
RAY: Integrating Rx and Async for Direct-Style Reactive
Streams

Philipp Haller
Typesafe, Inc.

philipp.haller@typesafe.com

Heather Miller
EPFL

heather.miller@epfl.ch

ABSTRACT
Languages like F#, C#, and recently also Scala, provide
“async” extensions which aim to make asynchronous pro-
gramming easier by avoiding an inversion of control that is
inherent in traditional callback-based programming models
(for the purpose of this paper called the “Async” model).
This paper outlines a novel approach to integrate the Async
model with observable streams of the Reactive Extensions
model which is best-known from the .NET platform, and
of which popular implementations exist for Java, Ruby, and
other widespread languages. We outline the translation of
“Reactive Async” programs to efficient state machines, in a
way that generalizes the state machine translation of regular
Async programs. Finally, we sketch a formalization of the
Reactive Async model in terms of a small-step operational
semantics.

1. INTRODUCTION
Asynchronous programming has been a challenge for a long
time. A multitude of programming models have been pro-
posed that aim to simplify the task. Interestingly, there are
elements of a convergence arising, at least with respect to
the basic building blocks: futures and promises have begun
to play a more and more important role in a number of lan-
guages like Java, C++, ECMAScript, and Scala.

The Async extensions of F# [12], C# [1], and Scala [6]
provide language support for programming with futures (or
“tasks”), by avoiding an inversion of control that is inherent
in designs based on callbacks. However, these extensions are
so far only applicable to futures or future-like abstractions.
In this paper we present an integration of the Async model
with a richer underlying abstraction, the observable streams
of the Reactive Extensions model. [9] A reactive stream is
a stream of observable events which an arbitrary number of
observers can subscribe to. The set of possible event pat-
terns of observable streams is strictly greater than those of
futures. A stream can (a) produce zero or more regular
events, (b) complete normally, or (c) complete with an error

(it’s even possible for a stream to never complete.) Given
the richer substrate of reactive streams, the Async model
has to be generalized in several dimensions.

We call our model RAY, inspired by its main constructs,
rasync, await, yield, introduced later in the paper.

This paper makes the following contributions:

• A design of a new programming model, RAY, which in-
tegrates the Async model and the Reactive Extensions
model in the context of the Scala Async project [5] (pro-
posed for adoption in mainline Scala [6]);

• An operational semantics of the proposed program-
ming model. Our operational semantics extends the
formal model presented in [1] for C#’s async/await to
observable streams.

2. BACKGROUND
2.1 Scala Async
Scala Async provides constructs that aim to facilitate pro-
gramming with asynchronous events in Scala. The intro-
duced constructs are inspired to a large extent by extensions
that have been introduced in C# version 5 [7] in a similar
form. The goal is to enable expressing asynchronous code
in “direct style”, i.e., in a familiar blocking style where sus-
pending operations look as if they were blocking while at
the same time using efficient non-blocking APIs under the
hood.

In Scala, an immediate consequence is that non-blocking
code using Scala’s futures API [4] does not have to resort
to (a) low-level callbacks, or (b) higher-order functions like
map and flatMap. While the latter have great composability
properties, they can appear unnatural when used to express
the regular control flow of a program.

For example, an efficient non-blocking composition of asyn-
chronous web service calls using futures can be expressed as
follows in Scala:

1 val futureDOY: Future[Response] =

2 WS.url("http://api.day-of-year/today").get

3
4 val futureDaysLeft: Future[Response] =

5 WS.url("http://api.days-left/today").get

6



7 futureDOY.flatMap { doyResponse =>

8 val dayOfYear = doyResponse.body

9 futureDaysLeft.map { daysLeftResponse =>

10 val daysLeft = daysLeftResponse.body

11 Ok("" + dayOfYear + ": " +

12 daysLeft + " days left!")

13 }

14 }

Line 1 and 4 define two futures obtained as results of asyn-
chronous requests to two hypothetical web services using an
API inspired by the Play! Framework (for the purpose of
this example, the definition of type Response is unimpor-
tant).

This can be expressed more intuitively in direct-styling using
Scala Async as follows (this example is adopted from the SIP
proposal [6]):

1 val respFut = async {

2 val dayOfYear = await(futureDOY).body

3 val daysLeft = await(futureDaysLeft).body

4 Ok("" + dayOfYear + ": " +

5 daysLeft + " days left!")

