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Abstract

When a C programmer needs an efficient data structure for a particular prob-
lem, he or she can often ssmply look one up in any of a number of good text-
books or handbooks. Unfortunately, programmers in functional languages such
as Standard ML or Haskell do not have this luxury. Although some data struc-
tures designed for imperative languages such as C can be quite easily adapted to a
functional setting, most cannot, usually because they depend in crucial wayson as-
signments, which are disallowed, or at least discouraged, in functional languages.
To address thisimbalance, we describe several techniques for designing functional
data structures, and numerous original data structures based on these techniques,
including multiple variations of lists, queues, double-ended queues, and heaps,
many supporting more exotic features such as random access or efficient catena-
tion.

In addition, we expose the fundamental role of lazy evaluation in amortized
functional data structures. Traditional methods of amortization break down when
old versions of a data structure, not just the most recent, are available for further
processing. This property is known as persistence, and is taken for granted in
functional languages. On the surface, persistence and amortization appear to be
incompatible, but we show how lazy evaluation can be used to resolve this conflict,
yielding amortized data structures that are efficient even when used persistently.
Turning this relationship between lazy evaluation and amortization around, the
notion of amortization also providesthe first practical techniquesfor analyzing the
time requirements of non-trivial lazy programs.

Finally, our data structures offer numerous hints to programming language de-
signers, illustrating the utility of combining strict and lazy evaluation in a single
language, and providing non-trivial examples using polymorphic recursion and
higher-order, recursive modules.
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Chapter 1

| ntroduction

Efficient data structures have been studied extensively for over thirty years, resulting in a vast
literature from which the knowledgeabl e programmer can extract efficient solutions to a stun-
ning variety of problems. Much of this literature purports to be language-independent, but
unfortunately it is language-independent only in the sense of Henry Ford: Programmers can
use any language they want, as long as it's imperative! Only a small fraction of existing
data structures are suitable for implementation in functional languages, such as Standard ML
or Haskell. This thesis addresses this imbalance by specifically considering the design and
analysis of functional data structures.

1.1 Functional vs. Imperative Data Structures

The methodological benefits of functiona languages are well known [Bac78, Hug89, HJ94],
but still the vast majority of programs are written in imperative languages such as C. This
apparent contradictioniseasily explained by the fact that functional languages have historically
been slower than their more traditional cousins, but this gap is narrowing. Impressive advances
have been made across a wide front, from basic compiler technology to sophisticated analyses
and optimizations. However, there is one aspect of functional programming that no amount
of cleverness on the part of the compiler writer is likely to mitigate — the use of inferior or
inappropriate data structures. Unfortunately, the existing literature has relatively little advice
to offer on this subject.

Why should functional data structures be any more difficult to design and implement than
imperative ones? There are two basic problems. First, from the point of view of designing and
implementing efficient data structures, functional programming’s stricture against destructive

'Henry Ford once said of the available colors for his Model T automobile, “[Customers] can have any color
they want, aslong asit’sblack.”
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updates (assignments) is a staggering handicap, tantamount to confiscating a master chef’s
knives. Like knives, destructive updates can be dangerous when misused, but tremendously
effective when used properly. Imperative data structures often rely on assignments in crucial
ways, and so different solutions must be found for functional programs.

The second difficulty isthat functional data structures are expected to be more flexible than
their imperative counterparts. In particular, when we update an imperative data structure we
typically accept that the old version of the data structure will no longer be available, but, when
we update a functional data structure, we expect that both the old and new versions of the
data structure will be available for further processing. A data structure that supports multiple
versions is called persistent while a data structure that allows only a single version at a time
is called ephemeral [DSST89]. Functiona programming languages have the curious property
that all data structures are automatically persistent. Imperative data structures are typicaly
ephemeral, but when a persistent data structure is required, imperative programmers are not
surprised if the persistent data structure is more complicated and perhaps even asymptotically
less efficient than an equivalent ephemeral data structure.

Furthermore, theoreticians have established lower bounds suggesting that functional pro-
gramming languages may be fundamentally less efficient than imperative languages in some
situations [BAG92, Pip96]. In spite of all these points, this thesis showsthat it is often possible
to devise functional data structures that are asymptotically as efficient as the best imperative
solutions.

1.2 Strict vs. Lazy Evaluation

Most (sequential) functional programming languages can be classified as either strict or lazy,
according to their order of evaluation. Which issuperior is atopic debated with religiousfervor
by functional programmers. The difference between the two evaluation ordersis most apparent
in their treatment of arguments to functions. In strict languages, the arguments to a function
are evaluated before the body of the function. In lazy languages, arguments are evaluated
in a demand-driven fashion; they are initially passed in unevaluated form and are evaluated
only when (and if!) the computation needs the results to continue. Furthermore, once a given
argument is evaluated, the value of that argument is cached so that if it is ever needed again, it
can be looked up rather than recomputed. This caching is known as memoization [Mic68].

Each evaluation order has its advantages and disadvantages, but strict evaluation is clearly
superior in at least one area: ease of reasoning about asymptotic complexity. In strict lan-
guages, exactly which subexpressions will be evaluated, and when, is for the most part syn-
tactically apparent. Thus, reasoning about the running time of a given program is relatively
straightforward. However, in lazy languages, even experts frequently have difficulty predicting
when, or even if, a given subexpression will be evaluated. Programmers in such languages
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Name Running Times of Supported Functions Page
banker’s queues snoclheadltail: O(1) 26
physicist’ squeues snoclheadltail: O(1) 31
real-time queues snoclhead/tail: O(1)T 43
bootstrapped queues head: O(1)1, snocltail: O(log™ n) 89
implicit queues snoclheadltail: O(1) 113
banker’s deques conslheadltaillsnocllastlinit: O(1) 56
real-time deques conslheadltaillsnocllast/init: O(1)1 59
implicit deques conslheadltaillsnocllastlinit: O(1) 116
catenable lists conslsnoclheadltaill+: O(1) 97
simple catenable deques conslheadltaill snocllastlinit: O(1), +: O(logn) 119
catenable degques conslheadltaillsnocllastlinit/+: O(1) 122
skew-binary random-access lists | cons/head/tail: O(1)7, lookuplupdate : O(log n)T 79
skew binomial heaps insert: O (1)1, mergel findMinldeleteMin : O (log n)T 83
bootstrapped heaps insertlmergelfindMin: O(1)1, deleteMin: O(logn)T 102
sortable collections add: O(logn), sort: O(n) 35
schedul ed sortabl e collections add: O(logn)t, sort: O(n)T 47

Worst-case running times marked with {. All other running times are amortized.

Table 1.1: Summary of Implementations

are often reduced to pretending the language is actually strict to make even gross estimates of
running time!

Both evaluation orders have implications for the design and analysis of data structures. As
wewill seein Chapters 3 and 4, strict languages can describe worst-case data structures, but not
amortized ones, and lazy languages can describe amortized data structures, but not worst-case
ones. To be able to describe both kinds of data structures, we need a programming language
that supports both evaluation orders. Fortunately, combining strict and lazy evaluation in a
single language is not difficult. Chapter 2 describes $-notation — a convenient way of adding
lazy evaluation to an otherwise strict language (in this case, Standard ML).

1.3 Contributions

This thesis makes contributionsin three major areas:

e Functional programming. Besides developing a suite of efficient data structures that
are useful in their own right (see Table 1.1), we also describe general approaches to
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designing and analyzing functional data structures, including powerful new techniques
for reasoning about the running time of lazy programs.

e Persistent data structures. Until this research, it was widely believed that amortization
was incompatible with persistence [DST94, Ram92]. However, we show that memoiza-
tion, in the form of lazy evaluation, is the key to reconciling the two. Furthermore, as
noted by Kaplan and Tarjan [KT96b], functiona programming is a convenient medium
for developing new persistent data structures, even when the data structure will eventu-
aly be implemented in an imperative language. The data structures and techniques in
this thesis can easily be adapted to imperative languages for those situations when an
imperative programmer needs a persistent data structure.

e Programming language design. Functional programmers have long debated the relative
merits of strict and lazy evaluation. This thesis shows that both are algorithmically im-
portant and suggests that the ideal functional language should seamlessly integrate both.
As amodest step in this direction, we propose $-notation, which allows the use of lazy
evaluation in a strict language with a minimum of syntactic overhead.

1.4 Source L anguage

All source code will be presented in Standard ML [MTH90], extended with primitives for
lazy evaluation. However, the algorithms can all easily be translated into any other functional
language supporting both strict and lazy evaluation. Programmers in functional languages
that are either entirely strict or entirely lazy will be able to use some, but not all, of the data
structures in this thesis.

In Chapters 7 and 8, we will encounter several recursive data structures that are difficult to
describe cleanly in Standard ML because of the language’s restrictions against certain sophisti-
cated and difficult-to-implement forms of recursion, such as polymorphic recursion and recur-
sive modules. When this occurs, we will first sacrifice executability for clarity and describe the
data structures using ML-like pseudo-code incorporating the desired forms of recursion. Then,
we will show how to convert the given implementationsto legal Standard ML. These examples
should be regarded as challenges to the language design community to provide a programming
language capable of economically describing the appropriate abstractions.

1.5 Terminology

Any discussion of data structures is fraught with the potential for confusion, because the term
data structure has at least four distinct, but related, meanings.
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¢ An abstract data type (that is, a type and a collection of functions on that type). We will
refer to this as an abstraction.

e A concrete realization of an abstract data type. We will refer to this as an implementa-
tion, but note that an implementation need not be actualized as code — a concrete design
is sufficient.

¢ An instance of a data type, such as a particular list or tree. We will refer to such an
instance generically as an object or a version. However, particular data types typically
have their own nomenclature. For example, we will refer to stack or queue objects simply
as stacks or queues.

e A unique identity that is invariant under updates. For example, in a stack-based in-
terpreter, we often speak informally about “the stack” as if there were only one stack,
rather than different versions at different times. We will refer to thisidentity as apersis-
tent identity. This issue mainly arises in the context of persistent data structures; when
we speak of different versions of the same data structure, we mean that the different
versions share a common persistent identity.

Roughly speaking, abstractions correspond to signatures in Standard ML, implementations
to structures or functors, and objects or versions to values. There is no good analogue for
persistent identitiesin Standard ML .2

The term operation is similarly overloaded, meaning both the functions supplied by an
abstract data type and applications of those functions. We reserve the term operation for the
latter meaning, and use the terms operator or function for the former.

1.6 Oveview

Thisthesisis structured in two parts. Thefirst part (Chapters 2—4) concerns a gorithmic aspects
of lazy evaluation. Chapter 2 sets the stage by briefly reviewing the basic concepts of lazy
evaluation and introducing $-notation.

Chapter 3 is the foundation upon which the rest of the thesis is built. It describes the
mediating role lazy evaluation plays in combining amortization and persistence, and gives two
methods for analyzing the amortized cost of data structures implemented with lazy evaluation.

Chapter 4 illustrates the power of combining strict and lazy evaluation in asingle language.
It describes how one can often derive aworst-case data structure from an amortized data struc-
ture by systematically scheduling the premature execution of lazy components.

2The persistent identity of an ephemeral data structure can be reified as areference cell, but thisisinsufficient
for modelling the persistent identity of a persistent data structure.
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The second part of the thesis (Chapters 5-8) concerns the design of functional data struc-
tures. Rather than catal oguing efficient data structures for every purpose (a hopeless task!), we
instead concentrate on a handful of general techniques for designing efficient functional data
structures and illustrate each technique with one or more implementations of fundamental ab-
stractions such as priority queues, random-access structures, and various flavors of sequences.

Chapter 5 describes lazy rebuilding, alazy variant of global rebuilding [Ove83]. Lazy re-
building is significantly simpler than global rebuilding, but yields amortized rather than worst-
case bounds. By combining lazy rebuilding with the scheduling techniques of Chapter 4, the
worst-case bounds can be recovered.

Chapter 6 explores numerical representations, implementations designed in analogy to rep-
resentations of numbers (typically binary numbers). Inthis model, designing efficient insertion
and deletion routines corresponds to choosing variants of binary numbers in which adding or
subtracting one take constant time.

Chapter 7 examines data-structural bootstrapping [Buc93]. Data-structural bootstrapping
comesintwo flavors: structural decomposition, inwhich unbounded sol utions are bootstrapped
from bounded solutions, and structural abstraction, in which efficient solutions are boot-
strapped from inefficient solutions.

Chapter 8 describes implicit recursive slowdown, alazy variant of the recursive-slowdown
technique of Kaplan and Tarjan [KT95]. Aswith lazy rebuilding, implicit recursive slowdown
is significantly simpler than recursive slowdown, but yields amortized rather than worst-case
bounds. Again, we can recover the worst-case bounds using scheduling.

Finally, Chapter 9 concludes by summarizing the implications of this work on functional
programming, on persistent data structures, and on programming language design, and by
describing some of the open problemsrelated to thisthesis.



Chapter 2

L azy Evaluation and $-Notation

Lazy evaluation is an evaluation strategy employed by many purely functional programming
languages, such as Haskell [H92]. This strategy has two essential properties. First, the evalu-
ation of a given expression is delayed, or suspended, until its result is needed. Second, the first
time a suspended expression is evaluated, the result is memoized (i.e., cached) so that the next
timeit isneeded, it can be looked up rather than recomputed.

Supporting lazy evaluation in a strict language such as Standard ML requires two primi-
tives: one to suspend the evaluation of an expression and one to resume the evaluation of a
suspended expression (and memoize the result). These primitives are often called delay and
force. For example, Standard ML of New Jersey offers the following primitives for lazy eval-
uation:

type o susp
val delay : (unit — o) — a susp
val force : a suUsp — «

These primitives are sufficient to encode all the algorithmsin this thesis. However, program-
ming with these primitives can be rather inconvenient. For instance, to suspend the evaluation
of some expression e, one writes delay (fn () = ¢). Depending on the use of whitespace, this
introduces an overhead of 1317 characters! Although acceptable when only afew expressions
are to be suspended, this overhead quickly becomes intolerable when many expressions must
be delayed.

To make suspending an expression as syntactically lightweight as possible, we instead use
$-notation — to suspend the evaluation of some expression e, we simply write $e. $¢ is called
asuspension and hastype = susp, where T isthe type of . The scope of the $ operator extends
as far to the right as possible. Thus, for example, $f = parses as $(f =) rather than ($f) =
and $z+y parses as $(x+y) rather than ($2)+y. Note that $e isitself an expression and can be
suspended by writing $$¢, yielding a nested suspension of type 7 susp susp.
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If s isasuspension of type T susp, then force s evaluates and memoizes the contents of
s and returns the resulting value of type 7. However, explicitly forcing a suspension with a
force operation can also be inconvenient. In particular, it often interacts poorly with pattern
matching, requiring a single case expression to be broken into two or more nested case ex-
pressions, interspersed with force operations. To avoid this problem, we integrate $-notation
with pattern matching. Matching a suspension against a pattern of the form $p first forces the
suspension and then matches the result against p. At times, an explicit force operator is still
useful. However, it can now be defined in terms of $ patterns.

fun force ($z) = =

To compare the two notations, consider the standard take function, which extracts the first »
elements of a stream. Streams are defined as follows:

datatype o StreamCell = Nil | Cons of o x « Stream
withtype o Stream = o StreamCell susp

Using delay and force, take would be written

fun take (n, s) =
delay (fn () = case n of
0= Nil
| ~ = caseforce s of
Nil = Nil
| Cons (z, s') = Cons(z, take (n—1, s')))

In contrast, using $-notation, take can be written more concisely as

fun take (n, s) = $case (n, s) of
(0, ) = Nil
| (, $Nil) = Nil
| (_, $Cons (z, s')) = Cons (z, take (n—1, 5'))

In fact, it istempting to write take even more concisely as

fun take (0, ) = $Nil
| take (_, $Nil) = $Nil
| take (n, $Cons (z, s)) = $Cons (z, take (n—1, s))

However, this third implementation is not equivalent to the first two. In particular, it forcesits
second argument when take is applied, rather than when the resulting stream is forced.

The syntax and semantics of $-notation are formally defined in Appendix A.
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2.1 Streams

As an extended example of lazy evaluation and $-notation in Standard ML, we next develop
asmall streams package. These streams will also be used by several of the data structuresin
subsequent chapters.

Streams (also known as lazy lists) are very similar to ordinary lists, except that every cell
issystematically suspended. The type of streamsis

datatype o StreamCell = Nil | Cons of o x « Stream
withtype o Stream = o StreamCell susp

A simple stream containing the elements 1, 2, and 3 could be written

$Cons (1, $Cons (2, $Cons (3, $Nil)))

It isilluminating to contrast streams with simple suspended lists of type « list susp. The
computations represented by the latter type are inherently monolithic — once begun by forcing
the suspended list, they run to completion. The computations represented by streams, on the
other hand, are often incremental — forcing a stream executes only enough of the computation
to produce the outermost cell and suspends the rest. This behavior iscommon among datatypes
such as streams that contain nested suspensions.

To see this difference in behavior more clearly, consider the append function, written s +
t. On suspended lists, this function might be written

fun s #+ ¢ = $(force s @ force t)

Once begun, this function forces both its arguments and then appends the two lists, producing
the entire result. Hence, this functionis monolithic. On streams, the append function iswritten

fun s # ¢ = $case s of
$Nil = force
| $Cons (z, s') = Cons (z, s" 1)

Once begun, this function forcesthefirst cell of s (by matching against a $ pattern). If this cell
is Nil, then thefirst cell of the result isthefirst cell of ¢, so the function forces ¢. Otherwise,
the function constructs the first cell of the result from the first element of s and — thisis the
key point — the suspension that will eventually calculate the rest of the appended list. Hence,
thisfunctionisincremental. The take function described earlier issimilarly incremental.

However, consider the function to drop the first n elements of a stream.

fun drop (n, s) = let fun drop’ (0, s’) =force s’
| drop’ (n, $Nil) = Nil
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| drop’ (n, $Cons (z, s’)) =drop’ (n—1, s')
in $drop’ (n, s) end

This function is monolithic because the recursive calls to drop’ are never delayed — calcu-
lating the first cell of the result requires executing the entire drop function. Another common
monolithic stream function is reverse.

fun reverse s = let fun reverse’ ($Nil, r) = r
| reverse ($Cons (z, s), r) = reverse (s, Cons (z, $r))
in $reverse (s, Nil) end

Here the recursive calls to reverse” are never delayed, but note that each recursive call creates
a new suspension of the form $r. It might seem then that reverse does not in fact do all
of itswork at once. However, suspensions such as these, whose bodies are manifestly values
(i.e., composed entirely of constructors and variables, with no function applications), are called
trivial. A good compiler would create these suspensions in already-memoized form, but even
if the compiler does not perform this optimization, trivial suspensions always evaluatein O(1)
time.

Although monolithic stream functions such as drop and reverse are common, incremental
functions such as + and take arethe raison d' étre of streams. Each suspension carries a small
but significant overhead, so for maximum efficiency laziness should be used only when there
is agood reason to do so. If the only uses of lazy lists in a given application are monolithic,
then that application should use simple suspended lists rather than streams.

Figure 2.1 summarizes these stream functions as a Standard ML module. Note that the
type of streamsis defined using Standard ML’s withtype construction, but that older versions
of Standard ML do not alow withtype declarations in signatures. This feature will be sup-
ported in future versions of Standard ML, but if your compiler does not allow it, then a sim-
ple workaround is to delete the Stream type and replace every occurrence of = Stream with
7 StreamCell susp. By including the Stream Cell datatype in the signature, we have delib-
erately chosen to expose the internal representation in order to support pattern matching on
streams.

2.2 Historical Notes

Lazy Evaluation Wadsworth [Wad71] first proposed lazy evaluation as an optimization of
normal-order reduction in the lambda calculus. Vuillemin [Vui74] later showed that, under
certain restricted conditions, lazy evaluation is an optimal evaluation strategy. The formal
semantics of lazy evaluation has been studied extensively [Jos89, Lau93, OLT94, AFM*™95].
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signature STREAM =

sig
datatype o StreamCell = Nil | Consof « x « Stream
withtype « Stream = « StreamCell susp

val + o Stream x « Stream — o Stream (* streamappend )
val take :int x « Stream — o Stream
val drop :int x o Stream — o Stream
val reverse : « Stream — « Stream
end

structure Stream : STREAM =

sig
datatype o StreamCell = Nil | Consof « x « Stream
withtype « Stream = « StreamCell susp

fun s 4 ¢ = $case s of
$Nil = force ¢
| $Cons (z, s’) = Cons (z, s’ + t)
fun take (n, s) = $case (n, s) of
(0, _) = Nil
| (_, $Nil) = Nil
| (_, $Cons (z, s')) = Cons (z, take (n—1, s'))
fun drop (n, s) = let fun drop (0, $¢) = ¢
| drop’ (n, $Nil) = Nil
| drop’ (n, $Cons (z, s')) = drop’ (n—1, s')
in $drop’ (n, s) end
fun reverse s = let fun reverse ($Nil, r) = r
| reverse ($Cons (z, s), ) =reverse (s, Cons(z, $r))
in $reverse (s, Nil) end
end

Figure 2.1: A small streams package.

Streams Landin introduced streams in [Lan65], but without memoization. Friedman and
Wise [FW76] and Henderson and Morris [HM76] extended Landin’s streams with memoiza-
tion.

Memoization Michie [Mic68] coined the term memoization to denote the augmentation of
functionswith a cache of argument-result pairs. (The argument field is dropped when memoiz-
ing suspensions by regarding suspensions as nullary functions.) Hughes [Hug85] later applied
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memoization, in the original sense of Michie, to functional programs.

Algorithmics Both components of lazy eval uation— delaying computations and memoizing
the results— have along history in algorithm design, athough not alwaysin combination. The
ideaof delaying the execution of potentially expensive computations (often del etions) is used to
good effect in hash tables [WV 86], priority queues [ST86b, FT87], and search trees[DSST89)].
Memoization, on the other hand, is the basic principle of such techniques as dynamic program-
ming [Bel57] and path compression [HU73, TvL84].

Syntax for Lazy Evaluation Early versions of CAML [W*90], a close cousin of Standard
ML, offered support for lazy evaluation similar to the $-notation proposed here. Rather than
providing asingle lazy constructor, however, CAML allowed any data constructor to be tagged
as lazy, after which all applications of the constructor would be evaluated lazily. Although this
is more flexible than $-notation, it also leads to programsthat are significantly harder to read.
With $-notation, it is syntactically apparent which subexpressions are to be evaluated strictly
and which are to be evaluated lazily, but in CAML, this information can only be determined by
referring back to the type declarations.



Chapter 3

Amortization and Persistencevia L azy
Evaluation

Over the past fifteen years, amortization has become a powerful tool in the design and analysis
of data structures. Implementations with good amortized bounds are often simpler and faster
than implementations with equivalent worst-case bounds. Unfortunately, standard techniques
for amortization apply only to ephemeral data structures, and so are unsuitable for designing
or analyzing functional data structures, which are automatically persistent.

In this chapter, we review the two traditional techniques for analyzing amortized data struc-
tures — the banker’s method and the physicist’s method — and show where they break down
for persistent data structures. Then, we demonstrate how lazy evaluation can mediate the con-
flict between amortization and persistence. Finally, we adapt the banker’sand physicist’s meth-
odsto analyze lazy amortized data structures.

The resulting techniques are both the first techniques for designing and analyzing persis-
tent amortized data structures and the first practical techniques for analyzing non-trivia lazy
programs.

3.1 Traditional Amortization

The notion of amortization arises from the following observation. Given a sequence of oper-
ations, we may wish to know the running time of the entire sequence, but not care about the
running time of any individual operation. For instance, given a sequence of n operations, we
may wish to bound the total running time of the sequence by O(n) without insisting that each
individual operationrunin O(1) time. Wemight be satisfied if afew operationsrunin O(log n)
or even O(n) time, provided the total cost of the sequence is only O(n). This freedom opens
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up a wide design space of possible solutions, and often yields new solutions that are simpler
and faster than worst-case solutions with equivalent bounds. In fact, for some problems, such
as the union-find problem [TvL84], there are amortized solutions that are asymptotically faster
than any possible worst-case solution (assuming certain modest restrictions) [Blu86].

To prove an amortized bound, one defines the amortized cost of each operation and then
proves that, for any sequence of operations, the total amortized cost of the operations is an
upper bound on the total actual cost, i.e.,

m m
dai =)t
=1 =1

where «; is the amortized cost of operation ¢, ¢; is the actual cost of operation ¢, and m is the
total number of operations. Usually, in fact, one proves a dlightly stronger result: that at any
intermediate stage in a sequence of operations, the accumulated amortized cost is an upper
bound on the accumulated actual cost, i.e.,

J J
D=yl
=1 =1

for any 5. The difference between the accumul ated amortized costs and the accumul ated actual
costs is called the accumulated savings. Thus, the accumulated amortized costs are an upper
bound on the accumulated actual costs whenever the accumulated savings is non-negative.

Amortization allows for occasional operations to have actual costs that exceed their amor-
tized costs. Such operations are called expensive. Operations whose actual costs are less than
their amortized costs are called cheap. Expensive operations decrease the accumul ated savings
and cheap operations increase it. The key to proving amortized bounds is to show that expen-
sive operations occur only when the accumulated savings are sufficient to cover the cost, since
otherwise the accumulated savings would become negative.

