
FrTime: Fun
tional Rea
tiveProgramming in PLT S
hemeGregory Cooper and Shriram KrishnamurthiDepartment of Computer S
ien
eBrown UniversityProviden
e, Rhode Island 02912CS-03-20April 2004

FrTime: Functional Reactive
Programming in PLT Scheme

Gregory Cooper and Shriram Krishnamurthi

Department of Computer Science
Brown University

P.O. Box 1910
Providence, RI 02912, USA

Fax: (401) 863-7657
{greg, sk }@cs.brown.edu

WWW home pages:http://www.cs.brown.edu/˜ {greg, sk }/

Abstract. Functional Reactive Programming (FRP) supports the declarative con-
struction of reactive systems throughsignals, or time-varying values. In this pa-
per, we present a new language called FrTime, which providesFRP-style signals
atop a dialect of Scheme. We introduce the language with a fewexamples and
discuss its implementation. FrTime uses impure features, such as state and asyn-
chronous communication, to model time and to control evaluation. The use of
such features yields a scalable, event-driven implementation with several impor-
tant advantages. Specifically, it eases integration with other systems, supports dis-
tribution of signals across a network, and permits various benign impurities. To
illustrate the language’s expressive power, we present a concise implementation
of a networked paddle-ball game in FrTime.

1 Introduction

Reactive software systems present several engineering challenges not found in conven-
tional batch systems. In particular:

– They are naturally concurrent. For example, they need to respond to events that ar-
rive asynchronously from multiple sources. Often, they also need to perform con-
tinuous processing, such as updating a display of changing data. Coordinating such
concurrent computations is difficult and can involve complex synchronization pat-
terns.

– Their state changes over time, and there are typically dependencies between data.
Hence, when one thing changes, the programmer must update everything that de-
pends on it. Done by hand, this is a tedious and error-prone task.

– Their control structure is inverted: instead of the application controlling itself, in-
teraction with external entities determines what computations happen and when.
For this reason, reactive systems are often structured aroundcallbacks, application-
supplied routines that perform imperative operations in response to events. Coordi-
nation within the resulting “callback soup” can be difficult, since numerous isolated
code fragments end up manipulating the same data.

Fig. 1. Interacting with FrTime

Research on Functional Reactive Programming (FRP) [10, 20,24] focuses on de-
veloping linguistic support for constructing reactive systems. In particular, it encour-
ages the declarative specification of such systems by providingsignals, or time-varying
values. Signals come in two varieties,behaviorsandevents, which assist respectively
with the handling of state and control. Specifically, behaviors offer a safe mechanism
for managing state by automating the task of maintaining consistency. Events address
control-structure inversion by allowing programmers to treat event sources as first-class
values. Programmers construct FRP systems by connecting networks of signal proces-
sors, and the system computes values of all signals in parallel.

There have been a number of Haskell-based implementations of FRP, beginning
with Elliott and Hudak’s system Fran [10]. In this paper, we present a new, Scheme-
based implementation of FRP called FatherTime (FrTime). Inparticular, it implements
state directly through mutation, employs eager evaluation, and uses an asynchronous
model of concurrency. After introducing FrTime and discussing its implementation, we
describe several of the benefits that derive from this implementation strategy. In partic-
ular, we explain how it naturally supports the distributionof signals over asynchronous
communication channels, eases integration with external systems, and permits various
benign impurities. In addition, its event-driven computation model makes more efficient
use of resources and provides better scalability for many systems. We take advantage of
these features to integrate FrTime with the DrScheme programming environment and
an interactive graphics library. To illustrate its expressive power, we present a concise
implementation of a networked, multi-player paddle-ball game.

2 A Programmer’s View of Father Time

Father Time (FrTime) is a new programming language that runsin the DrScheme [12]
programming environment. It extends a purely functional subset of PLT Scheme (the
language DrScheme implements) withsignals, or time-varying values.

In order to define time-varying values, we need a way of referring to time itself.
FrTime provides coarse- and fine-grained notions of time, which are called respectively
secondsand milliseconds. Figure 1 shows screenshots of an interactive session with
FrTime in which we evaluate several expressions, includingseconds.