6 }

The await on line 2 causes the execution of the async block
to suspend until futureDOY is completed (with a successful
result or with an exception). When the future is completed
successfully, its result is bound to the dayOfYear local vari-
able, and the execution of the async block is resumed. When
the future is completed with an exception (for example, be-
cause of a timeout), the invocation of await re-throws the
exception that the future was completed with. In turn, this
completes future respFut with the same exception. Like-
wise, the await on line 3 suspends the execution of the async
block until futureDaysLeft is completed.

The main methods provided by Scala Async, async and
await, have the following type signatures:

def async[T](body: => T): Future[T]

def await[T](future: Future[T]): T

Given the above definitions, async and await “cancel each
other out:”

await(async { <expr> }) = <expr>

This“equation”paints a grossly over-simplified picture, though,
since the actual operational behavior is much more compli-
cated: async typically schedules its argument expression to
run asynchronously on a thread pool; moreover, await may
only be invoked within a syntactically enclosing async block.

2.2 Reactive Extensions
The Rx programming model is based on two interface traits:
Observable and Observer. Observable represents observ-
able streams, i.e., streams that produce a sequence of events.
These events can be observed by registering an Observer

with the Observable. The Observer provides methods which
are invoked for each of the kinds of events produced by the

Observable. In Scala, the two traits can be defined as shown
in Figure 1.

trait Observable[T] {

def subscribe(obs: Observer[T]): Closable

}

trait Observer[T] extends (Try[T] => Unit) {

def apply(tr: Try[T]): Unit

def onNext(v: T) = apply(Success(v))

def onFailure(t: Throwable) = apply(Failure(t))

def onDone(): Unit

}

Figure 1: The Observable and Observer traits.

The idea of the Observer is that it can respond to three dif-
ferent kinds of events, (1) the next regular event (onNext),
(2) a failure (onFailure), and (3) the end of the observable
stream (onDone). Thus, the two traits constitute a varia-
tion of the classic subject/observer pattern [3]. Note that
Observable’s subscribe method returns a Closable; it has
only a single abstract close method which removes the sub-
scription from the observable. The next listing shows an
example implementation.

Note that in our Scala version the Observer trait extends
the function type Try[T] => Unit. Try[T] is a simple con-
tainer type which supports heap-based exception handling
(as opposed to the traditional stack-based exception han-
dling using expressions like try-catch-finally.) There are
two subclasses of Try[T]: Success (encapsulating a value of
type T) and Failure (encapsulating an exception). Given
the above definition, a concrete Observer only has to pro-
vide implementations for the apply and onDone methods.
Since apply takes a parameter of type Try[T] its implemen-
tation handles the onNext and onFailure events all at once
(in Scala, this is tyically done by pattern matching on tr

with cases for Success and Failure).

The Observer and Observable traits are used as follows. For
example, here is a factory method for creating an observable
from a text input field of typical GUI toolkits (this example
is adapted from [9]):

def textChanges(tf: JTextField): Observable[String] =

new ObservableBase[String] {

def subscribe(o: Observer[String]) = {

val l = new DocumentListener {

def changedUpdate(e: DocumentEvent) = {

o.onNext(tf.getText())

}

}

tf.addDocumentListener(l)

new Closable() {

def close() = {

tf.removeDocumentListener(l)

}

}

}

}

This newly-defined textChanges combinator can be used



with other Rx combinators as follows:

textChanges(input)

.flatMap(word => completions(word))

.subscribe(observeChanges(output))

We start with the observable created using the textChanges
method from above. Then we use the flatMap combinator
(called Select in C#) to transform the observable into a new
observable which is a stream of completions for a given word
(a string). On the resulting observable we call subscribe to
register a consumer: observeChanges creates an observer
which outputs all received events to the output stream.
(The shown example suffers from a problem explained in [9]
which motivates the use of an additional Switch combinator
which is omitted here for brevity.)

3. THE REACTIVE ASYNC MODEL
This Section provides an (example-driven) overview of the
Reactive Async Model which integrates the Async Model
and the Reactive Extensions Model.

The basic idea is to generalize the Async model, so that it
can be used not only with futures, but also with observable
streams. This means, we need constructs that can create
observables, as opposed to only futures (like async), and we
need ways to wait for more events than just the completion of
a future. Essentially, it should be possible to await all kinds
of events produced by an observable stream. Analogous to
await which waits for the completion event of a future, we
introduce variations like awaitNext and awaitNextOrDone

to express waiting for the events of an observable stream.

