are pairwise disjoint and thereforek ≥

dc ≥ d, a contradiction. Thusz ≥ 1, and hencec ≥ 1
16ǫ

imme-
diately. In what follows we strengthen the latter lower bound for a
large range ofd andk as claimed.

If c ≥ 1
32ǫ2

then the lemma clearly holds asΩ
(

1
ǫ2

)

is the largest
of the lower bounds claimed.

Now note thatc ≥ 2. Since if c = 1 were to hold, then
from ǫ < 1/4 it follows that z < 1, which is a contradiction
as before. Therefore ifc ≤ 1

32ǫ2
then all Ci’s are distinct as

z + 1 = (c/2)(32ǫ2c) + 1 ≤ c/2 + c/2 = c holds.
Observe that anyz + 1 element set is contained in at most one

Ci. Therefore the number of distinctCi is at most

f(k, c, z + 1) =

(

k

z + 1

)

/

(

c

z + 1

)

,

a well known fact from block designs and set packing [18]. From
the Stirling formula, for alln ≥ 1,

√
2πn

(

n
e

)n ≤ n! ≤ 1.1
√
2πn

(

n
e

)n
,

and it follows that for all1 ≤ y < x it holds that
(

ex
y

)y
0.8√
2π

√

x−y
xy

≤
(

x
y

)

≤
(

ex
y

)y
1.1√
2π

√

x
y(x−y)

. Therefore we have that

f(k, c, z + 1) ≤
(

k

c

)z+1

2k ≤ kz+3. (11)

Now observe thatd ≤ f(k, c, z+1) as allCi are distinct. Com-
bining the latter with inequality (11), we have thatlogk(d)−3 ≤ z.
Recalling that1 ≤ z = 16ǫ2c2 concludes the proof.

Using a replication argument it is easy to see that if a matrixP

only has the JL property for vectorsx with ‖x‖∞
‖x‖2 ≤ α for someα,

then under the conditions of Theorem 14 we have that at least one

column ofP containsΩ

(

α2 min

{

1
ǫ2
,

√
logk(d)

ǫ

})

non-zeroes.

If the fourth moment of the random entries per column scales
with the number of non-zeros per column, the next theorem strength-
ens the previous claim by bounding the average number of non-
zeroes per column. This condition is satisfied, say, if the non-zero
entries are independent scaled±1 random variables.

Theorem 15 Let 0 < ǫ ≤ 1/4 andM be an arbitraryk × d 0-
1 matrix with 2k2 < d. Let cj denote the number of non-zeroes
in the jth column ofM . LetP be ak × d random matrix of the

following formPij =

{

0 if Mij = 0

Uij if Mij = 1.
Here the vector valued

U∗j random variables are independent and for eachj it holds that
E[
∑

i P
2
ij] = 1 andE[

∑

i P
4
ij] = O(1/cj).

If P has JL property with probability at least1− o(1)

d2
, then

d
∑

i=1

ci
d

= Ω

(

min

{

1

ǫ2
,

√

logk(d)

ǫ

})

.

PROOF. Set

s = Ω

(

min

{

1

ǫ2
,

√

logk(d)

ǫ

})

.

For all j = 1, . . . , k, assemble the columns ofP with ci = j into
thek × nj matrixPj . For all j if nj > k then from assumed JL
property ofP it follows thatPj satisfies the conditions of Theo-
rem 14 withc = j and thusj ≥ s.

Therefore for allj < s we have thatnj ≤ k. The number of
non-zeroes inP is

∑d
i=1 ci =

∑k
j=1 njj, which we lower bound

as follows

k
∑

j=1

njj ≥
k
∑

j=s

njs =

(

k
∑

j=1

nj −
s−1
∑

j=1

nj

)

s ≥ (d− sk) s

≥
(

d− k2
)

s ≥ d

2
s.