Tarjan [ Tar85] describes two techniques for analyzing ephemeral amortized data structures:
the banker’s method and the physicist’s method. I1n the banker’s method, the accumulated sav-
ings arerepresented as credits that are associated with individual locationsin the data structure.
These credits are used to pay for future accesses to these locations. The amortized cost of any
operation is defined to be the actual cost of the operation plus the credits allocated by the
operation minus the credits spent by the operation, i.e.,

a;=1ti+¢—¢

where ¢; is the number of credits allocated by operation ¢, and ¢; is the number of credits
spent by operation . Every credit must be allocated before it is spent, and no credit may be
spent more than once. Therefore, >~ ¢; > >"¢;, which in turn guarantees that > a; > > ¢,
as desired. Proofs using the banker’s method typically define a credit invariant that regul ates
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the distribution of credits in such a way that, whenever an expensive operation might occur,
sufficient credits have been allocated in the right locations to cover its cost.

In the physicist’s method, one describes a function ® that maps each object d to a real
number called the potential of 4. The function @ is typicaly chosen so that the potentia is
initially zero and is aways non-negative. Then, the potential represents a lower bound on the
accumulated savings.

Let d; bethe output of operation : and the input of operation: + 1. Then, the amortized cost
of operation : is defined to be the actual cost plus the change in potential between d;_; and d;,
i.e.,
a; = ti + (I)(dz) — (I)(dz_l)

The accumulated actual costs of the sequence of operations are

it o= Yli(ai+@(diny) — @(dy))
= izt @+ iz (®(dima) — @(d;))
= Yz @ + @(do) — @(d;)

Sumssuchasy (®(d;—1) — ®(d;)), where aternating positive and negative terms cancel each
other out, are called telescoping series. Provided @ is chosen in such away that ®(d,) is zero
and ®(d;) isnon-negative, then ®(d;) > ®(dy) and > a; > " t;, S0 the accumulated amortized
costs are an upper bound on the accumulated actual costs, as desired.

Remark: Thisisasomewhat simplified view of the physicist’'s method. In real analyses, one
often encounters situations that are difficult tofit into the framework as described. For example,
what about functions that take or return more than one object? However, this simplified view
suffices to illustrate the relevant issues. <&

Clearly, the two methods are very similar. We can convert the banker’s method to the physi-
cist’'s method by ignoring locations and taking the potential to be the total number of creditsin
the object, asindicated by the credit invariant. Similarly, we can convert the physicist's method
to the banker’s method by converting potential to credits, and placing all credits on the root.
It is perhaps surprising that the knowledge of locations in the banker’s method offers no extra
power, but the two methods are in fact equivalent [Tar85, Sch92]. The physicist's method is
usually simpler, but it is occasionally convenient to take locations into account.

Note that both credits and potential are analysis tools only; neither actually appearsin the
program text (except maybe in comments).
3.1.1 Example: Queues

We next illustrate the banker’s and physicist's methods by analyzing a ssmple functional im-
plementation of the queue abstraction, as specified by the signature in Figure 3.1.
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signature QUEUE =
sig
type o Queue
exception EMPTY
val empty : « Queue
val isEmpty : o Queue — baool

val snoc  : « Queue x o — « Queue

valhead : o Queue— « (x raises EMPTY if queue isempty *)

val tail : o Queue — o Queue (x raises EMPTY if queue isempty *)
end

Figure 3.1: Signature for queues.

(Etymological note: snoc is cons spelled backward and means “cons on the right”.)

A common representation for purely functional queues [Gri81, HM81, Bur82] is as a pair
of lists, ¥ and R, where F' contains the front elements of the queue in the correct order and R
contains the rear elements of the queue in reverse order. For example, a queue containing the
integers 1...6 might berepresented by thelists ' =[1,2,3] and R =[6,5,4]. Thisrepresentation
is described by the following datatype:

datatype o Queue= Queueof {F: alist, R: « list}

In this representation, the head of the queue is the first element of F', sO head and tail return
and remove this element, respectively.

fun head (Queue{F==z: f,R=r}) =«
fun tail (Queue{F=1z:f,R=r})=Queue{F=f,R=1r}

Remark: To avoid distracting the reader with minor details, we will commonly ignore error
cases when presenting code fragments. For example, the above code fragments do not describe
the behavior of head or tail on empty queues. We will always include the error cases when
presenting complete implementations. &

Now, the last element of the queue is the first element of R, so snoc simply adds a new
element at the head of R.

fun snoc (Queue {F=f,R=r},z) =Queue {F=f,R=z:: 1}
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Elements are added to £ and removed from F', so they must somehow migrate from one list to
the other. Thisisaccomplished by reversing k and installing the result as the new F* whenever
F would otherwise become empty, simultaneously setting the new R to []. The god is to
maintain theinvariant that ' isempty only if R isaso empty (i.e., the entire queue is empty).
Note that if /' were empty when R was not, then the first element of the queue would be the
last element of R, which would take O(n) time to access. By maintaining this invariant, we
guarantee that head can alwaysfind the first element in O(1) time.

snoc and tail must now detect those cases that would otherwise result in aviolation of the
invariant, and change their behavior accordingly.

fun snoc (Queue {F=[1,...}, ) = Queue{F=[z], R=[]}

| snoc (Queue {F=/f,R=7r},2)=Queue{F=/f,R==z:r}
funtall (Queue {F=[z],R=r})=Queue{F=revr, R=[]}

| tail (Queue {F==z: f,R=r})=Queue{F=/f,R=1r}

Note the use of the record wildcard (...) in the first clause of snoc. Thisis Standard ML
pattern-matching notation meaning “the remaining fields of thisrecord areirrelevant”. In this
case, the R field isirrelevant because we know by the invariant that if /' is[], thensois R.

A cleaner way to write these functionsis to consolidate the invariant-maintenance duties of
snoc and tail into a single pseudo-constructor. Pseudo-constructors, sometimes called smart
constructors [Ada93], are functions that replace ordinary constructors in the construction of
data, but that check and enforce an invariant. In this case, the pseudo-constructor gueue re-
places the ordinary constructor Queue, but guarantees that /' is empty only if R isalso empty.

funqueue{F=[],R=r} =Queue {F=revr,R=[]}
| queue {F=f,R=r}=Queue{F=f,R=r}

fun snoc (Queue {F=f,R=r},2) =queue {F=/,R
funtal (Queue{F==z: f,R=r})=queue{F=/f,R

xir}
"

}

The complete code for this implementation is shown in Figure 3.2. Every function except
tail takes O(1) worst-case time, but tail takes O(n) worst-case time. However, we can show
that snoc and tail each take only O(1) amortized time using either the banker’s method or the
physicist’s method.

Using the banker’s method, we maintain a credit invariant that the rear list always contains
a number of credits equal to its length. Every snoc into a non-empty queue takes one actua
step and allocates a credit to the new element of the rear list, for an amortized cost of two.
Every tail that does not reverse the rear list takes one actual step and neither allocates nor
spends any credits, for an amortized cost of one. Finally, every tail that does reverse the rear
list takes m + 1 actual steps, where m is the length of the rear list, and spends the m: credits
contained by that list, for an amortized cost of m + 1 — m = 1.
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structure BatchedQueue : QUEUE =
struct
datatype oo Queue = Queueof {F: a list, R: a list}
(* Invariant: Fisempty onlyif R isalso empty x)
exception EMPTY

val empty = Queue {F=[],R=[]}
fun isEmpty (Queue {F=f,R=r})=null f
funqueue {F=[],R=r)=Queue{F=revr,R=[]}
| queue ¢ = Queue ¢
fun snoc (Queue {F=f,R=7r),z)=queue{F=f,R=z::r}
fun head (Queue {F =[], ...}) =raise EMPTY
| head (Queue {F==z: f,...}) =z
fun tail (Queue {F=[],...}) =raise EMPTY
| tail (Queue{F==z:f,R=r})=queve{F=f,R=r}
end

Figure 3.2: A common implementation of purely functional queues [Gri81, HM81, Bur82].

Using the physicist’'s method, we define the potential function ® to be the length of the rear
list. Then every snoc into a non-empty queue takes one actual step and increases the potential
by one, for an amortized cost of two. Every tail that does not reverse the rear list takes one
actual step and leaves the potential unchanged, for an amortized cost of one. Finally, every tail
that does reversetherear list takesm + 1 actual steps and sets the new rear list to[ ], decreasing
the potential by m, for an amortized cost of m + 1 — m = 1.

In this ssmple example, the proofs are virtually identical. Even so, the physicist’s method
isslightly ssmpler for the following reason. Using the banker’s method, we must first choose a
credit invariant, and then decide for each function when to allocate or spend credits. The credit
invariant provides guidance in this decision, but does not make it automatic. For instance,
should snoc alocate one credit and spend none, or allocate two credits and spend one? The
net effect is the same, so this freedom is just one more potential source of confusion. On the
other hand, using the physicist’s method, we have only one decision to make — the choice of
the potential function. After that, the analysis is mere calculation, with no more freedom of
choice.
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3.2 Persistence: The Problem of Multiple Futures

In the above analyses, we implicitly assumed that queues were used ephemeraly (i.e., in a
single-threaded fashion). What happens if we try to use these queues persistently?

Let ¢ be the result of inserting » elements into an initially empty queue, so that the front
list of ¢ contains a single element and the rear list contains » — 1 elements. Now, suppose
we use ¢ persistently by taking itstail » times. Each call of tail ¢ takes n actual steps. The
total actual cost of this sequence of operations, including the time to build ¢, is »n* + n. If the
operationstruly took O(1) amortized time each, then the total actual cost would be only O(n).
Clearly, using these queues persistently invalidates the O(1) amortized time bounds proved
above. Where do these proofs go wrong?

In both cases, afundamental requirement of the analysisisviolated by persistent data struc-
tures. The banker’s method requires that no credit be spent more than once, while the physi-
cist’s method requires that the output of one operation be the input of the next operation (or,
more generally, that no output be used as input more than once). Now, consider the second
call to tail ¢ inthe example above. Thefirst call to tail ¢ spends all the credits on therear list
of ¢, leaving none to pay for the second and subsequent calls, so the banker’s method breaks.
And the second call to tail ¢ reuses ¢ rather than the output of the first call, so the physicist's
method breaks.

Both these failures reflect the inherent weakness of any accounting system based on ac-
cumulated savings — that savings can only be spent once. The traditional methods of amor-
tization operate by accumulating savings (as either credits or potential) for future use. This
workswell in an ephemeral setting, where every operation has only asingle logical future. But
with persistence, an operation might have multiple logical futures, each competing to spend
the same savings.

3.2.1 Execution Tracesand Logical Time

What exactly do we mean by the “logical future” of an operation?

We model logical time with execution traces, which give an abstract view of the history
of a computation. An execution trace is a directed graph whose nodes represent “interesting”
operations, usualy just update operations on the data type in question. An edge from v to '
indicates that operation v’ uses some result of operation v. The logical history of operation
v, denoted ¢, is the set of all operations on which the result of v depends (including v itself).
In other words, ¢ is the set of al nodes w such that there exists a path (possibly of length 0)
from w to v. A logical future of anode v is any path from v to aterminal node (i.e., a node
with out-degree zero). If there is more than one such path, then node v has multiple logical
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futures. We will sometimes refer to the logical history or logical future of an object, meaning
the logical history or logical future of the operation that created the object.

Execution traces generalize the notion of version graphs[DSST89], which are often used to
model the histories of persistent data structures. In aversion graph, nodes represent the various
versions of a single persistent identity and edges represent dependencies between versions.
Thus, version graphs model the results of operations and execution traces model the operations
themselves. Execution traces are often more convenient for combining the histories of several
persistent identities (perhaps not even of the same data type) or for reasoning about operations
that do not return anew version (e.g., queries) or that return several results (e.g., splitting alist
into two sublists).

For ephemeral data structures, the out-degree of every node in a version graph or execu-
tion trace is typically restricted to be at most one, reflecting the limitation that objects can
be updated at most once. To model various flavors of persistence, version graphs alow the
out-degree of every node to be unbounded, but make other restrictions. For instance, version
graphs are often limited to be trees (forests) by restricting the in-degree of every node to be at
most one. Other version graphs alow in-degrees of greater than one, but forbid cycles, making
every graph a dag. We make none of these restrictions on execution traces. Nodes with in-
degree greater than one correspond to operations that take more than one argument, such as list
catenation or set union. Cycles arise from recursively defined objects, which are supported by
many lazy languages. We even allow multiple edges between a single pair of nodes, as might
occur if alist is catenated with itself.

We will use execution traces in Section 3.4.1 when we extend the banker’s method to cope
with persistence.

3.3 Reconciling Amortization and Persistence

In the previous section, we saw that traditional methods of amortization break in the presence
of persistence because they assume a unique future, in which the accumulated savings will be
spent at most once. However, with persistence, multiple logical futures might all try to spend
the same savings. In this section, we show how the banker’s and physicist’s methods can be
repaired by replacing the notion of accumulated savings with accumulated debt, where debt
measures the cost of unevaluated lazy computations. The intuition is that, athough savings
can only be spent once, it does no harm to pay off debt more than once.

3.3.1 TheRoleof Lazy Evaluation

Recall that an expensive operation is one whose actual costs are greater than its (desired) amor-
tized costs. For example, suppose some application f « is expensive. With persistence, a
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malicious adversary might call / « arbitrarily often. (Note that each operation is a new logi-
cal future of =.) If each operation takes the same amount of time, then the amortized bounds
degrade to the worst-case bounds. Hence, we must find a way to guarantee that if the first
application of f to = is expensive, then subsequent applications of f to = will not be.

Without side-effects, this is impossible under call-by-value (i.e., strict evaluation) or call-
by-name (i.e., lazy evaluation without memoization), because every application of f to « will
take exactly the same amount of time. Therefore, amortization cannot be usefully combined
with persistence in languages supporting only these evaluation orders.

But now consider call-by-need (i.e., lazy evaluation with memoization). If = contains some
suspended component that is needed by f, then the first application of f to = will force the
(potentially expensive) evaluation of that component and memoize the result. Subsequent op-
erations may then access the memoized result directly. Thisis exactly the desired behavior!

Remark: In retrospect, the relationship between lazy evaluation and amortization is not
surprising. Lazy evaluation can be viewed as a form of self-modification, and amortization
often involves self-modification [ST85, ST86b]. However, lazy evaluation is a particularly
disciplined form of self-modification — not al forms of self-modification typically used in
amortized ephemeral data structures can be encoded as lazy evaluation. In particular, splay-
ing [ST85] does not appear to be amenable to this technique. &

3.3.2 A Framework for Analyzing Lazy Data Structures

We have just shown that lazy evaluation is necessary to implement amortized data structures
purely functionally. Unfortunately, analyzing the running times of programs involving lazy
evaluation is notorioudly difficult. Historically, the most common technique for analyzing
lazy programs has been to pretend that they are actually strict. However, this technique is
completely inadequate for analyzing lazy amortized data structures. We next describe a basic
framework to support such analyses. Inthe remainder of this chapter, we will adapt the banker’s
and physicist’'s methods to this framework, yielding both the first techniques for analyzing
persistent amortized data structures and the first practical techniques for analyzing non-trivial
lazy programs.

We classify the costs of any given operation into several categories. First, the unshared cost
of an operation is the actual time it would take to execute the operation under the assumption
that every suspension in the system at the beginning of the operation has already been forced
and memoized (i.e., under the assumption that force alwaystakes O(1) time, except for those
suspensions that are created and forced within the same operation). The shared cost of an
operation is the time that it would take to execute every suspension created but not evaluated
by the operation (under the same assumption as above). The complete cost of an operation is
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the sum of its shared and unshared costs. Note that the complete cost is what the actual cost of
the operation would be if lazy evaluation were replaced with strict evaluation.

We further partition the total shared costs of a sequence of operations into realized and
unrealized costs. Realized costs are the shared costs for suspensions that are executed during
the overall computation. Unrealized costs are the shared costs for suspensions that are never
executed. The total actual cost of a sequence of operationsisthe sum of the unshared costs and
the realized shared costs — unrealized costs do not contribute to the actual cost. Note that the
amount that any particular operation contributes to the total actual cost is at least its unshared
cost, and at most its compl ete cost, depending on how much of its shared cost is realized.

We account for shared costs using the notion of accumulated debt. Initially, the accumu-
lated debt is zero, but every time a suspension is created, we increase the accumulated debt
by the shared cost of the suspension (and any nested suspensions). Each operation then pays
off a portion of the accumulated debt. The amortized cost of an operation is the unshared cost
of the operation plus the amount of accumulated debt paid off by the operation. We are not
allowed to force a suspension until the debt associated with the suspension is entirely paid off.
This treatment of debt is reminiscent of alayaway plan, in which one reserves anitem and then
makes regular payments, but receives theitem only when it is entirely paid off.

There are three important moments in the life cycle of a suspension: when it is created,
when it is entirely paid off, and when it is executed. The proof obligation is to show that the
second moment precedes the third. If every suspension is paid off beforeit is forced, then the
total amount of debt that has been paid off is an upper bound on the realized shared costs, and
therefore the total amortized cost (i.e., thetotal unshared cost plus the total amount of debt that
has been paid off) is an upper bound on the total actual cost (i.e., the total unshared cost plus
the realized shared costs). We will formalize this argument in Section 3.4.1.

One of the most difficult problems in analyzing the running time of lazy programsis rea-
soning about the interactions of multiple logical futures. We avoid this problem by reasoning
about each logical future as if it were the only one. From the point of view of the operation
that creates a suspension, any logical future that forces the suspension must itself pay for the
suspension. If two logica futures wish to force the same suspension, then both must pay for
the suspension individually — they may not cooperate and each pay only a portion of the debt.
An alternative view of this restriction is that we are allowed to force a suspension only when
the debt for that suspension has been paid off within the logical history of current operation.
Using this method, we will sometimes pay off a debt more than once, thereby overestimating
the total time required for a particular computation, but this does no harm and is a small price
to pay for the simplicity of the resulting analyses.
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3.4 TheBanker'sMethod

We adapt the banker’s method to account for accumul ated debt rather than accumul ated savings
by replacing credits with debits. Each debit represents a constant amount of suspended work.
When we initially suspend a given computation, we create a number of debits proportional to
its shared cost and associate each debit with a location in the object. The choice of location
for each debit depends on the nature of the computation. If the computation is monolithic (i.e.,
once begun, it runs to completion), then all debits are usually assigned to the root of the result.
On the other hand, if the computation is incremental (i.e., decomposable into fragments that
may be executed independently), then the debits may be distributed among the roots of the
partial results.

The amortized cost of an operation is the unshared cost of the operation plus the number of
debitsdischarged by the operation. Notethat the number of debits created by an operationisnot
included inits amortized cost. The order in which debits should be discharged depends on how
the object will be accessed; debits on nodes likely to be accessed soon should be discharged
first. To provean amortized bound, we must show that, whenever we access alocation (possibly
triggering the execution of a suspension), all debits associated with that location have already
been discharged (and hence the suspended computation has been paid for). This guarantees
that the total number of debits discharged by a sequence of operationsis an upper bound on the
realized shared costs of the operations. The total amortized costs are therefore an upper bound
on thetotal actual costs. Debits|eftover at the end of the computation correspond to unrealized
shared costs, and are irrelevant to the total actual costs.

Incremental functions play an important role in the banker’s method because they allow
debits to be dispersed to different locations in a data structure, each corresponding to a nested
suspension. Then, each location can be accessed as soon as its debits are discharged, without
waiting for the debits at other |ocations to be discharged. In practice, this means that the initial
partial results of an incremental computation can be paid for very quickly, and that subsequent
partial results may be paid for as they are needed. Monolithic functions, on the other hand, are
much less flexible. The programmer must anticipate when the result of an expensive monolithic
computation will be needed, and set up the computation far enough in advance to be able to
discharge al its debits by the time its result is needed.

3.4.1 Justifying the Banker’sMethod

In this section, we justify the claim that the total amortized cost is an upper bound on the total
actual cost. The total amortized cost is the total unshared cost plus the total number of debits
discharged (counting duplicates); the total actual cost isthetotal unshared cost plustherealized
shared costs. Therefore, we must show that the total number of debits discharged is an upper
bound on the realized shared costs.
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We can view the banker’s method abstractly as a graph labelling problem, using the execu-
tion traces of Section 3.2.1. The problemisto label every node in atrace with three (multi)sets
s(v), a(v), and r(v) such that

() v# v = s(0)Ns(o) =0
(I a(v) € Uyes s(w)
() r(v) € Unes a(w)

s(v) isaset, but a(v) and r(v) may be multisets (i.e., may contain duplicates). Conditions Il
and 111 ignore duplicates.

s(v) is the set of debits alocated by operation v. Condition | states that no debit may be
allocated more than once. «a(v) is the multiset of debits discharged by v. Condition Il insists
that no debit may be discharged before it is created, or more specifically, that an operation
can only discharge debits that appear in its logical history. Finally, »(v) is the multiset of
debits realized by v (that is, the multiset of debits corresponding to the suspensions forced
by v). Condition Il requires that no debit may be realized before it is discharged, or more
specifically, that no debit may realized unless it has been discharged within the logical history
of the current operation.

Why are a(v) and r(v) multisets rather than sets? Because a single operation might dis-
charge the same debits more than once or realize the same debits more than once (by forcing
the same suspensions more than once). Although we never deliberately discharge the same
debit more than once, it could happen if we were to combine a single object with itself. For
example, supposein some analysis of alist catenation function, we discharge afew debitsfrom
the first argument and a few debits from the second argument. If we then catenate a list with
itself, we might discharge the same few debits twice.

Given this abstract view of the banker’s method, we can easily measure various costs of a
computation. Let V' bethe set of all nodes in the execution trace. Then, thetotal shared cost is
> vev |s(v)| and thetotal number of debitsdischargedisy", <y |a(v)|. Because of memoization,
the realized shared cost isnot >, . |r(v)|, but rather | U, oy r(v)|, where|J discards duplicates.
By Condition |11, we know that ¢y r(v) € U,ev a(v). Therefore,

| Uvev ()] < [Usev a(v)] < 3pev la(v)]

So the realized shared cost is bounded by the total number of debits discharged, and the total
actual cost is bounded by the total amortized cost, as desired.

Remark: This argument once again emphasizes the importance of memoization. Without

memoization (i.e., if we were using call-by-name rather than call-by-need), the total realized

costwouldbe”, .y |r(v)|, and thereisno reason to expect thissumto belessthany", .y |a(v)].
&
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3.4.2 Example: Queues

We next develop an efficient persistent implementation of queues, and prove that every opera-
tion takes only O(1) amortized time using the banker’s method.

Based on the discussion in the previous section, we must somehow incorporate lazy eval-
uation into the design of the data structure, so we replace the pair of lists in the previous
implementation with a pair of streams.! To simplify later operations, we also explicitly track
the lengths of the two streams.

datatype o Queue = Queue {F : « Stream, LenF : int, R : « Stream, LenR : int}

Note that a pleasant side effect of maintaining this length information is that we can trivially
support a constant-time size function.

Now, waiting until the front list becomes empty to reverse the rear list does not |leave suf-
ficient time to pay for the reverse. Instead, we periodically rotate the queue by moving all the
elements of the rear stream to the end of the front stream, replacing F' with £ 4 reverse R and
setting the new rear stream to empty ($Vi/). Note that this transformation does not affect the
relative ordering of the elements.

When should we rotate the queue? Recall that reverse isamonolithic function. We must
therefore set up the computation far enough in advance to be able to discharge al its debits by
the time its result is needed. The reverse computation takes | | steps, so we will alocate | R|
debits to account for its cost. (For now weignore the cost of the + operation). The earliest the
reverse suspension could be forced is after |F'| applications of t«il, so if we rotate the queue
when |R| ~ | F'| and discharge one debit per operation, then we will have paid for the reverse
by the timeit is executed. In fact, we will rotate the queue whenever R becomes one longer
than F', thereby maintaining the invariant that | /| > |R|. Incidentally, this guarantees that /'
isempty only if R isalso empty. The major queue functions can now be written as follows:

fun snoc (Queue {F=f,LenF =[enF,R=r,LenR =lenR}, z) =
queue {F=f, LenF = lenF', R =$Cons (z, r), LenR = lenR+1}

fun head (Queue {F = $Cons (z, f),...}) =«

fun tail (Queue {F =$Cons (z, f), LenF =lent', R=r,LenR = lenR}) =
queue {F=f,LenF=lenF'—1, R=1r,LenR = [enR}

where the pseudo-constructor queue guaranteesthat |F| > |R|.

funqueve(q as{F=f,LenF=lenF,R=r,LenR =lenR}) =
if lenR < lenk’ then Queue ¢
else Queue {F =/ + reverse r, LenF = lenf'+lenR, R = $Nil, LenR = 0}

The complete code for thisimplementation appears in Figure 3.3.

IActually, it would be enough to replace only the front list with a stream, but we replace both for simplicity.
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structure BankersQueue : QUEUE =
struct
datatype oo Queue = Queue {F : « Stream, LenF : int, R : « Stream, LenR : int}
(x Invariants: |F| > |R|, LenF = |F|, LenR = |R| )

exception EMPTY

val empty = Queue {F = $Nil, LenF =0, R = $Nil, LenR = 0}
fun isEmpty (Queue {LenF = lenF', ...}) = (lenF = 0)

fun queue (q as{F=f,LenF=lenF,R=r,LenR =lenR}) =
if lenR < lent then Queue g
else Queue {F = f +reverse rr, LenF = lenF'+lenR, R = $Nil, LenR = 0}

fun snoc (Queue {F=f, LenF=lenF,R=r,LenR = lenR}, z) =
queue {F =f, LenF = lenF, R =$Cons (z, r), LenR = len R+1}

fun head (Queue {F = $Nil, ... }) =raiseEMPTY
| head (Queue {F =$Cons (z, f),...}) ==
fun tail (Queue {F=$Nil,...}) =raise EMPTY
| tail (Queue {F =3%$Cons (z, f), LenF=lenF,R=r,LenR=lenR}) =
queue {F=f,LenF=lenF-1, R=r,LenR=lenR}
end

Figure 3.3: Amortized queues using the banker’s method.

