FrTime: Functional Reactive
Programming in PLT Scheme

Gregory Cooper and Shriram Krishnamurthi

Department of Computer Science
Brown University
Providence, Rhode Island 02912

CS-03-20
April 2004

FrTime: Functional Reactive
Programming in PLT Scheme

Gregory Cooper and Shriram Krishnamurthi

Department of Computer Science
Brown University
P.O. Box 1910
Providence, RI 02912, USA
Fax: (401) 863-7657
{greg, sk }@cs.brown.edu
WWW home pageshttp://www.cs.brown.edu/” {greg, sk }/

Abstract. Functional Reactive Programming (FRP) supports the detolarcon-
struction of reactive systems througignals or time-varying values. In this pa-
per, we present a new language called FrTime, which pro&#-style signals
atop a dialect of Scheme. We introduce the language with aefemnples and
discuss its implementation. FrTime uses impure featutes) as state and asyn-
chronous communication, to model time and to control evalnaThe use of
such features yields a scalable, event-driven implementatith several impor-
tant advantages. Specifically, it eases integration whbkradystems, supports dis-
tribution of signals across a network, and permits varicersign impurities. To
illustrate the language’s expressive power, we presenheis®implementation
of a networked paddle-ball game in FrTime.

1 Introduction

Reactive software systems present several engineerifigrotpas not found in conven-
tional batch systems. In particular:

— They are naturally concurrent. For example, they need fmorebto events that ar-
rive asynchronously from multiple sources. Often, thep alsed to perform con-
tinuous processing, such as updating a display of changiteg @oordinating such
concurrent computations is difficult and can involve com@gnchronization pat-
terns.

— Their state changes over time, and there are typically digparies between data.
Hence, when one thing changes, the programmer must updatgtang that de-
pends on it. Done by hand, this is a tedious and error-prake ta

— Their control structure is inverted: instead of the apgiaracontrolling itself, in-
teraction with external entities determines what compartiathappen and when.
For this reason, reactive systems are often structuredhdc@libacks application-
supplied routines that perform imperative operations époase to events. Coordi-
nation within the resulting “callback soup” can be diffig@ince numerous isolated
code fragments end up manipulating the same data.

1 T =10

c 2 c e T =10

File Edit Show Language Scheme Special Help File Edit Show Language Scheme Special Help

wgl: Step | Q, Check squx| bExecute| OBVEle wgl: Step | Q, Check squx| bExecute| OBVEle

Welcome to DrScheme, version 205. E Welcome to DrScheme, version 205. E

Language: FrTime. Language: FrTime.

> seconds > seconds

1066177663 1066177688

> (even? seconds) > (even? seconds)

#f #t

> clock > clock

"20:27:43 14-10-03" B "20:28:08 14-10-03" B

> (sin {/ milliseconds 10000.0})) > (sin {/ milliseconds 10000.0}))

-0.974226824%417414 7 0.591142808312077 7

]]

2 Remd/erieD not running 2 Remd/erfeD not running

Fig. 1. Interacting with FrTime

Research on Functional Reactive Programming (FRP) [10240focuses on de-
veloping linguistic support for constructing reactive teyss. In particular, it encour-
ages the declarative specification of such systems by grmsignals or time-varying
values. Signals come in two varietigsghaviorsand eventswhich assist respectively
with the handling of state and control. Specifically, bebevioffer a safe mechanism
for managing state by automating the task of maintainingisbency. Events address
control-structure inversion by allowing programmers &atrevent sources as first-class
values. Programmers construct FRP systems by connectiwgmks of signal proces-
sors, and the system computes values of all signals in parall

There have been a number of Haskell-based implementatfoRRIB, beginning
with Elliott and Hudak’s system Fran [10]. In this paper, wegent a new, Scheme-
based implementation of FRP called FatherTime (FrTimepanicular, it implements
state directly through mutation, employs eager evaluatol uses an asynchronous
model of concurrency. After introducing FrTime and diséngsts implementation, we
describe several of the benefits that derive from this impletation strategy. In partic-
ular, we explain how it naturally supports the distributafrsignals over asynchronous
communication channels, eases integration with exteysaéms, and permits various
benign impurities. In addition, its event-driven compigaimodel makes more efficient
use of resources and provides better scalability for masteays. We take advantage of
these features to integrate FrTime with the DrScheme pnogniag environment and
an interactive graphics library. To illustrate its expresgpower, we present a concise
implementation of a networked, multi-player paddle-balirge.