(defineclock
(match(seconds→date seconds)

[($ date sec min hr day mon yr)
(format" ˜a:˜a:˜a ˜a-˜a-˜a"

hr (pad min) (pad sec)
day(pad mon) (pad (modulo yr100)))]))

;; pads a number to two digits
(define(pad n)

(if (< n 10)
(format" 0˜a" n)
(number→string n)))

Fig. 2. A clock program in FrTime

Secondsis a signal, since it changes over time (every second, to be precise). More
specifically, it is a signal that is defined at every moment in time, so we say it iscon-
tinuousand call it abehavior. DrScheme displays behaviors just like ordinary Scheme
values, except that the display automatically updates whenever a behavior changes. In
Figure 1, we provide two screenshots of the same session, taken twenty-five seconds
apart, to illustrate the dynamic display of behaviors.

We can imagine applying a function to a behavior at every moment in time. This
is calledlifting the function application, and the result is also a behavior.In FrTime,
all applications of primitive functions are automaticallylifted whenever necessary. For
example, the second expression we evaluate in Figure 1 is (even? seconds). The value of
this expression indicates, at every moment in time, whetherthe current value ofseconds
is even.

In general, the automatic lifting of function applicationsallows the programmer
to treat behaviors like ordinary values. The programmer canalso mix constants and
behaviors within a single function application. For example, the following are all legal
FrTime expressions:

(+ 2 3)
(modulo seconds10)
(+ (∗ seconds1000) (modulo milliseconds1000))

It is possible to write interesting programs in FrTime usingnothing more thansec-
ondsand bit of ordinary Scheme. For example, Figure 2 shows a brief implementation
of a clock program, which presents a human-readable representation of the current time.
Figure 1 shows the result of evaluating this program.

The DrScheme programming environment gives us the ability to interact with time-
dependent values. To achieve a richer interactive vocabulary, we have implemented a
signal-based interface to a graphics library, yeilding an interactive animation system in
the spirit of Fran [10].

Our animation system creates a drawing window and provides asimple interface
for interacting with it. The behaviormouse-pos, for instance, represents the current
mouse position within the window. The library’s primary interface procedure isdisplay-
shapes, which consumes a time-varying list of shape structures anddisplays them in the
window. For example, the following simple program makes a blue ball of radius 20 that
follows the mouse:

(display-shapes
(list

(make-ball mouse-pos20 " blue")))

Modeling the mouse position as a behavior seems like a natural decision. However,
we can also use signals to model other kinds of user input, such as mouse clicks and
keystrokes. These signals are not continuous but instead consist of sequences of discrete
occurrences. Following the FRP terminology, we call such signalsevents. instance, the
graphics library provides an event calledkeystrokes. Unlike behaviors, events are not
continuously valued, so evaluating an event does not produce any useful output:

> keystrokes
#<event>

To observe event-driven behaviors, we have a collection of combinators that create be-
haviors from events. For example, the functionhold creates a behavior by “holding”
onto the most recent event occurrence (it requires an initial value to use until the event
occurs for the first time). If we evaluate (hold #\nul keystrokes), we get a behavior that
corresponds to the most recent keystroke.

We can write more elaborate event processors, such ascount-occ, defined below,
which counts the occurrences of an event:

> (define(count-occ ev)
(accum/e→b (map-e(λ () add1) ev) 0))

Map-eis analogous to the standard list-processing functionmap; that is, the expression
(map-e fn input) creates a new event by applyingfn to each occurrence of the input.
Likewise, the expression (accum/e→b trans init) creates a behavior whose value starts
as init but changes by cumulatively applying transformers carriedby the event. For
instance, (count-occ keystrokes) is a behavior that counts keystrokes.

3 A Peek Behind the Scenes

We have seen how a programmer can interact with FrTime. To give a deeper picture of
what goes on behing these interactions, we briefly discuss the implementation now. In
order to clarify the novel aspects of FrTime, we first give an overview of previous FRP
implementation strategies.

Conal Elliott [9] discusses several functional approachesto the implementation of
behaviors. A simple approach is to use functions from time tovalues, but Elliott quickly
rejects this on grounds of inefficiency. Since the value of a behavior often depends on
cumulative effects of time, he offers an approach based on “residual behaviors”. In this
approach, a behavior consumes the current time and yields a value plus a new behavior
which can typically compute future values more efficiently.A third approach, which is
also discussed in the book by Hudak [18], model behaviors with stream processors—
functions from infinite lists of time steps to infinite lists of values. The stream approach
seems to have been the dominant approach for some time, although a recent system
called AFRP [20] uses residual behaviors.