3.1 A first example
The following example shows how to await a fixed number
of events of a stream in the Reactive Async Model:

val obs = rasync {

var events = List[Int]()

while (events.size < 5) {

val event = awaitNext(stream)

events = event :: events

}

Some(events)

}

Note that we are using the rasync construct; it is a gener-
alized version of the async construct of Section 2.1 which
additionally supports methods to await events of observable
streams.

In the above example, the invocation of awaitNext suspends
the rasync block until the producer of stream calls onNext
on its observers. The argument of this onNext call (the next
event) is returned as a result from awaitNext. The result of
rasync, obs, has type Observable[List[Int]]. Once the
body of rasync has been fully evaluated, obs publishes two
events: first, an onNext event which carries events (the list
with five elements), and second, an onDone event; it is not
possible for obs to publish further events.

Note that the result of an rasync block has a type of the form
Option[T]; in the case where this optional value is empty

(None), only an onDone event is published as a result of fully
evaluating the rasync block. (It is, however, possible to
publish other events beforehand, as shown in the following
sections.) Otherwise, the semantics of rasync is analogous
to the behavior of a regular async block: when its body has
been fully evaluated, the future, which is the result of async,
is completed and further changes to the state of the future
are impossible.

3.2 Awaiting the end of a stream
Sometimes it is not known statically how many events a
stream might still publish. One might want to collect all
events until the stream is done (finished publishing events).
In this case it is necessary to have a way to wait for ei-
ther of two events: the stream publishes a next event, or
the stream is done. This can be supported using a method
awaitNextOrDone which returns an Option[T] when applied
to an Observable[T]:

rasync {

var events: List[Int] = List()

var next: Option[Int] = awaitNextOrDone(stream)

while (next.nonEmpty) {

events = next.get :: events

next = awaitNextOrDone(stream)

}

Some(events)

}

In the above example, the body of rasync repeatedly waits
for the given stream to publish either a next event or to
reach its end, using awaitNextOrDone. As long as the stream
continues to publish events (in which case next of type
Option[Int] is non-empty), each event is prepended to the
events list; this list is the single event that the observable
which is, in turn, created by rasync publishes (once the
body of rasync has been fully evaluated).

3.3 Creating more complex streams
The streams created by rasync in the previous sections are
rather simple: after consuming events from other streams
only a single interesting event is published on the created
stream (by virtue of reaching the end of the rasync block).
In this section, we explain how more complex streams can
be created in the Reactive Async Model.

val forwarder = rasync[Int] {

var next: Option[Int] =

awaitNextOrDone(stream)

while (next.nonEmpty) {

yieldNext(next.get)

next = awaitNextOrDone(stream)

}

None

}

Figure 2: A simple forwarder stream.

3.3.1 A simple forwarder stream
Suppose we would like to create a stream which simply pub-
lishes an event for each event observed on another stream.



In this case, the constructs we have seen so far are not suf-
ficient, since an arbitrary number of events have to be pub-
lished from within the rasync block. This is where the new
method yieldNext comes in: it publishes the next event
to the stream returned by rasync. Our simple forwarder
example can then be expressed as shown in Figure 2.

Note that in the above example, the result of the body of the
rasync block is None; consequently, the resulting forwarder

stream only publishes an onDone event when rasync’s body
has been fully evaluated. In this case, it is assumed that the
only “interesting” non-done events of forwarder are pub-
lished using yieldNext.

4. TRANSLATION
In this section we describe the translation of the introduced
constructs. Before considering the translation of rasync

blocks in combination with methods like awaitNext, we first
give a short overview of the translation of regular async

blocks as it is implemented in Scala Async. As before, the
exposition is driven by concrete code examples.

Consider the following simple use of async/await:

val fut1: Future[T] = async {

<expr1>

val res = await(fut2)

<expr2>

}

In general, async blocks are translated into state machines [6].
The above example is simple enough, though, that we can
illustrate how it maps to Scala’s futures API without the
complexities associated with a state machine. For simplicity,
we assume that <expr2> does not contain another invocation
of await. Then, the above async block can be translated,
intuitively, as follows:

val fut1: Future[T] = {

val p = Promise[T]()

future {

<expr1>

fut2 onComplete {

case Success(res) => p.success(<expr2>)

case Failure(t) => p.failure(t)

}

}

p.future

}

In the resulting program the body of the async { ... }

block is contained within future { ... } which asynchronously
executes it on a thread pool. Before starting this future, a
new promise p is created. A promise is a placeholder for a re-
sult that becomes available asynchronously. A promise can
be resolved either with a successful result (using the success
method) or with an exception (using the failure method),
at most once. Each promise has a future associated with it
which provides a read-only interface to the asynchronous re-
sult. The future associated with p is the result of the original
async block.