2 A Programmer’s View of Father Time

Father Time (FrTime) is a new programming language that iutise DrScheme [12]
programming environment. It extends a purely functiondisgt of PLT Scheme (the
language DrScheme implements) wailynals or time-varying values.

In order to define time-varying values, we need a way of rafgrto time itself.
FrTime provides coarse- and fine-grained notions of timégkvare called respectively
secondsand milliseconds Figure 1 shows screenshots of an interactive session with
FrTime in which we evaluate several expressions, includewpnds

(defineclock ;» pads a number to two digits

(match(seconds-date seconds (define(pad n
[($ date sec min hr day mon yr__) (if (< n10)
(format" "a:"a:"a "a-"a-"a" (format” 0™a" n)
hr (pad min) (pad sey (number—string n))

day (pad mon (pad (modulo yr100)))]))

Fig. 2. A clock program in FrTime

Secondss a signal, since it changes over time (every second, to &éeg®). More
specifically, it is a signal that is defined at every momentriret so we say it igon-
tinuousand call it abehavior DrScheme displays behaviors just like ordinary Scheme
values, except that the display automatically updates ed@ma behavior changes. In
Figure 1, we provide two screenshots of the same sessioen takenty-five seconds
apart, to illustrate the dynamic display of behaviors.

We can imagine applying a function to a behavior at every nmdriretime. This
is calledlifting the function application, and the result is also a behaWioErTime,
all applications of primitive functions are automaticdlffed whenever necessary. For
example, the second expression we evaluate in Figureetén seconflsThe value of
this expression indicates, at every moment in time, whetteecurrent value adeconds
is even.

In general, the automatic lifting of function applicatioabows the programmer
to treat behaviors like ordinary values. The programmeraan mix constants and
behaviors within a single function application. For exaemphe following are all legal
FrTime expressions:

(+23)
(modulo seconds0)
(+ (x second4.000) (modulo millisecond4000))

It is possible to write interesting programs in FrTime usiaghing more thaisec-
ondsand bit of ordinary Scheme. For example, Figure 2 shows & ion@ementation
of a clock program, which presents a human-readable rapadsm of the currenttime.
Figure 1 shows the result of evaluating this program.

The DrScheme programming environment gives us the abilitgteract with time-
dependent values. To achieve a richer interactive vocahwe have implemented a
signal-based interface to a graphics library, yeildingrdariactive animation system in
the spirit of Fran [10].

Our animation system creates a drawing window and providample interface
for interacting with it. The behaviomouse-posfor instance, represents the current
mouse position within the window. The library’s primaryenfiace procedure gisplay-
shapeswhich consumes a time-varying list of shape structuresiisplays them in the
window. For example, the following simple program makesueeldall of radius 20 that
follows the mouse:

(display-shapes
(list

(make-ball mouse-pd " blue™)))

Modeling the mouse position as a behavior seems like a Hatecision. However,
we can also use signals to model other kinds of user inpuh asanouse clicks and
keystrokes. These signals are not continuous but insteeist@f sequences of discrete
occurrences. Following the FRP terminology, we call sughalseventsinstance, the
graphics library provides an event callkeystrokesUnlike behaviors, events are not
continuously valued, so evaluating an event does not pedang useful output:;

> keystrokes
#<event>

To observe event-driven behaviors, we have a collectiomwitinators that create be-
haviors from events. For example, the functlomd creates a behavior by “holding”
onto the most recent event occurrence (it requires anlinglae to use until the event
occurs for the first time). If we evaluatbdld #\nul keystrokel we get a behavior that
corresponds to the most recent keystroke.

We can write more elaborate event processors, sudoast-occ¢ defined below,
which counts the occurrences of an event:

> (define (count-occ ey
(accum/e~b (map-e(\ () addl) eV) 0))

Map-eis analogous to the standard list-processing funatiag that is, the expression
(map-e fn input creates a new event by applyifiyto each occurrence of the input.
Likewise, the expressiora¢cum/e-b trans inif) creates a behavior whose value starts
asinit but changes by cumulatively applying transformers carbigdhe event. For
instance, ¢ount-occ keystrokgss a behavior that counts keystrokes.

3 A Peek Behind the Scenes

We have seen how a programmer can interact with FrTime. Toaikeeper picture of
what goes on behing these interactions, we briefly disciessitplementation now. In
order to clarify the novel aspects of FrTime, we first give sargiew of previous FRP
implementation strategies.

