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ABSTRACT

Dimension reduction is a key algorithmic tool with many apa!
tions including nearest-neighbor search, compressednseaad
linear algebra in the streaming model. In this work we obtain
a sparseversion of the fundamental tool in dimension reduction
— the Johnson-Lindenstrauss transform. Using hashing@nd |
cal densification, we construct a sparse projection matitix just
O(%) non-zero entries per column. We also show a matching lower
bound on the sparsity for a large class of projection matri€aur
bounds are somewhat surprising, given the known lower boohd
Q(E%) both on the number of rows of any projection matrix and on
the sparsity of projection matrices generated by naturastrac-
tions.

Using this, we achieve aﬁ)(%) update time per non-zero el-
ement for a(1 + €)-approximate projection, thereby substantially
outperforming th@(e%) update time required by prior approaches.
A variant of our method offers the same guarantees for spacse
tors, yet itsO(d) worst case running time matches the best ap-
proach of Ailon and Liberty.

Categories and Subject DescriptorsF.2.0 [Theory of Computa-
tion]: Analysis of Algorithms and Problem ComplexitySeneral
G.3 [Mathematics of Computing]: Probability and Statistics—
Probabilistic algorithms

General Terms. Algorithms, Theory

Keywords. Johnson—-Lindenstrauss transform, Dimensionality re-
duction

1. INTRODUCTION

Dimension reduction is a fundamental primitive with many al
gorithmic applications including nearest-neighbor sed@;/19],
compressed sensing [11], data stream computations [5lpatam
tional geometry[[13], numerical linear algebral[14[17(28], ma-
chine learning([B. 33], graph sparsification[30], and mees the
monograph[[32] for further applications. The seminal rangwo-
jection method of Johnson and Lindenstrauss [20] consfgtssb
multiplying the input vector by a suitably sampled randorojgc-
tion matrix — n vectors ind-dimensional space can be mapped
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into an O(Ei2 log n)-dimensional subspace such that the length of
each vector is distorted by at mdst+ ¢). This simple and elegant
method has the following desirable properties: (i) it igbn, (ii) it
is oblivious to the input, (iii) it works with high probabii for a
given set of input points, and (iv) the target dimensiomdepen-
dentof d.

Given its algorithmic importance, much effort has been t&do
to speeding up the mapping. One line of work achieves thi$ goa
by making the projection matrix sparse, and hence its nligiép
tion with the input vectors faster. Sparsity is typicaljhgved by
independently setting each matrix entry to zero with a aepieob-
ability [11[2/23]. There is however a limit on the extent ofsgity
achievable by this approach: a result of Matousek [23, Témaor

4.1] states that such matrices need to corf?sﬂ@;) non-zeroes in
expectation per column, if they were to preserve the lenfghumit
vector with infinity norm at most.

Our results. We obtain a sparse random projection matrix of size
k x d that hasO(% log®(%) log(%)) non-zero entries per column,
wherek = O(Z log(3)). This is thefirst construction witho( %)
non-zero entries in the projection matrix. (For our restdtde
improvements, we need to assume thaf (%) = o(1). Our anal-
ysis, however, does not need this assumption.)

A highlight of our approach is to construct the projectiontixa
itself with care. Instead of using independent random tée&m as
is typically done, we construct it out of a hash function thatails
some dependency among the entries. This construction igcitnp
in the work of Langford et all [21] and Weinberger etlal./[38here
it played a role mostly as a practical heuristic. The haseta
construction introduces new technical difficulties, busumes that
we have exactly a fixed number of non-zero entries in eachualu
thereby relaxing the requirements on the density of inpators.

Specifically, whereas prior work requires that for a unitteec
z, ||z]l« = O (€), for a constant number of expected entries per
column of the projection matrix, we only nedld|.. = O(\/€).

In order to achieve this level of densification, we can userpka
replication technique om [33].

To manage the technical difficulties that arise from the depe
dencies, we show that the contribution from each hash busket
bounded, and that the total amount of noise arising from ¢tle ¢
sions in each hash bucket is small. The reduction in oveasthace
comes from the fact that each dimension is mappezkéztly one
hash bucket, and the lack of self-collisions (which woulghbesent
if the entries in the matrix were i.i.d.) leads to a reductiorhe
variance of the cross-product error. There are severalesigistin
analyzing this, in particular, the errors from differenshduckets
being correlated. We handle this by an application of the RiKG
equality on the product of the moment generating functiothef
random variables capturing the errors. This helps us iniba
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concentration on the sum of the errors. Our choice-dfrandom
variables (instead of Gaussian random varid)letays a critical
role in making our proofs work.

Implications for sparse vectors. The resulting running time for
an input vectot: havingn.. (z) non-zeros i) ("‘%“) — bet-
ter than the running time obtained hy [22] 23] for sparseorsdn
terms of the sparsity rati@%(z) as well as by the facto?g. Fur-
thermore, using a block-Hadamard based preconditioretgand of

a global Hadamard transform, we can actually ensure thatuour
ning time for all vectors i€) (min( 22, d)), which is once again an
improvement over existing results. The qualitative défeze in the
running times is starker in the turnstile model of streamiBace
the updates in the stream come(a%;), updating any sketch that
requires computing a global Hadamard transform is very expe
sive, takingO(d) time per update. Our update time, on the other
hand, is onlyO(%) per entry.

Our technique speeds up nearest-neighbor computatiopdoses
vectors as well. We can use our construction to preprocesaplt
vectors before applying the algorithm as described lin [Z20fem
3.2]. The effective running time is the(ﬁ(”"%(z) + }2 logn +
= log n) instead of0(d log d + % log n). For sparse vectors, this
could represent a significant improvement.