All of these implementations share two important features.First, they are purely
functional, so they model time and state explicitly. Second, they aresynchronous; that

is, they simulate the passage of time by evaluating snapshots of the entire system at
discrete moments in time.

From a theoretical standpoint, these features are beneficial. For one thing, it is often
easier to reason about properties of a purely functional program than about an imper-
ative one. Also, because they model time explicitly, the functional implementations
can use analytical methods for event detection, and they cansupport general time-
transformations on behaviors. By employing a synchronous evaluation strategy, they
ensure that the values of all signals are consistent at each time step. Wan and Hudak [24]
use this property to help formalize a semantics for a stream-based FRP implementation.

From a software engineering perspective, however, purity and synchrony are less
useful. For example, a pure implementation hides the state of the system in the internals
of the host language’s evaluator, where it is not easily accessible. In Haskell specifically,
lazy evaluation makes expressing the stream-based implementation easy and natural,
but it complicates the interface to impure features, where evaluation order is crucial.
External entities are typically autonomous, so the timing of their actions is unlikely
to conform to an FRP system’s clock. This is especially true in distributed systems,
where communication crosses machine boundaries. To simulate synchronization with
an outside system, a synchronous system uses polling, whichsacrifices efficiency and
temporal accuracy.

In FrTime, we follow a very different implementation strategy, and we obtain a
different set of tradeoffs. In particular, we make no attempt to have a purely functional
or a synchronous implementation. Instead, we model time andstate directly with time
and state, and we drive evaluation with asynchronous communication.

For each signal in a FrTime program, we construct asignal data structure. The
data structure contains an update procedure, which computes the signal’s value, and a
mutable field that stores the signal’s most recently computed value. Thus, there is an
implicit notion of real time, which the system exhibits directly.

A special thread called thesignal manageris responsible for keeping signals cur-
rent. It maintains an explicit graph of the dependencies between signals. For example,
when we evaluate (even? seconds), the resulting behavior depends onseconds, so the
signal manager needs to recompute it wheneversecondschanges.

The manager uses an asynchronous message queue to control all computation. For
example, whensecondschanges, the manager sends itself anupdatemessage for each
dependent signal. When it dequeues such a message, it recomputes the corresponding
signal. This in turn may demand recomputation of yet more signals, so evaluation pro-
ceeds recursively in a breadth-first, bottom-up manner.

Some signals require re-evaluation after intervals of time. For example,seconds
needs to update once every second. The signal manager supports this capability by
keeping a prioritized “alarm” queue, which maps signals to update times. On each it-
eration of its processing loop, the manager checks whether the current time exceeds
the earliest alarm in the queue. If so, it executes the corresponding update; otherwise,
it sleeps until either the next alarm or the arrival of a message. Our asynchronous
message-passing library makes this easy by providing areceiveconstruct with a fine
(millisecond-granularity) timeout parameter.

Our evaluation algorithm employs two main optimizations. First, if recomputing a
signal does not change its value, then the manager does not schedule updates for the
dependents. Second, to avoid scheduling the same signal formultiple updates, we give
each signal a flag to indicate whether it has already been scheduled. The manager sets
this flag before sending anupdatemessage and clears it after updating the signal. (If
the flag is already set, the manager does not send the message.)

A Note on Asynchrony

Since FrTime employs an asynchronous evaluation strategy,there are brief intervals
during which behaviors are inconsistent with each other. This could be a problem if it
prevented formal reasoning about programs written in FrTime. In fact, however, there
are many tools, including model-checkers like SPIN [17], that are specifically designed
to verify properties of asynchronous systems. We thereforeintend to pursue the use of
such tools for FrTime programs. In particular, we believe that the temporal nature of
FrTime will yield programs better suited for analysis by tools such as model-checkers.
In addition, work on reasoning about implicit invocation systems [13] is likely to offer
more useful techniques for automated reasoning.

4 Benefits of FrTime’s Implementation Strategy

In this section, we explain several of the benefits that derive from FrTime’s implemen-
tation strategy.