Conal Elliott [9] discusses several functional approadbase implementation of
behaviors. A simple approach is to use functions from timetaes, but Elliott quickly
rejects this on grounds of inefficiency. Since the value othdvior often depends on
cumulative effects of time, he offers an approach basedesidual behaviors”. In this
approach, a behavior consumes the current time and yieldlsia plus a new behavior
which can typically compute future values more efficienflythird approach, which is
also discussed in the book by Hudak [18], model behaviors stittam processors—
functions from infinite lists of time steps to infinite listb\@alues. The stream approach
seems to have been the dominant approach for some timeuglttorecent system
called AFRP [20] uses residual behaviors.

All of these implementations share two important featukést, they are purely
functional, so they model time and state explicitly. Secdhdy aresynchronousthat

is, they simulate the passage of time by evaluating snapstidhe entire system at
discrete moments in time.

From a theoretical standpoint, these features are benrefioiaone thing, it is often
easier to reason about properties of a purely functionajnara than about an imper-
ative one. Also, because they model time explicitly, thectiomal implementations
can use analytical methods for event detection, and theysupport general time-
transformations on behaviors. By employing a synchrone@atuation strategy, they
ensure that the values of all signals are consistent at @aelstep. Wan and Hudak [24]
use this property to help formalize a semantics for a strbased FRP implementation.

From a software engineering perspective, however, purit synchrony are less
useful. For example, a pure implementation hides the sfateesystem in the internals
of the host language’s evaluator, where it is not easily sgibte. In Haskell specifically,
lazy evaluation makes expressing the stream-based imptatian easy and natural,
but it complicates the interface to impure features, whesduation order is crucial.
External entities are typically autonomous, so the timifigheir actions is unlikely
to conform to an FRP system’s clock. This is especially trudistributed systems,
where communication crosses machine boundaries. To siensyachronization with
an outside system, a synchronous system uses polling, whififices efficiency and
temporal accuracy.

In FrTime, we follow a very different implementation strgye and we obtain a
different set of tradeoffs. In particular, we make no attetophave a purely functional
or a synchronous implementation. Instead, we model timestate directly with time
and state, and we drive evaluation with asynchronous coruation.

For each signal in a FrTime program, we construcignal data structure. The
data structure contains an update procedure, which comtheesignal’s value, and a
mutable field that stores the signal’s most recently contpugdue. Thus, there is an
implicit notion of real time, which the system exhibits directly.

A special thread called thg&ignal manageis responsible for keeping signals cur-
rent. It maintains an explicit graph of the dependenciesben signals. For example,
when we evaluatesfen? secondisthe resulting behavior depends secondsso the
signal manager needs to recompute it whenseeond€hanges.

The manager uses an asynchronous message queue to cémahplitation. For
example, whersecondshanges, the manager sends itselfipdatemessage for each
dependent signal. When it dequeues such a message, it retamtpe corresponding
signal. This in turn may demand recomputation of yet moraaig so evaluation pro-
ceeds recursively in a breadth-first, bottom-up manner.

Some signals require re-evaluation after intervals of tiff@er exampleseconds
needs to update once every second. The signal manager sufipercapability by
keeping a prioritized “alarm” queue, which maps signalsgdate times. On each it-
eration of its processing loop, the manager checks whettgecurrent time exceeds
the earliest alarm in the queue. If so, it executes the gooreding update; otherwise,
it sleeps until either the next alarm or the arrival of a mges@ur asynchronous
message-passing library makes this easy by providiregeive construct with a fine
(millisecond-granularity) timeout parameter.

Our evaluation algorithm employs two main optimizationsst; if recomputing a
signal does not change its value, then the manager does medide updates for the
dependents. Second, to avoid scheduling the same signalitiple updates, we give
each signal a flag to indicate whether it has already beerdatde The manager sets
this flag before sending ampdatemessage and clears it after updating the signal. (If
the flag is already set, the manager does not send the mgssage.

A Note on Asynchrony

Since FrTime employs an asynchronous evaluation strategge are brief intervals
during which behaviors are inconsistent with each otheis €auld be a problem if it
prevented formal reasoning about programs written in FeTim fact, however, there
are many tools, including model-checkers like SPIN [174t thre specifically designed
to verify properties of asynchronous systems. We thereftead to pursue the use of
such tools for FrTime programs. In particular, we believat tthe temporal nature of
FrTime will yield programs better suited for analysis byltosuch as model-checkers.
In addition, work on reasoning about implicit invocatiorstgms [13] is likely to offer
more useful techniques for automated reasoning.