To understand how this implementation deals efficiently with persistence, consider the fol-
lowing scenario. Let ¢, be some queue whose front and rear streams are both of length 1, and
let ¢; = tail ¢;—1,for 0 < i < m+ 1. The queueis rotated during the first application of tail,
and the reverse suspension created by the rotation is forced during the last application of tail.
Thisreversal takes m steps, and its cost is amortized over the sequence ¢ . . . ¢,,. (For now, we
are concerned only with the cost of the reverse — we ignore the cost of the +.)

Now, choose some branch point &, and repeat the calculation from ¢, to ¢,,, 1. (Notethat g
isused persistently.) Do thisd times. How oftenisthe reverse executed? It depends on whether
the branch point & isbefore or after the rotation. Suppose % is after the rotation. Infact, suppose
k = m so that each of the repeated branchesisasingle ta:l. Each of these branches forces the
reverse suspension, but they each force the same suspension, so the reverse is executed only
once. Memoization is crucial here — without memoization the reverse would be re-executed
each time, for atotal cost of m(d 4 1) steps, with only m + 1 + d operations over which to
amortize this cost. For large d, thiswould result in an O(m ) amortized cost per operation, but
memoization gives us an amortized cost of only O(1) per operation.

It is possible to re-execute the reverse however. Simply take £ = 0 (i.e., make the branch
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point just beforethe rotation). Then thefirst tail of each branch repeats the rotation and creates
a new reverse suspension. This new suspension is forced in the last tail of each branch,
executing the reverse. Because these are different suspensions, memoization does not help at
al. Thetotal cost of al the reversasis m - d, but now we have (m + 1)(d + 1) operations
over which to amortize this cost, yielding an amortized cost of O(1) per operation. The key is
that we duplicate work only when we also duplicate the sequence of operations over which to
amortize the cost of that work.

This informa argument shows that these queues require only O(1) amortized time per
operation even when used persistently. We formalize this proof using the banker’s method.

By inspection, the unshared cost of every queue operation is O(1). Therefore, to show
that the amortized cost of every queue operationis O(1), we must prove that discharging O(1)
debits per operation sufficesto pay off every suspension beforeit isforced. (Infact, only snoc
and tail must discharge any debits.)

“Let d(7) be the number of debits on the :th node of the front stream and let D(i) =
>i—o d(7) be the cumulative number of debits on all nodes up to and including the ith node.
We maintain the following debit invariant:

D(i) < min(2i,|F| — |R|)

The 2; term guaranteesthat all debits on thefirst node of the front stream have been discharged
(sinced(0) = D(0) < 2-0 = 0), so this node may be forced at will (for instance, by head or
tail). The |F| — | R| term guarantees that all debits in the entire queue have been discharged
whenever the streams are of equal length (i.e., just before the next rotation).

Theorem 3.1 The snoc and tail operations maintain the debit invariant by discharging one
and two debits, respectively.

Proof: Every snoc operation that does not cause a rotation simply adds a new element to
the rear stream, increasing || by one and decreasing |F'| — |R| by one. This will cause the
invariant to be violated at any node for which D(i) was previously equal to |F'| — |R|. We
can restore the invariant by discharging the first debit in the queue, which decreases every
subsequent cumulative debit total by one. Similarly, every tail that does not cause a rotation
simply removes an element from the front stream. This decreases |F'| by one (and hence
|| — | R| by one), but, more importantly, it decreases the index : of every remaining node by
one, which in turn decreases 2: by two. Discharging the first two debits in the queue restores
theinvariant. Finally, consider a snoc or tail that causes a rotation. Just before the rotation, we
are guaranteed that all debits in the queue have been discharged, so, after the rotation, the only
debits are those generated by the rotation itself. If |F'| = m and |R| = m + 1 at the time of
the rotation, then there will be m debits for the append and m + 1 debits for the reverse. The
append function is incremental so we place one of its debits on each of the first m nodes. On
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the other hand, the reverse function is monolithic so we place all m + 1 of its debits on node
m, the first node of the reversed stream. Thus, the debits are distributed such that

! T <m it1 ifi<m
dii)=< m+1 ifi=m and D(i):{Zm—l—l P
0 ifi>m =

This distribution violates the invariant at both node 0 and node m, but discharging the debit on
the first node restores the invariant. O

The format of this argument is typical. Debits are distributed across several nodes for
incremental functions, and al on the same node for monolithic functions. Debit invariants
measure, not just the number of debits on a given node, but the number of debits along the
path from the root to the given node. This reflects the fact that accessing a node requires first
accessing all its ancestors. Therefore, the debits on all those nodes must be zero as well.

This data structure also illustrates a subtle point about nested suspensions — the debits for
a nested suspension may be alocated, and even discharged, before the suspension is physi-
cally created. For example, consider how + (append) works. The suspension for the second
node in the stream is not physically created until the suspension for the first node is forced.
However, because of memoization, the suspension for the second node will be shared when-
ever the suspension for the first nodeis shared. Therefore, we consider a nested suspension to
be implicitly created at the time that its enclosing suspension is created. Furthermore, when
considering debit arguments or otherwise reasoning about the shape of an object, we ignore
whether a node has been physically created or not. Rather we reason about the shape of an
object asif all nodes werein their final form, i.e., as if all suspensions in the object had been
forced.

3.5 ThePhysicist’'s Method

Like the banker’smethod, the physicist’s method can a so be adapted to work with accumul ated
debt rather than accumulated savings. In the traditional physicist’s method, one describes a
potential function ® that represents a lower bound on the accumulated savings. To work with
debt instead of savings, we replace ® with a function W that maps each object to a potential
representing an upper bound on the accumulated debt (or at least, an upper bound on this
object’s portion of the accumulated debt). Roughly speaking, the amortized cost of an operation
isthen the compl ete cost of the operation (i.e., the shared and unshared costs) minusthe change
in potential. Recall that an easy way to cal culate the complete cost of an operationisto pretend
that all computation is strict.

Any changes in the accumulated debt are reflected by changes in the potential. If an op-
eration does not pay any shared costs, then the change in potential is equal to its shared cost,
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so the amortized cost of the operation is equa to its unshared cost. On the other hand if an
operation does pay some of its shared cost, or shared costs of previous operations, then the
change in potential is smaller than its shared cost (i.e., the accumulated debt increases by less
than the shared cost), so the amortized cost of the operation is greater than its unshared cost.
However, the change in potential may never be more than the shared cost — the amortized cost
of an operation may not be less than its unshared cost.

We can justify the physicist’s method by relating it back to the banker’s method. Recall
that in the banker’s method, the amortized cost of an operation was its unshared cost plus the
number of debits discharged. In the physicist's method, the amortized cost is the complete
cost minus the change in potential, or, in other words, the unshared cost plus the difference
between the shared cost and the change in potential. If we consider one unit of potential to be
equivalent to one debit, then the shared cost is the number of debits by which the accumulated
debt could have increased, and the change in potential is the number of debits by which the
accumulated debt did increase. The difference must have been made up by discharging some
debits. Therefore, the amortized cost in the physicist’'s method can also be viewed as the
unshared cost plus the number of debits discharged.

Sometimes, we wish to force a suspension in an object when the potential of the object
is not zero. In that case, we add the object’s potential to the amortized cost. This typically
happens in queries, where the cost of forcing the suspension cannot be reflected by a change in
potential because the operation does not return a new object.

The mgjor difference between the banker’s and physicist's methods is that, in the banker’s
method, we are allowed to force a suspension as soon as the debits for that suspension have
been paid off, without waiting for the debits for other suspensions to be discharged, but in the
physicist’s method, we can force a shared suspension only when we have reduced the entire
accumul ated debt of an object, as measured by the potential, to zero. Since potential measures
only the accumulated debt of an object as a whole and does not distinguish between different
locations, we must pessimistically assume that the entire outstanding debt is associated with
the particul ar suspension we wish to force. For thisreason, the physicist’s method appears to be
less powerful than the banker's method. The physicist’s method is also weaker in other ways.
For instance, it has trouble with operations that take multiple objects as arguments or return
multiple objects as results, for which it is difficult to define exactly what “change in potential”
means. However, when it applies, the physicist’s method tends to be much simpler than the
banker’s method.

Since the physicist's method cannot take advantage of the piecemeal execution of nested
suspensions, there is no reason to prefer incremental functions to monolithic functions. In fact,
a good hint that the physicist’'s method might be applicable isif all or most suspensions are
monolithic.
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3.5.1 Example: Queues

We next adapt our implementation of queues to use the physicist's method. Again, we show
that every operation takes only O(1) amortized time.

Because there is no longer any reason to prefer incremental suspensions over monolithic
suspensions, we use suspended lists instead of streams. In fact, the rear list need not be sus-
pended at all, so we represent it with an ordinary list. Again, we explicitly track the lengths of
the lists and guarantee that the front list is always at least as long as the rear list.

Since the front list is suspended, we cannot access its first element without executing the
entire suspension. We therefore keep aworking copy of a prefix of the front list. Thisworking
copy isrepresented as an ordinary list for efficient access, and is non-empty whenever the front
list is non-empty. The final datatypeis

datatype o Queue= Queueof {W : a list, F: o list susp, LenF:int, R : « list, LenR : int}
The major functions on queues may then be written

fun snoc (Queue {W = w, F=f,LenF =lenF,R=r,LenR = lenR}, z) =
queue {W =w, F=f,LenF=lenF,R==z 1 r,LenR = [enR+1}

fun head (Queue{W ==z > w,...}) =«

funtal (Queue {W ==z w,F=f,LenF=lent’,R=r,LenR = [enR}) =
queue {W = w, F=$tl (forcef), LenF =lenF'—1, R=1r,LenR = [enR})

The pseudo-constructor gueue must enforce two invariants: that £ is no longer than F', and
that ¥ is non-empty whenever F' is non-empty.

fun checkW {W =[],F=/f,LenF=lenF,R=1r,LenR =lenR}) =

Queue {W =forcef,F=f,LenF=lenF,R=1r,LenR = [enR})

| checkW ¢ = Queue ¢

fun checkR (¢ as{W =w, F=f,LenF=[enF,R=r,LenR =lenR}) =

if lenR < lenk then g

elselet val v’ =force f

in{W=uw, F=%(w @rev r), LenF = lenF+lenR, R=[], LenR =0} end

fun queue ¢ = checkW (checkR ¢)

The compl ete implementation of these queues appearsin Figure 3.4.

To analyze these queues using the physicist’s method, we choose a potential function W in
such away that the potential will be zero whenever we force the suspended list. This happens
in two situations. when W becomes empty and when R becomes longer than F'. We therefore
choose ¥ to be

U(q) = min(2|W], [F'| - |R])
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structure PhysicistsQueue: QUEUE =
struct
datatype oo Queue = Queue of {W: a list, F: o list susp, LenF:int, R : o list, LenR : int}
(x Invariants: W is a prefix of force F, W = [] only if F = §[ ], %)
( |F| > |R|, LenF = |F|, LenR = |R| *)

exception EMPTY

val empty = Queue {W =[], F=9$[],LenF=0,R=[], LenR =0}
fun isEmpty (Queue {LenF = lenF, ...}) = (lenF = 0)

fun checkW {W =[], F=f, LenF=lenF,R=r,LenR = lenR}) =

Queue {W =forcef, F=f,LenF=lenF,R=r,LenR = lenR})

| checkW ¢ = Queue ¢

fun checkR (g as{W =w, F=f, LenF =lenF,R=r, LenR = lenR}) =

if lenR < lenF then ¢

elselet val w’ =force f

in{W=uw',F=$(w" @rev r), LenF = lenF + lenR, R=[], LenR =0} end

fun queue ¢ = checkW (checkR ¢)

fun snoc (Queue {W = w, F=f,LenF=lenF,R=r, LenR = lenR}, z) =
queue {W =w, F=f,LenF =lenF,R==z I r, LenR = lenR+1}

fun head (Queue {W =[], ...}) =raise EmMPTY
| head (Queue {W ==z w,...}) =z
fun tail (Queue {W =[], ...}) =raise EMPTY
| tail (Queue {W ==z ::w,F=f,LenF=lent,R=r,LenR =lenR}) =
queue {W = w, F =8l (force f), LenF=lenF—1,R=r,LenR = lenR})
end

Figure 3.4: Amortized queues using the physicist’s method.

Theorem 3.2 The amortized costs of snoc and tail are at most two and four, respectively.

Proof: Every snoc that does not cause arotation simply adds a new element to the rear list,
increasing | 2| by one and decreasing |F'| — | R| by one. The complete cost of the snoc is one,
and the decrease in potential is at most one, for an amortized cost of at most 1 — (—1) = 2.
Every tail that does not cause a rotation removes the first element from the working list and
lazily removes the same element from the front list. This decreases |IW| by oneand |F| — |R|
by one, which decreases the potential by at most two. The complete cost of ¢ail istwo, onefor
the unshared costs (including removing the first element from W) and one for the shared cost
of lazily removing the head of F'. The amortized cost isthereforeat most 2 — (—2) = 4.

Finally, consider a snoc or tail that causes arotation. In the initial queue, |F'| = |R| so
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U = 0. Just before the rotation, |F'| = m and |R| = m 4 1. The shared cost of the rotation
is2m + 1 and the potential of the resulting queue is 2m. The amortized cost of snoc is thus
1+ (2m + 1) — 2m = 2. The amortized cost of tail iS2 + (2m + 1) — 2m = 3. (The
differenceisthat ¢ai/ must also account for the shared cost of removing thefirst element of F'.)
0

Finally, we consider two variations of these queues that on the surface appear to be mod-
est improvements, but which actually break the amortized bounds. These variationsillustrate
common mistakes in designing persistent amortized data structures.

In the first variation, we observe that checkR forces F' during a rotation and installs the
result in W. Wouldn't it be “lazier”, and therefore better, to never force F' until W becomes
empty? The answer is no, and a brief consideration of the potential function reveals why. If
W were very short, then the potential would only increase to 2|W| after the rotation. This
increase would not be large enough to offset the large shared cost of the rotation. Another way
of looking at itisthat, if [W'| = 1 at the time of the rotation, then the front list could be forced
during the very next tail, which does not |eave enough time to pay for the rotation.

In the second variation, we observe that during a tail, we replace F' with $tl (force F).
Creating and forcing suspensions have non-trivial overheads that, even if O(1), can contribute
to a large constant factor. Wouldn't it be “lazier”, and therefore better, to not change F, but
instead to merely decrement LenF' to indicate that the element has been removed? The answer
IS again no, because the removed elements would be discarded al at once when the front list
was finally forced. Thiswould contribute to the unshared cost of the operation, not the shared
cost, making the unshared cost linear in the worst case. Since the amortized cost can never be
less than the unshared cost, this would also make the amortized cost linear.

3.5.2 Example: Bottom-Up Mergesort with Sharing

The majority of examples in the remaining chapters use the banker’s method rather than the
physicist's method. Therefore, we give a second example of the physicist’s method here.

Imagine that you want to sort several similar lists, such as xs and = :: s, or zs @ zs and
ys @ zs. For efficiency, you wish to take advantage of the fact that these lists share common
tails, so that you do not repeat the work of sorting those tails. We call an abstract data type for
this problem a sortable collection.

Figure 3.5 gives a signature for sortable collections. Note that the new function, which
creates an empty collection, is parameterized by the “less than” relation on the elements to be
sorted.

Now, if we create a sortable collection xs’ by adding each of the elements in s, then we
can sort both zs and = :: zs by caling sort xs” and sort (add (z, xs')).
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signature SORTABLE =
sig
type o Sortable
val new : {Less: a x o — bool} — « Sortable (x sortinincreasing order by Less x)
val add: o x « Sortable — « Sortable
val sort : o Sortable — « list
end

Figure 3.5: Signature for sortable collections.

One possible representation for sortable collections is balanced binary search trees. Then
add takes O(log n) worst-case time and sort takes O(n) time. We achieve the same bounds,
but in an amortized sense, using bottom-up mergesort.

Bottom-up mergesort first splitsalist inton ordered segments, where each segment initially
contains asingle element. It then merges equal-sized segments in pairs until only one segment
of each size remains. Finally, segments of unequal size are merged, from smallest to largest.

Suppose we take a snapshot just before the final cleanup phase. Then the sizes of all
segments are distinct powers of 2, corresponding to the one bits of ». Thisisthe representation
wewill use for sortable collections. Then similar collectionswill share all the work of bottom-
up mergesort except for thefinal cleanup phase merging unequal-sized segments. The complete
representation is a suspended list of segments, each of which is an « list, together with the
comparison function and the size.

type o Sortable= {Less: a x a — bool, Size: int, Segments : « list list susp}

Theindividual segments are stored inincreasing order of size, and the elementsin each segment
are stored in increasing order as determined by the comparison function.

The fundamental operation on segmentsis merge, which merges two ordered lists. Except
for being parameterized on [ess, thisfunction is completely standard.

fun merge less (xs, ys) =
let funmrg ([1, ys) = ys
| g (s, [1) = os
| mrg (z = @s, y 2 ys) =if less (z, y) then z 2 mrg (s, y :: ys)
elsey ::mrg (= i xs, ys)
in mrg (zs, ys) end

To add a new element, we create a new singleton segment. If the smallest existing segment
is also a singleton, we merge the two segments and continue merging until the new segment
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is smaller than the smallest existing segment. This merging is controlled by the bits of n. If
the lowest bit of » is zero, then we simply cons the new segment onto the segment list. If the
lowest bit is one, then we merge the two segments and repeat. Of course, al thisis donelazily.

fun add (z, {Less = less, Size = size, Segments = segs }) =
let fun addSeg (seg, segs, size) =
if size mod 2 =0then seg :: segs
else addSeg (merge less (seg, hd segs), tl segs, size div 2)
in {Less = less, Size = size+1, Segments = $addSeg ([z], force segs, size)} end

Finally, to sort a collection, we merge the segments from smallest to largest.

fun sort {Less = less, Segments = segs, ...} =
let fun mergeAll (zs, []) = zs
| mergeAll (zs, seg :: segs) = mergeAll (merge less (s, seqg), segs)
in mergeAll ([], force segs) end

Remark: mergeAll can be viewed as computing
[I]X sy M-e Mg,

where s; isthesth segment and X is |eft-associative, infix notation for merge. Thisis aspecific
instance of a very common program schema, which can be written

cPhr1 DDy

for any ¢ and left-associative 5. Other instances of this schema include summing a list of
integers (¢ = 0 and & = +) or finding the maximum of a list of natural numbers (¢ = 0
and & = max). One of the greatest strengths of functional languages is the ability to define
schemas like this as higher-order functions (i.e., functions that take functions as arguments or
return functions as results). For example, the above schema might be written

funfoldl (f, ¢, []) = ¢
| foldl (f, ¢, x 2 as) =foldl (f, f (¢, ), xs)

Then sort could be written
fun sort {Less = less, Segments = segs, ... } =foldl (merge less, [ ], force segs)

This aso takes advantage of the fact that merge is written as a curried function. A curried
function is a multiargument function that can be partially applied (i.e., applied to just some of
its arguments). The result is a function that takes the remaining arguments. In this case, we
have applied merge to just one of its three arguments, less. The remaining two arguments will
be supplied by foldl. &
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structure BottomUpMergeSort : SORTABLE =
struct
type « Sortable = {Less: a x o — bool, Size: int, Segments: « list list susp}

fun merge less (xs, ys) =
let funmrg ([1, ys) = ys
| mrg (zs, [) = s
| mrg (z s, y i: ys) =if less (z, y) then x ::mrg (zs, y = ys)
elsey :mrg (z :: zs, ys)
inmrg (zs, ys) end

fun new {Less=less} = {Less=less, Size=0, Segments=$[]}
fun add (z, {Less= less, Size = size, Segments = segs}) =
let fun addSeg (seg, segs, size) =
if size mod 2=0then seg :: segs
else addSeg (merge less (seg, hd segs), tl segs, size div 2)
in {Less= less, Size = size+1, Segments = $addSeg ([ =], force segs, size)} end
fun sort {Less= less, Segments = segs, ...} =
let fun mergeAll (zs, []) = zs
| mergeAll (s, seg :: segs) = mergeAll (merge less (s, seq), segs)
in mergeAll ([], force segs) end
end

Figure 3.6: Sortable collections based on bottom-up mergesort.

The complete code for this implementation of sortable collections appearsin Figure 3.6.

We show that add takes O(log ) amortized time and sort takes O(n) amortized time using
the physicist’s method. We begin by defining the potential function ¥, which is completely
determined by the size of the collection:

U(n)=2n-—2 sz(n mod 2¢ + 1)

=0

where b, is the ith bit of n. Note that W(n) is bounded above by 2n and that U(n) = 0 exactly
whenn = 2¥ — 1 for some k.

We first calculate the complete cost of add. Its unshared cost is one and its shared cost is
the cost of performing the mergesin addSeg. Suppose that the lowest % bits of » are one (i.e.,
b; = 1for: < kand b, = 0). Then addSeq performs k& merges. The first combines two lists
of size 1, the second combines two lists of size 2, and so on. Since merging two lists of size m
takes2m steps, addSeqg takes (1+1) + (2+2) 4 - - + (2871 4 281) = 2(F5) 27) = 2(2F — 1)
steps. The complete cost of add istherefore2(2F — 1) + 1 = 2F1 — 1,
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Next, we calculate the change in potential. Let »’ = n + 1 and let b, be the sth bit of »’.
Then,

U(n')—W(n) = 2n' =23 2,bi(n’ mod'Zi +1)—(2n— 22;’20 b;(n mod 2 4 1))
= 2423>72,(bi(n mod 2" + 1) — bi(n’ mod 2° + 1))
= 2oy a)

where §(i) = b;(n mod 2° + 1) — b4(n’ mod 2" + 1). We consider three cases: i < k,1 = k,
and: > k.

e (1 < k) Sinceb; = 1 andd: = 0, §(k) = nmod 2" + 1. But n mod 2' = 2° — 1 sO
§(k) = 2¢.

e (1 = k): Sinceb, = 0and b, = 1, §(k) = —(n’ mod 2% + 1). But n’ mod 2% = 0 s0
§(k)=—1=-b,.

e i > k) Sinced! = b;, 6(k) = bi(n mod 2° — n' mod 2°). But n’ mod 2 = (n +
1) mod 2 = n mod 2° + 1 50§(:) = bi(—1) = —b..

Therefore,
U(n') —W(n) = 24+252,68(i)
2425050 2 + 255, (=b)
2+2(28 = 1) = 25232,
= okl _9p

where B’ isthe number of one bitsin »’. Then the amortized cost of add is
(28 — 1) — (2 —2B"y =28 — 1

Since B’ isO(log n), so isthe amortized cost of add.

Finally, we calculate the amortized cost of sort. The first action of sort is to force the
suspended list of segments. Since the potential is not necessarily zero, this adds ¥(n) to the
amortized cost of the operation. It next merges the segments from smallest to largest. The
worst case iswhen n = 2¢ — 1, so that there is one segment of each size from 1 to 2*-!.
Merging these segments takes

(T42)+ (1 +24+4) + (L +2+4+8) 4+ (1424 +251)
k=1 ¢ k—1

=YY= " -)=2""-4) - (k-1)=2n—k—1

=1 7=0 =1

steps altogether. The amortized cost of sort istherefore O(n) + ¥(n) = O(n).
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3.6 Related Work

Debits Some analyses using the traditional banker’s method, such as Tarjan’s analysis of
path compression [Tar83], include both credits and debits. Whenever an operation needs more
credits than are currently available, it creates a credit-debit pair and immediately spends the
credit. The debit remains as an obligation that must be fulfilled. Later, a surplus credit may be
used to discharge the credit.? Any debits that remain at the end of the computation add to the
total actual cost. Although there are some similarities between the two kinds of debits, there
are also some clear differences. For instance, with the debits introduced in this chapter, any
debits |leftover at the end of the computation are silently discarded.

It is interesting that debits arise in Tarjan’s analysis of path compression since path com-
pression is essentially an application of memoization to the find function.

Amortization and Persistence Until this work, amortization and persistence were thought
to be incompatible. Several researchers [DST94, Ram92] had noted that amortized data struc-
tures could not be made efficiently persistent using existing techniquesfor adding persistence to
ephemeral data structures, such as [DSST89, Die89], for reasons similar to those cited in Sec-
tion 3.2. Ironically, these techniques produce persistent data structures with amortized bounds,
but the underlying data structure must be worst-case. (These techniques have other limitations
aswell. Most notably, they cannot be applied to data structures supporting functions that com-
bine two or more versions. Examples of offending functions include list catenation and set
union.)

The idea that lazy evaluation could reconcile amortization and persistence first appeared,
in rudimentary form, in [Oka95c|. The theory and practice of this technique was further devel-
oped in [Oka95a, Okad6b].

Amortization and Functional Data Structures Inhisthesis, Schoenmakers[Sch93] studies
amortized data structures in a strict functional language, concentrating on formal derivations
of amortized bounds using the traditional physicist’'s method. He avoids the problems of per-
sistence by insisting that data structures only be used in a single-threaded fashion.

Queues Gries [Gri8l, pages 250-251] and Hood and Melville [HM81] first proposed the
gueues in Section 3.1.1. Burton [Bur82] proposed a similar implementation, but without the
restriction that the front list be non-empty whenever the queue is non-empty. (Burton combines
head and tail into a single operation, and so does not require this restriction to support read
efficiently.) The queuesin Section 3.4.2 first appeared in [Oka9d6h].