Related work. Since the original Johnson—Lindenstrauss result,
several authors have shown that the projection matrix cbeld
constructed element-wise using Gaussian or uniférhwariables
[1.7,16[19]. Alon showed a lower bound ﬁf(ezlﬁi?l)) on the
target dimensionality [4]. ‘

In order to circumvent the sparsity lower bound of Matousek
[23], the ingenious Fast Johnson-Lindenstrauss transfBar)
of Ailon and Chazelle preconditions the input with a randzoeli
Hadamard transform thereby making it dense, and then apalie
sparse projection matrix[2]. The computation of the Hadama
transform (via a fast Hadamard transform), however, fom'zé(d)
running timeirrespectiveof the number of non-zeros in the input
vector. This makes it less desirable for sparse input vector

Ailon and Liberty [3] showed that the sparse projection ixatr
[2] could be replaced by a dense, deterministic, but wellestired
code matrix, and improved the running time@jd log k) over a
wide range of parameters; however, like before, the runtimg
of these methods are unable to take advantage of the spafsity
the input vector. Liberty, Ailon, and Singer [22] proved thizere
exists projection matrices that are applicableitd) time if the
input satisfies density conditions that are significanttictr than
those required for hashing. Since hashing works in lingae i
our work improves upon these results. Finally we remark dfat
though [3.22] contain a spectral condition derived froma@aand’s
inequality that could be applied to our hashing condfumtt the
resulting bound is too weak; it fails to show that hashingriowps
over even the most basic Johnson-Lindenstrauss transform.

Charikar, Chen, and Farach-Colton|[12] introduced tleu€T
SKETCH data structure that used hash tables combined with pair-
wise independent:1 random variables for finding the most fre-

quent items in a data stream. Thorup and Zhang [31] observed ~ c Rpixd

that this hashing trick could be used to speed up the cetabrat
AMS sketch[[5] for estimatind; this was also noted by Cormode
and Garofalakis[[15]. Hashing decreases the update tinma fro

!In fact, we need an average gf Gaussians to get fl + ¢)-
approximation.

%It is not hard to see that of [22] equals tomax{c;} studied in
Lemmd6.

O(Z log(3)) to O(log(%)). These estimators, however, are non-
linear: they return the median of estimates obtained itafiog (1))
independent hash functions, which makes them less desifabl
some applications, Our results essentially show that breasing
the update time t® (< log(3)), the median could be replaced by
an average.

Lastly, we note that random projection using hashing hasdou
practical applications in machine learning|[21(29, 33]panticular,
the densification by replication was suggested by Weinberpal.
[33]. Although they claim a concentration bound for hasHiaged
dimensionality reduction, unfortunately, their claim &se due to
an error in the application of Talagrand’s inequality.

2. MAIN RESULTS

Letk = glog(%) andc = %log(%)log2 (%) Letr =
{ri}jelcq be a set of i.i.d. random variables such that for each
Jj € led], Pr[r; = 1] = Pr[r; = —1] = 1/2. Letdap =1
iff & = 8 and zero otherwise. Let,,(z) denote the number of
non-zero entries in vectar.

Let ' : [ed] — [k] be a hash function chosen uniformly at
random and lef!’ € {0, £1}**“ be defined asi;; = ;5 (;)7;-
Let thepre-conditionerP € {0, +1}°**¢ pe defined as

PL']':{

Let® = H'P.

- for (j_— De+1<i < je,
0 otherwise.

Theorem 1 For any given vector: € R?, with probabilityl — 45,
 satisfies the following property:

(1= ollzl3 < @z < (1+¢€)llz3-

@
The time required to computier is O (£ log®(£) log(%)) nnz ().

This is easily implied by the following. Lét : [d] — [k] be a
hash function chosen uniformly at random. Uéte {0, £1}**¢
be defined adi;; = d;(;)r;; note that the matri¥{ has onlyd
non-zero entries, exactly one per column.

Theorem 2 For any given vector € R? such that||z||s < %

fore < 1andéd < % with probability 1 — 34, H satisfies the
following property:

1= llzllz < [Hz]3 < (1 + €)llz3.

For dense vectors, Theoréin 1 gives arun-tim@of log® (= ));
this, for a small enough, could be significantly worse than the
running time obtained by Ailon and Liberty ial[3] and Matokse
in [23]. However, we can modify the construction of the peaie
tioner so that we guarantee a running timedfl log clog log )
for all vectors. Our new preconditioner is based on the randomized
Hadamard construction by Ailon et &ll[2, 3].

Theorem 3 Letd > 6clog(2¢). There exists a preconditioner

such that for any input vectar € R?, with probability
1 — 46,
(1= 9)llzll3 < I(HG)z|3 < (1+)l=]l3.

The time required to computé G)x is given by

10) (min ("“T(x) log* (%) 7d) log (%)) .



3. PROOF OF THEOREM

3.1 Preliminaries

Without loss of generality, we can assutﬂmug = 1. LetY; =
> Hijzg = 32, dingyrsz;. and leto? = E.[Y;?], whereE,
is the expectatlon taken with respect to the random vasable
{r;}. Thus,

0’ Y2] =E, [(Z 62h(J)TJIJ> ]

since the cross-product terms cancel out by the indepeedeng
E,[rjry] =0forj # 5. LetZ; = Y7 — E.[Y?]| =Y — o},

The outline of the proof is as follows. We need to prove that
>, Y7 is concentrated arounfiz||3 = 1. Instead of showing
concentration o, Y;?, we will show that", Z; is concentrated
around zero. Indeed since our hash function guaranteesdbh

= s

jEld]

coordinatej € [d] is mapped to one and exactly one hash bucket,

we have thafy>¥_, 07 = ||z||3 = 1. Therefore,3"% | v =
S0P+, Zi =1+ 3% | Z;. Showing thaty", Z; is concen-
trated around zero is thus enough.

We will utilize the following form of the FKG inequality |6, fie-
orem 6.2.1].