4 Benefits of FrTime’s Implementation Strategy

In this section, we explain several of the benefits that édriom FrTime’s implemen-
tation strategy.

4.1 Distributed Signals

Events in FrTime map naturally to messages, and therefesedhsily generalize to a
distributed setting. To take advantage of this propertyprewide a simple interface for
distributing events. The expressidnir{d event namebindsnameto eventin a local
registry, while emote-event machine najr@eates a local proxy for the event bound
to nameon the remotenachine Whenever the remote event occurs, the local proxy
emits an identical occurrence.

In Section 5, we discuss an example in which we use distribeitents to implement
distributed behaviors.

4.2 Integration with Other Systems

In Section 3, we explained how FrTime’s signal manager perocomputation in re-
sponse to asynchronous messages. In most cases, thesgaesessae from the signal
manager itself, indicating internal changes to parts ofsystem. However, the exis-
tence of a general-purpose message queue also offers ameeisgnism for integration
with other systems.
For example, to implement the animation library presente8ection 2, we built

a signal-based interface to DrScheme’s Viewport Graphibsaky. Part of this task
involved translating the library’s keyboard and mouse &vérto FrTime events. Since

(definekeystrokes (define(key-callback key-event
(make-event-receivir (! signal-manager
(make-event
(get-key-code key-event
keystrokep)

Fig. 3. An external event source for key strokes

(define (draw-shapes list-of-shapes
(begin
((clear-viewport offscreen-popt
(for-each
(A (shape
((draw-shape offscreen-pgrshap¢)
list-of-shapeyp
((copy-viewport offscreen-pgrtanvasg))

(define(display-shapes list-of-shapes
(begin
(draw-shapegcur-val list-of-shapeg
(map-e(changes list-of-shapgdraw-shapey)

Fig. 4. Animation routines

the library handles these events in a separate thread, tiversion is not necessarily
easy. In a synchronous system, for instance, we would nepdllithe library at each
time step. In contrast, message queues allow us to builderglenechanism for adding
external event sources. For example, the graphics libraeg the code in Figure 3
to define an event for keystrokes. A callbadk the library key-callback sends the
signal manager a message each time the user presses &’keyh{¢ message-sending
primitive). The manager emits the value as an occurrendeepstrokesKeystrokes
behaves like any other event, and FrTime is not even awaté eanteracting with a
graphics library.

We exploit FrTime’s support for imperative commands to iempént an animation
system with this library. The main interface routine is edilisplay-shapest takes a
time-varying list of shapes and animates them on a canvashdig an implementation
for display-shape# Figure 4. The procedurdraw-shapedakes a (constant) list of
shapes and draws them to a canvas, using an offscreen mffenvent flicker.

Display-shapesakes a time-varying list of shapes, draws an initial snap&hthe
canvas, and then redraws whenever a change occurs. Thesgrpréhanges list-of-
shape} creates an event that delivers a new snapshot of the sheipsatih time it
changes. We usmap-eto applydraw-shapeso the resulting sequence.

! The use of a callback here is mandated by the graphics libramterface, not by FrTime.
FrTime itself does not use callbacks.

User interface toolkits are another natural target forraton with FrTime, since
many types of widgets have properties that naturally majgiwess. For example, we
can use a numeric behavior to indicate the current positidgheothumb in a slider. In
this case, the behavior serves as an input signal. We canisdsbehaviors for output,
for example by creating a label whose contents reflect theevafla string behavior. Still
other widgets, such as buttons, associate more sensiltiyewdints than with behaviors.

Integrating FrTime with an imperative user interface titahvolves essentially the
same techniques as described above for the graphics lifi@mmngceive input from a
widget, we usenake-event-receivend send messages to the signal manager. To pro-
vide output through a widget, we useap-eto update the widget's properties each time
a behavior changes. This is also how we implement the dyndisptay of behaviors in
DrScheme’s Interactions Window—the textual represemaif the value is essentially
a widget.

FrTime’s use of state also permits a more meaningful notfanteraction. In par-
ticular, since behaviors always exhibit their current esluwe can easily implement
cur-val, which permits an external entity (such as a programmingenment) to query
the current state of a behavior. This capability is valudbtdearning about and inter-
actively developing signal-based systems. In the pure élbbksed FRP systems, state
is implemented indirectly, so there is no way to read a signalue from outside.