6. EMBEDDING INTO ℓ1

We can show the following result for the case that the target
metric is ℓ1. The result and the corresponding proof is similar
to that of Ailon and Chazelle [2]. We construct the matrixH as
follows: Hij = δih(j)rj , whererj are now drawn i.i.d. random
variablesN(0, 1) instead of being±1. We then have the follow-
ing. Let β0 = E[|z|] wherez ∼ N(0, 1). By the 2-stability of
the normal distribution,Yi =

∑

j xjrjδih(j) ∼ N(0, σi) where

σ2
i =

∑

j∈h−1(i) x
2
j . Thus,Er[|Yi|] = σiβ0.

Theorem 16 There exists a constantǫ0 such that for allǫ < ǫ0, if
c = k/ǫ, andk = O

(

1
ǫ2

log(1
δ
)
)

, Y = 1

β0

√
k

∑

i |Yi|, we have

thatPr[|Y − 1| > ǫ] < δ.

The proof is omitted in this version.

7. DISCUSSIONS
The most important open question is resolving the gap between

the upper and lower bounds with respect to the error probability.
It would be interesting to see whether our claims could be proven
more directly using stronger concentration inequalities.

Application of the current result to streaming settings would also
require proving the claims for ak-wise independent hash-function
and±1 variables. The chief hurdle in applying the techniques of
Clarkson and Woodruff [14] seems to be proving the FKG inequal-
ity for the limited independence case. Note that Nisan’s pseudo-
random number generator construction [25] can be used to deran-
domize the hash function, but the naive way of doing this increases
the update time tok. We leave efficient derandomization as an open
question.

It is worthwhile to note that the hash-function represents abipar-
tite expander. In a similar vein, Berinde et al. [10] use an unbal-
anced expander graph based construction to create matriceswith
restricted isometry property for sparse signal recovery. Their ar-
gument crucially uses two facts — that the error-norm isℓ1, and
that the input vector is sparse. It would interesting to investigate
possible connections between these results.

Acknowledgments.The authors would like to thank Flavio Chierichetti,
Edo Liberty, and Alex Smola for helpful discussions. We alsothank
the anonymous reviewers for feedback and for suggesting future di-
rections.

8. REFERENCES
[1] D. Achlioptas. Database-friendly random projections:

Johnson–Lindenstrauss with with binary coins.Journal of Computer
and System Sciences, 66(4):671–687, 2003.

[2] N. Ailon and B. Chazelle. The fast Johnson–Lindenstrauss transform
and approximate nearest neighbors.SIAM Journal on Computing,
39(1):302–322, 2009.

[3] N. Ailon and E. Liberty. Fast dimension reduction using Rademacher
series on dual BCH codes.Discrete and Computational Geometry,
42(4):615–630, 2009.

[4] N. Alon. Problems and results in extremal combinatorics, Part I.
Discrete Math, 273:31–53, 2003.

[5] N. Alon, Y. Matias, and M. Szegedy. The space complexity of
approximating the frequency moments.Journal of Computer and
System Sciences, 58(1):137–147, 1999.

[6] N. Alon and J. H. Spencer.The Probabilistic Method.
Wiley-Interscience, 2nd edition, 2000.

[7] R. I. Arriaga and S. Vempala. An algorithmic theory of learning:
Robust concepts and random and random projection. InProc. 40th
IEEE Symposium on Foundations of Computer Science, pages
616–623, 1999.

[8] M. F. Balcan, A. Blum, and S. Vempala. Kernels as features: On
kernels, margins, and low-dimensional mappings.Machine Learning,
65(1):79–94, 2006.

[9] B. Berger. The fourth moment method.SIAM Journal on Computing,
26(4):1188–1207, 1997.

[10] R. Berinde, A. Gilbert, P. Indyk, H. Karloff, and M. Strauss.
Combining geometry and combinatorics: A unified approach to
sparse signal recovery. In46th Annual Allerton Conference, pages
798–805, 2008.

[11] E. J. Candes and T. Tao. Near-optimal signal recovery from random
projections: Universal encoding strategies?IEEE Transactions on
Information Theory, 52(12):5406–5425, 2006.

[12] M. Charikar, K. Chen, and M. Farach-Colton. Finding frequent items
in data streams.Theoretical Computer Science, 312(1):3–15, 2004.