Theorem 4 (FKG inequality) Let L be a finite distributive lattice

and lety : L — R be a log-supermodular function. Then, for an
increasing functiory and a decreasing functiog, we have that

> u@) f@)gl@) Y px) < p@) (@) Y wa)g(x).
xz€L zEL z€EL z€L
3.2 Notation
Recall thatk = 13 log($). Define
_ . 1 2 l+4a _ 40’3]6.
a*a(k)feln(ﬁ)v Ox = —k) 5 and 0= 6 ;

B
we will assumea > 3. We define the following function as a

shorthand to denote the upper bound on conditional expectat
the MGF with respect to thér; } variables.

G(u,t) =1+ 12 (exp(uf) — 1 — ub)t + %5

0

Definition 5 (Goodness)A setA C [d] is goodif
Diea z3 < ol Thezth hash bucket igoodif h~* (i) is good,

e, ifa? =2 i ni)=i T ? < 02 and the hash functioh is goodif
h™1(i) is good for alli.
For a givenh, let §; denote the event that thith hash bucket is
good. LetS be the event that the hash functibis good. By abus-

ing notation we us€ andg; to represent the indicator variables of
the corresponding events.

3.3 Proof details
Recall thatz; = Y;* — E,[Y;], whereY; = 3 . §i ;)75 i-€.,

J#3’,3,3' €ld]

Observe thak [Z;] = 0 and our goal is to show thgC, Z; is
concentrated arour@

Zi = Oin() Oin(3) T3 T LT -

Here is an overview of the proof. We first show in Leninha 6 that
mosth are good. In Lemm@l7, we bound the moment generating
function (MGF) of the random variablg;, for a fixedh. A usual
step at this point would be to remove the effect of the badaghoi
of the random variables from the MGF by perhaps considering a
truncated random variabl®; = min(Z;, M). In our case, how-
ever, such a construction would introduce a dependencegthen
{r;} and h variables, which appears to be insurmountable when
trying to apply the FKG inequality. We have to instead uélihe
notion of goodness df only in defining the truncated random vari-
able Z;. Using the result of Lemmi] 7, we first get Corollady 8
that gives the expected and the worst-case bounds on the BIGF f
a good hash functioh. We utilize these bounds to defiig in
(). Next, in Lemm&D, we define two set functiofisandgs and
show that they are monotone, in accordance with the regeinesn
of the FKG inequality (Theorei 4). These functions are thesdu
in LemmaI0 to show that the MGF §f , Z; can be bound by the
product of the individual MGF'<Z;. We then bound the probability
of ane-deviation for}_, Z; in Theoreni Ill. Subsequently, we use
Theoreni Il to prove Theoreilns 1 4dd 2. Sedtion 4 gives the proof
of Theoreni 8.

Lemma 6 If c = L8 1og(%)log?(£), thenPr[G] > 1 — 6.

The proof (Appendix9]1) is an application of the Bernstiim-
equality [24, Theorem 2.7] and utilizes the fact that sifieg.. <
%, and the hash function is random, with high probability,cno
can be too large. In essence, this generalizes well-knoets fa
about the maximum load in the balls into bins problem for the
weighted cage

The following lemma gives a bound on the MGF of the variable
7, for a fixedh. The proof can be found in Appendix ®.2.

Lemma7 If u < ﬁg, then for a fixedh,
E, [exp(uZ;)] < G(u, E.[Z])). 2

LemmdY leads to the following.

Corollary 8 If 0 < u <
be bounded as

P 2 , then the expectation of the MGF can

Brlexp(uZs) | 9] < Glu, 7). @
Similarly,
max Br[exp(uZ:)] < G(u,07). @

PROOF. By taking expectation ovér and using

2
EnlE,(Z7 | §]] < 2B[Z]] < 13,
we have that
2
Ernlexp(uZ;) |9 <14 —— 202 (exp(uf) — 1 —uf) + —

2 46
< exp <k202 (exp(uf) — 1 — uf) + 3 ) .

3sanders [[27] contains a proof of the expected load for the
weighted ball-and-bins problem, but does not contain afpofo
the high probability statement.



The upper bound oR,-[exp(uZ;) | 9] is given by

E, Z;
max E[exp(uZ:)]

46

1 2
< — —1— - =
1+ B (exp(ub) — 1 — ub) max E-[Z; | ]+ 3

46

<1
+ P

%(exp(u@) —1—uf)os +
where we us&,.[Z?] < of. O

Next, we have to handle the fact that tHevariables are not inde-
pendent. Yet, intuitively, sinc€; is roughly related to the cross-
product of the set of entries; that map into theth hash bucket,
conditioned on the fact that one of tb& variables has achieved a
large value, the probability that anoth&y is also large decreases.
In fact, we show that we can apply the FKG inequality (Theorem
[@) on the MGF of theZ; random variables. Note that this situation
is more involved that the simple negative dependence daddain a
set of random variables by conditioning their sum to be a tzoms
— we cannot make such claims 31, Z;. Foralli =1, ...,k let

us define

if G,

. Z
Z; = 5
{% log G(u,o?) else. ®

We first need the following lemma in preparation for the appli
cation of the FKG inequality (Theorelh 4).

Lemma9 For1 < s < k,u < = and A C [d], let us define

f(A4) = By [exp (uZ.) | h~*(s) = A] and

gs(A) =Ep» [exp <uz ZL> [ (s)= Al .

=1

Thenf, is an increasing and; is a decreasing set function.

PROOF. Firstwe prove thaf, is increasing by showing that for
all A C [d] and for alla € [d] \ A, it holds thatfs (AU {a}) >
fs(A).