4.1 Distributed Signals

Events in FrTime map naturally to messages, and therefore they easily generalize to a
distributed setting. To take advantage of this property, weprovide a simple interface for
distributing events. The expression (bind event name) bindsnameto eventin a local
registry, while (remote-event machine name) creates a local proxy for the event bound
to nameon the remotemachine. Whenever the remote event occurs, the local proxy
emits an identical occurrence.

In Section 5, we discuss an example in which we use distributed events to implement
distributed behaviors.

4.2 Integration with Other Systems

In Section 3, we explained how FrTime’s signal manager performs computation in re-
sponse to asynchronous messages. In most cases, these messages come from the signal
manager itself, indicating internal changes to parts of thesystem. However, the exis-
tence of a general-purpose message queue also offers an easymechanism for integration
with other systems.

For example, to implement the animation library presented in Section 2, we built
a signal-based interface to DrScheme’s Viewport Graphics Library. Part of this task
involved translating the library’s keyboard and mouse events into FrTime events. Since

(definekeystrokes
(make-event-receiver))

(define(key-callback key-event)
(! signal-manager

(make-event
(get-key-code key-event)
keystrokes)))

Fig. 3. An external event source for key strokes

(define(draw-shapes list-of-shapes)
(begin

((clear-viewport offscreen-port))
(for-each

(λ (shape)
((draw-shape offscreen-port) shape))

list-of-shapes)
((copy-viewport offscreen-port) canvas)))

(define(display-shapes list-of-shapes)
(begin

(draw-shapes(cur-val list-of-shapes))
(map-e(changes list-of-shapes) draw-shapes)))

Fig. 4. Animation routines

the library handles these events in a separate thread, the conversion is not necessarily
easy. In a synchronous system, for instance, we would need topoll the library at each
time step. In contrast, message queues allow us to build a general mechanism for adding
external event sources. For example, the graphics library uses the code in Figure 3
to define an event for keystrokes. A callback1 in the library (key-callback) sends the
signal manager a message each time the user presses a key (“!” is the message-sending
primitive). The manager emits the value as an occurrence ofkeystrokes. Keystrokes
behaves like any other event, and FrTime is not even aware that it is interacting with a
graphics library.

We exploit FrTime’s support for imperative commands to implement an animation
system with this library. The main interface routine is calleddisplay-shapes; it takes a
time-varying list of shapes and animates them on a canvas. Weshow an implementation
for display-shapesin Figure 4. The proceduredraw-shapestakes a (constant) list of
shapes and draws them to a canvas, using an offscreen buffer to prevent flicker.

Display-shapestakes a time-varying list of shapes, draws an initial snapshot to the
canvas, and then redraws whenever a change occurs. The expression (changes list-of-
shapes) creates an event that delivers a new snapshot of the shape list each time it
changes. We usemap-eto applydraw-shapesto the resulting sequence.

1 The use of a callback here is mandated by the graphics library’s interface, not by FrTime.
FrTime itself does not use callbacks.

User interface toolkits are another natural target for interaction with FrTime, since
many types of widgets have properties that naturally map to signals. For example, we
can use a numeric behavior to indicate the current position of the thumb in a slider. In
this case, the behavior serves as an input signal. We can alsouse behaviors for output,
for example by creating a label whose contents reflect the value of a string behavior. Still
other widgets, such as buttons, associate more sensibly with events than with behaviors.

Integrating FrTime with an imperative user interface toolkit involves essentially the
same techniques as described above for the graphics library. To receive input from a
widget, we usemake-event-receiverand send messages to the signal manager. To pro-
vide output through a widget, we usemap-eto update the widget’s properties each time
a behavior changes. This is also how we implement the dynamicdisplay of behaviors in
DrScheme’s Interactions Window—the textual representation of the value is essentially
a widget.

FrTime’s use of state also permits a more meaningful notion of interaction. In par-
ticular, since behaviors always exhibit their current values, we can easily implement
cur-val, which permits an external entity (such as a programming environment) to query
the current state of a behavior. This capability is valuablefor learning about and inter-
actively developing signal-based systems. In the pure Haskell-based FRP systems, state
is implemented indirectly, so there is no way to read a signal’s value from outside.