One of the critical parts of the translation is the replace-

1 val forwarder = {

2 val ofp = ObservableFlowPool[T]()

3 val sm = new StateMachine {

4 var state: Int = 0

5 var next: Option[Int] = None

6 var channels = Map[Observable, Channel[_]]()

7 var subs = List[Closable]()

8 def apply(): Unit = {

9 val c = channels.get(stream) match {

10 case None =>

11 val channel = new Channel[Option[Int]]

12 channels += (stream -> channel)

13 subs ::= stream.subscribe(new Observer {

14 def apply(tr: Try[Int]) = tr match {

15 case Success(res) =>

16 channel.put(Some(res))

17 case Failure(t) =>

18 ofp.failure(t)

19 }

20 def onDone() =

21 channel.put(None)

22 })

23 channel

24
25 case Some(c) =>

26 c.asInstanceOf[Channel[Option[Int]]]

27 }

28
29 c get { res =>

30 next = res

31 state = if (res.isEmpty) 2 else 1

32 resume()

33 }

34 }

35
36 def resume(): Unit = state match {

37 case 1 =>

38 ofp << next.get

39 apply()

40
41 case 2 =>

42 subs.foreach(c => c.close())

43 ofp.done()

44 }

45 }

46
47 future {

48 sm.apply()

49 }

50
51 ofp.observable

52 }

Figure 3: Result of reactive async translation.

ment of invocations of await. Instead of blocking the cur-
rent thread until the awaited future is completed, a com-
pletion callback is registered with the awaited future. The
completion callback is invoked when fut2 is completed; it
handles two cases for the successful (case Success(res))
and the failed (case Failure(t)) completion of the future,
respectively. In case of a failure, promise p is immediately



completed with the exception t of the observed failure event.
Otherwise, the rest of the async block, which in this case
is just <expr2>, is executed, and its result used to com-
plete p successfully. Apart from the missing state machine
logic (which is not required in this simple case), this exam-
ple translation does not handle exceptions that are thrown
within <expr2>.

With this simplified overview of the translation of regular
async blocks, we provide a sketch explaining the translation
of rasync blocks.

4.1 Reactive Async Translation
The translation of rasync in combination with the await*

and yield* methods is very similar to the previous trans-
lation. The main changes are the implementation of ob-
servables as the result of an rasync block, as well as the
replacement of await* invocations.

Consider the forwarder example from Figure 2. Our ex-
tended translation produces the program shown in Figure 3
(simplified). The first interesting change is that instead of
creating a promise, an instance of ObservableFlowPool is
created. Like Scala’s promises, flowpools [10] are a non-
blocking data structure which can be completed program-
matically. Instead of carrying at most one result, though,
flowpools can carry an unbounded number of elements. Flow-
pools are observable: callbacks can be registered which are
called whenever a new element is added to the flowpool.
Moreover, it is possible to “seal” a flowpool which means
that no more elements can be added. This event, too, can
be observed; it plays the role of the onDone event of reactive
streams. The observable associated with the flowpool is re-
turned as the result of an rasync block (this is an extension
of the original design of [10]).

For each observable that the rasync block is awaiting events
from, the state machine maintains a non-blocking channel
(in the channels map). A channel supports a non-blocking
put operation, as well as a non- blocking get operation.
Each invocation of awaitNextOrDone is translated as fol-
lows. First, we check whether there is already a channel
for stream. If not, we create a channel and subscribe an
observer which puts new events into the channel. More-
over, we call get on the channel, passing the current con-
tinuation. Whenever the channel receives the first event
the continuation is called, which executes the corresponding
state of the state machine. The continuation is (atomically)
deregistered, so that the following events are just enqueued
in the channel. When the consumer reaches the original
awaitNextOrDone invocation it gets either a queued element
from the channel, or, if the channel is empty, it registers
its continuation once again using get. At the end of the
rasync block, all collected subscriptions (subs) are closed;
this turns all created channels into garbage.