Observe that i ™! (s) is good (i.e., ifg, holds), then by Corol-
lary[8, we havet, [exp(uZs)] < G(u, ot). Thus for allh ands, it
holds from [[5) that

E, [exp(uZ;)] < G(u,01). (6)
There are two cases to consider. Suppdse{a} is bad. Then,
Zs = Llog G(u, o) and hencefs (AU{a}) = G(u,0%) >
f+(A) from (8).
Supposed U {a} is good. Now, let us define

>

J,9E€EA,j#g

Va = rirgrjrg and Wi = x4 Z.Tj'rj.

JjeEA

Also note that ifh ' (s) = A U {a} and thesth bucket is good,
thenZ, = Z; = Vi + roWa holds. Therefore we have that

f-(AU{a}) = E, [exp (uZ) |h'(s) = AU {a}]

=E, [exp (uVa +u-raWa) | hl(s) =AU {a}]

=E,[E [exp (uVa +u-raWa) | ™' (s) = AU {a}, {r;}jea]
| h™'(s) = AU {a} ]

> E,[exp (ET [UVA +u-roWa | hil(s) = AU{a}, {rj}jeA])
| h="(s) = AU {a}].

(By Jensen’s inequalitf[exp(z)] > exp(E[z]))

Wy, [exp (uVa) | B~ ' (s) = AU {a}]

W, [exp (uVa) | B (s) = 4]

= fs(4).

()
Here, (a) follows since only, is random in the inner expectation
and

E, [uVa+u-roWa | h'(s) = AU {a}, {ri}iea] = uVa.

And, (b) follows sinces ¢ A andV,4 does not depend oh(a)
by the independence of the valuesradndh. Finally, (c) follows
since if A U {a} is good then so isl; therefore ifh ™' (s) = A,
then we have thaf, = Z, = V. The proof thatf, is increasing
is complete.

The proof ofgs being a decreasing function is similar, and can
be found in Appendik9]3. (I

Given our construction of the two functiong, andgs, we can
now proceed to apply the FKG inequality (TheorEim 4) to show
that the MGF of the random variable*_, Z; is bounded by the

product of the MGF's of eacl; variable.
Lemma 10 It holds that
k k
E |:exp <“Z Zi> < HE [exp (uZi)] ,
=1 =1

where the expectation is taken over batandr = {r;}.

PrROOF Foralll < s < k, we prove

B [ <Zz> <T[e[eso (12)]

by induction ons. The base case af= 1 is obvious.
Now assume that the inductive hypothe§is (7) holdssfer 1.
Forall A C [d] let us define

ps(A) = Pr [ (s) = A] = [] Pr[n(5) = o] [ | Prln(s) # s]-

JjEA J¢A

@)

It is easy to check that, is a log-supermodular measfi@ver the
subsets ofd]. Recalling the definition of the increasing functifin
and the decreasing functign from Lemmd? it follows from the
FKG inequality (Theoreril4) that

E., [fsgs] < Ey, [fé] E., [98]‘

4See[[6, Section 6.2, page 87] for a precise definition andffmbo
this fact.




Furthermore, observe that for any random variableve have
E. [E[X|h Y (s)=4]] =
S Pr[h i (s)=AJE[X |h7'(s) = A] =E[X],

ACld]

and consequently,

Zi)|Elexp (uZs)].

1

— E]

Z Yexp (uZs)] < Elexp (u

= 3

Elexp (

Combining the latter with the induction hypothesis for 1 con-
cludes the proof. (1

Theorem 11 For the variablesZ; we have

. —3ke?

i) Pr Zi > e| <ex +46 | 40,
U Z P (4(3+(1+a)eln(§)) )

, ek

@iy Pr Z:Z¢<—e <exp< 12)—!—6

The proof of Theoreri 11 involves a standard but tedious taicu
tion that is similar to one done by Matousék|[23]. The proaf ca
be found in Appendik9l4. Finally, we are ready to prove thénma
result.

PrOOF (of Theorem[d. Recall thaty; = >°, Hi;x;, thus
|Hz|3 =3, Y. Alsorecallthav? = E,[Y;?]. Thus,S"F | o7 =
H:cﬂ% = 1. Therefore,YF  V? = Y. 02 + 3. 7% = 1+
> i, Zi. Recall thatk = 13 log(3), anda = 1%%) Plugging

these values in Theor-ll(i) we have Z; > ¢, with probabil-
ity at mostexp(—2 In(3) + 46) 4+ 6 < 26, for § < . Similarly,
from TheorenE‘[ll(u) we havé_, Z; < —e with probab|I|ty at
most2§. Putting them together, with probability at ledst- 49,
|3, Y2 = 1] = |32, Zi| < e, and hence|Hz[|3 — [|z[|3] <
dzl3. O

ProoF (of Theorem[d). Theorenil easily follows from Theo-
rem[2 by noting that ify = Pz, then||y|l> = 1 and||y([~ < —.
The running time is obtained as computing bgth= Px and Hy
requiresO(c - nn-(z)) time. [

4. PROOF OF THEOREMQ]

Definition 12 (Randomized Hadamard matrix [2].) Construct the
m x m Hadamard matrixF as F; = m~'/?(—1)¢~%~1 and
the diagonal matrixD by choosing eaclD;; independently from
{—1, 1} with probability1/2 for each value. The matriA = F'D

is defined to be am x m randomized Hadamard matrix

Using multiple small copies the randomized Hadamard matrix
we create the following preconditioner. Without loss of geity,
we assume thag is an integer, for the given value 6f We note
that [3] also contains a similar construct; here we presenbee
stralghtforward analysis using a different vector norm.

Lemma 13 Letz € R, ||z|| = 1, and1 > § > 0, andc > 1.