4.3 Resource Utilization and Scalability

A fundamental goal for our work has been to develop a completely event-driven imple-
mentation, and one motivation for this goal is more efficientuse of resources. Specif-
ically, in a synchronous system, computation proceeds in a top-down fashion, recur-
sively evaluating each subexpression at each time step. This means that the amount of
computation performed at each step is proportional to the total number of signals in the
system. Therefore, the total “processing power” required is proportional to the product
of the system size and the sample rate. This processing requirement is independent of
the frequency with which signals actually change.

FrTime only performs computation in response to events, so the amount of compu-
tation is proportional to the rate at which signals require recomputation. This property
is advantageous for large systems, especially if the majority of signals change rarely,
such as in response to human interaction. In this case, the size of the system itself does
not strain processing resources. Because FrTime’s evaluation strategy is asynchronous,
it also has an advantage when small parts of the system need toupdate rapidly, since
there is no central clock forcing recomputation of everything at the same rate.

In Figure 5, we show performance comparison plots for FrTimeversus a syn-
chronous stream-based implementation of behaviors. The stream-based implementation
is a direct translation of Elliott’s [9] into PLT Scheme. We have made measurements to
verify that Haskell systems (Hugs, GHC) exhibit similar performance trends (within
constant factors), but for consistency we run everything inexactly the same environ-
ment (virtual and physical machines).

The graph on the left shows processing requirements for systems consisting of 2000
signals and running at various update rates. The stream-based system recomputes every
signal, in lockstep, at the reported update frequency. The actual rate at which signals

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 20 40 60 80 100 120

Lo
ad

 (
%

 C
P

U
)

Update Frequency (Hz)

FrTime vs. Synchronous Streams, 2000 Signals

Stream
FrTime

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 1000 2000 3000 4000 5000 6000 7000 8000

Lo
ad

 (
%

 C
P

U
)

Total Signals

FrTime vs. Synchronous Streams, 30Hz

Stream
FrTime

Fig. 5. Performance Graphs

change has no effect on the processing requirements, and thesystem is not sensitive to
any change that occurs more quickly than the sample rate. In FrTime, we have 1900
signals that update at a slow rate (about 1Hz), and 100 signals that update at the re-
ported variable rate. Note that, since there is no central clock, all of the signals update
out of phase with each other on a conceptually continuous time scale. As a result, even
though no single signal updates at more than about 100Hz, when we view the system
as a whole, we can perceive updates occurring at an extremelyhigh frequency (approx-
imately 2KHz).

The graph on the right shows processing requirements for systems of various sizes
in which no single signal updates faster than 30Hz. Again, inthe stream-based system,
all signals update in lockstep at the specified sample rate. In FrTime, we make 100
signals update at 30Hz, while the rest update at 1Hz. As before, the FrTime systems
exhibit changes continuously, since there is no synchronization between signals.

The graphs show that using FrTime is advantageous for large systems in which
signals update at variable rates. Specifically, FrTime allocates processing to the subsys-
tems requiring the most frequent updates, which allows it tosupport more signals, and
signals with more frequent updates, with a lower overall demand on system resources.
In addition, since we have not yet optimized our current implementation, we expect that
we can further improve performance in the future.

4.4 Support for Benign Impurities

Because FrTime is impure, it can take advantage of imperative features to improve
interaction. As we saw earlier in this section, we can use imperative drawing commands
within procedures likemap-eto implement animations. FrTime also naturally supports
input and output, which can be useful for understanding and debugging programs. For
example, to observe events, a programmer can insert functions like printf in event-
processing combinators.

FrTime also provides mutable references, which are createdwith new-celland mu-
tated withset-cell!. Cells give the programmer fine control over which values canbe
mutated imperatively, like references in ML. However, cells in FrTime are behaviors,

so we can define other “pure” behaviors in terms of them, and FrTime automatically
maintains consistency between them. For example, we have found that cells are useful
for interactive experimentation in the DrScheme read-eval-print loop. While construct-
ing an animation, we can use cells to help tune parameters, such as the size and color
of various objects:

> (defineball-radius
(new-cell10))

> (defineball-color
(new-cell" green"))

> (display-shapes
(list (make-ball(make-posn50 50) ball-radius ball-color)))

graphics window now shows a green ball of radius 10
> (set-cell! ball-radius15)
ball radius increases (in graphics window)

> (set-cell! ball-color" blue")
ball changes color

The combination of cells and signals provides a powerful notion of “transparency” for
FrTime programs. That is, when the programmer changes a value, the effect of the
change propagates throughout the system, but the state associated with the interactive
session is otherwise preserved. In contrast, changing values in any other DrScheme
language generally results in inconsistency and requires acomplete re-execution of the
program, which destroys the state of the interactive session.