4.3 Resource Utilization and Scalability

A fundamental goal for our work has been to develop a comlyleteent-driven imple-
mentation, and one motivation for this goal is more efficies¢ of resources. Specif-
ically, in a synchronous system, computation proceeds wpadbwn fashion, recur-
sively evaluating each subexpression at each time step.méans that the amount of
computation performed at each step is proportional to tte tumber of signals in the
system. Therefore, the total “processing power” requisgaroportional to the product
of the system size and the sample rate. This processingresgeit is independent of
the frequency with which signals actually change.

FrTime only performs computation in response to eventshe@mount of compu-
tation is proportional to the rate at which signals requé®omputation. This property
is advantageous for large systems, especially if the ntgjofisignals change rarely,
such as in response to human interaction. In this case,zb@6the system itself does
not strain processing resources. Because FrTime’s ei@iugttategy is asynchronous,
it also has an advantage when small parts of the system nagatitde rapidly, since
there is no central clock forcing recomputation of evenytfat the same rate.

In Figure 5, we show performance comparison plots for FrTiraesus a syn-
chronous stream-based implementation of behaviors. Té@mtbased implementation
is a direct translation of Elliott’s [9] into PLT Scheme. Wave made measurements to
verify that Haskell systems (Hugs, GHC) exhibit similar foemance trends (within
constant factors), but for consistency we run everythingxactly the same environ-
ment (virtual and physical machines).

The graph on the left shows processing requirements foesystonsisting of 2000
signals and running at various update rates. The streaptisgstem recomputes every
signal, in lockstep, at the reported update frequency. Theahrate at which signals

Load (% CPU)

80 |-
70 t
60 |-
50 |-
40 |
30
201 X
10 A

FrTime vs. Synchronous Streams, 2000 Signals

FrTime vs. Synchronous Streams, 30Hz

Stream
FrTime

+
X

%

Load (% CPU)

9 |
80 |
70t
60
50
40 |
30}
20t
0

Stream
FrTime

+
X

20

40 60 80 100
Update Frequency (Hz)

120

0%
0

1000 2000 3000 4000 5000 6000 7000 8000

Total Signals

Fig. 5. Performance Graphs

change has no effect on the processing requirements, asgittean is not sensitive to
any change that occurs more quickly than the sample raterTimE, we have 1900

signals that update at a slow rate (about 1Hz), and 100 sighat update at the re-
ported variable rate. Note that, since there is no centoakclall of the signals update
out of phase with each other on a conceptually continuous sicale. As a result, even
though no single signal updates at more than about 100Hz; wieeview the system

as a whole, we can perceive updates occurring at an extrdngtlyrequency (approx-

imately 2KHz).

The graph on the right shows processing requirements foersygsof various sizes
in which no single signal updates faster than 30Hz. Agaithénstream-based system,
all signals update in lockstep at the specified sample rat&rTime, we make 100
signals update at 30Hz, while the rest update at 1Hz. As betbe FrTime systems
exhibit changes continuously, since there is no synchatioiz between signals.

The graphs show that using FrTime is advantageous for largieras in which
signals update at variable rates. Specifically, FrTimecalies processing to the subsys-
tems requiring the most frequent updates, which allows suggport more signals, and
signals with more frequent updates, with a lower overall dethon system resources.
In addition, since we have not yet optimized our current enpéntation, we expect that
we can further improve performance in the future.

4.4 Support for Benign Impurities

Because FrTime is impure, it can take advantage of imperdéatures to improve
interaction. As we saw earlier in this section, we can usesiafive drawing commands
within procedures likenap-eto implement animations. FrTime also naturally supports
input and output, which can be useful for understanding atmidging programs. For
example, to observe events, a programmer can insert funsclike printf in event-
processing combinators.

FrTime also provides mutable references, which are creaithchew-celland mu-
tated withset-celll Cells give the programmer fine control over which values loan
mutated imperatively, like references in ML. However, séfl FrTime are behaviors,

so we can define other “pure” behaviors in terms of them, afdhe automatically
maintains consistency between them. For example, we havelfthat cells are useful
for interactive experimentation in the DrScheme read-pvait loop. While construct-
ing an animation, we can use cells to help tune parameterls,aaithe size and color
of various objects:

> (defineball-radius
(new-cell10))
> (defineball-color
(new-cell" green"))
> (display-shapes
(list (make-balllmake-pos®0 50) ball-radius ball-colop))
‘ graphics window now shows a green ball of radius*f 10
> (set-cell! ball-radiusl5)
‘ ball radius increases (in graphics Windqw)
> (set-cell! ball-color" blue™)
‘ ball changes colqr