5. FORMALIZATION
One of the contributions of this paper is a sketch of the
operational semantics of the proposed programming model.
Our operational semantics generalizes the formal model pre-
sented in [1]. To make it easier to pinpoint the essential se-
mantic differences between our models, we will re-use their
formal model.

p ::= cd mb program

cd ::= class C {fd md} class declaration
fd ::= var f : σ field
md ::= method declaration

| def m(x : σ) : ϕ = mb sync method
| def m(x : σ) : ψ = rasync { mb } async method

mb ::= { var x : σ; e } method body
ϕ ::= σ return type
σ, τ ::= type

| γ value type
| C class type

(including a family
of types Observable[σ])

γ ::= value type
| Boolean boolean
| Int integer

ψ ::= Observable[σ] observable return type
Figure 4: Core language syntax. C is a class name, f,m are
field and method names.

t ::= let x = e in t let binding
| x.f = y assignment
| yieldNext(x) yield event
| x variable

e ::= expressions
| b boolean
| i integer
| x variable
| null null
| x.f selection
| x.m(y) invocation
| new C() instance creation
| awaitNextOrDone(x) await next event
| t term
Figure 5: RAY expressions and terms.

5.1 Syntax
Figure 4 and Figure 5 show the syntax of our core language.
The core language is taken virtually unchanged from [1]. To
make it more uniform with the rest of the paper we use a
Scala-like syntax, however. Like in the original paper, pro-
grams are written in statement normal form (SNF) which
forces all subexpressions to be named; this simplifies the
presentation of the operational semantics. Note that our
core language does not support any form of subtyping, so
class declarations do not specify a superclass. This is again
adopted from [1]; the presented reactive features are orthog-
onal to subtyping.

A RAY program consists of a collection of class definitions,
as well as the definition of a (main) method body. A class C
has (a possibly empty) sequence of public fields and meth-
ods, f with types σ, and md, respectively. Importantly,
method declarations may be either synchronous, or asyn-
chronous. In the synchronous case, methods are public with
return type ϕ, a type which may represent either a class or
value type, and they may contain local variables and/or a
list of expressions e. Asynchronous methods on the other
hand are marked with rasync and are expected to have re-
turn type Observable[σ], but are otherwise syntactically the
same as synchronous methods.



The Observable[σ] family of types is used to model the
generic nature of observables. They represent observables
such that an async method can choose to await their next
event using awaitNextOrDone. Conversely, inside the body
of an async method with result type Observable[σ], yield-
Next can be used to publish an event of type σ.

Expressions in RAY include constants, which can be either
an integer i, boolean b, or the null literal. They may also
be represented by class declarations, selections, invocations,
or terms. Here, x and y represent variable names, while f
ranges over field names and m ranges over method names.
In order to enforce the above-mentioned SNF, we include a
second syntactic category for terms.

5.2 Operational Semantics
5.2.1 Notation
A heap, denotedH, partially maps object identifiers (ranged
over by o) to heap objects, denoted ⟨C, FM⟩, representing a
pair of type C and a field map, FM . A field map partially
maps fields f to values (ranged over by v), where v can be
either an integer, a boolean, null, or an object identifier
(the address of an object in the heap).

Frames have the form ⟨L, ē⟩l where L maps local variables
to their values, ē is a sequence of expressions, and l is a
label. A label is either s denoting a regular, synchronous
frame, or a(o) denoting an asynchronous frame; in this case,
o is the heap address of a corresponding observable object
⟨Observable[σ], state 7→ running(F̄ , D̄)⟩. F̄ is a set of asyn-
chronous frames, namely, all observables that are currently
suspended awaiting o to publish a new event. D̄ is a set of
so-called “dormant queues” which are explained below. In-
voking a synchronous method pushes a synchronous frame to
the current frame stack; invoking an asynchronous method
pushes an asynchronous frame to the current frame stack.

There are three kinds of transition rules. The first kind goes
from a heap and a frame to a new heap and a new frame
(simple right arrow). The second kind goes from a heap and
a frame stack to a new heap and a new frame stack (double
right arrow). The third kind goes from a heap and a set of
frame stacks to a new heap and a new set of frame stacks
(squiggly right arrow).