Defineb = 6clog(3¢) and assumé < d. ConstructG € R*“ to

be arandom block-diagonal matrix, where each ofdjigdiagonal
blocks ofG consist of an independent copy ob & b randomized
Hadamard matrix. Then we have that

1
o> —| <.
Pr{”GzH —\/5]—5

PROOF If Aisbxbrandomized Hadamard matrix, then for any
b-dimensional vector with ||z||]2 = 1 it holds that||Az|2 = 1.
Using a Chernoff-type argument Ailon and Chazelle [2] shdwe

s%b
Pr[||Az|/eo > s] < 2bexp ( 5 ) . (8)
holds as well. Observe that the previous inequality trdyiablds
for ||z]]2 < 1 as well. Lety = Gz, andG; denote theth diagonal
block of G, and partitionz andy into % blocksz; and defingy; =
Gjz ;. Now for a blockj, if ||z;]]2 < %,then”yjﬂoo < lyjll2 <
% holds as well, sincé&; is an isometry. Since is unit length,

there could be at most blocks j such that||z;||> > % Thus
settings to % in (8) and taking the union bound over these at most

¢ blocks, we have that
by
2 )

Using the block-Hadamard preconditioner, we are readydeeor
TheorenB. The-approximation guarantee of the projection ma-
trix ® follows trivially from the statements of Theordnh 2 and of
LemmdI3B.

In order to bound the running time, let,..;,(x) denote the num-
ber of blocks that have non-zero coordinates.ihen the running
time of the block-Hadamard based hashin@ .y (z) -blog b+
Nnzb () - b). Now,

2 c\83
12¢* log ()6 <5

1
Pr l:HG:EHOO > %} < 2bcexp (— 5703 <

establishing the claim. O

Nnzb(2) - blog b < min(nn, ()b, d) logb
= O(min(nns (w)elog(5), d) log(5))

Now, clog(£) = O(%log(})log® %£log(Z)). Hence the final
running time is

o (2t (3 (£) o (3)-

Note that ifé is not too small then the running time of Theo-
rem[3 is comparable to the best existing methods for dense vec
tors [3] yet it is much faster for sparse vectors. We remaak tihe
localized Hadamard preconditioner presented in this @eculd
also be combined with suitably sparse random matrices f&8h [
by makingb larger, approximately equal te. This variant would
reproduce the results ¢fl[3], but it fails to show any improeat
for sparse vectors over the naive construction as the rgrtitime
would beQ( ) per non-zero element.

5. ALOWER BOUND

A random matrix® is said to have thdL propertyif for every
vectorz, ®x satisfies[{ll) with probability — & over the choice of
.

We show a lower bound on the sparsity for a class of construc-
tions of matrices with the JL property. The constructionhaf ma-
trix is modeled as a two stage process: first, the set of isditat
have non-zero entries is chosen, and then each column isrcires
dependently random. Note that we do not assume that themando
variables are independent within a column.

The lower bound argument of Matousék [23] shows that if the
set of non-zero indices in the first stage is chosen by indigp#n
coin tosses and if the random variables in the second stage-ar
dependent (scaled}1 with equal probability, in expectation, then



Q( Il ” =) non-zero entries per column are needed to guarantee thatBy our assumptions it holds thB{Y;'] = E[U;|E[U/;] = O(4).

the resultlng matrix has the JL property.

If s # t thenE[Y.?Y?] = E[UZUZ]E[UZ;U%] holds by indepen-

We show a lower bound on the sparsity for the case when the dence and hence from Hélder's inequality we have a2 U2] <

non-zero indices are chosen arbitrarily. As mentionederail the
random variables in the second stage i@, 1), then it is easy to
obtain a lower bound ofl(e%) on the number of non-zero entries
per column: indeed, the lower bound follows sirféee%) such
random variables are needed so that their sufh i5 €), w.h.p.

Under mild technical conditions on the random variablescare
prove the following lower bound stated in TheorEm 14. It isyea
to see that the conditions of TheorEn 14 are satisfied if theaa
entries are independent (scaletl) or when they are generated
by the replicated hashing construct of Theofdm 1. Thus tipeup
bound of Theoreriil1 is tight with respect¢o The bound on the
number of non-zeros per column implies a bound on the woss ca
update time over all vectors as well.

Theorem 14 Let1 < ¢ < k < d be integers andV/ be an ar-
bitrary, fixed or randomk x d 0-1 matrix with at mostc non-
zeroes per column. Ld® be ak x d random matrix of the fol-
0 if M;; =0
UZ‘J‘ If MZ‘J‘ =1.
U, random variables are independent and for eadhholds that

E[>, P3] = land thatE[}", P}] = O(2).
LetO < e < 1/4. If P has JL property with probability at least

1— 21 then

Tz
c:Q<min{%,M}>.

PROOF Foralli = 1,...,dletC; = {s € [k]|Ms # 0}
denote the index set of non-zeros in tile column of P. Further-
more, letV = {e1,...,eq}, wheree; denotes théth unit vector.
Fori # j we also defineX;; = C;NC; andS = Ztexij Ui Uy
Then we have that

lowing form P;; = Here the vector valued

I1P(ei +¢5)lI3 = [ Pealls + [1Pejl3 + 25. )

Using the fourth moment method|[9], we show tltahas a large
deviation with constant probability unlesss large enough. To-
wards this goal for alt € X;; setY; = U;;Uy; and letz;; = | X5
W.l.0.g. we can assume that each colummbttontains exactly
c non-zeroes and ifi/;; = 1thenE[U7] = 1 andE[U};] =
O(Ciz) hold as well; otherwise we replad@ with a copy of P

whose rows are randomly permuted. Furthermore we can also as

sume thaE[Us; U] = 0 holds as multiplying each row dP with
independent uniformly distributedt1 random variables does not
change[(P) or the theorem’s conditions. Finally, w.l.0.ge @an
assume that for alt, ¢1, t2, t3 wheres ¢ {t1,t2,ts} it holds that
E[Y:Y:, Vi, Y] = 0 as multiplying the rows of? with random
+1 ensures the latter condition as well.