[13] K. L. Clarkson. Tighter bounds for random projections of manifolds.
In Proc. 24th Annual Symposium on Computational geometry, pages
39–48, 2008.

[14] K. L. Clarkson and D. P. Woodruff. Numerical linear algebra in the
streaming model. InProc. 41st Annual ACM Symposium on Theory
of Computing, pages 205–214, 2009.

[15] G. Cormode and M. Garofalakis. Sketching streams through the net:
Distributed approximate query tracking. InProc. 31st International
Conference on Very Large Data Bases, pages 13–24, 2005.

[16] S. Dasgupta and A. Gupta. An elementary proof of a theorem of
Johnson and Lindenstrauss.Random Structures and Algorithms,
22(1):60–65, 2003.

[17] P. Drineas, M. W. Mahoney, S. Muthukrishnan, and T. Sarlós. Faster
least squares approximation.Arxiv preprint arXiv:0710.1435, 2007.

[18] Z. Füredi and Z. Katona. Multiply intersecting families of sets.
Journal of Combinatorial Theory, Series A, 106(2):315–326, 2004.

[19] P. Indyk and R. Motwani. Approximate nearest neighbors: Towards
removing the curse of dimensionality. InProc. 20th Annual ACM
Symposium on Theory of Computing, pages 604–613, 1998.

[20] W. B. Johnson and J. Lindenstrauss. Extensions of Lipschitz
mappings into a Hilbert space.Contemporary Mathematics,
26:189–206, 1984.

[21] J. Langford, L. Li, and A. Strehl. Vowpal wabbit online learning
project. Technical report,http://hunch.net/?p=309, 2007.

[22] E. Liberty, N. Ailon, and A. Singer. Dense fast random projections
and lean Walsh transforms. InProc. 12th International Workshop on
Randomization and Approximation Techniques in Computer Science,
pages 512–522, 2008.

[23] J. Matousek. On variants of the Johnson–Lindenstrausslemma.
Random Structures and Algorithms, 33(2):142–156, 2008.

[24] C. McDiarmid. Concentration. In M. Habib, C. McDiarmid,
J. Ramirez-Alfonsin, and B. Reed, editors,Probabilistic Methods for
Algorithmic Discrete Mathematics, volume 16, pages 195–248.
Springer, 1998.

[25] N. Nisan. Pseudorandom generators for space-bounded computation.
Combinatorica, 12(4):449–461, 1992.

[26] V. Rokhlin, A. Szlam, and M. Tygert. A randomized algorithm for
principal component analysis.SIAM Journal on Matrix Analysis and
Application, 31(3):1100–1124, 2009.

[27] P. Sanders. On the competitive analysis of randomized static load
balancing. InProc. 1st Workshop on Randomized Parallel
Algorithms, 1996.

[28] T. Sarlós. Improved approximation algorithms for large matrices via
random projections. InProc.47th IEEE Symposium on Foundations
of Computer Science, pages 143–152, 2006.

[29] Q. Shi, J. Petterson, G. Dror, J. Langford, A. J. Smola, A. Strehl, and
V. Vishwanathan. Hash kernels. In D. van Dyk and M. Welling,
editors,AISTATS 12, 2009.

[30] D. A. Spielman and N. Srivastava. Graph sparsification by effective
resistances. InProc. 40th Annual ACM Symposium on Theory of
Computing, pages 563–568, 2008.

[31] M. Thorup and Y. Zhang. Tabulation based 4-universal hashing with
applications to second moment estimation. InProc. 15th Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 615–624,
2004.

[32] S. Vempala. The random projection method. DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, 65.
American Mathematical Society, Providence, RI, 2004.

[33] K. Weinberger, A. Dasgupta, J. Attenberg, J. Langford,and
A. Smola. Feature hashing for large scale multitask learning. In Proc.
26th International Conference on Machine Learning, page 140, 2009.

9. APPENDIX

9.1 Proof of Lemma 6

PROOF. We show thatσ2
1 ≤ σ2

∗, with probability1 − δ/k; the
proof will then follow from the union bound.