The combination of cells and signals provides a powerfulomodf “transparency” for
FrTime programs. That is, when the programmer changes & vtie effect of the
change propagates throughout the system, but the stateiatsslowith the interactive
session is otherwise preserved. In contrast, changingsdluany other DrScheme
language generally results in inconsistency and requicesrgplete re-execution of the
program, which destroys the state of the interactive sassio

5 Extended Example

To tie together everything we have discussed so far, we praskengthy example il-
lustrating the use of FrTime in a distributed, graphicallegagtion. The application is a
networked, multi-player paddle-ball simulation inspitedan example in the Haskell
School of Expression [18] (the original example is neithetiwvorked nor multi-player).

We start by defining the simple motion of a ball bouncing iesadvindow. We sim-
plify this task by concerning ourselves with the ballislocityrather than its position.
As a prime example of FRP’s expressive power, we can thenalfaball’'s position
by taking theintegral of the velocity.

Our simulation assumes the absence of wind and frictionhedbtll's speed is
always the same, and its velocity only changes if it collidét an obstacle. Initially,
we can ignore the paddles and only treat collisions with svdil this case, when the
ball hits a side wall, we negate the horizontal componento¥élocity. Likewise, if
it hits the top or bottom wall, we negate the vertical compan®&/e can express this
definition as follows:

(defineball-velocity
(accum/e~b
(merge-gdmap-e
(A (1) negate-x

(when-g(or (< (posn-x ball-posball-radius)
(> (posn-x ball-pos(— window-width ball-radiu}))))
(map-e
(A () negate-y
(when-gor (< (posn-y ball-posball-radius)
(> (posn-y ball-pos(— window-height ball-radiug))))
initial-velocity))

Next, we define the positions of the paddles. To make thingg @& have each paddle
follow the mouse on its respective machine. We only need sumnthat the paddle
stays on its half of the screen, a condition we can enforde tvé functionclip:

(define(clip n lo hi)
(cond
[(<nlo)lo]
[(> n hi) hi]
[else n)))

(definepaddlel-pos
(make-posn
(clip (posn-x mouse-pde (/ window-width2))
(clip (posn-y mouse-pd® (/ window-heigh®))))

The paddles in our game are round, so detecting collisioaasy: when the distance
between the centers of the ball and paddle is less than thestimair radii, they have
collided. The effect of a collision is somewhat complicatealvever, since the ball may
be deflected in different directions depending upon theeaaglvhich it strikes. We pro-
vide code for the velocity transformer without attemptiogekplain the mathematics:

(define(collision paddle-pos ball-pos ballyv
(let ([u (normalize(posn- paddle-pos ball-pg3])
(posn- ball-v (posnrx u (*x 2 (posn-dot ball-v I))))))

To make the game interesting, we put a goal on each side ofctkers and keep a
count of how many times the ball hits each player’s goal. Weckhhis with a simple
additional constraint on the the wall collision test, and aeeumulate the score with
the functioncount-ocddefined in section 2). Thidter-e expression takes all collisions
with the left wall and filters out the ones that fall outside toal area. Note that the
predicate usesur-valto sample the current position of the ball.

(defineplayerl-score
(count-e
(filter-e
(A (1) (and (> (cur-val (posn-y ball-poy goal-top
(< (cur-val (posn-y ball-poy goal-botton)))
(when-¢g(< (posn-x ball-posball-radiug)))))

Finally, we need a way of making the simulation work for tway®rs over a network.
For simplicity, we make the first player's proced3 Y administer the simulation and

[~ Animation - DrScheme - [~ Animation - DrScheme -

Fig. 6. Screenshots of a networked paddle-ball game

the second player’s procesk:) simply echo it to a display. Although this establishes
a hierarchical relationship between the processes, tilegeguire mutual communica-
tion. Specifically,P, provides the position of the second player’s paddI&tpand P;
provides everything else (scores, ball, first player’s pejdd P.

We implement the communication through remote events tititate changes in
the corresponding values. For exampfe,usesbind to publish the position of its pad-
dle:

(bind’ paddle2-pos-changes (changes paddle2-pys
P; useshold to construct a behavior from this event.

(definepaddle2-pos
(hold (make-posri00 100) ; arbitrary initial position
(remote-eventmachine2 'paddle2-pos-changes)))

Communication in the other direction works in the same mameept that there is
more information to transmit.