Now observe thaE[S?] = E[Y_, V7] + 3, E[Y. Y] = 24
holds, sinceE[Y;’] = E[UZU7;] = E[UZIE[UF] = & by the
independence of columns. Moreoversif ¢ then we have that
E[Y:Y:] = E[UsiUwiUs;Us;) = E[UsiUn)E[Us; U] = 0 by in-
dependence again.

Similarly note that

E[S]=ED_V'+> By +

s#t
2
_ Lij
“o(%).

>

sg{t1,ta,t3}

E[Y.Y,, Y2, Yi,]

E[UL]E[UL]. Thus it holds thaE[Y;’Y;?] < O(). Lastly, re-
call that that for alls, ¢1, t2, t3 wheres ¢ {t1,t2,t3} we have that
E[YSY;1Y;2Y'53] = 0.

Now [9, Theorem 3.5] states that

Pr{|5|> \/T] L)?.

E[S2]2 16

Therefore we have that

1/:cz‘j:| > (3/4)2
2¢ | T 001)- %

On the other hand, it follows from the assumed JL propert# of

that with probabilityl — o(1), forall1 < i < j < d, we have that
[IIP(e; + ¢;)]|3 — 2| < 2¢ and that

Pr {|5| > =Q(1). (10)

[IP(eill® + 1 Pes)l3 — 2| < 2e.

Therefore from combining equalitZ](9) with inequalify {li@¥ol-
lows that ¥ < 4e must hold for alli # j, or equivalently
|C; N C;| < zwith z = 16¢c* for all i # 3.

If z < 1, then theC; are pairwise disjoint and therefoi‘se>
dc > d, a contradiction. Thus > 1, and hence > - imme-
diately. In what follows we strengthen the latter lower bodior a
large range ofl andk as claimed.

If ¢ > 55 then the lemma clearly holds &5( =) is the largest
of the lower bounds claimed.

Now note thatc > 2. Since if¢ = 1 were to hold, then
from e < 1/4 it follows that = < 1, which is a contradiction
as before. Therefore if < 37157 then all C;’s are distinct as
241 =(c/2)(32¢%c) + 1 < ¢/2 + ¢/2 = cholds.

Observe that any + 1 element set is contained in at most one
C;. Therefore the number of distin€; is at most

oo ()(.5)

a well known fact from block designs and set packing [18].rfro
the Stirling formula, foralh > 1,v2mn (2)" < n! < 1.1v2mn (2)",

anditfollows that foralll < y < witholds that( 2 )" £, /2=t <
(Z) < (%)y ;Tiﬂ 75—+ Therefore we have that
k z+1 i
flkye,z+1) < (-) 2k < k* 13, (11)
C

Now observe thad < f(k, ¢, z+ 1) as allC; are distinct. Com-
bining the latter with inequality {11), we have thag, (d) —3 < =.
Recalling thatl < z = 16¢%¢? concludes the proof. [

Using a replication argument it is easy to see that if a md®rix
only has the JL property for vectogswith ”“ HHOO < « for someq,
then under the conditions of Theoréni 14 we have that at lesst o

1 V/logg(d)
€2 €

If the fourth moment of the random entries per column scales
with the number of non-zeros per column, the next theoreemgth-
ens the previous claim by bounding the average number of non-
zeroes per column. This condition is satisfied, say, if the-nero
entries are independent scated random variables.

column of P contains® | o min non-zeroes.



Theorem 15 Let0 < ¢ < 1/4 and M be an arbitraryk x d 0-

1 matrix with 2k*> < d. Letc; denote the number of non-zeroes
in the jth column of M. Let P be ak x d random matrix of the

0 if M;; =0
UZ‘J‘ If MZ‘J‘ =1.
U.; random variables are independent and for egdhholds that
B[S, P2] = 1andE[Y, P] = O(1/c)).

following form P;; = Here the vector valued

If P has JL property with probability at leagt— %3, then
e 1 log,,(d)
T . - k

ZEQ<mm{62,7€ })

=1
PROOF Set

so (min{; M}) _
€2 €
Forallj = 1,...,k, assemble the columns &f with ¢; = j into

thek x n; matrix P;. For allj if n; > k then from assumed JL
property of P it follows that P; satisfies the conditions of Theo-
rem[I4 withc = j and thusj > s.

Therefore for allj < s we have thaty; < k. The number of
non-zeroes irPis 3¢ ¢; = 3%, n;j, which we lower bound
as follows

k k k s—1
anjZans: nj — nj>s>(d—sk:)s
Jj=1 Jj=s Jj=1 Jj=1

2 d
> (d— k )s > 58. O

6. EMBEDDING INTO #

We can show the following result for the case that the target
metric is¢;. The result and the corresponding proof is similar
to that of Ailon and Chazelle [2]. We construct the matfixas
follows: H;; = &;n(;)r;, wherer; are now drawn i.i.d. random
variablesN (0, 1) instead of beingt1. We then have the follow-
ing. LetBy = E[|z|] wherez ~ N(0,1). By the 2-stability of
th2e normal distribgtionYZ— = 32,210 ~ N(0,0:) where
g; = Zjehfl(i) ZTj. ThUS,ETHY;'” = Uiﬁo.

Theorem 16 There exists a constaag such that for alle < ¢g, if
c =k/e,andk = O (S 1og(3)), Y = ﬁ >, 1Yil, we have
thatPr[|Y — 1| > €] < 4.

The proof is omitted in this version.

7. DISCUSSIONS

The most important open question is resolving the gap betwee
the upper and lower bounds with respect to the error prababil
It would be interesting to see whether our claims could begmo
more directly using stronger concentration inequalities.