Define the random variableXj = δ1h(j)x
2
j−

x2
j

k
. Then,Eh[Xj] =

0 and since||x||∞ < 1√
c
, we haveXj < 1

c
. We also have

Eh[X
2
j] = Eh

[

(

δ1h(j)x
2
j −

x2
j

k

)2
]

= x4
j

(

1
k
+ 1

k2 − 2
k2

)

≤

x2
j

c

(

1
k
− 1

k2

)

, and

∑

j

Eh[X
2
j] ≤

∑

j

x2
j

c

(

1

k
− 1

k2

)

≤ 1

c

(

1

k
− 1

k2

)

.

Also,
∑

j Xj = σ2
1− 1

k
. Plugging this into the Bernstein’s inequal-

ity [24, Theorem 2.7],

Pr

[

σ2
1 − 1

k
>

α

k

]

= Pr

[

∑

j

Xj >
α

k

]

≤ exp

(

− (α/k)2/2
1
c
(1
k
− 1

k2) +
α

3ck

)

≤ exp

(

− cα2/2

(k − 1) + αk/3

)

≤ exp

(

− cα2/2

k + αk/3

)

.

Sinceα ≥ 3,

Pr

[

σ2
1 − 1

k
>

α

k

]

≤ exp

(

− cα2/2

2kα/3

)

≤ exp

(

−3cα

4k

)

.

Choosingc = 4k
3α

log(k
δ
), we get the above probability to be smaller

thanδ/k. Sinceα = 1
ǫ log(k/δ)

, andk = 12
ǫ2

log(1/δ), we have that

choosingc = 16
ǫ
log(1

δ
) log2(k

δ
) is sufficient.

9.2 Bounding the MGF’s
We first compute the expectation of the MGF for different con-

ditions on the hashing function. We begin by proving Lemma 7.

9.2.1 Proof of Lemma 7

PROOF. We have thatZi =
∑

j 6=g∈h−1(i) rjrgxjxg . Hence

Zi =





∑

j:h(j)=i

xjrj





2

−
∑

j:h(j)=i

x2
j = Y 2

i − σ2
i

whereYi =
∑

j:h(j)=i xjrj . Then,

Er [exp(uYi)] =
∏

j:h(j)=i

Er [exp(urjxj)]

=
∏

j:h(j)=i

(

1

2
exp(uxj) +

1

2
exp(−uxj)

)

≤
∏

j:h(j)=i

exp

(

u2x2
j

2

)

≤ exp

(

u2σ2
i

2

)

.

By the Markov inequality, we get the probability ofYi being larger
thant as

Pr [Yi > t] ≤ Er [exp(uYi)]

exp(ut)
≤

exp
(

u2σ2
i

2

)

exp(ut)
≤ exp

(

− t2

2σ2
i

)

,

by choosingu = t
σ2
i

. Note that we do not need to worry about

σi being zero, as thenYi = 0. Then, we boundEr[exp(uZi)]
as follows. Denotep(t) = Pr[Zi = t]. We first compute the
expectation with respect tor. For any value ofθ > 0, we have

Er [exp(uZi)] =
∑

t∈(−∞,∞)

exp(ut)p(t)

≤
∑

t∈(−∞,θ]

exp(ut)p(t) +
∑

t>θ

exp(ut)p(t).

The first term can be bounded as follows:

∑

t∈(−∞,θ)

exp(ut)p(t) ≤
∑

t∈[0,θ]

(

1 + ut+

∞
∑

j=2

ujtj

j!