5 Extended Example

To tie together everything we have discussed so far, we present a lengthy example il-
lustrating the use of FrTime in a distributed, graphical application. The application is a
networked, multi-player paddle-ball simulation inspiredby an example in the Haskell
School of Expression [18] (the original example is neither networked nor multi-player).

We start by defining the simple motion of a ball bouncing inside a window. We sim-
plify this task by concerning ourselves with the ball’svelocityrather than its position.
As a prime example of FRP’s expressive power, we can then define the ball’s position
by taking theintegralof the velocity.

Our simulation assumes the absence of wind and friction, so the ball’s speed is
always the same, and its velocity only changes if it collideswith an obstacle. Initially,
we can ignore the paddles and only treat collisions with walls. In this case, when the
ball hits a side wall, we negate the horizontal component of its velocity. Likewise, if
it hits the top or bottom wall, we negate the vertical component. We can express this
definition as follows:

(defineball-velocity
(accum/e→b

(merge-e(map-e
(λ () negate-x)

(when-e(or (< (posn-x ball-pos) ball-radius)
(> (posn-x ball-pos) (− window-width ball-radius)))))

(map-e
(λ () negate-y)

(when-e(or (< (posn-y ball-pos) ball-radius)
(> (posn-y ball-pos) (− window-height ball-radius))))))

initial-velocity))

Next, we define the positions of the paddles. To make things easy, we have each paddle
follow the mouse on its respective machine. We only need to ensure that the paddle
stays on its half of the screen, a condition we can enforce with the functionclip:

(define(clip n lo hi)
(cond

[(< n lo) lo]
[(> n hi) hi]
[else n]))

(definepaddle1-pos
(make-posn

(clip (posn-x mouse-pos) 0 (/ window-width2))
(clip (posn-y mouse-pos) 0 (/ window-height2))))

The paddles in our game are round, so detecting collisions iseasy: when the distance
between the centers of the ball and paddle is less than the sumof their radii, they have
collided. The effect of a collision is somewhat complicated, however, since the ball may
be deflected in different directions depending upon the angle at which it strikes. We pro-
vide code for the velocity transformer without attempting to explain the mathematics:

(define(collision paddle-pos ball-pos ball-v)
(let ([u (normalize(posn− paddle-pos ball-pos))])

(posn− ball-v (posn∗ u (∗ 2 (posn-dot ball-v u)))))))

To make the game interesting, we put a goal on each side of the screen and keep a
count of how many times the ball hits each player’s goal. We check this with a simple
additional constraint on the the wall collision test, and weaccumulate the score with
the functioncount-occ(defined in section 2). Thefilter-eexpression takes all collisions
with the left wall and filters out the ones that fall outside the goal area. Note that the
predicate usescur-val to sample the current position of the ball.

(defineplayer1-score
(count-e

(filter-e
(λ () (and (> (cur-val (posn-y ball-pos)) goal-top)

(< (cur-val (posn-y ball-pos)) goal-bottom)))
(when-e(< (posn-x ball-pos) ball-radius)))))

Finally, we need a way of making the simulation work for two players over a network.
For simplicity, we make the first player’s process (P1) administer the simulation and

Fig. 6. Screenshots of a networked paddle-ball game

the second player’s process (P2) simply echo it to a display. Although this establishes
a hierarchical relationship between the processes, they still require mutual communica-
tion. Specifically,P2 provides the position of the second player’s paddle toP1, andP1

provides everything else (scores, ball, first player’s paddle) toP2.
We implement the communication through remote events that indicate changes in

the corresponding values. For example,P2 usesbind to publish the position of its pad-
dle:

(bind ’paddle2-pos-changes (changes paddle2-pos))

P1 useshold to construct a behavior from this event.

(definepaddle2-pos
(hold (make-posn100 100) ; arbitrary initial position

(remote-event’machine2 ’paddle2-pos-changes)))

Communication in the other direction works in the same manner, except that there is
more information to transmit.