2Thereisaclear analogy here to the spontaneous creation and mutual annihilation of particle-antiparticle pairs
in physics. In fact, a better name for these debits might be “anticredits’.
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Time-Analysis of Lazy Programs Several researchers have developed theoretical frame-
works for analyzing the time complexity of lazy programs [BH89, San90, San95, Wad38g].
However, these frameworks are not yet mature enough to be useful in practice. One difficulty
is that these frameworks are, in some ways, too general. In each of these systems, the cost of
aprogram is calculated with respect to some context, which is a description of how the result
of the program will be used. However, this approach is often inappropriate for a methodol ogy
of program development in which data structures are designed as abstract data types whose
behavior, including time complexity, is specified in isolation. In contrast, our analyses prove
results that are independent of context (i.e., that hold regardless of how the data structures are
used).



Chapter 4

Eliminating Amortization

Most of the time, we do not care whether a data structure has amortized bounds or worst-case
bounds; our primary criteriafor choosing one data structure over another are overal efficiency
and simplicity of implementation (and perhaps availability of source code). However, in some
application areas, it is important to bound the running times of individual operations, rather
than sequences of operations. In these situations, a worst-case data structure will often be
preferable to an amortized data structure, even if the amortized data structure is smpler and
faster overall. Raman [Ram92] identifies several such application areas, including

e Real-time systems: In real-time systems, predictability is more important than raw
speed [Sta88]. If an expensive operation causes the system to miss a hard deadline,
it does not matter how many cheap operations finished well ahead of schedule.

e Parallel systems: If one processor in a Synchronous system executes an expensive oper-
ation while the other processors execute cheap operations, then the other processors may
sit idle until the slow processor finishes.

e Interactive systems:. Interactive systems are similar to real-time systems — users often
value consistency more than raw speed [But83]. For instance, users might prefer 100 1-
second response times to 99 0.25-second response times and 1 25-second response time,
even though the latter scenario istwice as fast.

Remark: Raman also identified afourth application area— persistent data structures. Asdis-
cussed in the previous chapter, amortization was thought to be incompatible with persistence.
But, of course, we now know this to be untrue. &

Does this mean that amortized data structures are of no interest to programmers in these
areas? Not at all. Since amortized data structures are often simpler than worst-case data struc-
tures, it is sometimes easier to design an amortized data structure, and then convert it to a
worst-case data structure, than to design a worst-case data structure from scratch.
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In this chapter, we describe scheduling — atechnique for converting many lazy amortized
data structures to worst-case data structures by systematically forcing lazy componentsin such
away that no suspension ever takes very long to execute. Scheduling extends every object with
an extra component, called a schedule, that regulates the order in which the lazy components
of that object are forced.

4.1 Scheduling

Amortized and worst-case data structures differ mainly in when the computations charged to a
given operation occur. In aworst-case data structure, all computations charged to an operation
occur during the operation. In an amortized data structure, some computations charged to
an operation may actually occur during later operations. From this, we see that virtually all
nominally worst-case data structures become amortized when implemented in an entirely lazy
language because many computations are unnecessarily suspended. To describe true worst-
case data structures, we therefore need a strict language. If we want to describe both amortized
and worst-case data structures, we need alanguage that supports both lazy and strict evaluation.
Given such a language, we can also consider an intriguing hybrid approach: worst-case data
structures that use lazy evaluation internally. We will obtain such data structures by beginning
with lazy amortized data structures and modifying them in such a way that every operation
runsin the allotted time.

In alazy amortized data structure, any specific operation might take longer than the stated
bounds. However, this only occurs when the operation forces a suspension that has been paid
off, but that takes a long time to execute. To achieve worst-case bounds, we must guarantee
that every suspension executes in less than the allotted time.

Define the intrinsic cost of a suspension to be the amount of time it takes to force the
suspension under the assumption that all other suspensions on which it depends have already
been forced and memoized, and therefore each take only O(1) timeto execute. (Thisissimilar
to the definition of the unshared cost of an operation.) The first step in converting an amortized
data structure to a worst-case data structure is to reduce the intrinsic cost of every suspension
to less than the desired bounds. Usually, thisinvolves rewriting expensive monolithic functions
as incremental functions. However, just being incremental is not always good enough — the
granularity of each incremental function must be sufficiently fine. Typically, each fragment of
an incremental function will have an O(1) intrinsic cost.

Even if every suspension has a small intrinsic cost, however, some suspensions might still
take longer than the allotted time to execute. This happens when one suspension depends on
another suspension, which in turn depends on a third, and so on. If none of the suspensions
have been previously executed, then forcing the first suspension will result in a cascade of
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forces. For example, consider the following computation:
(...((Sl-H-Sz)-H-SS)-H-...)-H-Sk

4 is the canonical incremental function on streams. It does only one step of the append at a
time, and each step has an O(1) intrinsic cost. However, it also forces the first node of its left
argument. In this example, forcing the first node of the stream returned by the outermost +
forces the first node of the stream returned by the next +, and so on. Altogether, this takes
O(k) timeto execute (or even more if thefirst node of s; is expensive to force).

The second step in converting an amortized data structure to a worst-case data structure
is to avoid cascading forces by arranging that, whenever we force a suspension, any other
suspensions on which it depends have aready been forced and memoized. Then, no suspension
takeslonger than itsintrinsic cost to execute. We accomplish this by systematically scheduling
the execution of each suspension so that each is ready by the time we need it. The trick is to
regard paying off debt as aliteral activity, and to force each suspension asit is paid for.

We extend every object with an extra component, called the schedule, that, at |east concep-
tually, contains a pointer to every unevaluated suspension in the object. (Some of the suspen-
sionsin the schedule may have already been evaluated in a different logical future, but forcing
these suspensions a second time does no harm since it can only make our algorithms run faster
than expected, not slower.) Every operation, in addition to whatever other manipulations it
performs on an object, forces the first few suspensions in the schedule. The exact number of
suspensions forced is governed by the amortized analysis; typically, every suspension takes
O(1) time to execute, so we force a number of suspensions proportional to the amortized cost
of the operation. Depending on the data structure, maintaining the schedule can be non-trivial.
For this technique to apply, adding new suspensions to the schedule, or retrieving the next
suspension to be forced, cannot require more time than the desired worst-case bounds.

4.2 Real-TimeQueues

As an example of thistechnique, we convert the amortized banker’s queues of Section 3.4.2 to
worst-case queues. Queues such as these that support all operationsin O(1) worst-case time
are called real-time queues [HM81].

In the original data structure, queues are rotated using + and reverse. Since reverse IS
monolithic, our first task isfinding away to perform rotationsincrementally. This can be done
by executing one step of the reverse for every step of the +. We define a function rotate such
that

rotate (f, r, a) = f # reverse r #+ «

Then
rotate (f, r, $Nil) = / + reverse r
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The extraargument « is called an accumulating parameter and is used to accumulate the partial
results of reversing r. Itisinitially empty.

Rotations occur when |R| = |F| + 1, so initidly || = |f| + 1. This relationship is
preserved throughout the rotation, so when f is empty, » contains a single element. The base
case istherefore

rotate ($Nil, $Cons (y, $Nil), «) = ($Nil) + reverse ($Cons (y, $Nil)) + «
= $Cons(y, a)

In the recursive case,

rotate ($Cons (z, f), $Cons (y, r), a) = ($Cons(z, f)) # reverse ($Cons (y, r)) # a
$Cons (z, f + reverse ($Cons (y, 1)) + a)
$Cons (z, f + reverse r + $Cons (y, a))

= $Cons (z, rotate (f, r, $Cons (y, a)))

The complete code for rotate is

fun rotate (f, r, a) = $case (f, r) of
($Nil, $Cons (y, )) = Cons (y, a)
| ($Cons (z, f), $Cons (y, 7)) = Cons (z, rotate (f', r’, $Cons (y, «)))

Note that the intrinsic cost of every suspension created by rotate is O(1). Just rewriting the
pseudo-constructor queue to cal rotate (f, r, $Nil) instead f + reverse r, and making no
other changes, already drastically improves the worst-case behavior of the queue operations
from O(n) to O(log n) (see [Oka9d5c]), but we can further improve the worst-case behavior to
O(1) using scheduling.

We begin by adding a schedul e to the datatype. The origina datatypeis
datatype o Queue = Queue {F : « Stream, LenF : int, R : « Stream, LenR : int}

We add a new field S of type o Stream that represents a schedule for forcing the nodes of
F. S issome suffix of F' such that all the nodes before S in F' have already been forced and
memoized. To force the next suspension in F', we simply inspect the first node of 5.

Besides adding S, we make two further changes to the datatype. First, to emphasize the fact
that the nodes of R need not be scheduled, we change R from astream to alist. Thisinvolves
minor changes to rotate. Second, we eliminate the length fields. Aswe will see shortly, we no
longer need the length fields to determine when R becomes longer than ' — instead, we will
obtain this information from the schedule. The new datatype is thus

datatype o Queue = Queueof {F: a stream, R: « list, S: a stream}

Now, the major queue functions are simply
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structure Real TimeQueue : QUEUE =
struct
datatype oo Queue = Queue of {F: « stream, R: « list, S: o stream}
(x Invariant: |S| = |F| — |R| *)

exception EMPTY

val empty = Queue {F =$Nil, R=[], S=$Nil }
fun isEmpty (Queue {F=f,...})=null f

fun rotate (f, r, a) = $case (f, r) of
($Nil, $Cons (y, -)) = Cons(y, a)
| ($Cons (z, f'), $Cons (y, r’)) = Cons (z, rotate (', r’, $Cons (y, a)))

fun queue {F=f,R=r, S=%$Cons(z, s)} =Queue {F=f,R=r,S=s}

| queue {F=f,R=r,S=$Nil} =let val /' =rotate (f, r, $Nil)

inQueue{F=f'R=[],S=f"} end

fun snoc (Queue {F=f,R=r,S=s},z) =queue{F=f,R=z::r,S=s}
fun head (Queue {F = $Nil, ... }) =raise EMPTY

| head (Queue {F =$Cons(z, f),...}) ==
fun tail (Queue {F=$Nil,...}) =raise EMPTY

| tail (Queue {F=3%Cons(z, f),R=r,S=s})=queue{F=f,R=r,S=s}

end

Figure4.1: Real-time queues based on scheduling [Oka95c].

funsnoc (Queue{F=f,R=r,S=s},z)=queue{F=f,R=z 1 r,S=s}
fun head (Queue {F = $Cons (z, f),...}) =«
fun tail (Queue {F=$Cons (z, f),R=r,S=s})=queve{F=f,R=r,S=s}

The pseudo-constructor gueue maintainstheinvariant that |.S| = |F'| — | R| (which incidentally
guarantees that |F'| > |R| since |.S| cannot be negative). snoc increases |R| by one and tail
decreases | F'| by one, so when queue iscaled, |S| = |F| — |R| + 1. If S is non-empty, then
we restore the invariant by simply taking the tail of S. If S isempty, then R is onelonger than
F', so werotate the queue. In either case, inspecting S to determine whether or not it is empty
forces and memoizes the next suspension in the schedule.

fun queue {F=f,R=r, S=$Cons(z, s)} =Queue {F=f,R=1r,S=s}
| queue {F=f,R=r, S=$Nil} =let val /' = rotate (f, r, $Nil)
inQueue {F=/,R=[],S=/'} end

The complete code for thisimplementation appearsin Figure 4.1.
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In the amortized analysis, the unshared cost of every queue operation is O(1). Therefore,
every queue operation does only O(1) work outside of forcing suspensions. Hence, to show
that all queue operations runin O(1) worst-case time, we must prove that no suspension takes
more than O(1) time to execute.

Only three forms of suspensions are created by the various queue functions.

e $Nil is created by empty and queue (in the initial call to rotate). This suspension is
trivial and therefore executes in O(1) time regardless of whether it has been forced and
memoized previoudly.

e $Cons (y, ) iscreated in the second line of rotate and isalso trivial.

e Every call to rotate immediately creates a suspension of the form

$case (f, r, a) of
($Nil, [y], @) = Cons (y, a)
| ($Cons (z, ['), y :: 7', a) = Cons (z, rotate (f', r', $Cons (y, a)))

The intrinsic cost of this suspension is O(1). However, it also forces the first node of
f, creating the potential for a cascade of forces. But note that f is a suffix of the front
stream that existed just before the previous rotation. The treatment of the schedule S
guarantees that every node in that stream was forced and memoized prior to the rotation.
Forcing thefirst node of f simply looks up that memoized valuein O(1) time. The above
suspension therefore takes only O(1) time atogether.

Since every suspension executes in O(1) time, every queue operation takes only O(1) worst-
case time.

Hint to Practitioners. These queues are not particularly fast when used ephemerally, because
of overheads associated with memoizing valuesthat are never looked at again, but arethe fastest
known real-time implementation when used persistently.

4.3 Bottom-Up Mergesort with Sharing

As a second example, we modify the sortable collections from Section 3.5.2 to support add in
O(log n) worst-case time and sort in O(n) worst-case time.

The only use of lazy evaluation in the amortized implementation is the suspended call
to addSeq in add. This suspension is clearly monolithic, so the first task is to perform this
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computation incrementally. In fact, we need only make merge incremental; since addSeg
takesonly O(log n) steps, we can afford to execute it strictly. We therefore represent sesgments
as streams rather than lists, and eliminate the suspension on the collection of segments. The
new type for the Segments field isthus o Stream list rather than o list list susp.

Rewriting merge, add, and sort to use this new type is straightforward, except that sort
must convert the final sorted stream back to alist. Thisis accomplished by the stream ToList
conversion function.

fun streamToList ($Nil) =[]
| streamToList ($Cons (z, xs)) = « :: streamToList zs

The new version of merge, shown in Figure 4.2, performs one step of the merge at atime,
with an O(1) intrinsic cost per step. Our second goal is to execute enough merge steps per
add to guarantee that any sortable collection contains only O(n) unevaluated suspensions.
Then sort executes at most O(n) unevaluated suspensions in addition to its own O(rn) work.
Executing these unevaluated suspensions takes at most O(n) time, so sort takes only O(n)
time altogether.

In the amortized analysis, the amortized cost of add was approximately 25’, where B’ is
the number of one bitsin»’ = n + 1. This suggests that add should execute two suspensions
per one bit, or equivalently, two suspensions per segment. We maintain a separate schedule for
each segment. Each schedule is an o Stream list containing the partia results of the merge
sequence that created this segment. The complete typeistherefore

type o Schedule = o Stream list
type o Sortable= {Less: a x a — bool, Size: int, Segments : (« Stream x « Schedule) list}

To execute one merge step from a schedule, we call the function exec! .

funexecl[] =[]
| execl (($Nil) :: sched) = execl sched
| execl (($Cons (z, s)) = sched) = as : sched

In the second clause, we reach the end of one stream and execute the first step of the next
stream. This cannot loop because only the first stream in a schedule can ever be empty. The
function exec2PerSeg invokes exec twice per segment.

fun exec2PerSeg [] =[]
| exec2PerSeg ((zs, sched) :: segs) = (s, execl (execl sched)) :: exec2PerSeg segs

Now, add cals exec2PerSeq, but it is also responsible for building the schedule for the new
segment. If the lowest & bits of n are one, then adding a new element will trigger £ merges, of
theform

((s0 ™ 51) M sp) M-+ X sy,
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where s, iSthe new singleton segment and s . . . s, arethefirst £ segments of the existing col-
lection. The partial results of this computation are s;, . . . s;., where s, = sg and s’ = s/_; X s;.
Since the suspensionsin s; depend on the suspensionsin s;_,, we must schedul e the execution
of s;_, before the execution of s.. The suspensions in s, also depend on the suspensionsiin s;,
but we guaranteethat s, . . . s have been completely evaluated at the time of the call to add.

The final version of add, that creates the new schedule and executes two suspensions per
segment, is

fun add (z, {Less = less, Size = size, Segments = segs }) =
let fun addSeg (zs, segs, size, rsched) =
if size mod 2 =0 then (zs, rev (zs :: rsched)) :: segs
elselet val ((zs', []) :: segs’) = segs
in addSeg (merge less (zs, xs'), segs’, size div 2, xs 2 rsched)
val segs’ = addSeg ($Cons (z, $Nil), segs, size, [])
in {Less = less, Size = size+1, Segments = exec2PerSeg segs'} end

The accumulating parameter rsched collectsthe newly merged streamsin reverse order. There-
fore, we reverse it back to the correct order on the last step. The pattern match in line 4 asserts
that the old schedule for that segment is empty, i.e., that it has already been completely exe-
cuted. We will see shortly why this true.

The complete code for this implementation is shown in Figure 4.2. add has an unshared
cost of O(logn) and sort has an unshared cost of O(n), so to prove the desired worst-case
bounds, we must show that the O(log n) suspensions forced by add take O(1) time each, and
that the O(n) unevaluated suspensions forced by sort take O(n) time altogether.

Every merge step forced by add (through exzec2PerSeg and exec1) depends on two other
streams. If the current step is part of the stream s/, then it depends on the streams s,_; and s;.
The stream s/_, was scheduled before s’, so s’ _; has been completely evaluated by the time
we begin evaluating s,. Furthermore, s; was completely evaluated before the add that created
s;. Since the intrinsic cost of each merge step is O(1), and the suspensions forced by each
step have aready been forced and memoized, every merge step forced by add takesonly O(1)
worst-case time.

The following lemma establishes both that any segment involved in amerge by addSeg has
been completely evaluated and that the collection asawhole contains at most O(n ) uneval uated
suspensions.

Lemma 4.1 In any sortable collection of size », the schedule for a segment of size m = 2
contains a total of at most 2m — 2(n mod m + 1) elements.

Proof: Consider a sortable collection of size n, where the lowest £ bitsof n areones (i.e., n
can be written c2¥*+! 4 (2% — 1), for someinteger c). Then add produces a new segment of size
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structure ScheduledBottomUpMergeSort : SORTABLE =
struct
type o Schedule = o Stream list
type o Sortable = {Less: o x a — bool, Size: int, Segments: (« Stream x « Schedule) list}

fun merge less (xs, ys) =
let fun mrg ($Nil, ys) = ys
| mrg (zs, $Nil) = zs
| mrg (zs as$Cons (z, zs'), ys as$Cons (y, ys')) =
if less (z, y) then $Cons (z, mrg (x5, ys))
else $Cons (y, mrg (zs, ys'))
in mrg (zs, ys) end

fun execl[] =[]
| execl (($Nil) :: sched) = execl sched
| execl (($Cons (z, xs)) :: sched) = as :: sched
fun exec2PerSeg [] =[]
| exec2PerSeg ((zs, sched) :: segs) = (xs, execl (execl sched)) :: exec2PerSeg segs

fun new {Less= less} = {Less= less, Size=0, Segments=[]}
fun add (z, {Less= less, Size = size, Segments = segs }) =
let fun addSeg (zs, segs, size, rsched) =
if size mod 2=0then (zs, rev (zs :: rsched)) :: segs
elselet val ((zs', [1) :: segs’) = segs
in addSeg (merge less (x5, ©s'), segs’, size div 2, xs :: rsched)
val segs’ = addSeg ($Cons (z, $Nil), segs, size, [])
in {Less= less, Size = size+1, Segments = exec2PerSeg segs'} end
fun sort {Less= less, Segments = segs, ...} =
let fun mergeAll (zs, []) = zs
| mergeAll (s, (zs', sched) :: segs) = mergeAll (merge less (¢s, x5'), segs)
fun streamToList ($Nil) =[]
| streamToList ($Cons (z, s)) = = :: streamToList s
in streamToL.ist (mergeAll ($Nil, segs)) end

end

Figure 4.2: Scheduled bottom-up mergesort.

m = 2*, whose schedule contains streamsof sizes 1,2, 4, ..., 2*. Thetotal size of this schedule
is2k! 1 = 2m — 1. After executing two steps, the size of the scheduleis 2m — 3. The size of
thenew collectionisn’ = n+1 = 2¥t14+2*%, Since2m—3 < 2m—2(n’ mod m+1) = 2m—2,
the lemma holds for this segment.

Every segment of size m' larger than m is unaffected by the add, except for the execution
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of two steps from the segment’s schedule. The size of the new schedule is bounded by
2m’ —2(n mod m’' + 1) — 2 = 2m' — 2(n' mod m’ + 1),
so the lemma holds for these segments as well. O

Now, whenever the & lowest bits of » are ones (i.e., whenever the next add will merge the
first & segments), we know by Lemma 4.1 that, for any segment of size m = 2, wherei < k,
the number of elementsin that segment’s schedule is at most

2m —2(nmodm+1)=2m —-2((m—-1)4+1) =10

In other words, that segment has been completely evaluated.
Finally, the combined schedules for all segments comprise at most

23 52" — (nmod 2° + 1)) = 2n — 23 b(n mod 2 + 1)
=0 =0
elements, where b; is the sth bit of n. Note the similarity to the potential function from the
physicist’s analysis in Section 3.5.2. Since this total is bounded by 2n, the collection as a
whole contains only O(n) unevaluated suspensions, and therefore sort takes only O(n) worst-
case time.

4.4 Related Work

Eliminating Amortization Dietz and Raman [DR91, DR93, Ram92] have devised a frame-
work for eliminating amortization based on pebble games, where the derived worst-case ago-
rithms correspond to winning strategies in some game. Others have used ad hoc techniques
similar to scheduling to eliminate amortization from specific data structures such as relaxed
heaps [DGST88] and implicit binomial queues [CMP88]. The form of scheduling described
here was first applied to queues in [Oka9d5c] and later generalized in [Oka96b].

Queues The queue implementation in Section 4.2 first appeared in [Oka95c]. Hood and
Melville [HM81] presented the first purely functional implementation of real-time queues,
based on a technique known as global rebuilding [Ove83], which will be discussed further in
the next chapter. Their implementation does not use lazy evaluation and is more complicated
than ours.



Chapter 5

L azy Rebuilding

The next four chapters describe general techniques for designing functional data structures. We
begin in this chapter with lazy rebuilding, a variant of global rebuilding [Ove83].

5.1 Batched Rebuilding

Many data structures obey balance invariantsthat guarantee efficient access. The canonical ex-
ampleisbalanced binary search trees, which improve the worst-case running time of many tree
operations from the O(n) required by unbalanced trees to O(log n). One approach to main-
taining a balance invariant is to rebalance the structure after every update. For most balanced
structures, thereis anotion of perfect balance, which is aconfiguration that minimizes the cost
of subsequent operations. However, since it is usually too expensive to restore perfect balance
after every update, most implementations settle for approximations of perfect balance that are
at most a constant factor slower. Examples of this approach include AVL trees [AVL62] and
red-black trees [GS7§].

However, provided no update disturbs the balance too drastically, an attractive alternative
is to postpone rebalancing until after a sequence of updates, and then to rebalance the entire
structure, restoring it to perfect balance. We call this approach batched rebuilding. Batched
rebuilding yields good amortized time bounds provided that (1) the data structure is not rebuilt
too often, and (2) individual updates do not excessively degrade the performance of later op-
erations. More precisely, condition (1) states that, if one hopes to achieve abound of O( f(n))
amortized time per operation, and the global transformation requires O(g(n)) time, then the
global transformation cannot be executed any more frequently than every ¢ - g(n)/f(n) oper-
ations, for some constant ¢. For example, consider binary search trees. Rebuilding a tree to
perfect balance takes O(n) time, so if one wants each operation to take O(log n) amortized
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time, then the data structure must not be rebuilt more often than every ¢ - n/ log n operations,
for some constant c.

Assume that a data structure is to be rebuilt every ¢ - g(n)/ f(n) operations, and that an
individual operation on a newly rebuilt data structure requires O(f(n)) time (worst-case or
amortized). Then, condition (2) states that, after upto ¢ - g(n)/ f(n) updates to a newly rebuilt
data structure, individual operations must still take only O( f(n)) time (i.e., the cost of an indi-
vidual operation can only degrade by a constant factor). Update functions satisfying condition
(2) are called weak updates.

For example, consider the following approach to implementing a del ete function on binary
search trees. Instead of physically removing the specified node from the tree, leave it in the
tree but mark it as deleted. Then, whenever half the nodes in the tree have been deleted, make
aglobal pass removing the deleted nodes and restoring the tree to perfect balance. Does this
approach satisfy both conditions, assuming we want del etions to take O(log r ) amortized time?

Suppose atree contains » nodes, up to half of which are marked as deleted. Then removing
the deleted nodes and restoring the tree to perfect balance takes O(n) time. We execute the
transformation only every 1n delete operations, so condition (1) is satisfied. In fact, condition
(1) would alow us to rebuild the data structure even more often, as often as every ¢ - n/logn
operations. The naive delete algorithm finds the desired node and marks it as deleted. This
takes O(log n) time, even if up to half the nodes have been marked as deleted, so condition
(2) is satisfied. Note that even if half the nodes in the tree are marked as deleted, the average
depth per active node is only about one greater than it would be if the deleted nodes had been
physically removed. This degrades each operation by only a constant additive factor, whereas
condition (2) allows for each operation to be degraded by a constant multiplicative factor.
Hence, condition (2) would allow us to rebuild the data structure even less often.

In the above discussion, we described only deletions, but of course binary search trees
typically support insertions as well. Unfortunately, insertions are not weak because they can
create a deep path very quickly. However, a hybrid approach is possible, in which insertions
are handled by local rebalancing after every update, as in AVL trees or red-black trees, but
deletions are handled via batched rebuilding.

As a second example of batched rebuilding, consider the batched queues of Section 3.1.1.
The global rebuilding transformation reverses therear list into thefront list, restoring the queue
to a state of perfect balance in which every element is contained in the front list. As we have
already seen, batched queues have good amortized efficiency, but only when used ephemerally.
Under persistent usage, the amortized bounds degrade to the cost of the rebuilding transforma-
tion because it is possible to trigger the transformation arbitrarily often. In fact, thisis true for
all data structures based on batched rebuilding.
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5.2 Global Rebuilding

Overmars [Ove83] developed a technique for eliminating the amortization from batched re-
building. He called thistechnique global rebuilding. The basic ideaisto execute the rebuilding
transformation incrementally, performing a few steps per normal operation. This can be use-
fully viewed as running the rebuilding transformation as a coroutine. The tricky part of global
rebuilding is that the coroutine must be started early enough that it can finish by the time the
rebuilt structure is needed.