5.2.2 Transition Rules
Rule (E-RAsync-Yield) is an extended version of rule (E-
Async-Return) in [1]. It shows how awaiters (frames F̄ ) are
resumed when the current asynchronous frame yields a next
event. An awaiter has the form
⟨L2, x = y.GetResult();s̄2⟩a(o2). The call y.GetResult()
is just a placeholder indicating that the awaiter should be
resumed with the next event that stream y yields. Note that
the state of an observable is running(F̄ , D̄) as opposed to
running(F̄ ) in the simpler async case. The D̄ are“dormant”
queues, which are queues of awaiters that are currently not
suspended, but that might call awaitNextOrDone again. To
prevent these awaiters from skipping events, we record them
in this list of dormant queues, so that new events can be
queued up in the dormant queues, until awaitNextOrDone
is called again. Another difference from the async formal-
ization is that GetResult returns an option, which means

upon yielding a next result, the awaiter is resumed with
value Some(L(z)).

Rule (E-RAsync-Return) applies when an asynchronous frame
has been evaluated to the end (the expressions in the frame
are just ϵ). In this case all awaiters F̄ of observable o are
resumed with result None to indicate that the observable
is done publishing events. Like before, the result is added
to existing dormant queues yielding D̄′. The state of ob-
servable o is changed to done(D̄′). As a result, subsequent
calls to awaitNextOrDone can immediately return None (not
shown); at the same time, events in dormant queues can be
consumed until the last element, None, is removed from the
queue.

Rule (E-AwaitNextOrDone-1) only applies if in observable
o1 (the observable of y) there is no dormant queue for ob-
servable o (the observable that is waiting for the next event)
or the dormant queue is empty. In the former case, a new
awaiter is created and added to observable o1 in H1. In
the latter case, the empty dormant queue is removed and a
regular awaiter is added to the awaiters of observable o1.

Rule (E-AwaitNextOrDone-2) applies if the observable await-
ing an event has a non- empty dormant queue; in this case,
the observable can continue while taking an element out of
the dormant queue.

6. RELATED WORK
There is a large body of work investigating the relationship
of events and threads. Several proposals attempt to recon-
cile the flexibility and efficiency of event-based programming
with the simpler reasoning afforded by direct- style, thread-
based programming. Although similar in spirit, the present
work proposes an integration of two existing programming
models: async/await in the style of C# and Reactive Exten-
sions. Consequently, we refer to other recent publications
(e.g., [1]) for a discussion of events and threads, and how
they relate to the async/await model.

The implementation of our RAY model is related to Scala’s
CPS compiler plugin [11] which provides first-class delim-
ited continuations. However, there are important differ-
ences. Both Scala Async and RAY are implemented using
the macro system [2] introduced in Scala 2.10, which is a
more lightweight approach compared to a compiler plugin.
The translation avoids a complex interaction with Scala’s
type checker; the rasync, await*, and yield* constructs
are purely syntactic instead of type-driven. The Scala.React
programming framework [8] builds on Scala’s CPS plugin
to avoid the inversion of control inherent in the observer
pattern. Like other FRP frameworks it provides first-class
time-varying signals which support the automatic propaga-
tion of updates to other signals. This power comes at the
cost of support for concurrent signal propagation. In con-
trast, RAY is designed for concurrency, but does not feature
first-class signals.

7. CONCLUSION
This paper proposes RAY, a programming model and macro-
based library for Scala, which integrates the Async model of
C# and Scala with the Reactive Extensions model. RAY
supports both consuming and creating observable streams



H0(o) = ⟨Observable[σ], state 7→ running(F̄ , D̄)⟩
R̄ = {⟨L2[x 7→ Some(L(z))], s̄2⟩a(o2) | ⟨L2, x = y.GetResult();s̄2⟩a(o2) ∈ F̄}

N̄ = {⟨o2, []⟩ | ⟨ , ⟩a(o2) ∈ R̄}
D̄′ = {⟨o3, Some(L(z)) :: q⟩ | ⟨o3, q⟩ ∈ D̄}

H1 = H0[o 7→ ⟨Observable[σ], state 7→ running(ϵ, D̄′ ∪ N̄)⟩]
H0, {⟨L, yieldNext(z);s̄⟩a(o) ◦ FS} ∪ P

; H1, {⟨L, s̄⟩a(o) ◦ FS} ∪ {R ◦ ϵ | R ∈ R̄} ∪ P

(E-RAsync-Yield)

H0(o) = ⟨Observable[σ], state 7→ running(F̄ , D̄)⟩
R̄ = {⟨L2[x 7→ None], s̄2⟩a(o2) | ⟨L2, x = y.GetResult();s̄2⟩a(o2) ∈ F̄}