The use of signals makes the expression of the paddle-balilaion relatively
straightforward. In particular, the ability to distribuggnals across machines eases the
implementation of a networked simulation. The resultingadtions are very concise:
we need less than a hundred lines of FrTime code (total) to@é#iie two processes. In
Figure 6, we show a screenshot of the running simulation.

6 Related Work

Fudgets [5] is a library for building reactive systems in agbyfunctional language.
Originally designed for programming graphical user irdae#s, it models interactive
components as demand-driven stream processors, whicbhrsggneral forms of com-
munication and interaction. The approach conceptuallgmddes our model of event
processors. However, our use of multiplexed asynchron@mssage-passing offers a
natural implementation of asynchronous stream merging;wthe sequential Haskell
implementation of Fudgets cannot in general achieve.

Elliott and Hudak present Fran [10], a Haskell library foaetive animations based
on a continuous model of time, and Elliott [9] discussesaasifunctional implementa-
tion strategies for Fran-like systems, out of which moreggahFRP systems evolved.
Wan and Hudak [24] develop a formal semantic model for FRRyshg in particular
the properties of a stream-based implementation.

FranTk [21] extends Fran with a library of user interface bamators. Courtney and
Elliott [8] present a highly declarative user interfaceteys, and Nilsson, Courtney, and
Peterson [20] discuss the associated implementation hwkibased on arrows [19].
These FRP implementations adopt a synchronous model otio@mey, which is also
used in a number of dataflow languages, such as Lucid [23{ré¢.{8], Esterel [4], and
Signal [14].

We have generally tried to follow the spirit of FRP when depéhg our notions of
behaviors and events, though not the implementation giralie contrast to these lan-
guages, signals in our system change in response to asynclsrevents. The event-
driven model more closely resembles the architecture ofigityinvocation (1) sys-
tems [22]. Il systems are generally modeled in terms of conicating sequential pro-
cesses [16] that register interest in particular classeserits. Importantly, the runtime
system manages much of the actual communication, includispgtching events to ap-
propriate processes. Our signal manager is in some waysgma to an |l dispatcher,
since it tracks dependencies between signals and usesftimation to scheduling
computation.

Various languages, such as Kali Scheme [7] and Erlang [8);ide mechanisms for
concurrency and communication that are appropriate fddimg implicit-invocation
systems. Since we needed other features specific to PLT &¢heenbuilt a custom
message-passing system in the style of Erlang.

Adaptive Functional Programming (AFP) [1] is concernedwéfficiently recom-
puting a function application when the argument changes. Nlh implementation
employs an update propagation algorithm that closely rbtesithe approach taken in
FrTime. However, AFP is not intended for interaction and@asotion of behaviors or
events. Still, with slight modifications, it might be podsito improve FrTime’s update
algorithm with ideas from AFP, or to build an FRP implemeiatain ML atop the AFP
system.

Scalable Vector Graphics (SVG) [11] is a declarative lamgguor vector-based
images with some support for animation and interactionh$[25] has similar capa-
bilities but is more heavily focused on developing animagextentations and has richer
mechanisms for modeling and hierarchical composition.utothese languages fol-
low a more imperative approach to interaction, they alseiginteresting abstractions
that may be useful in a system like FrTime.

7 Conclusions and Future Work

We have presented FrTime, a Scheme-based implementatibanafional Reactive
Programming, and we have discussed its distinct implentientstrategy. We have also
seen that several advantages derive from this implementstiiategy, specifically eas-
ier integration with external systems, distribution ofreds across networks, allowance

of benign impurities, and efficient use of processing resesirWe have presented a
non-trivial FrTime program that takes advantage of soméeée capabilities.

There are several possible future directions for this wivi. have discussed one
drawback of our asynchronous notion of concurrency—thgterce of momentary in-
consistencies between behaviors. Fortunately, in margsdhere is little or no harm
in allowing a value to be slightly and briefly out of date. He®g to make our system
more robust, we are interested in exploring the introductiblimited forms of syn-
chrony. For example, it might be desirable to provide a gairrdcur-valsprocedure,
which would consume a list of signals and return a consisteapshot of all of them.

We are also interested in applying FrTime to new applicati@specially ones in
which our implementation would be advantageous. For exengs mentioned in the
introduction, streaming databases [3] and sensor netwWaB{sely heavily on asyn-
chronous communication and other forms of interaction.yTdre also well suited for
the declarative programming style afforded by dataflow leggs and FRP. Especially
in sensor networks, where communication is expensive angipeconsumption is crit-
ical, an asynchronous, demand-driven implementation lisalde. For these reasons,
FrTime seems like a natural match for programming such systé/e are also curious
to see what sorts of new abstractions might prove usefukisemovel applications.