Concretely, global rebuilding is accomplished by maintaining two copies of each object.
The primary, or working, copy is the ordinary structure. The secondary copy is the one that
is gradually being rebuilt. All queries and updates operate on the working copy. When the
secondary copy is completed, it becomes the new working copy and the old working copy is
discarded. A new secondary copy might be started immediately, or the object may carry on for
awhile without a secondary structure, before eventually starting the next rebuilding phase.

There is a further complication to handle updates that occur while the secondary copy is
being rebuilt. The working copy will be updated in the normal fashion, but the secondary copy
must be updated as well or the effect of the update will be lost when the secondary copy takes
over. However, the secondary copy will not in general be represented in a form that can be
efficiently updated. Thus, these updates to the secondary copy are buffered and executed, a
few at atime, after the secondary copy has been rebuilt, but before it takes over as the working

copy.

Global rebuilding can be implemented purely functionally, and has been several times.
For example, the real-time queues of Hood and Melville [HM81] are based on this technique.
Unlike batched rebuilding, global rebuilding has no problems with persistence. Since no one
operation is particularly expensive, arbitrarily repeating operations has no effect on the time
bounds. Unfortunately, global rebuilding is often quite complicated. In particular, representing
the secondary copy, which amounts to capturing the intermediate state of a coroutine, can be

quite messy.

5.3 Lazy Rebuilding

The implementation of queues in Section 3.5.1, based on the physicist's method, is closely
related to global rebuilding, but there is an important difference. Asin global rebuilding, this
implementation keeps two copies of thefront list, the working copy W and the secondary copy
F, with al queries being answered by the working copy. Updatesto F (i.e., tail operations)
are buffered, to be executed during the next rotation, by writing

... F=8tl (forcef) ...
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In addition, thisimplementation takes care to start (or at least set up) therotation long beforeits
result is needed. However, unlike global rebuilding, this implementation does not execute the
rebuilding transformation (i.e., the rotation) concurrently with the normal operations; rather, it
pays for the rebuilding transformation concurrently with the normal operations, but then exe-
cutes the transformation all at once at some point after it has been paid for. In essence, we have
replaced the complications of explicitly or implicitly coroutining the rebuilding transformation
with the simpler mechanism of lazy evaluation. We call this variant of global rebuilding lazy
rebuilding.

The implementation of queues in Section 3.4.2, based on the banker's method, reveals
a further simplification possible under lazy rebuilding. By incorporating nested suspensions
into the basic data structure — for instance, by using streams instead of lists — we can often
eliminate the distinction between the working copy and the secondary copy and employ asingle
structure that combines aspects of both. The “working” portion of that structure is the part that
has already been paid for, and the “ secondary” portion isthe part that has not yet been paid for.

Global rebuilding has two advantages over batched rebuilding: it is suitable for implement-
ing persistent data structures and it yields worst-case bounds rather than amortized bounds.
Lazy rebuilding shares the first advantage, but, at least in its simplest form, yields amortized
bounds. However, if desired, worst-case bounds can often be recovered using the schedul-
ing techniques of Chapter 4. For example, the real-time queues in Section 4.2 combine lazy
rebuilding with scheduling to achieve worst-case bounds. In fact, when lazy rebuilding is
combined with scheduling, it can be viewed as an instance of global rebuilding in which the
coroutines are reified in a particularly simple way using lazy evaluation.

5.4 Double-Ended Queues

As further examples of lazy rebuilding, we next present several implementations of double-
ended queues, aso known as deques. Deques differ from FIFO queues in that elements can
be both inserted and deleted from either end of the queue. A signature for deques appearsin
Figure5.1. This signature extends the signature for queues with three new functions. cons (in-
sert an element at the front), last (return the rearmost element), and init (remove the rearmost
element).

Remark: Notethat the signature for queuesisastrict subset of the signature for deques — the
same names have been chosen for the types, exceptions, and overlapping functions. Because
deques are thus a strict extension of queues, Standard ML will allow usto use a deque module
wherever a queue module is expected. &
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signature DEQUE =
sig
type o Queue
exception EMPTY

val empty : « Queue
val isEmpty : o Queue — baool

(* insert, inspect, and remove the front element )

val cons  : a X a Queue — o Queue

valhead : o Queue— « (x raises EMPTY if queue isempty *)
val tail : o Queue — o Queue (x raises EMPTY if queue isempty )
(* insert, inspect, and remove the rear element )

val snoc  : « Queue x o — « Queue

val last » o Queue — o (x raises EMPTY if queue isempty )
val init » o Queue — o Queue (x raises EMPTY if queue isempty *)

end

Figure 5.1: Signature for double-ended queues.

54.1 Output-restricted Deques

First, note that extending the queue implementations from Chapters 3 and 4 to support cons,
in addition to snoc, istrivial. A queue that supportsinsertions at both ends, but deletions from
only one end, is called an output-restricted deque.

For example, we can implement cons for the banker’s queues of Section 3.4.2 as follows:

fun cons (z, Queue {F=f, LenF = lenf', R=r,LenR = lenR}) =
Queue {F =$Cons (z, f), LenF = lenF'+1, R=r,LenR = [enR }

Note that we invoke the true constructor Queue rather than the pseudo-constructor queue be-
cause adding an element to F' cannot possibly make £’ shorter than R.

Similarly, we can easily extend the real-time queues of Section 4.2.

fun cons (z, Queue {F=f,R=r,S=s}) =
Queue {F = $Cons (z, f), R=r, S=3$Cons (z, s)})

We add = to S only to maintain the invariant that |S| = |F'| — |R|. Again, we invoke the true
constructor Queue rather than the pseudo-constructor queue.
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5.4.2 Banker’'sDeques

Deqgues can be represented in essentially the same way as queues, as two streams (or lists) F
and R, plus some associated information to help maintain balance. For queues, the notion of
perfect balanceisfor all the elementsto be in the front stream. For deques, the notion of perfect
balance is for the elements to be evenly divided between the front and rear streams. Since we
cannot afford to restore perfect balance after every operation, we will settle for guaranteeing
that neither stream is more than about ¢ times longer than the other, for some constant ¢ > 1.
Specifically, we maintain the following balance invariant:

|F|<c¢R|+1 AN |R| <¢|lF|+1

The “+1” in each term allows for the only element of a singleton queue to be stored in either
stream. Note that both streams will be non-empty whenever the queue contains at least two
elements. Whenever the invariant would otherwise be violated, we restore the queue to perfect
balance by transferring elements from the longer stream to the shorter stream until both streams
have the same length.

Using these ideas, we can adapt either the banker’s queues of Section 3.4.2 or the physicist’s
queues of Section 3.5.1 to obtain deques that support every operation in O(1) amortized time.
Because the banker’s queues are slightly simpler, we choose to begin with that implementation.

The type of double-ended queues is precisely the same as for ordinary queues.
datatype o Queue = Queue {F : « Stream, LenF : int, R : « Stream, LenR : int}
The functions on the front element are defined as follows:

fun cons(Queue {F=f,LenF =lenF,R=r,LenR =lenR}, z) =
queue {F =3$Cons (z, /), LenF=lenF+1, R=r, LenR = lenR }
fun head (Queue {F = $Nil, R=$Cons (z, _), ...} ==
| head (Queue {F = $Cons (z, f),...}) =«
fun tail (Queue {F = $Nil, R=%$Cons(z, _), ...} =empty
| tail (Queue {F = $Cons (z, f), LenF=lenF',R=1r,LenR = [enR}) =
queue {F=f,LenF=lenF'—1, R=1r,LenR = [enR}

The first clauses of head and tail handle singleton queues where the single element is stored
in the rear stream. The functions on the rear element — snoc, last, and init — are defined
symmetrically on R rather than F'.

The interesting portion of this implementation is the pseudo-constructor gueue, which re-
stores the queue to perfect balance when one stream becomes too long by first truncating
the longer stream to half the combined length of both streams and then transferring the re-
maining elements of the longer stream onto the back of the shorter stream. For example, if
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|F'| > ¢|R| + 1, then queue replaces F' with take (i, F') and R with R + reverse (drop (i, I)),
where: = |(|F| + |R|)/2]. Thefull definition of queue is

funqueve(q as{F=f,LenF=lenF,R=r,LenR =lenR}) =
if lenF' > cxlenR + 1then
let val ¢ = (lenF + lenR) div 2 val j =lenF +lenR — i
val ' =take (i, f) val v’ = r + reverse (drop (¢, f))
inQueue {F=/LenF=¢,R=+,LenR=;} end
gseif lenR > cxlenF +1then
let val ¢ = (lenF + lenR) div 2 val j =lenF +lenR — i
val f' = f +# reverse (drop (5, )) val ' =take(y, r)
inQueue {F=/LenF=¢,R=+,LenR=;} end
else Queue ¢

The compl ete implementation appearsin Figure 5.2.

Remark: Because of the symmetry of this implementation, we can reverse a deque in O(1)
time by ssmply swapping therolesof ¥ and R.

fun reverse (Queue {F=f,LenF =lenf',R=r,LenR = [enR}) =
Queue {F=r,LenF=[enR,R=f,LenR = [enF'}

Many other implementations of deques share this property [Ho092b, CG93]. Rather than es-
sentialy duplicating the code for the functions on the front element and the functions on the
rear element, we could define the functions on the rear element in terms of reverse and the
corresponding functions on the front element. For example, we could implement in:t as

funinit ¢ = reverse (tal (reverse q))
Of course, init will be dightly faster if implemented directly. &

To analyze these deques, we again turn to the banker’s method. For both the front and rear
streams, let d(7) be the number of debits on element : of the stream, and let D(z) = 3" _, d(j).
We maintain the debit invariants that, for both the front and rear streams,

D) <min(ci4t,es +1—1)

where s = min(|F|, |R|) and t = max(|F|,|R|). Since D(0) = 0 for both streams, we can
always access the first and last elements of the queue via head or last.

Theorem 5.1 cons and tail (Symmetrically, snoc and init) maintain the debit invariants on
both the front and rear streams by discharging at most 1 and ¢ + 1 debits per stream, respec-
tively.
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functor BankersDeque (val ¢ : int) : DEQUE = (x e¢>1 %)
struct
datatype oo Queue = Queue {F : « Stream, LenF : int, R : « Stream, LenR : int}
(x Invariants: |F| < ¢|R|+ 1, |R| < ¢|F| + 1, LenF = |F|, LenR = |R] %)

exception EMPTY

val empty = Queue {F = $Nil, LenF =0, R = $Nil, LenR = 0}
fun isEmpty (Queue {LenF = lenF, LenR = lenR, ... }) = (lenF+lenR = 0)

fun queue (q as{F=f,LenF=lenF,R=r,LenR =lenR}) =
if lenF > c+lenR + 1then
let val i = (lenF + lenR) div 2 val j =lenF + lenR — i
val ' =take (i, f) val ' = r + reverse (drop (7, f))
in Queue {F=f',LenF=4,R=+',LenR=;} end
eseif lenR > cxlenl’ + 1then
let val i = (lenF + lenR) div 2 val j =lenF + lenR — i
val f' = f +reverse (drop (5, r)) val r' =take(j, r)
in Queue {F=f',LenF=4,R=+',LenR=;} end
else Queue ¢

fun cons (Queue {F=f, LenF=lenF,R=r,LenR = lenR}, z) =
queue {F =$Cons(z, f), LenF = lenF+1, R=r, LenR = lenR}
fun head (Queue {F = $Nil, R=3$Nil, ... }) =raise EMPTY
| head (Queue {F = $Nil, R=$Cons (z, _), ...} ==
| head (Queue {F = $Cons (z, f),...}) ==
fun tail (Queue {F =$Nil, R=3$Nil,...}) =raiseEMPTY
| tail (Queue {F =$Nil, R=3$Cons(z, _), ...} = empty
| tail (Queue {F =3%$Cons (z, f), LenF=lenF,R=r,LenR=lenR}) =
queue {F=f,LenF=lenF-1, R=r,LenR=lenR}

...snoc, last, and init defined symmetrically. ..
end

Figure 5.2: An implementation of deques based on lazy rebuilding and the banker’s method.
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Proof: Similar to the proof of Theorem 3.1 on page 27. 0

By inspection, every operation hasan O(1) unshared cost, and by Theorem 5.1, every oper-
ation discharges no more than O(1) debits. Therefore, every operation runsin O(1) amortized
time.

54.3 Real-TimeDeques

Real -time deques support every operation in O(1) worst-case time. We obtain real-time deques
from the deques of the previous section by scheduling both the front and rear streams.

As always, the first step in applying the scheduling technique is to convert all monolithic
functions to incremental functions. In the previous implementation, the rebuilding transfor-
mation rebuilt /' and R as take (i, F') and R + reverse (drop (i, F')) (or vice versa). take
and + are already incremental, but reverse and drop are monolithic. We therefore rewrite
R + reverse (drop (i, F)) as rotateDrop (R, i, F) where rotate Drop performs ¢ steps of the
drop for every step of the + and eventually calls rotate Rev, which in turn performs ¢ steps of
the reverse for every remaining step of the 4. rotateDrop can be implemented as

fun rotateDrop (r, i, f) =
if i < ¢ then rotateRev (r, drop (¢, f), $Nil)
elselet val ($Cons (z, 1)) = r in $Cons (z, rotateDrop (', i — ¢, drop (¢, f))) end

Initidly, |f| = ¢|r| + 1 + k where1 < & < ¢. Every call to rotateDrop drops ¢ elements of f
and processes one element of r, except the last, which drops: mod ¢ elements of f and leaves
r unchanged. Therefore, at thetime of thefirst call to rotateRev, | f| = ¢|r|+14+k— (i mod ¢).
It will be convenient to insist that | f| > ¢|r|, so werequirethat 1 + & — (¢ mod ¢) > 0. This
isguaranteed only if ¢ istwo or three, so these are the only values of ¢ that we allow. Then we
can implement rotate Rev as

fun rotateRev ($Nil, f, a) =reverse [ + «
| rotateRev ($Cons (z, r), f, a) =
$Cons (z, rotateRev (r, drop (¢, f), reverse (take (¢, f)) # a))

Note that rotateDrop and rotate Rev make frequent calls to drop and reverse, which were
exactly the functions we were trying to eliminate. However, now drop and reverse are aways
called with arguments of bounded size, and therefore execute in O(1) steps.

Once we have converted the monolithic functions to incremental functions, the next step is
to schedule the execution of the suspensionsin /' and k. We maintain a separate schedule for
each stream and execute afew suspensions per operation from each schedule. Aswith thereal-
time queues of Section 4.2, the goa is to ensure that both schedules are completely evaluated
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before the next rotation. Assume that both streams have length m immediately after a rotation.
How soon can the next rotation occur? It will occur soonest if all the insertions occur on one
end and all the deletions occur on the other end. If 2 isthe number of insertions and d is the
number of deletions, then the next rotation will occur when

m—+1>clm—d)+1

Rewriting both sides yields
i+ed>m(e—1)+1

The next rotation will occur sooner for ¢ = 2 than for ¢ = 3, so substitute 2 for c.
14+ 2d >m+ 1

Therefore, executing one suspension per stream per insertion and two suspensions per stream
per deletion is enough to guarantee that both schedules are completely evaluated before the
next rotation.

The compl ete implementation appearsin Figure 5.3.

55 Reated Work

Global Rebuilding Overmars introduced global rebuilding in [Ove83]. It has since been
used in many situations, including real-time queues [HM81], real-time deques [Hoo82, GT86,
Sar86, CG93], catenable deques [BT95], and the order maintenance problem [DS87].

Deques Hood [Ho082] first modified the rea-time queues of [HM81] to obtain real-time
deques based on global rebuilding. Severa other researchers later duplicated this work [GT86,
Sar86, CG93]. These implementations are al similar to techniques used to simulate multihead
Turing machines [Sto70, FMR72, L S81]. Hoogerwoord [Ho092b] proposed amortized deques
based on batched rebuilding, but, as aways with batched rebuilding, hisimplementation is not
efficient when used persistently. The real-time deques in Figure 5.3 first appeared in [Oka95c].

Coroutines and Lazy Evaluation Streams (and other lazy data structures) have frequently
been used to implement a form of coroutining between the producer of a stream and the con-
sumer of a stream. Landin [Lan65] first pointed out this connection between streams and
coroutines. See [Hug89] for some compelling applications of this feature.
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functor RealTimeDeque (val ¢ : int) : DEQUE = (x c=20rc=3 %)
struct
datatype oo Queue = Queue {F : « Stream, LenF : int, SF : « Stream,
R: « Stream, LenR : int, SR : o Stream}
(x Invariants: |F| < ¢|R|+ 1, |R| < ¢|F| + 1, LenF = |F|, LenR = |R] %)

exception EMPTY

val empty = Queue {F = $Nil, LenF =0, SF = $Nil, R = $Nil, LenR = 0, SR = $Nil }
fun isEmpty (Queue {LenF = lenF, LenR = lenR, ... }) = (lenF+lenR = 0)

fun execl ($Cons (z, s)) = s
| execls = s
fun exec2 s = execl (execl s)

fun rotateRev ($Nil, f, a) =reverse f + a
| rotateRev ($Cons (z, ), f, a) =
$Cons (z, rotateRev (r, drop (¢, f), reverse (take (¢, f)) # a))
fun rotateDrop (r, ¢, f) =
if i < ¢ then rotateRev (r, drop (i, f), $Nil)
elselet val ($Cons (z, r')) = r in $Cons (z, rotateDrop (r’/, 7 — ¢, drop (¢, f))) end

fun queue (q as{F=f,LenF=lenF,SF=sf,R=r,LenR=lenR, SR=sr}) =
if lenF > c*lenR + 1then
let val i = (lenF + lenR) div 2 val j =lenF + lenR — i
val f' =take (i, f) val r’ = rotateDrop (i, r, f)
in Queue {F=/f',LenF=4,SF=fR=+,LenR=4,SR=+"} end
eseif lenR > cxlent’ + 1then
let val i = (lenF + lenR) div 2 val j =lenF + lenR — i
val f’ =rotateDrop (5, f, r) val ' =take(j, r)
in Queue{F=f'LenF=4,SF=f'R=¢+/,LenR=3,SR=1"} end
else Queue ¢

fun cons (Queue {F=f, LenF = lenF, SF=sf,R=r,LenR=lenR, SR=sr}, z) =
queue {F = $Cons(z, f), LenF = lenF+1, SF = execl sf,
R=r,LenR=lenR, SR = execl sr}
fun head (Queue {F = $Nil, R =$Nil, ... }) =raise EMPTY
| head (Queue {F = $Nil, R=$Cons (z, _), ...} ==
| head (Queue {F =$Cons(z, f),...}) ==
fun tail (Queue {F =$Nil, R=3$Nil,...}) =raiseEmMPTY
| tail (Queue {F =$Nil, R=3$Cons(z, _), ...} = empty
| tail (Queue {F =3$Cons (z, f), LenF=lenF,SF=sf,R=r,LenR=lenR, SR=sr}) =
queue {F =f, LenF = lenF—1, SF = exec2 sf, R=r,LenR = lenR, SR = exec2 sr}

...snoc, last, and init defined symmetrically. ..
end

Figure 5.3: Real-time deques vialazy rebuilding and scheduling.
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Chapter 6

Numerical Representations

Consider the usua representations of lists and natural numbers, along with several typical
functions on each data type.

datatype o List = datatype Nat =
Nil Zero
| Consof o x « List | Succ of Nat
fun tail (Cons(z, ©s)) = zs fun pred (Succ n) = n
fun append (Nil, ys) = ys fun plus (Zero, n) = n
| append (Cons (z, xs), ys) = | plus (Succ m, n) =
Cons (z, append (s, ys)) Succ (plus (m, n))

Other than the fact that lists contain elements and natural numbers do not, these two imple-
mentations are virtually identical. This suggests a strong analogy between representations of
the number » and representations of container objects of size n. Functions on the container
strongly resemble arithmetic functions on the number. For example, inserting an element re-
sembles incrementing a number, deleting an element resembles decrementing a number, and
combining two containers resembles adding two numbers. This analogy can be exploited to
design new implementations of container abstractions— simply choose arepresentation of nat-
ural numbers with certain desired properties and define the functions on the container objects
accordingly. Call an implementation designed in this fashion a numerical representation.

The typical representation of lists can be viewed as a numerical representation based on
unary numbers. However, numerical representations based on binary numbers are also com-
mon; the best known of these is the binomial queues of Vuillemin [Vui78]. Incrementing a
unary number takes O(1) time, so inserting an element into a unary representation also usu-
aly takes O(1) time. However, adding two unary numbers takes O(n) time, so combining
two containers in a unary representation takes O(n) time. Binary numbers improve the time
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required for addition (and hence the time required to combine two containers) to O(log n ), but
also slow the time required to increment a number or insert an element to O(log n). In this
chapter, we consider several variations of binary numbers that achieve the best of both worlds
by supporting the increment function in O(1) time and addition in O(log n) time. Numerical
representations based on these variations naturally support inserting an element in O(1) time
and combining two containersin O(log n) time.

Example abstractions for which numerical representations are particularly useful include
random-access lists (also known as flexible arrays) and heaps (also known as priority queues).

6.1 Positional Number Systems

A positional number system [Knu73] is anotation for writing a number as a sequence of digits
bo...b,_1. Thedigit b, is called the least significant digit and the digit 6,,_; is called the
most significant digit. Except when writing ordinary, decimal numbers, we will aways write
sequences of digits from least significant to most significant.

Each digit b; has weight w;, so the value of the sequence by . . . b, iS>-7"5" byw;. For any
given positional number system, the sequence of weightsisfixed, asisthe set of digits D; from
which each b; is chosen. For unary numbers, w;, = 1 and D; = {1} for dl ¢, and for binary
numbers w; = 2° and D; = {0,1}. (By convention, we write all digits in typewriter font
except for ordinary, decimal digits.) A number is said to be written in base B if w; = B' and
D; ={o0,...,B —1}. Usualy, but not always, weights are increasing sequences of powers,
and the set D; isthe same for every digit.

A number system is said to be redundant if there is more than one way to represent some
numbers. For example, we can obtain a redundant system of binary numbers by taking w; = 2°
and D; = {0, 1, 2}. Then the decimal number 13 can be written 1011, or 1201, or 122. If
wealow trailing 0s, then amost all positional number systems areredundant, since b, . .. b,, 1
isalwaysequivaentto b, ... b,,_10. Therefore, we disallow trailing 0s.

Computer representations of positional number systems can be dense or sparse. A dense
representation issimply alist (or some other kind of sequence) of digits, including those digits
that happen to be 0. A sparse representation, on the other hand, includes only non-zero digits.
It must then include information on either the rank (i.e., the index) or the weight of each digit.
For example, Figure 6.1 shows two different representations of binary numbers in Standard
ML— one dense and one sparse — along with several representative functions on each.
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structure Dense =
struct
datatype Digit = Zero | One
type Nat = Digit list (+ increasing order of significance, no trailing Zeros x)
funinc[] =[One]
| inc (Zero:: ds) =One:: ds
|inc(One:: ds)=Zero::incds (x carry x)
fun dec [One] =[]
| dec (One:: ds) = Zero :: ds
| dec (Zero:: ds) =One:: dec ds (x borrow x)

fun add (ds, []) = ds
| add ([], ds) = ds
| add (d :: dsy, Zero:: dsy) = d ::add (dsy, ds3)
| add (Zero :: dsy, d :: dsy) =d ::add (dsy, ds3)
| add (One:: dsy, One:: dsy) = Zero ::inc (add (dsy, dsg))  (* carry x)
end

structure SparseByWeight =
struct
type Nat = int list (* increasing list of weights, each a power of two )

(x add a new weight to a list, recurseif weight is already present )
fun carry (w, []) = [w]
| carry (w, ws asw’ :: rest) = if w < w’ then w :: ws else carry (2xw, rest)

(+ borrow froma digit of weight w, recurseif weight is not present x)
fun borrow (w, ws asw’ :: rest) = if w = w’ then rest else w :: borrow (2w, ws)

fun inc ws = carry (1, ws)
fun dec ws = borrow (1, ws)

fun add (ws, []) = ws
| add ([1, ws) = ws
| add (m aswy :: wsy, naswy :: wsg) =
if wy < wy then wy > add (wsy, n)
eseif wy < wy then wy :: add (m, wss)
elsecarry (2«xwy, add (wsy, wsz))
end

Figure 6.1: Two implementations of binary numbers.
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6.2 Binary Representations

Given a positional number system, we can implement a numerical representation based on
that number system as a sequence of trees. The number and sizes of the trees representing a
collection of size n are governed by the representation of » in the positional number system.
For each weight w;, there are b; trees of that size. For example, the binary representation of 73
iIS1001001, so acollection of size 73 in a binary numerical representation would comprise
three trees, of sizes 1, 8, and 64, respectively.

Trees in numerical representations typically exhibit a very regular structure. For example,
in binary numerical representations, all trees have sizes that are powers of 2. Three com-
mon kinds of trees that exhibit this structure are complete binary leaf trees [KD96], binomial
trees [Vui 78], and pennants [SS90].

Definition 6.1 (Complete binary leaf trees) A complete binary tree of rank O is aleaf and a
complete binary tree of rank » > 0 is a node with two children, each of which is a complete
binary tree of rank r — 1. A leaf treeis atree that contains elements only at the leaves, unlike
ordinary treesthat contain elements at every node. A complete binary tree of rank r has2"+! —1
nodes, but only 2" leaves. Hence, a complete binary leaf tree of rank r contains 2" elements.