The use of signals makes the expression of the paddle-ball simulation relatively
straightforward. In particular, the ability to distributesignals across machines eases the
implementation of a networked simulation. The resulting descriptions are very concise:
we need less than a hundred lines of FrTime code (total) to define the two processes. In
Figure 6, we show a screenshot of the running simulation.

6 Related Work

Fudgets [5] is a library for building reactive systems in a purely functional language.
Originally designed for programming graphical user interfaces, it models interactive
components as demand-driven stream processors, which support general forms of com-
munication and interaction. The approach conceptually resembles our model of event
processors. However, our use of multiplexed asynchronous message-passing offers a
natural implementation of asynchronous stream merging, which the sequential Haskell
implementation of Fudgets cannot in general achieve.

Elliott and Hudak present Fran [10], a Haskell library for reactive animations based
on a continuous model of time, and Elliott [9] discusses various functional implementa-
tion strategies for Fran-like systems, out of which more general FRP systems evolved.
Wan and Hudak [24] develop a formal semantic model for FRP, studying in particular
the properties of a stream-based implementation.

FranTk [21] extends Fran with a library of user interface combinators. Courtney and
Elliott [8] present a highly declarative user interface system, and Nilsson, Courtney, and
Peterson [20] discuss the associated implementation, which is based on arrows [19].
These FRP implementations adopt a synchronous model of concurrency, which is also
used in a number of dataflow languages, such as Lucid [23], Lustre [6], Esterel [4], and
Signal [14].

We have generally tried to follow the spirit of FRP when developing our notions of
behaviors and events, though not the implementation strategy. In contrast to these lan-
guages, signals in our system change in response to asynchronous events. The event-
driven model more closely resembles the architecture of implicit-invocation (II) sys-
tems [22]. II systems are generally modeled in terms of communicating sequential pro-
cesses [16] that register interest in particular classes ofevents. Importantly, the runtime
system manages much of the actual communication, includingdispatching events to ap-
propriate processes. Our signal manager is in some ways analogous to an II dispatcher,
since it tracks dependencies between signals and uses the information to scheduling
computation.

Various languages, such as Kali Scheme [7] and Erlang [2], provide mechanisms for
concurrency and communication that are appropriate for building implicit-invocation
systems. Since we needed other features specific to PLT Scheme, we built a custom
message-passing system in the style of Erlang.

Adaptive Functional Programming (AFP) [1] is concerned with efficiently recom-
puting a function application when the argument changes. The ML implementation
employs an update propagation algorithm that closely resembles the approach taken in
FrTime. However, AFP is not intended for interaction and hasno notion of behaviors or
events. Still, with slight modifications, it might be possible to improve FrTime’s update
algorithm with ideas from AFP, or to build an FRP implementation in ML atop the AFP
system.

Scalable Vector Graphics (SVG) [11] is a declarative language for vector-based
images with some support for animation and interaction. Slithy [25] has similar capa-
bilities but is more heavily focused on developing animatedpresentations and has richer
mechanisms for modeling and hierarchical composition. Though these languages fol-
low a more imperative approach to interaction, they also provide interesting abstractions
that may be useful in a system like FrTime.

7 Conclusions and Future Work

We have presented FrTime, a Scheme-based implementation ofFunctional Reactive
Programming, and we have discussed its distinct implementation strategy. We have also
seen that several advantages derive from this implementation strategy, specifically eas-
ier integration with external systems, distribution of signals across networks, allowance

of benign impurities, and efficient use of processing resources. We have presented a
non-trivial FrTime program that takes advantage of some of these capabilities.

There are several possible future directions for this work.We have discussed one
drawback of our asynchronous notion of concurrency—the existence of momentary in-
consistencies between behaviors. Fortunately, in many cases there is little or no harm
in allowing a value to be slightly and briefly out of date. However, to make our system
more robust, we are interested in exploring the introduction of limited forms of syn-
chrony. For example, it might be desirable to provide a generalizedcur-valsprocedure,
which would consume a list of signals and return a consistentsnapshot of all of them.

We are also interested in applying FrTime to new applications, especially ones in
which our implementation would be advantageous. For example, as mentioned in the
introduction, streaming databases [3] and sensor networks[15] rely heavily on asyn-
chronous communication and other forms of interaction. They are also well suited for
the declarative programming style afforded by dataflow languages and FRP. Especially
in sensor networks, where communication is expensive and power consumption is crit-
ical, an asynchronous, demand-driven implementation is valuable. For these reasons,
FrTime seems like a natural match for programming such systems. We are also curious
to see what sorts of new abstractions might prove useful in these novel applications.