References

[1] U. A. Acar, G. E. Blelloch, and R. Harper. Adaptive furanial programming. IlACM
SIGPLAN-SIGACT Symposium on Principles of Programmingyuages pages 247—-259,
2002.

[2] J. Armstrong, R. Virding, C. Wikstrom, and M. WilliamsConcurrent Programming in
Erlang. Prentice-Hall, 1996.

[3] S. Babu and J. Widom. Continuous queries over data sgead@M SIGMOD Record
30(3):109-120, 2001.

[4] G. Berry. The Foundations of EsteteMIT Press, 1998.

[5] M. Carlsson and T. Hallgren. FUDGETS: a graphical ustarfiace in a lazy functional lan-
guage. InConference on Functional Programming Languages and Coeng\uthitecture
pages 321-330, 1993.

[6] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. LUETR declarative language for
programming synchronous systems A@GM SIGPLAN-SIGACT Symposium on Principles
of Programming Languagepages 178-188, 1987.

[7] H. Cejtin, S. Jagannathan, and R. Kelsey. Higher-ordgriduted objectsACM Transac-
tions on Programming Languages and Systelii$5):704—739, September 1995.

[8] A. Courtney and C. Elliott. Genuinely functional usetarfaces. InHaskell Workshop
2001.

[9] C. Elliott. Functional implementations of continuousodeled animation. Irinterna-
tional Symposium on Programming Languages: Implememstibogics, and Programs
Springer-Verlag, 1998.

[10] C. Elliott and P. Hudak. Functional reactive animatidn ACM SIGPLAN International
Conference on Functional Programmingages 263—-277, 1997.

[11] J. Ferraiolo. Scalable vector graphics (SVG) 1.0 dmmtion, December 1999.
http://wvww.w3.0rg/TR/1999/WD-SVG-19991203/

(12]

(13]

(14]

(15]

(16]
(17]

(18]
(19]
(20]
(21]
(22]
(23]

(24]

(25]

R. B. Findler, C. Flanagan, M. Flatt, S. Krishnamurtand M. Felleisen. DrScheme: A
pedagogic programming environment for Scheme.Inbkernational Symposium on Pro-
gramming Languages: Implementations, Logics, and Programamber 1292 in Lecture
Notes in Computer Science, pages 369-388, 1997.

D. Garlan, S. Jha, D. Notkin, and J. Dingel. Reasoninguabmplicit invocation. INnACM
SIGSOFT International Symposium on the Foundations ofr@adt Engineering pages
209-221, 1998.

T. Gautier, P. Le Guernic, and L. Besnard. Signal: A degtive language for synchronous
programming of real-time systems. In G. Goos and J. Hartspauwlitors Functional Pro-
gramming Languages and Computer Architectyr@ges 257—-277. Springer-Verlag, 1987.
LNCS 274.

J. Hill, R. Szewczyk, A. Woo, S. Hollar, and D. C. K. Pist8ystem architecture directions
for networked sensors. IBKSPLOSNovember 2000.

C. A. R. Hoare.Communicating Sequential ProcessBsentice-Hall, 1985.

G. J. Holzmann and D. Peled. The state of SPIN.Cbnference on Computer-Aided
Verification 1996.

P. Hudak. The Haskell school of expression: learning functional pamyming through
multimedia Cambridge, 2000.

J. Hughes. Generalizing monads to arro@sience of Computer Programmirigy(1-3),
May 2000.

H. Nilsson, A. Courtney, and J. Peterson. Functionattige programming, continued. In
ACM SIGPLAN workshop on Haskgtlages 51-64, 2002.

M. Sage. FranTk: A declarative GUI language for HaskelACM SIGPLAN International
Conference on Functional Programmir000.

K. J. Sullivan and D. Notkin. Reconciling environmentagration and software evolution.
ACM Transactions on Software Engineering and Methodgla¢3):229-268, July 1992.
W. W. Wadge and E. A. Ashcroft_ucid, the dataflow programming languagAcademic
Press U.K., 1985.

Z. Wan and P. Hudak. Functional reactive programmirggnfifirst principles. InACM
SIGPLAN Conference on Programming Language Design anceimgaitationpages 242—
252, 2000.

D. E. Zongker and D. H. Salesin. On creating animategqmtations. IPACM SIG-
GRAPH/Eurographics Symposium on Computer Animapages 298—-308, 2003.