Definition 6.2 (Binomial trees) A binomial tree of rank r is a node with r children ¢; . .. ¢,,
where ¢; is a binomial tree of rank » — i. Alternatively, a binomial tree of rank » > 0 isa
binomial tree of rank » — 1 to which another binomial tree of rank » — 1 has been added as
the leftmost child. From the second definition, it is easy to see that a binomial tree of rank r
contains 2" nodes.

Definition 6.3 (Pennants) A pennant of rank O is a single node and a pennant of rank » > 0
is anode with asingle child that is a complete binary tree of rank » — 1. The complete binary
tree contains 2" — 1 elements, so the pennant contains 2" elements.

Figure 6.2 illustrates the three kinds of trees. Which kind of tree is superior for a given
data structure depends on the properties the data structure must maintain, such as the order in
which elements should be stored in the trees. A key factor in the suitability of a particular kind
of tree for a given data structure is how easily the tree supports functions analogous to carries
and borrowsin binary arithmetic. When simulating a carry, we link two trees of rank r to form
atree of rank  + 1. Symmetrically, when simulating a borrow, we unlink a tree of rank » > 0
to obtain two trees of rank » — 1. Figure 6.3 illustrates the link operation (denoted 4:) on each
of the three kinds of trees. Assuming that elements are not rearranged, each of the three kinds
of trees can belinked or unlinked in O(1) time.

We next describe two existing data structuresin terms of thisframework: the one-sided flex-
ible arrays of Kaldewaij and Dielissen [KD96], and the binomial queues of Vuillemin [Vui78,
Bro78].
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Figure 6.2: Threetrees of rank 3: (a) acomplete binary leaf tree, (b) abinomial tree, and (c) a
pennant.
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Figure 6.3: Linking two trees of rank r to obtain atree of rank » + 1 for (a) complete binary
leaf trees, (b) binomial trees, and (c) pennants.
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signature RANDOMACCESSLIST =
sig
type o RList
exception EMPTY and INDEX
val empty : o RList
val isEmpty : « RList — bool

valcons  :«a x o RList— « RList

valhead :aRList— « (* raisesEMPTY iflistisempty x)
val tail : a RList — « RList (*+ raisessEMPTY iflistisempty )
val lookup : « RList x int— « (* raisesINDEX if out of bounds )

val update : o RList x int x o — o RList (x raisesINDEX if out of bounds )
end

Figure 6.4: Signature for random-access lists.

6.2.1 Binary Random-AccessLists

A randomaccess list, also called a one-sided flexible array, is a data structure that supports
array-like lookup and update functions, as well as the usua cons, head, and tail functions on
lists. A signature for random-access listsis shown in Figure 6.4.

Kaldewaij and Dielissen [KD96] describe an implementation of random-access lists in
terms of leftist left-perfect leaf trees. We can easily trandate their implementation into the
framework of numerical representations as a binary representation using complete binary leaf
trees. A binary random-access list of size n thus contains a complete binary leaf tree for each
1 inthe binary representation of n. The rank of each tree corresponds to the rank of the corre-
sponding digit; if the :th bit of » is 1, then the random-access list contains atree of size 2'. For
this example, we choose a dense representation, so the type of binary random-accesslistsis

datatype o Tree = Leaf of o | Node of int x o Tree x « Tree
datatype « Digit = Zero | One of o Tree
type a RList = « Digit list

The integer in each node is the size of the tree. This number is redundant since the size of
every tree is completely determined by the size of its parent or by its position in the list of
digits, but we include it anyway for convenience. Trees are stored in increasing order of size,
and the order of elements (both within and between trees) isleft-to-right. Thus, the head of the
random-access list is the leftmost leaf of the smallest tree. Figure 6.5 shows a binary random-
access list of size 7. Note that the maximum number of treesin alist of sizen is [log(n + 1) ]
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Figure 6.5: A binary random-access list containing the elements0. . . 6.

0'12 3458

and the maximum depth of any treeis|log n |.

Now, insertion into a binary random-access list (i.e., cons) is analogous to incrementing a
binary number. Recall the increment function on dense binary numbers:

funinc[] =[One]
| inc (Zero :: ds) =One:: ds
| inc (One:: ds) = Zero ::inc ds

To insert an e ement with cons, wefirst convert the element into aleaf, and then insert the | eaf
into the list of trees using a helper function insTree that follows the rules of inc.

fun cons (z, ts) = insTree (Leaf «, ts)

funinsTree(t,[]) = [Onet]
| insTree (¢, Zero:: ts) =Onet :: ts
| insTree (4, One t, :: ts) = Zero :: insTree (link (¢, &), ts)

The link helper function is apseudo-constructor for Node that automatically calculates the size
of the new tree from the sizes of its children.

Deleting an element from a binary random-access list (using ta:l) is analogous to decre-
menting a binary number. Recall the decrement function on dense binary numbers:

fun dec [One] =[]
| dec (One:: ds) = Zero:: ds
| dec (Zero :: ds) = One:: dec ds

Essentially, this function resets the first 1 to 0, while setting all the preceding osto 1s. The
analogous operation on lists of treesis borrow Tree. When applied to alist whose first digit has
rank r, borrow Tree returnsa pair containing atree of rank », and the new list without that tree.

fun borrowTree[One¢] = (¢, [])
| borrowTree (Onet :: ts) = (¢, Zero :: ts)
| borrowTree (Zero :: ¢s) = let val (Node (_, t, &), ts’) = borrowTree ts
in (¢, Onet, :: ts’) end
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The head and tail functions“borrow” theleftmost leaf using borrow Tree and then either return
that leaf's element or discard the leaf, respectively.

fun head ts = let val (Leaf =, _) = borrowTree ts in = end
funtail ts = let val (_, ts’) = borrowTree ¢s in ts’ end

The lookup and update functions do not have anal ogous arithmetic operations. Rather, they
take advantage of the organization of binary random-access lists as logarithmic-length lists of
logarithmic-depth trees. Looking up an element is a two-stage process. We first search the
list for the correct tree, and then search the tree for the correct element. The helper function
lookup Tree uses the size field in each node to determine whether the ;th element is in the | eft
subtree or the right subtree.

fun lookup (Zero :: s, i) = lookup (¢s, @)
| lookup (Onet :: ts, i) =
if i < sizet then lookupTree (¢, i) elselookup (ts, i — Size t)

fun lookupTree (Leaf =, 0) = «
| lookupTree (Node (w, t, &), i) =
if i < w div2then lookupTree(t;, i) else lookupTree (;, i — w div 2)

update worksin same way but also reconstructs the path from the root to the updated leaf. This
reconstruction is called path copying [ST86a] and is necessary for persistence.

fun update (Zero :: ts, i, y) = Zero :: update (s, i, y)
| update (Onet :: ts, i, y) =
if i < sizet then One (updateTree (¢, ¢, y)) :: ts else One ¢ :: update (ts, i — Sizet, y)
fun updateTree (Leaf «, 0, y) = Leaf y
| updateTree (Node (w, t1, &), i, y) =
if i < w div2then Node (w, updateTree (t1, 7, y), t2)
else Node (w, t;, updateTree (¢, 1 — w div 2, y))

The complete code for thisimplementation is shown in Figure 6.6.

cons, head, and tail perform at most O(1) work per digit and so run in O(log n) worst-
casetime. lookup and update take at most O(log n) timeto find the right tree, and then at most
O(log n) timeto find the right element in that tree, for atotal of O(log n) worst-case time.

6.2.2 Binomial Heaps
Binomial queues [Vui78, Bro78] are aclassical implementation of mergeable priority queues.

To avoid confusion with FIFO queues, we will henceforth refer to priority queues as heaps and
binomial queues as binomial heaps. Heaps support four main functions: inserting an element
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structure BinaryRandomA ccessList : RANDOMACCESSLIST =

struct
datatype o Tree = Leaf of « | Node of int x o Tree x « Tree  (x intissize of tree x)
datatype o Digit = Zero | One of « Tree
type « RList = « Digit list

exception EMPTY and INDEX

val empty =[]
fun isEmpty ts = null ¢s

funsize(Leaf ) =1
| size (Node (w, t, t)) = w
fun link (1, ;) = Node (size t;+size o, t1, t2)
funinsTree (¢, []) =[Onet]
| insTree (¢, Zero:: ts) =0Onet :: ts
| insTree (t,, One t, :: ts) = Zero :: insTree (link (¢y, &), ts)
fun borrowTree[] =raise EMPTY
| borrowTree[One ¢] = (¢, [])
| borrowTree (Onet :: ts) = (t, Zero :: ts)
| borrowTree (Zero :: ts) = let val (Node (_, #, t2), ts’) = borrowTree ts
in (t;, One t, :: ts") end

fun cons (z, ts) = insTree (Lesf z, ts)
fun head ts = let val (Leaf «, _) = borrowTree s in 2 end
fun tail ts =let val (_, ¢s") =borrowTree ts in ts’ end

fun lookupTree (Leaf z, 0) =z
| lookupTree (Leaf z, i) = raise INDEX
| lookupTree (Node (w, ty, &), i) =
if © < w div2then lookupTree (4, i) else lookupTree (¢, i — w div 2)
fun updateTree (Leaf #, 0, y) = Leaf y
| updateTree (Leaf z, i, y) = raise INDEX
| updateTree (Node (w, t, &), i, y) =
if ¢ < w div2then Node (w, updateTree (4, ¢, y), &)
else Node (w, ¢, updateTree (&3, i — w div 2, y))

fun lookup ([ ], ¢) = raise INDEX
| lookup (Zero :: ts, i) = lookup (ts, i)
| lookup (Onet : ts, i) =
if i < sizet then lookupTree (¢, i) elselookup (s, i — size t)
fun update ([ ], ¢, y) = raise INDEX
| update (Zero :: ts, i, y) = Zero :: update (¢s, 7, y)
| update (One't :: ts, i, y) =
if i < sizet then One (updateTree (¢, ¢, y)) :: ts elseOnet :: update (ts, i — Sizet, y)
end

Figure 6.6: Binary random-access lists.
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signhature ORDERED =
sig
typeT (x type of ordered elements x)
valleq: T x T — bool (x total orderingrelation x)
end

signature HEAP =
sig
structure Elem : ORDERED
type Heap
exception EMPTY
valempty  : Heap
val isEmpty : Heap — bool
val insert : Elem.T x Heap — Heap
val merge  : Heap x Heap — Heap

val findMin : Heap — Elem.T (x raisesEMPTY if heapis empty *)
val deleteMin: Heap —+ Heap  (x raisesEMPTY if heap is empty *)
end

Figure 6.7: Signature for heaps.

(insert), merging two heaps (merge), finding the minimum element (findMin), and deleting
the minimum element (delete Min). A Standard ML signature for heaps appears Figure 6.7.

Remark: Heaps are smilar to the sortable collections of Section 3.5.2, but use a different
mechanism for specifying the desired comparison function. For sortable collections, the com-
parison function is supplied when anew object is created, and every object can have a different
comparison function. This approach is very flexible, but causes problems in the presence of
an function that combines two objects, such as merge. If the two objects being merged have
different comparison functions, which should the resulting object keep? To avoid this ambigu-
ity, we fix the comparison function (and therefore the type of elements being compared) when
the Standard ML structure implementing heaps is created. Then, we can be sure that any two
objects being merged shared the same comparison function. &

In the framework of numerical representations, binomial heaps are a binary representation
with heap-ordered, binomial trees. A tree is heap-ordered if the element at every node is
smaller than the elements at any of its children, with ties broken arbitrarily. As with binary
random-access lists, binomial heaps contain one tree for each 1 in the binary representation of
the size of the heap, and the trees have the same weights as their matching digits.
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Assuming an ORDERED structure Elem that specifies the element type and comparison
function, the types of binomial trees and binomial heaps can be written as follows:

datatype Tree = Node of int x Elem.T x Treelist
type Heap = Tree list

This time, we have chosen a sparse representation, where the integer at each node is the rank
of the tree. For reasons that will become clear later, we maintain the list of trees representing
a heap in increasing order of rank, but maintain the list of trees representing the children of a
node in decreasing order of rank.

Remark: Therank information on each node that is not aroot is redundant since the ;th child
of a node of rank » always has rank » — :. However, we maintain this information anyway
because doing so simplifies the code slightly. &

The fundamental operation on binomial treesis link, which compares the roots of two trees
of rank r» and makes the tree with the larger root a child of the tree with the smaller root,
producing atree of rank r + 1.

fun link (¢, asNode (r, #, ¢1), t; asNode (_, z3, ¢;)) =
|f E|em|eq ($1, $2) then NOde(?“+1, X1, tg . Cl) el% NOde (7“+1, T2, tl . CQ)

Sincethe children of atree are maintained in decreasing order of rank, adding the new child to
the list takes only O(1) time.

Now, inserting an element into a binomial heap is similar to the increment function on
sparse binary numbers. Whenever we find two trees of the same rank, we /ink them and
reinsert the linked tree into the list. This corresponds to a carry in binary arithmetic. We
use the insTree helper function to insert new trees into the list of trees; insert builds a new
singleton tree and calls insTree.

funinsTree(t,[]) =[]
| insTree (4, ts ast, :: rest) =
if rank t; < rank ¢, then ¢; :: ts elseinsTree (link (¢, &), rest)

funinsert (x, ts) = insTree (Node (O, =, []), ts)

merge 1SSiMilar to addition on sparse binary numbers, where again we /ink trees of equal
rank whenever thereisacarry.

fun merge (ts1, []) = ts1
| merge ([], ts2) = ts2
| merge (¢, :: tsq, &y it tsy) =
if rank t; < rank ¢, then ¢; ;- merge (tsq, &3 i ts2)
elseif rank ¢, < rank ¢; then ¢, ;- merge (¢, :: sy, ts2)
elseinsTree (link (¢, ), merge (ts1, ts2))
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Since every treeis heap-ordered, we know that the minimum element within any given tree
is the root. However, we do not know which tree has the minimum root, so findMin scans all
the roots in the heap.

fun findMin [¢] = root ¢
| findMin (¢ :: ts) =let val « =root ¢
val y = findMin ¢s
in if Elem.leq (z, y) then = else y end

Finally, delete Min begins by removing the tree with the minimum root. (In the case of ties, we
should take care to remove the tree with the same root as returned by findMin.) Once we have
discarded the root of this tree, we are left with two lists of trees: one representing the children
of the discarded tree, and one representing the remaining trees in the heap. To obtain asingle
heap, we simply merge these two lists, but since the lists are maintained in opposite orders, we
first reverse thelist of children.

fun deleteMin ts =
let fun getMin [¢] = (¢, [])
| getMin (¢ :: ts) =
let val (¢/, ts") = getMin ts
in if Elem.leq (root ¢, root ¢) then (¢, ts) else (¢/, ¢ :: ts") end
val (Node (_, z, ts1), ts3) = getMin ts
in merge (rev tsq, tsy) end

The complete implementation of binomial heaps appearsin Figure 6.8. Since heaps contain
no morethan |log(n + 1)] trees, and binomial trees have no more than |log | children, each
of these functions takes O(log n) worst-case time.

6.3 Segmented Binary Numbers

We next explore two variations of binary numbers that allow a number to be incremented or
decremented in O(1) worst-case time. Basing a numerical representation on these variations,
rather than ordinary binary numbers, reduces the running time of many insertion and deletion
functionsfrom O(log n) to O(1). First, we present asomewhat complicated representation and
sketch the design of random-access lists and heaps based on this representation. In the next
section, we present a much simpler representation that is usually superior in practice.

The problem with ordinary binary numbers is that carries and borrows can cascade. For
example, incrementing 2% — 1 causes k carriesin binary arithmetic. Symmetrically, decrement-
ing 2% causes k borrows. Segmented binary numbers solve this problem by allowing multiple
carries or borrows to be executed in a single step.
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functor BinomialHeap (structure E : ORDERED) : HEAP =
struct
structure Elem=E

datatype Tree = Node of int x Elem.T x Treelist (x the integer isthe rank of the tree x)
type Heap = Tree list

exception EMPTY

val empty =[]
fun isEmpty ts = null ¢s

fun rank (Node (r, z, ¢)) = r
fun root (Node (r, z, ¢)) =
fun link (¢, asNode (r, 1, ¢1), t; asNode (_, z3, ¢3)) =
if Elem.leq (z;, 22) then Node (r+1, x1, t; i ¢1) else Node (r+1, 29, t; 32 ¢2)
fun insTree (¢, []) =[]
| insTree (ty, ts asty :: rest) =
if rank #; < rank ¢, then t, :: ts elseinsTree (link (#1, %), rest)

fun insert (z, ts) = insTree (Node (O, z, []), ts)
fun merge (ts1, []) = ts1
| merge (], ts2) = ts2
| merge (#, = tsy, & i tsg) =
if rank ¢, < rank ¢, then t; :: merge (tsy, t :: ts3)
elseif rank t, < rank ¢ then &, :: merge (¢ :: tsy, tsq)
elseinsTree (link (¢, t3), merge (ts1, tsz))

fun findMin[] =raise EMPTY
| findMin [¢] =root ¢
| findMin (¢ :: ts) =let val # =root ¢
val y =findMin ts
inif Elem.leq (z, y) then 2 else y end

fun deleteMin[] =raise EMPTY

| deleteMin ¢s =
let fun getMin [¢] = (¢, [])
| getMin (¢ :: ts) =

let val (', ts’) = getMin ts
in if Elem.leq (root ¢, root ¢') then (¢, ts) else (¢, ¢ :: ts’) end
val (Node (_, z, ts1), tsz) = getMin ts
in merge (rev tsy, ts9) end

end

Figure 6.8: Binomial heaps [Vui78, Bro78].
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Note that incrementing a binary number takes % steps whenever the number begins with a
block of £ 1s. Similarly, decrementing a binary number takes & steps whenever the number be-
ginswith ablock of £ 0s. Segmented binary numbers group contiguous sequences of identical
digits into blocks so that we can execute a carry or borrow on an entire block in asingle step.
We represent segmented binary numbers as alternating blocks of 0sand 1susing the following
datatype:

datatype DigitBlock = Zeros of int | Ones of int
type Nat = DigitBlock list

where the integer in each DigitBlock represents the block’s length. Note that since we have
forbidden trailing 0s, the last block (if any) always contains 1s.

We use the pseudo-constructors zeros and ones to add new blocks to the front of a list of
blocks. These pseudo-constructors merge adjacent blocks of the same digit and discard empty
blocks. In addition, the zeros pseudo-constructor discards any trailing block of 0s.

fun zeros (i, []) =[]
| zeros (i, Zeros j :: blks) = Zeros (i+j) :: blks
| zeros (0, blks) = blks
| zeros (i, blks) = Zeros i :: blks

fun ones (i, Onesj :: blks) = Ones (i+y) :: blks
| ones (0, blks) = blks
| ones (7, blks) = Onesi :: blks

Now, to increment a segmented binary number, we inspect the first block of digits (if any).
If the first block contains: 0s, then we replace the first 0 with a 1, creating a new singleton
block of 1s and shrinking the block of 0s by one. If the first block contains : 1s, then we
perform: carriesin asingle step by changing the 1sto 0s and incrementing the next digit.

funinc[] =[Ones1]
| inc (Zeros i :: blks) = ones (1, zeros (i—1, blks))
| inc (Ones i :: blks) = Zeros i :: inc blks

In the third line, we know the recursive call to inc cannot loop because the next block, if any,

must contain 0S. In the second line, the pseudo-constructors deal gracefully with the special
cases that occur when the leading block contains asingle 0.

Decrementing a segmented binary number is almost exactly the same, but with the roles of
0sand 1sreversed.

fun dec (Ones: :: blks) = zeros (1, ones (i —1, blks))
| dec (Zeros i :: blks) = Ones i :: dec blks
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6.3.1 Segmented Binomial Random-AccessLists and Heaps

In both the binary random-access lists of Section 6.2.1 and the binomial heaps of Section 6.2.2,
we linked two trees into a new, larger tree for every carry. In a cascade of £ carries, we linked

anew singleton tree with existing trees of sizes2°, 2!, ..., 2*~! to obtain anew tree of size 2*.
Similarly, in binary random-access lists, a cascade of borrows decomposes atree of size 2* into
asingleton treeand k trees of sizes2°,2!, ... 251,

Segmented binary numbers support fast carries and borrows, but to take advantage of thisin
anumerical representation, we must choose a tree representation that will allow usto link and
unlink many treesin a single step. Of the three kinds of trees described earlier, only binomial
trees support this behavior. A node of rank r consists of an element and a sequence of trees of
ranks0,...,r — 1. Therefore, we can combine an element and a sequence of trees into a new
tree — or decompose a tree into an element and a sequence of trees— in O(1) time.

Adapting the earlier implementations of binary random-access lists and binomial heaps
to use segmented binary arithmetic rather than ordinary binary arithmetic, and in the case of
binary random-access lists, to use binomial trees rather than complete binary leaf trees, is
tedious, but mostly straightforward, except for the following issues:

e To link and unlink multiple trees in a single step, we must use the same representation
for the sequence of trees corresponding to a block of 1s (called a segment) and for the
children of a node. So, for example, we cannot maintain one in increasing order of
rank and the other in decreasing order of rank as we did for binomial heaps. For both
segmented binomial heaps and segmented binomia random-access lists, we need easy
access to the smallest tree in a segment, but we also need easy access to the largest child
of anode. Therefore, we represent both kinds of sequences as real-time deques.

e For binomia heaps, the cascade of links that produces a new tree also compares the
roots of treesas it goes to find the minimum element in the tree. For segmented binomial
heaps, we do not have time to search a segment for the root with the minimum element,
so we insist that the smallest tree in any segment always have the minimum root. Then,
whenever we create a new tree from a new element and a segment of trees of ranks
0,...,r — 1, wesimply compare the new element with thefirst root in the segment (i.e.,
the root of the rank O tree). The smaller element becomes the new root and the larger
element becomes the rank O child of the root. Whenever we add a new tree of rank r to
a segment whose smallest tree has rank » + 1, we decompose the tree of rank » + 1 into
two trees of rank r. We then keep the tree with the smallest root, and link the remaining
two treesinto anew tree of rank r + 1.

With these changes segmented binomia random-access lists support cons, head, and tail in
O(1) worst-case time, and lookup and update in O(log n) worst-case time. Segmented bino-
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mial heaps support insert in O(1) worst-case time, and merge, findMin, and delete Min in
O(log n) worst-case time.

6.4 Skew Binary Numbers

Numerical representations based on segmented binary numbers rather than ordinary binary
numbers improve the asymptotic behavior of certain operations from O(log n) to O(1), while
retaining the same asymptotic behavior for all other operations. Unfortunately, such data struc-
tures are too complicated to be useful in practice. We next consider another number system,
skew binary numbers, that usually achieves similar asymptotic benefits, but that is ssmpler and
faster in practice.

In skew binary numbers [Mye83, Oka95b], the weight w; of the ith digitis2!*! — 1, rather
than 2¢ as in ordinary binary numbers. Digits may be 0, 1, or 2 (i.e., D; = {0,1,2}). For
example, the decimal number 92 could be written 002101 (least-significant digit first).

This number system is redundant, but, if we add the further constraint that only the lowest
non-0 digit may be 2, then we regain unique representations. Such a number is said to be in
canonical form. Henceforth, we will assume that all skew binary numbers are in canonical
form.

Theorem 6.1 (Myers[Mye83]) Every natural number has a unique skew binary canonical
form.

Recall that the weight of digiti is2't' — 1 and notethat 1 + 2(2F! — 1) = 2+ — 1. This
impliesthat we can increment a skew binary number whose lowest non-0 digitis 2 by resetting
the 2 to 0 and incrementing the next digit from 0 to 1 or from 1 to 2. (The next digit cannot
already be 2.) Incrementing a skew binary number that does not contain a2 is even easier —
simply increment the lowest digit from 0 to 1 or from 1 to 2. In both cases, the result is till
in canonical form. And, assuming we can find the lowest non-0 digitin O(1) time, both cases
take only O(1) time!

We cannot use adense representation for skew binary numbers since scanning for the lowest

non-0 digit would take more than O(1) time. Instead, we choose a sparse representation, so
that we always have immediate access to the lowest non-0 digit.

typeNat = int list

The integers represent either the rank or weight of each non-0 digit. For now, we use weights.
The weights are stored in increasing order, except that the smallest two weights may be identi-
cal, indicating that the lowest non-0 digit is 2. Given this representation, we implement inc as
follows:
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funinc (ws as wy :: wy X rest) =
if w; = w, then (L+w+w,) i rest else 1 :: ws
lincws=1: ws

The first clause checks whether the first two weights are equal and then either combines the
weights into the next larger weight (incrementing the next digit) or adds a new weight of 1
(incrementing the smallest digit). The second clause handles the case that ws is empty or
containsonly asingle weight. Clearly, inc runsin only O(1) worst-case time.

Decrementing askew binary number isjust as easy asincrementing a number. If the lowest
digit isnon-0, then we ssimply decrement that digit from 2 to 1 or from 1 to 0. Otherwise, we
decrement the lowest non-0 digit and reset the previous 0 to 2. This can be implemented as
follows:

fundec (1:: ws) = ws
| dec (w 2 ws) = (w div 2) 2 (w div 2) :: ws

In the second line, note that if w = 25+1 — 1, then |w/2] = 2¥ — 1. Clearly, dec asorunsin
only O(1) worst-case time.

6.4.1 Skew Binary Random-AccessLists

We next design anumerical representation for random-access lists, based on skew binary num-
bers. The basic representation is alist of trees, with one tree for each 1 digit and two trees for
each 2 digit. The trees are maintained in increasing order of size, except that the smallest two
trees are the same size when the lowest non-0 digitis 2.