References

[1] U. A. Acar, G. E. Blelloch, and R. Harper. Adaptive functional programming. InACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 247–259,
2002.

[2] J. Armstrong, R. Virding, C. Wikström, and M. Williams.Concurrent Programming in
Erlang. Prentice-Hall, 1996.

[3] S. Babu and J. Widom. Continuous queries over data streams. ACM SIGMOD Record,
30(3):109–120, 2001.

[4] G. Berry. The Foundations of Esterel. MIT Press, 1998.
[5] M. Carlsson and T. Hallgren. FUDGETS: a graphical user interface in a lazy functional lan-

guage. InConference on Functional Programming Languages and Computer Architecture,
pages 321–330, 1993.

[6] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. LUSTRE: A declarative language for
programming synchronous systems. InACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 178–188, 1987.

[7] H. Cejtin, S. Jagannathan, and R. Kelsey. Higher-order distributed objects.ACM Transac-
tions on Programming Languages and Systems, 17(5):704–739, September 1995.

[8] A. Courtney and C. Elliott. Genuinely functional user interfaces. InHaskell Workshop,
2001.

[9] C. Elliott. Functional implementations of continuous modeled animation. InInterna-
tional Symposium on Programming Languages: Implementations, Logics, and Programs.
Springer-Verlag, 1998.

[10] C. Elliott and P. Hudak. Functional reactive animation. In ACM SIGPLAN International
Conference on Functional Programming, pages 263–277, 1997.

[11] J. Ferraiolo. Scalable vector graphics (SVG) 1.0 specification, December 1999.
http://www.w3.org/TR/1999/WD-SVG-19991203/.

[12] R. B. Findler, C. Flanagan, M. Flatt, S. Krishnamurthi,and M. Felleisen. DrScheme: A
pedagogic programming environment for Scheme. InInternational Symposium on Pro-
gramming Languages: Implementations, Logics, and Programs, number 1292 in Lecture
Notes in Computer Science, pages 369–388, 1997.

[13] D. Garlan, S. Jha, D. Notkin, and J. Dingel. Reasoning about implicit invocation. InACM
SIGSOFT International Symposium on the Foundations of Software Engineering, pages
209–221, 1998.

[14] T. Gautier, P. Le Guernic, and L. Besnard. Signal: A declarative language for synchronous
programming of real-time systems. In G. Goos and J. Hartmanis, editors,Functional Pro-
gramming Languages and Computer Architecture, pages 257–277. Springer-Verlag, 1987.
LNCS 274.

[15] J. Hill, R. Szewczyk, A. Woo, S. Hollar, and D. C. K. Pister. System architecture directions
for networked sensors. InASPLOS, November 2000.

[16] C. A. R. Hoare.Communicating Sequential Processes. Prentice-Hall, 1985.
[17] G. J. Holzmann and D. Peled. The state of SPIN. InConference on Computer-Aided

Verification, 1996.
[18] P. Hudak. The Haskell school of expression: learning functional programming through

multimedia. Cambridge, 2000.
[19] J. Hughes. Generalizing monads to arrows.Science of Computer Programming, 37(1-3),

May 2000.
[20] H. Nilsson, A. Courtney, and J. Peterson. Functional reactive programming, continued. In

ACM SIGPLAN workshop on Haskell, pages 51–64, 2002.
[21] M. Sage. FranTk: A declarative GUI language for Haskell. In ACM SIGPLAN International

Conference on Functional Programming, 2000.
[22] K. J. Sullivan and D. Notkin. Reconciling environment integration and software evolution.

ACM Transactions on Software Engineering and Methodology, 1(3):229–268, July 1992.
[23] W. W. Wadge and E. A. Ashcroft.Lucid, the dataflow programming language. Academic

Press U.K., 1985.
[24] Z. Wan and P. Hudak. Functional reactive programming from first principles. InACM

SIGPLAN Conference on Programming Language Design and Implementation, pages 242–
252, 2000.

[25] D. E. Zongker and D. H. Salesin. On creating animated presentations. InACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, pages 298–308, 2003.