)

p(t)

≤
∑

t∈(−∞,θ]

p(t) +
∑

t∈(−∞,θ]

utp(t) +
∑

t∈(−∞,θ]

∞
∑

j=2

ujtj

j!
dF (t)

≤
∑

t∈(−∞,∞)

p(t) +
∑

t∈(−∞,∞)

utp(t) +
∑

t∈(−∞,θ]

∞
∑

j=2

ujtj

j!
p(t),

where the last inequality follows since in the range[θ,∞], the inte-
gral is positive. Then, the calculation can be simplified as follows:

∑

t∈(−∞,θ)

exp(ut)p(t) ≤
∑

t∈(−∞,∞)

(p(t) + utp(t))

+
∑

t∈(−∞,θ)

∞
∑

j=2

ujtj

j!
p(t)

≤ 1 + 0 +
∑

t∈(−∞,θ)

∞
∑

j=2

ujtj

j!
p(t)

≤ 1 +
∑

t∈(−∞,θ)

t2

θ2

∞
∑

j=2

ujθj

j!
p(t) sincet < θ in this range

≤ 1 +
1

θ2
(exp(uθ)− 1− uθ)Er[Z

2
i].

For the second term, we have

∑

t>θ

exp(ut)p(t)

≤
∞
∑

ℓ=uθ

exp(ℓ+ 1)

(

Pr

[

Zi >
ℓ

u
+ 1

]

− Pr

[

Zi >
ℓ

u

])

≤
∞
∑

ℓ=uθ

exp(ℓ+ 1)Pr

[

Zi >
ℓ

u
+ 1

]

≤
∞
∑

ℓ=uθ

exp(ℓ+ 1)Pr

[

Y 2
i > σ2

i +
ℓ

u
+ 1

]

≤
∞
∑

ℓ=uθ

exp(ℓ+ 1) exp

(

− ℓ/u+ σ2
i

2σ2
i

)

≤
∞
∑

ℓ=uθ

exp

(

ℓ+ 1− ℓ

2uσ2
i

− 1

2

)

≤
√
e

∞
∑

ℓ=uθ

exp

(

ℓ− ℓ

2uσ2
i

)

.

By assumption of the lemma, sinceu < 1
4σ2

i
, we have thatℓ −

ℓ
2uσ2

i
< − ℓ

4uσ2
i

. With this restriction,

∑

t>θ

exp(ut)p(t) ≤
√
e ·

∞
∑

ℓ=uθ

exp

(

− ℓ

4uσ2
i

)

≤ 2
√
e · exp

(

− uθ

4uσ2
i

)

= 2
√
e · exp

(

− θ

4σ2
i

)

≤ 4 exp

(

− θ

4σ2∗

)

.

By putting together the two parts, we have that

Er [exp(uZi)] ≤
(

1 +
1

θ2
(exp(uθ)− 1− uθ)Er[Z

2
i]

)

+ 4 exp

(

− θ

4σ2∗

)

.

Choosingθ = 4σ2
∗ ln(k/δ), the proof is complete.

9.3 Continued proof of Lemma 9
We finish the proof of Lemma 9 by showing thatgs is decreasing.

To this end, we prove that for allA ⊆ [d] and for alla ∈ [d] \ A,
gs (A ∪ {a}) ≤ gs(A). Recalling the definition ofgs(A), we have

gs (A) = E

[

exp

(

u

s−1
∑

i=1

Ẑi

)

| h−1(s) = A

]

= E

[

E

[

exp

(

u

s−1
∑

i=1

Ẑi

)

| ∀j : h(j)

]

| h−1(s) = A

]

,

(12)

where the inner expectation is over the random variables{rj} only.
Sinceh is completely independent we have that

gs (A) =
∑

(h1 ,...,hd)∈[k]d,

∀j:hj=s⇔j∈A

E
[

exp
(

u
∑s−1

i=1 Ẑi

)

| ∀j : h(j) = hj

]

(k − 1)d−|A| ,

and similarly

gs (A ∪ {a})

=
∑

(h1 ,...,hd)∈[k]d,

∀j:hj=s⇔j∈A∪{a}

E
[

exp
(

u
∑s−1

i=1 Ẑi

)

| ∀j : h(j) = hj

]

(k − 1)d−|A|−1
.