The sizes of the trees should correspond to the weights in skew binary numbers, so a tree
representing the ith digit should have size 2! — 1. Up until now, we have mainly considered
trees whose sizes are powers of two, but we have also encountered a kind of tree whose sizes
have the desired form: complete binary trees. Therefore, we represent skew binary random-
access lists as lists of complete binary trees.

To support head efficiently, the first element in the random-access list should be the root
of thefirst tree, so we store the elements within each tree in left-to-right preorder and with the
elementsin each tree preceding the elements in the next tree.

In previous examples, we have stored a size or rank in every node, even when that infor-
mation was redundant. For this example, we adopt the more realistic approach of maintaining
size information only for the root of each treein thelist, and not for every subtree aswell. The
type of skew binary random-access lists is therefore

datatype o Tree = Leaf of o | Nodeof o x o Tree x o Tree
type o RList = (int x « Tree) list
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Now, we can define cons in analogy to inc.

fun cons (z, ts as (wy, ;) :: (ws, &) :: rest) =
if w; = w, then (1+w;+w,, Node (z, #1, ;) :: rest) else (1, Leaf z) :: ts
| cons (z, ts) = (1, Leaf z) :: ts

head and tail inspect and remove the root of the first tree. tail returnsthe children of the root
(if any) back to the front of the list, where they represent a new 2 digit.

fun head ((1, Leaf z) i ts) =«
| head ((w, Node (z, 4, &) :: ts) =«
fun tail ((1, Leaf ) :: ts) = ts
| tail ((w, Node (z, t1, ) 2 ts) = (w div 2, ¢;) = (w div 2, &) :: s

To lookup an element, we first search the list for the right tree, and then search the tree for the
right element.

fun lookup ((w, t) :: ts, i) =if i < w then lookupTree (w, t, i) else lookup (ts, i—w)

fun lookupTree (1, Leaf «, 0) = =
| lookupTree (w, Node (z, ¢, t;), 0) =
| lookupTree (w, Node (z, t, &), 1) =
if ¢ < w div2then lookupTree (w div 2, ¢, i—1)
else lookupTree (w div 2, t,, 1 — 1 — w div 2)

Note that in the penultimate line, we subtract one from ¢ because we have skipped over z. In
the last line, we subtract 1 + | w/2 | from ¢ because we have skipped over 2 and all the elements
int;. update and update Tree are defined similarly, and are shown in Figure 6.9, which contains
the complete implementation.

It is easy to verify that cons, head, and tail runin O(1) worst-case time. Like binary
random-access|lists, skew binary random-accesslists arelogarithmic-lengthlists of logarithmic-
depth trees. Hence, lookup and update runin O(log n) worst-case time. In fact, every unsuc-
cessful step of lookup or update discards at least one element, so this bound can be improved
dightly to O(min(7,logn)).

HinttoPractitioners. Skew binary random-accesslists are agood choice for applications that
take advantage of both the list-like aspects and the array-like aspects of random-access lists.
Although there are better implementations of lists, and better implementations of (persistent)
arrays, none are better at both [Oka95b)].




6.4 Skew Binary Numbers

structure SkewBinaryRandomAccessList : RANDOMACCESSLIST =
struct
datatype o Tree = Leaf of « | Node of o x o Tree x o Tree
type o RList = (int x « Tree) list (+ integer isthe weight of the tree x)

exception EMPTY and INDEX

val empty =[]
fun isEmpty ts = null ¢s

fun cons (z, ts as (wy, ty) 2 (wq, &) 2 ts') =
if wy = wy then (1+w,+ws, Node (z, 4, &) :: ts’) else (1, Leaf ) :: ts
| cons (z, ts) = (1, Leaf z) :: ts
fun head [] =raise EMPTY
| head ((1, Leaf z) :: ts) =z
| head ((w, Node (z, #, ) @i ts) =z
fun tail [] =raise EMPTY
| tail ((1, Leaf 2) :: ts) = ts
| tail ((w, Node (z, 1, ) ;1 ts) = (w div2, ) 2 (w div2, &) i ts

fun lookupTree (1, Leaf #,0) =«
| lookupTree (1, Leaf z, i) =raise INDEX
| lookupTree (w, Node (z, 1, &), 0) = =
| lookupTree (w, Node (z, 1, &), i) =
if © < w div2then lookupTree (w div 2, 1, i—1)
elselookupTree (w div 2, t5, i — 1 — w div 2)
fun updateTree (1, Leaf z, 0, y) = Leaf y
| updateTree (1, Leaf z, 7, y) =raise INDEX
| updateTree (w, Node (z, 1, %), 0, y) = Node (y, t, t2)
| updateTree (w, Node (z, t, &), i, y) =
if © < w div2then Node (2, updateTree (w div 2, 4, i—1, y), &)
else Node (z, ¢, updateTree (w div 2, t3, i — 1 — w div 2, y))

fun lookup ([ ], ¢) = raise INDEX
| lookup ((w, t) :: ts, i) =if i < w then lookupTree (w, ¢, i) elselookup (s, i—w)
fun update ([ ], ¢, y) = raise INDEX
| update ((w, t) :: ts, i, y) =
if © < w then updateTree (w, t, i, y) :: ts else (w, t) :: update (s, i—w, y)

end

Figure 6.9: Skew binary random-access lists.
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6.4.2 Skew Binomial Heaps

Finally, we consider a hybrid numerical representation for heaps based on both skew binary
numbers and ordinary binary numbers. Incrementing a skew binary number is both quick and
simple, and serves admirably as a template for the insert function. Unfortunately, addition
of two arbitrary skew binary numbers is awkward. We therefore base the merge function on
ordinary binary addition, rather than skew binary addition.

A skew binomial tree isabinomial tree in which every node is augmented with alist of up
to r elements, where r isthe rank of the node in question.

datatype Tree = Node of int x Elem.T x Elem.T list x Treelist

Unlike ordinary binomial trees, the size of a skew binomial tree is not completely determined
by itsrank; rather the rank of a skew binomial tree determines a range of possible sizes.

Lemma 6.2 If ¢ isa skew binomial tree of rank r, then 2 < |¢| < 271 — 1.

Proof: By induction. ¢ has r children ¢, ...¢,, where ¢; is a skew binomial tree of rank
r—1,and 277" < || < 277 — 1. In addition, the root of ¢ is augmented with a list of &
elements, where 0 < £ < r. Therefore, [t| > 1 4+0+3002 =1+ (2" - 1) = 2" and
[t <T4+r+ X5 1) =14+r+ 2 —r—2)=2"11 1, m

Note that atree of rank r isawayslarger than atree of rank r» — 1.

Skew binomial trees may be linked or skew linked. The /ink function combines two trees
of rank r to form atree of rank » 4+ 1 by making the tree with the larger root a child of the tree
with the smaller root.

fun link (¢, asNode (r, #;, xs1, ¢1), 1 asNode (_, z3, ¥s3, ¢3)) =
if Elem.leq (1, %) then Node (r+1, 21, xsq, & 2 ¢;) else Node (r+1, x2, xs2, t : ¢3)

The skewLink function combines two trees of rank » with an additional element to form atree
of rank r + 1 by first linking the two trees, and then comparing the root of the resulting tree
with the additional element. The smaller of thetwo elementsremains as the root, and the larger
is added to the auxiliary list of elements.

fun skewLink (z, t, ;) =
let val Node (r, y, ys, ¢) =link (1, &)
in if Elem.leq (=, y) then Node (r, z, v :: ys, ¢) else Node (r, y, = :: ys, ¢) end

A skew binomial heap is represented as a list of heap-ordered skew binomial trees of in-
creasing rank, except that the first two trees may share the same rank. Since skew binomial
trees of the same rank may have different sizes, there is no longer a direct correspondence
between the trees in the heap and the digitsin the skew binary number representing the size of
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the heap. For example, even though the skew binary representation of 4is 11, askew binomial
heap of size 4 may contain one rank 2 tree of size 4; two rank 1 trees, each of size 2; arank 1
tree of size 3 and arank O tree; or arank 1 tree of size 2 and two rank O trees. However, the
maximum number of treesin aheap is still O(log n).

The big advantage of skew binomial heapsisthat we caninsert anew elementin O(1) time.
We first compare the ranks of the two smallest trees. If they are the same, we skew link the
new element with these two trees. Otherwise, we simply add a new singleton tree to the list.

funinsert (x, tsast; :: ty :: rest) =
if rank ¢; = rank ¢, then skewLink (z, t;, &) :: rest else Node (O, =, [],[]) :: ts
| insert (z, ts) = Node (O, =, [], []) :: ts

We implement merge in terms of two helper functions, insTree and merge Trees, that behave
exactly like their counterparts from ordinary binomial heaps, performing a regular link (not
a skew link!) whenever they find two trees of equal rank. Since merge Trees expects lists of
strictly increasing rank, merge normalizes its two arguments to remove any leading duplicates
before calling merge Trees.

fun normalize[] =[]
| normalize (¢ :: ts) = insTree (¢, ts)
fun merge (¢s1, ts3) = mergeTrees (normalize ts;, normalize ts,)

findMin also behaves exactly likeits counterpart from ordinary binomial heaps; sinceit ignores
the rank of each tree, it is unaffected by the possibility that the first two trees might have the
samerank. It smply scans the list of trees for the minimum root.

fun findMin [¢] = root ¢
| findMin (¢ :: ts) =let val « =root ¢
val y = findMin ¢s
in if Elem.leq (z, y) then = else y end

Finally, deleteMin on skew binomial heaps is similar to its counterpart for ordinary binomial
heaps except that it must deal with the list of auxiliary elements that has been added to every
node. We first find and remove the tree with the minimum root. After discarding this root, we
merge the children of thisroot with the remaining trees. To do so, we must first reverse the list
of children, since it is stored in decreasing order, and normalize the list of trees, since the first
rank might be duplicated. Finally, we reinsert each of the elements from the auxiliary list.

fun deleteMin ts =
let fun getMin [¢] = (¢, [])
| getMin (¢ :: ts) =let val (¢/, ts") = getMin ts
in if Elem.leq (root ¢, root ¢’) then (¢, ts) else (¢/, ¢ :: ts") end
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val (Node (_, z, zs, ¢), ts") = getMin ts
funinsertAll ([1, ts) = ts
| insertAll (z :: as, ts) = insertAll (xs, insert (z, ts))
in insertAll (zs, mergeTrees (rev ¢, normalize ¢s’)) end

Figure 6.10 presents the compl ete implementation of skew binomial heaps.

insert clearly runs in O(1) worst-case time, while merge, findMin, and deleteMin run
in the same time as their counterparts for ordinary binomial queues, i.e., O(log n) worst-case
time each. Note that the various phases of deleteMin — finding the tree with the minimum
root, reversing the children, merging the children with the remaining trees, and reinserting the
auxiliary elements — take O(log n) time each.

6.5 Discussion

In designing numerical representations, we draw analogies between container data structures
and representations of natural numbers. However, this analogy can also be extended to other
kinds of numbers. For example, difference lists [SS86] in Prolog support a notion of lists with
negative length; appending alist of length 15 and a list of length —10 resultsin alist of length
5. This behavior is aso possible using the catenable lists of Hughes [Hug86], which are the
functional counterpart of differencelists.!

As another example, Brodal and Okasaki [BO96] support a delete function on heaps using
two primitive heaps, one containing positive elements and one containing negative elements.
The negative elements are ones that have been deleted, but that have not yet been physically
removed from the positive heap. In this representation, it is possible to delete elements that
have not yet been inserted. If the negative heap is larger than the positive heap, then the overall
“size” of the heap is negative.

Can this analogy between data structures and representations of numbers be extended even
further, to non-integral numbers? We know of no such examples, but it isintriguing to speculate
on possible uses for such data structures. For instance, might a numerical representation based
on floating point numbers be useful in approximation algorithms?

6.6 Related Work

Numerical Representations Data structures that can be cast as numerical representations
are surprisingly common, but only rarely is the connection to a variant number system noted
explicitly [GMPR77, Mye83, CMP88, KT96h].

1Thanks to Phil Wadler for this observation.
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functor SkewBinomialHeap (structure E : ORDERED) : HEAP =
struct
structure Elem=E

datatype Tree = Node of int x Elem.T x Elem.T list x Treelist
type Heap = Treelist
exception EMPTY
val empty =[]
fun isEmpty ts = null ¢s
fun rank (Node (r, z, zs, ¢)) =r
fun root (Node (r, z, zs, ¢)) =«
fun link (¢, asNode (r, #1, s, ¢1), t asNode (_, 3, 282, ) =
if Elem.leq (zy, #2) then Node (r+1, »1, sy, t2 :: ¢q) elseNode (r+1, o, 239,  :: ¢3)
fun skewLink (z, 1, &) =
let val Node (r, y, ys, ¢) =link (1, &)
inif Elem.leq (2, y) then Node (r, z, y :: ys, ¢) elseNode (r, y, z :: ys, ¢) end
fun insTree (¢, []) =[]
| insTree (ty, & = ts) =if rank ¢; < rank & then ¢, :: ¢ = ts elseinsTree (link (¢4, t), ts)
fun mergeTrees (tsq, []) = ts1
| mergeTrees ([ ], ts2) = tsy
| mergeTrees (4 :: tsy, & i tso) =if rank ¢; < rank t, then ¢, :: mergeTrees (tsy, &y :: ts3)
elseif rank #; < rank ¢, then ¢, :: mergeTrees (, :: ts1,ts2)
elseinsTree (link (¢, t;), mergeTrees (ts, tsq))
fun normalize[] =[]
| normalize (t :: ts) = insTree (¢, ts)
funinsert (z, tsast ity i rest) =
if rank t; = rank ¢, then skewLink (z, t, &) :: rest elseNode (O, =, [1, []) :: ts
| insert (z, ts) =Node (0, z, [1,[]) :: ts
fun merge (¢s1, ts3) = mergeTrees (normalize ts;, normalize ts;)
fun findMin[] =raise EMPTY
| findMin [¢] =root ¢
| findMin (¢ :: ts) =let val « =root t and y = findMin ¢s
inif Elem.leq (z, y) then z else y end
fun deleteMin[] =raise EMPTY
| deleteMin ts =
let fun getMin[¢] = (¢, [])
| getMin (¢ :: ts) = let val (¢/, ts’) = getMin s
inif Elem.leq (root ¢, root ¢') then (¢, ts) else (¢, ¢ :: ts') end
val (Node (_, z, zs, ), ts’) = getMin ts
fun insertAll ([1, ts) = ts
| insertAll (z :: ws, ts) = insertAll (zs, insert (z, ts))
in insertAll (zs, mergeTrees (rev ¢, normalize ts')) end
end

Figure 6.10: Skew binomial heaps.
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Random-Access Lists Random-access lists are usually implemented in purely functional
languages as balanced trees, such as AVL trees [Mye84], Braun trees [Ho092a, Pau9l], or
leftist left-perfect leaf trees [KD96]. Such trees easily support O(log n) lookups and updates
(O(log ) in the case of Braun trees), but require O(log n) timefor cons or tail.

Myers [Mye83] describes the first implementation of random-access lists based on skew
binary numbers. He augments a standard singly-linked list with auxiliary pointers alowing
one to skip arbitrarily far ahead in the list. The number of elements skipped by each auxiliary
pointer is controlled by the digits of a skew binary number. His scheme supports cons, head,
and tail in O(1) time, and lookup in O(log n) time, but requires O(z) time for update. The
difficulty with updates is that his scheme contains many redundant pointers. Removing those
redundant pointers yields a structure isomorphic to the skew binary random-access lists of
Section 6.4.1, which first appeared in [Oka95h].

Kaplan and Tarjan [KT95] recently introduced the agorithmic notion of recursive slow-
down, and used it to design a new, purely functional implementation of real-time deques. A
pleasant accidental property of their data structure is that it also supports random access in
O(log d) worst-case time, where d is the distance from the desired element to the nearest end
of the deque (i.e., d = min(i,n — 1 — ¢)). We will consider a simplification of their data
structure in Chapter 8.

Finger search trees [GMPR77, Tsa85] support not only random access in O(log d) worst-
case time, but also insertions and deletions at arbitrary locations. Kaplan and Tarjan apply their
methods to purely functional finger search treesin [KT96b].

Binomial Heaps Binomia heaps were introduced by Vuillemin [Vui78] and extensively
studied by Brown [Bro78]. King [Kin94] showed that binomial heaps could be implemented
elegantly in a purely functional language (in his case, Haskell).

Fagerberg [Fag96] describes a generalization of binomial heaps in which the set D; of
allowable digits at position : in a sequence of digits can be different for each ;. Varying the
choices for each D; allows a tradeoff between the costs of insert and meld, and the cost of
deleteMin.

Skew binomial heaps were originally presented, in adlightly different form, in [BO96].



Chapter 7

Data-Structural Bootstrapping

The term bootstrapping refers to “pulling yourself up by your bootstraps’. This seemingly
nonsensical image is representative of a common situation in computer science: problems
whose solutions require solutions to (ssmpler) instances of the same problem.

For example, consider |oading an operating system from disk or tape onto a bare computer.
Without an operating system, the computer cannot even read from the disk or tape! One solu-
tion is a bootstrap loader, a very tiny, incomplete operating system whose only purpose is to
read in and pass control to asomewhat larger, more capable operating system that in turn reads
in and passes control to the actual, desired operating system. This can be viewed as ainstance
of bootstrapping a complete solution from an incompl ete solution.

Another example is bootstrapping a compiler. A common activity is to write the compiler
for a new language in the language itself. But then how do you compile that compiler? One
solutionisto write avery simple, inefficient interpreter for the language in some other, existing
language. Then, using the interpreter, you can execute the compiler on itself, thereby obtain-
ing an efficient, compiled executable for the compiler. This can be viewed as an instance of
bootstrapping an efficient solution from an inefficient solution.

In his thesis [Buc93], Adam Buchsbaum describes two algorithmic design techniques he
collectively calls data-structural bootstrapping. The first technique, structural decomposition,
involves bootstrapping complete data structures from incomplete data structures. The second
technique, structural abstraction, involves bootstrapping efficient data structures from ineffi-
cient data structures. In this chapter, we reexamine data-structural bootstrapping, and describe
several functional data structures based on these techniques.
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7.1 Structural Decomposition

Structural decomposition is a technique for bootstrapping complete data structures from in-
complete data structures. Typically, this involves taking an implementation that can handle
objects only up to some bounded size (perhaps even zero), and extending it to handle objects
of unbounded size.

Consider typical recursive datatypes such as lists and binary leaf trees:

datatype « List = Nil | Consof o x « List
datatype o Tree = Leaf of o | Node of o Tree x o Tree

In some ways, these can be regarded as instances of structural decomposition. Both consist
of a simple implementation of objects of some bounded size (zero for lists and one for trees)
and arulefor recursively decomposing larger objects into smaller objects until eventually each
object is small enough to be handled by the bounded case.

However, both of these definitions are particularly smple in that the recursive component
in each definition isidentical to the type being defined. For instance, the recursive component
in the definition of o List isalso « List. Such adatatypeis called uniformly recursive.

In general, we reserve the term structural decomposition to describe recursive data struc-
tures that are non-uniform. For example, consider the following definition of sequences:

datatype o Seq = Empty | Seqof o x (o x «) Seq

Here, a sequence is either empty or a single element together with a sequence of pairs of
elements. The recursive component (o x «) Seq is different from o« Seq so this datatype is
non-uniform. (In Chapter 8, we will consider an implementation of queues that is similar to
this definition of sequences.)

Why might such a non-uniform definition be preferable to a uniform definition? The more
sophisticated structure of non-uniform types often supports more efficient algorithmsthan their
uniform cousins. For example, compare the following size functions on lists and sequences.

fun sizeL Nil =0 fun sizeSEmpty =0
| sizeL (Cons (z, zs)) =1+ sizel us | sizeS (Seq (z, ps)) =1+ 2 SizeS ps

The function on lists runs in O(n) time whereas the function on sequences runs in O(logn)
time.
7.1.1 Non-Uniform Recursion and Standard ML

Although Standard ML allows the definition of non-uniform recursive datatypes, the type sys-
tem disallows the definition of most useful functions on such datatypes. For instance, consider
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the sizeS function on sequences. This function definition would be rejected by Standard ML
because the type system requiresthat all recursive callsin the body of arecursive function have
the same type as the enclosing function (i.e., recursive function definitions must be uniform).
The sizeS function violates this restriction because the enclosing sizeS hastype oo Seq — int
but theinner sizeS hastype (o x «) Seq — int.

It is usually possible to convert a non-uniform type into a uniform type by introducing a
new datatype to collapse the different instances into a single type. For example, by collapsing
elements and pairs, the Seq type could be written

datatype o ElemOrPair = Elem of « | Pair of o ElemOrPair x « ElemOrPair
datatype o Seq = Empty | Seq of o ElemOrPair x a Seq

Then the sizeS function would be perfectly legal as written; both the enclosing sizeS and the
inner sizeS would have type o Seq — int.

Although necessary to satisfy the Standard ML type system, this solution is unsatisfactory
in at least two ways. First, the programmer must manually insert Elem and Pair constructors
everywhere. Thisis tedious and error-prone. Second, and more importantly, this definition of
Seq is not isomorphic to the earlier, non-uniform definition of Seq. In particular, the first defi-
nition ensures that the outermost .Seq constructor contains asingle element, the second a pair of
elements, the third apair of pairs of elements, and so on. However, the second definition makes
no such restriction; elements and pairs may be freely mixed. If such arestriction is desired,
the programmer must establish it as a system invariant. But if the programmer accidentally
violates this invariant — say, by using an element where a pair is expected — the type system
will be of no help in catching the error.

For these reasons, we will often present code as if Standard ML supported non-uniform
recursive function definitions, also known as polymorphic recursion [Myc84]. This code will
not be executable but will be easier to read. We will then sketch the coercions necessary to
eliminate the polymorphic recursion and make the code executable.

7.1.2 QueuesRevisited

Consider the use of + in the banker’s queues of Section 3.4.2. During a rotation, the front
stream F' isreplaced by F' # reverse R. After aseries of rotations, /' will have the form

(- ((f # reverse r1) H reverse ry) - - - # reverse ry)

Append is well-known to be inefficient in |eft-associative contexts like this because it repest-
edly processes the elements of the leftmost streams. For example, in this case, the elements of
f will be processed % times (once by each +), and the elements of ; will be processed £ — ¢ + 1
times (once by reverse and once for each following +). In general, |left-associative appends
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can easily lead to quadratic behavior. In this case, fortunately, the total cost of the appendsis
still linear because each r; is at least twice as long as the one before. Still, this repeated pro-
cessing does sometimes make these queues slow in practice. In this section, we use structural
decomposition to eliminate this inefficiency.

Given that F' has the above form and writing R as r, we can decompose a queue into three
parts: f, r, and the collection m = {reverse rq,..., reverse r;}. Previoudly, f, r, and each
reverse r; Was a stream, but now we can represent f and » asordinary lists and each reverse r;
as asuspended list. This eliminates the vast majority of suspensions and avoids almost al of
the overheads associated with lazy evaluation. But how should we represent the collection m?
As we will see, this collection is accessed in FIFO order, so using structural decomposition
we can represent it as a queue of suspended lists. Aswith any recursive type, we need a base
case, so we will represent empty queues with aspecial constructor! The new representationis
therefore

datatype oo Queue =
Empty
| Queueof {F: a list, M : « list susp Queue, LenFM :int, R : « list, LenR : int}

LenFM is the combined length of /' and all the suspended lists in M (i.e., what used to be
simply LenF' in the old representation). £ can never be longer than this combined length. In
addition, F' must always be non-empty. (In the old representation, /' could be empty if the
entire queue was empty, but now we represent that case separately.)

As always, the queue functions are simple to describe.

fun snoc (Empty, =) = Queue {F =[z], M = Empty, LenFM =1, R=[], LenR =0}
| snoc (Queue {F=/f,M =m, LenFM =lenFM,R=r,LenR =[lenR}, z) =
queue{F=f,M =m,LenFM =lenFM,R =2z : r, LenR = [enR+1}
fun head (Queue{F==z:: f,...}) =z
funtal (Queue{F==z::f,M =m,LenFM = [enF'M,R=r,LenR = lenR}) =
queue {F=f,M =m,LenFM =[enFM —1, R=r,LenR = lenR}

Thereal actionisin the pseudo-constructor quewe. If R istoolong, queue createsasuspension
to reverse R and adds the suspension to M. After checking the length of R, queue invokes a
helper function checkF that guarantees that /' is non-empty. If both F and M are empty, then
the entire queue is empty. Otherwise, if F' is empty we remove the first suspension from M,
forceit, and install the resulting list asthe new F'.

funqueve(gas{F=f,M=m,LenFM = [enF'M,R=r,LenR = lenR}) =
if lenR < lenF'M then checkF q
else checkF {F = f, M = snoc (m, $rev r), LenFM = [enF'M+lenR, R=[], LenR = 0}

A dightly more efficient alternative is to represent queues up to some fixed size smply aslists.
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structure BootstrappedQueue : QUEUE =  (x assumes polymorphic recursion! )
struct
datatype o Queue =
Empty
| Queueof {F: a list, M : o list susp Queue, LenFM :int, R : « list, LenR : int }

exception EMPTY

val empty = Empty
fun isEmpty Empty
| isEmpty (Queue _) =false

fun queue (q as{F=f,M =m, LenFM = lenFM,R=r, LenR = [enR}) =
if lenR < lenFM then checkF ¢
else checkF {F = f, M =snoc (m, $rev r), LenFM = lenFM+lenR, R =[], LenR = 0}
and checkF {F =[], M = Empty, ...} = Empty
| checkF {F=[],M =m, LenFM = lenFM,R=r,LenR = lenR}) =
Queue {F =force (head m), M =tail m, LenFM = lenF'M, R =r, LenR = lenR}
| checkF ¢ = Queue ¢

and snoc (Empty, z) = Queue {F =[2], M = Empty, LenFM =1, R=[], LenR =0}
| snoc (Queue {F=f,M =m, LenFM =lenFM,R=r,LenR = lenR}, z) =
queue{F=f, M =m,LenFM =lenFM,R==z . r, LenR = lenR+1}
and head Empty = raise EMPTY
| head (Queue{F==z: f,...}) ==
and tail Empty = raise EMPTY
| tail (Queue {F==z:f,M=m,LenFM =lenFM,R=r,LenR=lenR}) =
queue {F=f,M =m, LenFM = lenFM -1, R=r, LenR = lenR}
end

Figure 7.1: Bootstrapped queues based on structural decomposition.

and checkF {F =[], M = Empty, ...} = Empty
| checkF {F=[],M = m, LenFM =lenFM,R=r,LenR =lenR}) =
Queue {F = force (head m), M =tall m, LenFM = lenF'M,R=r, LenR = lenR}
| checkF ¢ = Queue ¢

Note that queue and checkF cal snoc and tail, which in turn call queue. These functions
must therefore al be defined mutually recursively. The complete implementation appears in
Figure7.1.