Application of the current result to streaming settings ldalso
require proving the claims for &wise independent hash-function
and=+1 variables. The chief hurdle in applying the techniques of
Clarkson and Woodruff [14] seems to be proving the FKG inéqua
ity for the limited independence case. Note that Nisan'sidee
random number generator construction! [25] can be used sméeer
domize the hash function, but the naive way of doing thiseéases
the update time t&. We leave efficient derandomization as an open
question.

It is worthwhile to note that the hash-function represertiipar-
tite expander. In a similar vein, Berinde et al.[[10] use ahaln
anced expander graph based construction to create matvittes
restricted isometry property for sparse signal recoveryeiar-
gument crucially uses two facts — that the error-nornd;isand
that the input vector is sparse. It would interesting to atigate
possible connections between these results.
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9. APPENDIX

9.1 Proof of Lemmal®

PROOF We show that < o2, with probability 1 — §/k; the
proof will then follow from the union bound.
e
Define the random variablE; = 6,(;)z; —=Z. ThenE,[X;] =
0 and since||z|| < Jz, we haveX; < ;. We also have

22\ 2
Ew[X]] = E [(5111(]’)96?—77) } = j

t@ o) S

=
o~

Also, Zj X; = o} —%. Plugging this into the Bernstein’s inequal-
ity [24, Theorem 2.7],

n f—k> = e G%)

Sincea > 3,

1« ca’ /2 3ca
Prici—=>Z2|< - < e
' {”1 e k:] = eXp( 2ka/3) = eXp( 4k>

Choosing: = 3% log(%), we get the above probability to be smaller
thand/k. Sincea = 11575y, andk = 33 log(1/5), we have that
choosinge = 28 log($) log?(%) is sufficient. O

9.2 Bounding the MGF's

We first compute the expectation of the MGF for different con-
ditions on the hashing function. We begin by proving Leniina 7.

9.2.1 Proof of Lemma 7
PROOR We havethalZ; =3, c,—1. 7ire%;zg - Hence

2

2 2 2
— E z; =Y —o;

Jih(g)=i

Z; =

E ZTjiTj

Jih(g)=1

whereY; =3, —; x;r;. Then,

E, [exp(uY;)] = H E, [exp(ur;z;)]

jih(s)=i
= II

1 1
(5 exp(uxj) + 3 exp(—uxj)>
h(i)=i

2,2 2 2
< H exp(%) Sexp<u202>.

Jih(j)=i

By the Markov inequality, we get the probability Bf being larger
thant as

E, Y exp ( i ) 2
Pr(y; > f < Lroplo)]l * 2 < exp <_ 202) ’

exp(ut) exp(ut)

i

by choosingu = ;.

—. Note that we do not need to worry about
o; being zero, as thel; = 0. Then, we bound:, [exp(uZ;)]
as follows. Denotep(t) = Pr[Z; = t]. We first compute the

expectation with respect ta For any value o > 0, we have

exp(ut)p(t)

E, [exp(uZ)] = >

te(—o0,00)

< > exp(ut)p(t) + Y exp(ut)p(t).

t€(—o0,0] t>6



The first term can be bounded as follows:

<1—|—ut—|—

< Y o+ S )+ %dm)

> epuipn) < S

te(—o0,0) t€[0,0]

L ul?
> T et

=2

te(—o00,0] te(—o00,0] te(—o00,0] j=2
u’t

< > e+ 3 it Z Z

te(—o0,00) t€(—o00,00) te(— =2 !

where the last inequality follows since in the rari@gex], the inte-
gral is positive. Then, the calculation can be simplifiedaleivs:

>

tE(—o0,00)

S exp(ut)p(t) <

te(—o00,0)

+ZZ

tE(—o00,0) j=2

<140+ Y Z

te(—o0,0) j=2

2 00
<1+ Y ;_22

te(—o0,0) j=2

(p(t) + utp(t))

o’ t]

uw’ tJ

u? 67

4!

p(t) sincet < @ in this range

1
<1+

(exp(uf) — 1 — ub)E,[Z}].

For the second term, we have

S exp(ut)p(t)

t>6

1
< f — — f —
< Z:Eueexp(f—i— 1) <Pr {Z > + 1} Pr {Z >
L
< i —
< Z:Eueexp(é—k 1) Pr {Z > + 1}

L
< 2 2 —
< E exp({ + 1) Pr {YZ > o] +u+1]

l=ub
L/u+o?
< Z exp( €+1)exp< T2l>
=ub 7
oo
l 1
<2 exp<é+1— - _§>
L=ub i
<Ve i exp (£ — £,
- 2uo?
=ub
By assumption of the lemma, since < .15, we have that —
L5 < — L. With this restriction,
Zexput y<+Ve- Zexp _ ¢
duc?
t>0 L=ub
< 24/e - ex ub =2e ex 4 <4ex —i
= p T Juo? U P 4022 S P 152

).

By putting together the two parts, we have that

E, [exp(uZ;)] < (1 + gé(exp(uﬁ) —1—ud)E, [Zf])

+ 4dexp <—%> .

Choosing = 402 1n(k/5), the proof is complete. [J

9.3 Continued proof of Lemmal9

We finish the proof of Lemn{d 9 by showing thatis decreasing.
To this end, we prove that for all C [d] and for alla € [d] \ A,
gs (AU {a}) < gs(A). Recalling the definition of,(A), we have

gs(A) =E [exp <uZZ> [t
—E|: |:exp<uZZ>|Vj ):| |h ' (s)=A
(12

s)=A

I

where the inner expectation is over the random variaptes only.
Sinceh is completely independent we have that

B oo (s 2) 119 =1
gs (A) = > (k — 1)a-14l ’

(h1,...,hg)€[K]d,

Vjihj=s&jeA
and similarly
gs (A ) {a’})

s—1 7 ; ;
E [exp (u >y Zi) | Vj:h(j) = hj]