Therefore it is sufficient to show that for all

(h1, . . . , ha−1, ha+1, . . . , hd) ∈ [k]d−1

with ∀j 6= a : hj = s ⇔ j ∈ A it holds that

∑

ha∈[k]\{s}

E
[

exp
(

u
∑s−1

i=1 Ẑi

)

| ∀j : h(j) = hj

]

k − 1

≥ E

[

exp

(

u

s−1
∑

i=1

Ẑi

)

| ∀j 6= a : h(j) = hj , h(a) = s

]

.

We shall prove the following stronger inequality: for all
(h1, . . . , ha−1, ha+1, . . . , hd) ∈ [k]d−1 with ∀j 6= a : hj = s ⇔
j ∈ A and for allha ∈ [k] \ {s} it holds that

E

[

exp

(

u
s−1
∑

i=1

Ẑi

)

| ∀j : h(j) = hj

]

≥ E

[

exp

(

u

s−1
∑

i=1

Ẑi

)

| ∀j 6= a : h(j) = hj , h(a) = s

]

.

Now observe that onlyr are random in the above expectations and
thatẐi are conditionally independent givenh. Therefore,

E

[

exp

(

s−1
∑

i=1

uẐi

)

| h
]

=

s−1
∏

i=1

E
[

exp
(

uẐi

)

| h
]

.

From the non-negativity of the exponential function, it follows that
it is sufficient to show that for alli = 1, . . . , s − 1 and for all
(h1, . . . , ha−1, ha+1, . . . , hd) ∈ [k]d−1 with ∀j 6= a : hj = s ⇔
j ∈ A and for allha ∈ [k] \ {s} it holds that

EL ≥ ER, where (13)

EL = E
[

exp
(

uẐi

)

| ∀j : h(j) = hj

]

ER = E
[

exp
(

uẐi

)

| ∀j 6= a : h(j) = hj , h(a) = s
]

.

We prove inequality (13) by a case analysis. Ifha 6= i, then
EL = ER by definition. Ifha = i and theith bucket ofEL’s hash
function is bad, thenEL = G(u, σ4

∗) ≥ ER, as shown earlier in
Corollary 8.

If ha = i and theith bucket ofEL’s hash function is good then,
theith bucket ofER’s hash function is also good. As before, define

Va =
∑

j 6=a

∑

g 6=a,j 6=g

rjrgxjxgδh(j)iδh(g)i,

and

Wa =
∑

j 6=a

rjxjxaδh(j)iδh(a)i.

Again, note that if theith bucket is good as assumed thenẐi =
Zi = Va + raWa. Therefore we have that

EL = E[E [exp (uVa + u · raWa) | ∀j : h(j) = hj ,∀j 6= a : rj]

| ∀j : h(j) = hj]. (14)

Now observe that onlyra is random in the inner expectation and

E [uVa + u · raWa | ∀j : h(j) = hj ,∀j 6= a : rj] = uVa.

Thus fromE[exp(x)] ≥ exp(E [x]), it follows that

E [exp (uVa + u · raWa) | ∀j : h(j) = hj ,∀j 6= a : rj] ≥ exp (uVa)

as before. Plugging the latter into (14) we arrive at

EL ≥ E [exp (uVa) | ∀j : h(j) = hj] (15)

= E [exp (uVa) | ∀j 6= a : h(j) = hj , h(a) = s] .

Here the last equality follows from the fact that allr andh values
are independent and sinceVa does not depend ona. If h−1(s) =

A∪{a} and thei hash bucket is good as assumed thenẐi = Zi =
Va and we observe that

E [exp (uVa) | ∀j 6= a : h(j) = hj , h(a) = s] = ER (16)

Combining (15) and (16), we conclude thatEL ≥ ER for all cases
and hencegs is decreasing as claimed.

9.4 Proof of Theorem 11 (i)

PROOF. Recall that the random variablêZi is defined as

Ẑi =

{

Zi if Gi,
1
u
logG(u, σ4

∗) else.