D̄′ = {⟨o3, None :: q⟩ | ⟨o3, q⟩ ∈ D̄}
H1 = H0[o 7→ ⟨Observable[σ], state 7→ done(D̄′)⟩]

H0, {⟨L, ϵ⟩a(o) ◦ FS} ∪ P
; H1, {FS} ∪ {R ◦ ϵ | R ∈ R̄} ∪ P

(E-RAsync-Return)

L(y) = o1
H0(o1) = ⟨Observable[σ], state 7→ running(F̄ , D̄)⟩

⟨o, []⟩ ∈ D̄ ∨ ∀⟨o2, q⟩ ∈ D̄. o2 ̸= o

H1 = H0[o1 7→ ⟨Observable[σ], state 7→ running(⟨L, x = y.GetResult();s̄⟩a(o) :: F̄ , D̄ \ {⟨o, []⟩})⟩]
H0, ⟨L, x = awaitNextOrDone(y);s̄⟩a(o) ◦ FS

↠ H1, FS
(E-AwaitNextOrDone-1)

L(y) = o1
H0(o1) = ⟨Observable[σ], state 7→ running(F̄ , D̄)⟩

D̄ = D̄′ ∪ {⟨o, q :: Some(e)⟩}
H1 = H0[o1 7→ ⟨Observable[σ], state 7→ running(F̄ , D̄′ ∪ {⟨o, q⟩})⟩]

H0, ⟨L, x = awaitNextOrDone(y);s̄⟩a(o) ◦ FS
↠ H1, ⟨L[x 7→ e], s̄⟩a(o) ◦ FS

(E-AwaitNextOrDone-2)

Figure 6: Transition rules for reactive async features.

in a familiar direct style, avoiding higher-order functions
and low-level callbacks in many cases. Moreover, it inte-
grates Scala’s widely-adopted futures library into a unified
programming model. Our goal with this integration is to
simplify reactive programming with Scala, async/await, and
reactive streams significantly.

8. REFERENCES
[1] G. M. Bierman, C. V. Russo, G. Mainland, E. Meijer,

and M. Torgersen. Pause ’n’ play: Formalizing
asynchronous C#. In ECOOP, volume 7313, pages
233–257. Springer, 2012.

[2] E. Burmako. Scala macros: Let our powers combine!
In Proceedings of the 4th Workshop on Scala. ACM,
2013.

[3] P. T. Eugster, P. Felber, R. Guerraoui, and A.-M.
Kermarrec. The many faces of publish/subscribe.
ACM Comput. Surv, 35(2):114–131, 2003.

[4] P. Haller, A. Prokopec, H. Miller, V. Klang, R. Kuhn,
and V. Jovanovic. Scala Improvement Proposal 14 -
Futures and Promises. http://docs.scala-lang.org/
sips/pending/futures-promises.html, 2012.

[5] P. Haller and J. Zaugg. Scala Async.
https://github.com/scala/async, 2013.

[6] P. Haller and J. Zaugg. Scala Improvement Proposal
22 - Async. http:
//docs.scala-lang.org/sips/pending/async.html,
2013.

[7] A. Hejlsberg, M. Togersen, S. Wiltamuth, and

P. Golde, editors. The C# Programming Language.
Addison-Wesley, fourth edition, 2011.

[8] I. Maier and M. Odersky. Higher-order reactive
programming with incremental lists. In G. Castagna,
editor, ECOOP, volume 7920 of Lecture Notes in
Computer Science, pages 707–731. Springer, 2013.

[9] E. Meijer. Your mouse is a database. Commun. ACM,
55(5):66–73, 2012.

[10] A. Prokopec, H. Miller, T. Schlatter, P. Haller, and
M. Odersky. Flowpools: A lock-free deterministic
concurrent dataflow abstraction. In H. Kasahara and
K. Kimura, editors, LCPC, volume 7760 of Lecture
Notes in Computer Science, pages 158–173. Springer,
2012.

[11] T. Rompf, I. Maier, and M. Odersky. Implementing
first-class polymorphic delimited continuations by a
type-directed selective CPS-transform. In G. Hutton
and A. P. Tolmach, editors, ICFP, pages 317–328.
ACM, 2009.

[12] D. Syme, T. Petricek, and D. Lomov. The F#
asynchronous programming model. In R. Rocha and
J. Launchbury, editors, PADL, volume 6539 of Lecture
Notes in Computer Science, pages 175–189. Springer,
2011.