>

(h1,...,hg)€lK]E,
Vjthj=sejeAU{a}

(k — 1)d-T4l-1

Therefore it is sufficient to show that for all

(hi,...,ha—1,hat1,... ha) € [K]*"
withVj # a: h; = s & j € Aitholds that
B [exp (w3205 Z:) | V5 2 h(j) = by
> =
ha€[k]\{s}

s—1

>E [exp <uZZ> | Vj#a:h(j)=h;,h(a) :3:| :

i=1

We shall prove the following stronger inequality: for all
(hi,... ha—1,has1,...,ha) € [K]* T WithVj #a: h; =s &
j € Aandforallh, € [K] \ {s} it holds that

E [exp (uZZ) | Vi:h(j) = hj:|

i=1
s—1

>E [exp (u >z

i=1

) |w¢a:h<j>—hj,h<a>—s}

Now observe that only are random in the above expectations and

thatZ; are conditionally independent givén Therefore,

E |:exp <z_§ uz> | h] - ﬁE [exp <uz) | h] .

i=1



From the non-negativity of the exponential function, ildels that
it is sufficient to show that for ali = 1,...,s — 1 and for all
(hi,... ha—1,hat1,..., ha) €K' WithVj #a: hj =s &
j € Aandforallh, € [k] \ {s} it holds that

Er > Eg, where
By = B [exp (uZ:) | V5 : h(j) = hy]

Er=E [exp (uZ) |Vi#a:h(j)=hjh(a)= s] .

(13)

We prove inequality[(1I3) by a case analysis.hlf # 4, then
Er = Er by definition. Ifh, = ¢ and theith bucket ofE,’s hash
function is bad, thelr, = G(u,o?) > Eg, as shown earlier in
Corollary(8.

If h, = 7 and theith bucket ofE's hash function is good then,
theith bucket ofEz’s hash function is also good. As before, define

VQZZ Z rjrngxgdh(j)iémg)i,
Jj#a g#a,j#g
and

Wa = erxjxaéhmidh(a)i.
j#a
Again, note that if theth bucket is good as assumed then =
Z; = Vo + rW,. Therefore we have that
Wa) | Vj : h(j§) = h;,Vj # a: ry]
(14)

EL =
|Vj:

E[E [exp (uVa +u - Ta

h(j) = hil.

Now observe that only,, is random in the inner expectation and
E[uVae +u-rWeo | V5 : h(j) = hj,Vj#a:r;] =uV,.

Thus fromE[exp(z)] > exp(E [z]), it follows that

Elexp (uVa +u-roaWa) | V5 : h(j) = h;,Vj # a:rj] > exp (uVa)

as before. Plugging the latter infa{14) we arrive at

EL > Elfexp (uVa) | Vi : h(j) = hy]
=Eexp (uVa) | Vi # a: h(j) = hj, h(a) = s].

(15)

Here the last equality follows from the fact that aland i values
are independent and sin%g does not depend am If ™' (s) =

AU {a} and thei hash bucket is good as assumed then= Z; =
V. and we observe that

Elexp (uVa) | Vj # a: h(j) = hy,h(a) = s| =Er  (16)

Combining [T5) and(16), we conclude that > Er for all cases
and hencey, is decreasing as claimed.

9.4 Proof of Theorem(11 (i)

PrROOF Recall that the random variabi is defined as

Z_ _ Zz |f 91’:

o Llog G(u, o) else.
Note thatG(u,o%) > 1, and hence for > 0, L log G(u,0%) >
0. Also recall thatS; is the indicator vector for bucket being
good, andj is the indicator for the hash function being good. By
definition of Z;, since log G(u,0%) > 0,3, Zi NG < >, Z
and hence we have that,

Pr < Pr + Pr[g]

Zzi>6
ZZi>6

Thus, we prove a bound diifexp(u ", Z;)] and thus bound on

Pry", Z; > €]. Taking expectations over bothandh, and using
Pr[§] < 4,

Elexp(uZ;)] < Elexp(uZ:) | §] Pr[S] + G(u, %) Pr[9]

1 1 . 46
<1+ 0—2(exp(u9) —1—ub) (ﬁ(l —9) +U*5) + T

where we combined the appropriate terms from the two pattseof
sum. Recall that? < 1. By choosingy < we have that

1 2 46
92 (exp(ub) — 1 — Q)E + -

2 46
< exp <k292 (exp(uf) — 1 — ub) + - ) .
Taking the product over thieterms, by using LemniallO,

E[H exp(uZi)] < HE[exp(uZ)]

ZZZ'>6/\9

< Pr +. (17)

k2’

Efexp(uZi)] <1

< exp <k92 (exp(uf) — 1 — ub) + 46)

For completeness, we show how to determine the optimal

ZZ > € —exp( U2

Pr exp(ue)
< exp (k’%‘ﬂ (exp(ub) — 1 —ub) 4+ 6 — ue) <exp (H(u)+9),

<

< H Elexp(uZ:)] exp(—ue)

where we definéd (u) = 25 (exp(uf) — 1 — uf) — ue. Setting
the derivativeH’ (u) = 0, we get2; (6 exp(uf) — 0) — e = 0,
and hence

1 ke 1 4kea?In(k/6)
“*§1n<1+7> 4a*ln(k/6)l (H 2 )

dkeo? In(k/6)

. We needln(H— <

Note that we need to restrmt< T(E73)

1, which is true |fsett|ngM < %, ore < m

which is permissive. Using this value af we have that (skipping
the simplifications)

2 ke ke ke
i (5 - () m(1+5))

9 & ke
2k60 — 2(2+ ks@)

< =
— k629 +

which is the trick that Bernstein useél + z)In(1 + z) — z <

2@—”;2/3. Plugging in this value off, we get that
—3ke?

XZ_:Z’QE SeXp<4(3+(1+a)eln(k/5))+4‘5)‘ =

The proof of Theoref11(ii) is similar to the above and is oedit
in this version.

Pr
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