Note thatG(u, σ4
∗) > 1, and hence foru > 0, 1

u
logG(u, σ4

∗) >
0. Also recall thatGi is the indicator vector for bucketi being
good, andG is the indicator for the hash function being good. By
definition of Ẑi, since 1

u
logG(u, σ4

∗) > 0,
∑

i Zi ∧ G <
∑

i Ẑi

and hence we have that,

Pr

[

∑

i

Zi > ǫ

]

≤ Pr

[

∑

i

Zi > ǫ ∧ G

]

+ Pr[Ḡ]

≤ Pr

[

∑

i

Ẑi > ǫ

]

+ δ. (17)

Thus, we prove a bound onE[exp(u
∑

i Ẑi)] and thus bound on
Pr[
∑

i Ẑi > ǫ]. Taking expectations over bothr andh, and using
Pr[Ḡ] < δ,

E[exp(uẐi)] ≤ E[exp(uZi) | G] Pr[G] +G(u, σ4
∗)Pr[Ḡ]

≤ 1 +
1

θ2
(exp(uθ)− 1− uθ)

(

1

k2
(1− δ) + σ4

∗δ

)

+
4δ

k
,

where we combined the appropriate terms from the two parts ofthe
sum. Recall thatσ4

∗ < 1. By choosingδ < 1
k2 , we have that

E[exp(uẐi)] ≤ 1 +
1

θ2
(exp(uθ)− 1− uθ)

2

k2
+

4δ

k

≤ exp

(

2

k2θ2
(exp(uθ)− 1− uθ) +

4δ

k

)

.

Taking the product over thek terms, by using Lemma 10,

E[
∏

i

exp(uẐi)] ≤
∏

i

E[exp(uẐi)]

≤ exp

(

2

kθ2
(exp(uθ)− 1− uθ) + 4δ

)

.

For completeness, we show how to determine the optimalu.

Pr

[

∑

i

Ẑi > ǫ

]

≤ E[exp(u
∑

i Ẑi)]

exp(uǫ)
≤
∏

i

E[exp(uẐi)] exp(−uǫ)

≤ exp

(

2

kθ2
(exp(uθ)− 1− uθ) + δ − uǫ

)

≤ exp (H(u) + δ) ,

where we defineH(u) = 2
kθ2

(exp(uθ) − 1 − uθ) − uǫ. Setting
the derivativeH ′(u) = 0, we get 2

kθ2
(θ exp(uθ) − θ) − ǫ = 0,

and hence

u =
1

θ
ln

(

1 +
kǫθ

2

)

=
1

4σ2∗ ln(k/δ)
ln

(

1 +
4kǫσ2

∗ ln(k/δ)

2

)

.

Note that we need to restrictu < 1
4σ2

∗

. We need
ln(1+

4kǫσ2
∗

ln(k/δ)

2
)

ln(k/δ)
<

1, which is true if setting4kǫσ
2
∗
ln(k/δ)

2
< k

2δ
, orǫ < k

4δ(1+α) ln(k/δ)
,

which is permissive. Using this value ofu, we have that (skipping
the simplifications)

H =
2

kθ2

(

kǫθ

2
−
(

1 +
kǫθ

2

)

ln

(

1 +
kǫθ

2

))

≤ 2

kθ2

k2ǫ2θ2

4

2 + 2kǫθ
6

≤ −kǫ2

2(2 + kǫθ
3
)
,

which is the trick that Bernstein uses:(1 + x) ln(1 + x) − x ≤
−x2

2+2x/3
. Plugging in this value ofH , we get that

Pr

[

∑

i

Ẑi > ǫ

]

≤ exp

(

−3kǫ2

4(3 + (1 + α)ǫ ln(k/δ))
+ 4δ

)

.

The proof of Theorem 11(ii) is similar to the above and is omitted
in this version.

	1 Introduction
	2 Main results
	3 Proof of Theorem ??
	3.1 Preliminaries
	3.2 Notation
	3.3 Proof details

	4 Proof of Theorem ??
	5 A lower bound
	6 Embedding into 1
	7 Discussions
	8 References
	9 Appendix
	9.1 Proof of Lemma ??
	9.2 Bounding the MGF's
	9.2.1 Proof of Lemma ??

	9.3 Continued proof of Lemma ??
	9.4 Proof of Theorem ?? (i)