Remark: Toimplement these queueswithout polymorphic recursion, we redefinethe datatype
as
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datatype o ElemOrList = Elem of « | List of o ElemOrList list susp
datatype oo Queue =
Empty
| Queue of {F: o ElemOrList list, M : o Queue, LenFM : int,
R:« ElemOrList list, LenR : int }

Then snoc and head add and remove the Elem constructor when inserting or inspecting an ele-
ment, and queue and checkF add and remove the List constructor when inserting or removing
alist from M. &

These queues create asuspension to reversetherear list at exactly the same time as banker’s
gueues, and force the suspension one operation earlier than banker’squeues. Thus, sincethere-
verse computation contributes only O(1) amortized time to each operation on banker’s queues,
it also contributes only O(1) amortized time to each operation on bootstrapped queues. How-
ever, the running time of the snoc and tail operations is not constant! Note that snoc calls
queue, Which in turn might call snoc on M. In this way we might get a cascade of calls to
snoc, one at each level of the queue. However, successive listsin M at least doublein size so
thelength of M isO(log n). Sincethe size of the middle queue decreases by at least alogarith-
mic factor at each level, the entire queue can only have depth O(log™ n). snoc performs O(1)
amortized work at each level, so in total snoc requires O(log™ n) amortized time.

Similarly, tail might result in recursive calls to both snoc and tail. The snoc mightinturn
recursively call snoc and the ta:l might recursively call both snoc and tail. However, for any
given level, snoc and tail can not both recursively call snoc. Therefore, both snoc and tail are
each called at most once per level. Since both snoc and tail do O(1) amortized work at each
level, the total amortized cost of tail isalso O(log™ n).

Remark: O(log™n) isconstant in practice. To have a depth of more than five, a queue would
need to contain at least 265°%¢ elements. In fact, if one represents queues of up to size 4 simply
as lists, then all queues with fewer than about 4 billion elements will have no more than three
levels. <&

Although it makes no difference in practice, one could reduce the amortized running time
of snoc and tail to O(1) by wrapping M in a suspension and executing all operations on M
lazily. The type of M then becomes « list susp Queue susp.

Yet another variation that yields O(1) behavior is to abandon structural decomposition and
simply use astream of type « list susp Stream for M. Then every queue has exactly two levels.
Adding a new list suspension to the end of the stream with + takes O(|M|) time, but, since
4 isincremental, this cost can be amortized over the operations on the top-level queue. Since
these queues are not recursive, we have no need for polymorphic recursion. This variation is
explored in greater detail in [Oka96a)].
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Hint to Practitioners. In practice, variations on these queues are the fastest known imple-
mentations for applications that use persistence sparingly, but that require good behavior even
in pathological cases.

7.2 Structural Abstraction

The second kind of data-structural bootstrapping is structural abstraction, which is typically
used to extend an implementation of collections, such as lists or heaps, with an efficient join
function for combining two collections. For many implementations, designing an efficient
insert function, which adds a single element to a collection, is easy, but designing an efficient
join functionisdifficult. Structural abstraction creates collectionsthat contain other collections
as elements. Then two collections can be joined by simply inserting one collection into the
other.

The ideas of structural abstraction can largely be described at the level of types. Suppose
« C'isacollection datatype with elements of type «, and that this datatype supports an efficient
insert function, with signature

valinsert:a x a C—aC

Call o C the primitive type. From thistype, we wish to derive a new datatype o B, called the
bootstrapped type, such that o B supports both insert and join efficiently, with signatures

valinsertg : a x a B — a B
valjoing:aB xaB—aB

(We use the B subscript to distinguish functions on the bootstrapped type from functions on
the primitive type.) In addition, o B should support an efficient unit function for creating a
new singleton collection.

val unitg : o — a B
Then, insert g can be implemented simply as
funinsertg (2, b) =joing (unitg =, b)

The basic idea of structural abstraction is to somehow represent bootstrapped collections as
primitive collections of other bootstrapped collections. Then joing can be implemented in
terms of insert (Not insert g!) roughly as

fun joing (b1, by) = insert (b1, by)
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This inserts 6; as an element of b,. Alternatively, one could insert 6, as an element of b;, but
the point is that join has been reduced to simple insertion.

Of course, the situation is not quite that simple. Based on the above description, we might
attempt to definea B as

datatypea B=B of (a« B) C
This definition can be viewed as specifying an isomorphism
aB=(aB)C
By unrolling this isomorphism a few times, we can quickly spot the flaw in this definition.
aB=(@B)C=Z(aB)C)C=-.-=((---C)O)C

The primitive elements of type o have disappeared! We can solve this by making each boot-
strapped collection apair of a single element with a primitive collection.

datatypea B=Bof o x (« B)C
Then, for instance, unitg can be defined as
fun unitg = =B (x, empty)

where empty is the empty primitive collection.

But now we have another problem. If every bootstrapped collection contains at least a
single element, how do we represent the empty bootstrapped collection? We therefore refine
the type one more time.

datatypea B =Empty | Bof a x (« B) C

Remark: Actually, we will aways arrange that the primitive collection €' contains only non-
empty bootstrapped collections. This situation can be described more precisely by the types

datatypea BT =Bt of a x (« BT) C
datatype o B = Empty | NonEmpty of B*

Unfortunately, definitions of this form lead to more verbose code. Hence, for presentation
purposes, we will use the earlier less precise, but more concise, definition. &

Now, we can refine the above templates for insertg and joing as
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fun insertg (z, Empty) = B (x, empty)
| inserts (2, B (y, ¢)) =B (z, insert (unitg y, ¢))

funjoing (b, Empty) = b
| joing (Empty, b) = b
|joing (B (z, ¢), b) =B (z, insert (b, ¢))

These templates can easily be varied in several ways. For instance, in the second clause of
insert g, we could reversetherolesof « and y. Similarly, in thethird clause of join g, we could
reverse the roles of the first argument and the second argument.

For any given collection, thereistypically some distinguished element that can be inspected
or deleted, such asthe first element or the smallest element. The insertg and join g templates
should be instantiated in such a way that the distinguished element in the bootstrapped col-
lection B (z, ¢) is« itself. The creative part of designing a bootstrapped data structure using
structural abstraction is implementing the delete g routine that discards the distinguished ele-
ment x. After discarding =, we are left with a collection of type (« B) €', which must then be
converted into a bootstrapped collection of type o B. The details of how thisis accomplished
vary from data structure to data structure.

We next instantiate these templates in two ways. First, we bootstrap queues to support
catenation (i.e., append) efficiently. Second, we bootstrap heaps to support merge efficiently.

7.2.1 ListsWith Efficient Catenation

The first data structure we will implement using structural abstraction is catenable lists, as
specified by the signature in Figure 7.2. Catenable lists extend the usual list signature with an
efficient append function (+). Asaconvenience, catenable lists also support snoc, even though
we could easily simulate snoc (s, ) by xs + cons (x, empty). Because of this ability to add
elements to the rear of alist, a more accurate name for this data structure would be catenable
output-restricted deques.

We obtain an efficient implementation of catenable lists that supportsall operationsin O(1)
amortized time by bootstrapping an efficient implementation of FIFO queues. The exact choice
of implementation for the primitive queuesis largely irrelevant; any of the persistent, constant-
time queue implementations will do, whether amortized or worst-case.

Given an implementation ¢ of primitive queues matching the QUEUE signature, structural
abstraction suggests that we can represent catenable lists as

datatype o Cat = Empty | Cat of o x « Cat Q.Queue

Oneway to interpret thistypeis as atree where each node contains an element, and the children
of each node are stored in a queue from left to right. Since we wish for the first element of the
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signature CATENABLELIST =
sig

type « Cat

exception EMPTY

val empty : « Cat

val isEmpty : « Cat — bool

val cons ta X aCa— o Ca

val snoc raCat x o — o Cat

val + taCa x o Cat — o Cat

valhead :aCat— « (* raisesEMPTY if list is empty )

val tail aCat — o Cat (xraisesEMPTY iflistisempty )
end

Figure 7.2: Signature for catenable lists.

e f 9 h n o p r s i
Figure 7.3: A treerepresenting thelist a . . . £.

list to be easily accessible, we will store it at the root of the tree. This suggests ordering the
elementsin apreorder, left-to-right traversal of the tree. A sample list containing the elements
a...tisshowninFigure7.3.

Now, head issimply
fun head (Cat (z, _)) =«

To catenate two non-empty lists, we link the two trees by making the second tree the last child
of thefirst tree.
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Figure 7.4: Illustration of the tail operation.

fun zs #+ Empty = zs
| Empty # xs = s
| s # ys = link (zs, ys)

where link adds its second argument to the queue of its first argument.
fun link (Cat (z, ¢), s) = Cat (x, Q.snoc (¢, s))
cons and snoc sSimply call +.

fun cons (z, «s) = Cat (z, Q.empty) + xs
fun snoc (s, ©) = xs + Cat (z, Q.empty)

Finally, given a non-empty tree, ta:l should discard the root and somehow combine the queue
of children into asingle tree. If the queue is empty, then ta:l should return E'mpty. Otherwise
we link all the children together.

fun tail (Cat (=, ¢q)) = if Q.isEmpty ¢ then Empty else linkAll ¢

Since catenation is associative, we can link the children in any order we desire. However, a
little thought reveals that linking the children from right to left, as illustrated in Figure 7.4,
will result in the least duplicated work on subsequent calls to tail. Therefore, we implement
linkAll as

fun linkAll ¢ = let val ¢ = Q.head ¢

val ¢’ = Q.tall ¢
inif Q.isEmpty ¢ then ¢ elselink (¢, linkAll ¢") end

Remark: [linkAll isaninstance of the foldri program schema. &
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In this implementation, tail may take as much as O(n) time, but it is not difficult to show
that the amortized cost of tail isonly O(1), provided lists are used ephemerally. Unfortunately,
this implementation is not efficient when used persistently.

To achieve good amortized bounds even in the face of persistence, we must somehow in-
corporate lazy evaluation into this implementation. Since linkAll isthe only routine that takes
morethan O(1) time, it isthe obvious candidate. We rewrite linkAll to suspend every recursive
call. This suspension is forced when atree isremoved from a queue.

fun linkAll ¢ =let val $¢ = Q.head ¢
val ¢ = Q.tail ¢
inif Q.isEmpty ¢ then ¢ elselink (¢, $linkAll ¢') end

For this definition to make sense, every queue must contain tree suspensions rather than trees,
so we redefine the datatype as

datatype o Cat = Empty | Cat of o x o Cat susp Q.Queue
To conform to this new datatype, + must spuriously suspend its second argument.

fun zs + Empty = zs
| Empty # xs = s
| s 4 ys = link (zs, $ys)

The complete implementation is shown in Figure 7.5.

head clearly runsin O(1) worst-case time, while cons and snoc have the same time re-
quirements as +. We now prove that + and ta:l runin O(1) amortized time using the banker’s
method. The unshared cost of eachisO(1), so we must merely show that each discharges only
O(1) debits.

Let d,(i) be the number of debits on the ith node of tree ¢ and let D, (i) = '_o dq(j) be
the cumulative number of debits on all nodes of ¢ up to and including node:. Finaly, let D, be
the total number debitson all nodesin ¢ (i.e., D; = D.(]t| — 1)). We maintain two invariants
on debits.

First, we require that the number of debits on any node be bounded by the degree of the
node (i.e., d;(1) < degree,(1)). Sincethe sum of degrees of all nodesin a non-empty treeis one
less than the size of the tree, thisimplies that the total number of debitsin atreeis bounded by
the size of thetree (i.e.,, D; < |t|). We will maintain thisinvariant by incrementing the number
of debits on a node only when we also increment its degree.

Second, we insist that the D, (:) be bounded by some linear function on :. The particular
linear function we choose is
Di(v) < i+ depth,(v)
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functor Catenablelist (structure Q : QUEUE) : CATENABLELIST =
struct
datatype o Cat = Empty | Cat of o x o Cat susp Q.Queue

exception EMPTY

val empty = Empty
fun isEmpty Empty = true
| isEmpty (Cat ¢) =false

fun link (Cat (z, ¢), s) = Cat (2, Q.snoc (g, s))
fun linkAll ¢ = let val $t = Q.head ¢
val ¢’ = Qu.tail ¢
inif Q.isEmpty ¢’ then ¢ elselink (¢, $linkAll ¢") end

fun zs #+ Empty = zs

| Empty + 2s = s

| s # ys = link (zs, $ys)
fun cons (z, xs) = Cat (z, Q.empty) + zs
fun snoc (zs, z) = zs # Cat (2, Q.empty)

fun head Empty = raise EMPTY
| head (Cat (2, ) =z
fun tail Empty = raise EMPTY
| tail (Cat (z, q)) = if Q.isEmpty ¢ then Empty else linkAll ¢
end

Figure 7.5: Catenablelists.

where depth,(1) is the length of the path in ¢ from the root to node ;. This invariant is called
theleft-linear debit invariant. Notice that the left-linear debit invariant guaranteesthat d;(0) =
D,(0) <0+ 0 = 0, so all debits on a node have been discharged by the time it reaches the
root. (In fact, theroot is not even suspended!) The only time we actually force a suspensionis
when the suspended node is about become the new root.

Theorem 7.1 # and tail maintain both debit invariants by discharging one and three debits,
respectively.

Proof: (#) The only debit created by + isfor the trivial suspension of its second argument.
Since we are not increasing the degree of this node, we immediately discharge the new debit.
Now, assume that ¢; and ¢, are non-empty and let ¢t = ¢;+¢,. Let n = |¢;|. Note that the index,
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depth, and cumulative debits of each node in ¢; are unaffected by the catenation, sofor i < n
Dy(1) Dy, (1)

i + depth, (i)

i + depth, (1)

A

Thenodesint, increasein index by rn, increase in depth by one, and accumul ate the total debits
of t1, S0

Di(n + 1) Dy, + Dy, (1)

n+ Dl‘2 (Z)

n + i + depth, (2)

n + 1+ depth,(n 4+ 1) — 1

(n + 1) + depth, (n + 1)

A A

A

Thus, we do not need to discharge any further debits to maintain the left-linear debit invariant.

(tail) Let ¢’ = tail t. After discarding the root of ¢, we link the children ¢, . ..¢,,_; from
right to left. Let ¢. be the partial result of linking ¢;...7,_;. Thent = #;. Since every link
except the outermost is suspended, we assign a single debit to the root of each ¢;, 0 < ;7 <
m — 1. Note that the degree of each of these nodes increases by one. We also assign a debit to
theroot of ¢/, because the last call to linkAll is suspended even though it does not call link.
Since the degree of this node does not change, we immediately discharge this final debit.

Now, suppose the :th node of ¢ appearsin ¢;. By the left-linear debit invariant, we know
that D,(¢) < ¢ + depth,(1), but consider how each of these quantities changes with the tail. i
decreases by one because the first element is discarded. The depth of each nodein ¢; increases
by 7 — 1 (see Figure 7.4) while the cumulative debits of each nodein¢; increase by ;. Thus,

< i+ depth,(i)+J
= it (depthy (i —1) = (7= 1))+
= (1—1)+ depthy(t — 1)+ 2
Discharging the first two debits restores the invariant, for a total of three debits. O

Hint to Practitioners. Given a good implementation of queues, this is the fastest known
implementation of persistent catenable lists, especially for applications that use persistence
heavily.
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7.2.2 HeapsWith Efficient Merging

Next, we apply structural abstraction to heaps to obtain an efficient merge operation. This
section reflects joint work with Gerth Brodal.

Assume that we have an implementation of heaps that supports insert in O(1) worst-case
time and merge, findMin, and deleteMin in O(log n) worst-case time. The skew binomial
heaps of Section 6.4.2 are one such implementation. Using structural abstraction, we improve
the running time of both findMin and merge to O(1) worst-case time.

For now, assume that the type of heaps is polymorphic in the type of elements, and that,
for any type of elements, we magically know the right comparison function to use. Later we
will account for the fact that both the type of elements and the comparison function on those
elements are fixed at functor-application time.

Under the above assumption, the type of bootstrapped heaps can be given as
datatype o Heap = Empty | Heap of o x (o Heap) H.Heap

where H istheimplementation of primitive heaps. The element stored at any given Heap node
will be the minimum element in the subtree rooted at that node. The elements of the primitive
heaps are themselves bootstrapped heaps. Within the primitive heaps, bootstrapped heaps are
ordered with respect to their minimum elements (i.e., their roots).

Since the minimum element is stored at the root, findMin issimply
fun findMin (Heap (z, _)) = =

To merge two bootstrapped heaps, we insert the heap with the larger root into the heap with
the smaller root.

fun merge (Empty, ) = h
| merge (h, Empty) = &
| merge (hy as Heap (z, p1), h, asHeap (y, p2)) =
if 2 < y then Heap (z, H.insert (hy, p,)) else Heap (y, H.insert (i, p,))

(In the comparison = < y, we assume that < is the right comparison function for these ele-
ments.) Now, insert is defined in terms of merge.

fun insert (z, 2) = merge (Heap (z, H.empty), /)
Finally, we consider deleteMin, defined as

fun deleteMin (Heap (z, p)) =
if H.isEmpty p then Empty
elselet val (Heap (y, p1)) = H.findMin p
val p, = H.deleteMin p
in Heap (y, H.merge (p1, p2)) end
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After discarding the root, we first check if the primitive heap p is empty. If it is, then the
new heap is empty. Otherwise, we find and remove the minimum element in p, which is the
bootstrapped heap with the overall minimum element; this element becomes the new root.
Finally, we merge p; and p, to obtain the new primitive heap.

The analysis of these heaps is simple. Clearly, findMin runsin O(1) worst-case time
regardless of the underlying implementation of primitive heaps. insert and merge depend only
on H .insert. Since we have assumed that H .insert runsin O(1) worst-casetime, so do insert
and merge. Finaly, deleteMin cals H.findMin, H.deleteMin, and H.merge. Since each of
these runsin O(log n) worst-case time, so does delete Min.

Until now, we have assumed that heaps are polymorphic, but in fact the HEAP signature
specifies that heaps are monomorphic— both the type of elements and the comparison function
on those elements are fixed at functor-application time. The implementation of a heap is a
functor that is parameterized by the element type and the comparison function. Therefore, the
functor that we use to bootstrap heaps maps heap functors to heap functors, rather than heap
structures to heap structures. Using higher-order functors [MT94], this can be expressed as

functor Bootstrap (functor MakeH (structureE : ORDERED) : Sig
include HEAP
sharing Elem=E
end)
(structureE : ORDERED) : HEAP = ...

The Bootstrap functor takes the MakeH functor as an argument. The MakeH functor takes
the ORDERED structure £/, which contains the element type and the comparison function, and
returns a HEAP structure. Given MakeH , Bootstrap returns afunctor that takes an ORDERED
structure £ and returns a HEAP structure.

Remark: The sharing constraint in the signaturefor the Make H functor is necessary to ensure
that the functor returns a heap structure with the desired element type. This kind of sharing
constraint is extremely common with higher-order functors. &

Now, to create a structure of primitive heaps with bootstrapped heaps as el ements, we apply
MakeH to the ORDERED structure Bootstrapped H that defines the type of bootstrapped heaps
and a comparison function that orders two bootstrapped heaps by their minimum elements.
(The ordering relation is undefined on empty bootstrapped heaps.) This is expressed by the
following mutually recursive structure declarations.

structurerec BootstrappedH =
struct
datatype T = Empty | Heap of Elem.T x H.Heap
fun leq (Heap (z, ), Heap (y, -)) = Elem.leq (z, y)
end
and H = MakeH (structure E = BootstrappedH)
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where Elem isthe ORDERED structure specifying the true elements of the bootstrapped heap.
The complete implementation of the Bootstrap functor isshownin Figure 7.6.

Remark: Standard ML does not support recursive structure declarations, and for good reason
— this declaration does not make sense for MakeH functors that have effects. However, the
MakeH functorsto which we might consider applying Bootstrap, such as SkewBinomialHeap
from Section 6.4.2, are well-behaved in this respect, and the recursive pattern embodied by the
Bootstrap functor does make sense for these functors. It is unfortunate that Standard ML does
not allow us to express bootstrapping in this fashion.

We can still implement bootstrapped heaps in Standard ML by inlining a particular choice
for MakeH , such as SkewBinomialHeap, and then eliminating BootstrappedH and H as sep-
arate structures. The recursion on structures then reduces to recursion on datatypes, which is
supported by Standard ML. &

7.3 Redated Work

Data-Structural Bootstrapping Buchsbaum et al. identified data-structural bootstrapping
as ageneral data structure design technique in [Buc93, BT95, BST95]. Structural decomposi-
tion and structural abstraction had previously been used in [Die82] and [DST94], respectively.

CatenableLists Althoughitisrelatively easy to design alternative representations of persis-
tent lists that support efficient catenation (see, for example, [Hug86]), such alternative repre-
sentations seem amost inevitably to sacrifice efficiency on the head and/or tail functions.

Myers[Mye84] described arepresentation based on AV L treesthat supportsall relevant list
functionsin O(log n) time.

Driscoll, Sleator, and Tarjan achieved the first sub-logarithmicimplementationin [DST94].
They represent catenable lists as n-ary trees with the elements at the leaves. To keep the left-
most |eaves near the root, they use arestructuring operation known as pu// that removesthefirst
grandchild of the root and reattaches it directly to the root. Unfortunately, catenation breaks
all useful invariants based on this restructuring heuristic, so they are forced to develop quite
a bit of machinery to support catenation. The resulting implementation supports catenation
in O(log log k) worst-case time, where k is the number of list operations (note that £ may be
much smaller than »), and all other functionsin O(1) worst-case time.

Buchsbaum and Tarjan [BT95] use structural decomposition to recursively decompose
catenable degues of size n into catenable deques of size O(logn). They use the pull oper-
ation of Driscoll, Sleator, and Tarjan to keep their tree balanced (i.e., of depth O(log n)), and
then use the smaller deques to represent the left and right spines of each subtree. Thisyieldsan



102 Data-Structural Bootstrapping

functor Bootstrap (functor MakeH (structure E : ORDERED) : Sig
include HEAaP
sharing Elem=E
end)
(structure E : ORDERED) : HEAP =
Sstruct
structure Elem=E

(* recursive structures not supportedin SVIL! x)
structure rec BootstrappedH =
struct
datatype T = Empty | Heap of Elem.T x H.Heap
fun leq (Heap (2, —), Heap (y, -)) = Elem.leq (z, y)
end
and H = MakeH (structure E = BootstrappedH)

open BootstrappedH  (x expose Empty and Heap constructors )
type Heap = BootstrappedH.T
exception EMPTY

val empty = Empty
fun isEmpty Empty = true
| isEmpty (Heap _) =false

fun merge (Empty, i) = h
| merge (h, Empty) = h
| merge (fn asHeap (z, p1), hy asHeap (y, p2)) =
if Elem.leq (z, y) then Heap (¢, H.insert (hy, py)) else Heap (y, H.insert (hy, p2))
fun insert (z, k) = merge (Heap (x, H.empty), 7)

fun findMin Empty = raise EMPTY
| findMin (Heap (z, _)) =«
fun deleteMin Empty = raise EMPTY
| deleteMin (Heap (z, p)) =
if H.isEmpty p then Empty
elselet val (Heap (y, p1)) = H.findMin p
val py = H.deleteMin p

in Heap (y, H.merge (1, p2)) end
end

Figure 7.6: Bootstrapped heaps.
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implementation that supports deletion of thefirst or last element in O(log™ k) worst-case time,
and all other deque functions, including catenation, in O(1) worst-case time.

Kaplan and Tarjan [KT95] finally achieved an implementation that supports catenation and
all other usua list functions in O(1) worst-case time. Their data structure is based on the
technique of recursive slowdown. We will describe recursive slowdown in greater detail in
Chapter 8.

The implementation of catenable lists in Section 7.2.1 first appeared in [Oka95d]. It is
much simpler than Kaplan and Tarjan’'s, but yields amortized bounds rather than worst-case
bounds.

MergeableHeaps Many imperativeimplementations support insert, merge, and findMin in
O(1) amortized time, and deleteMin in O(logn) amortized time, including binomial queues
[KL93], Fibonacci heaps [FT87], relaxed heaps [DGST88], V-heaps [Pet87], bottom-up skew
heaps [ST86b], and pairing heaps [FSST86]. However, of these, only pairing heaps appear
to retain their amortized efficiency when combined with lazy evaluation in a persistent set-
ting [Oka96a], and, unfortunately, the bounds for pairing heaps have only been conjectured,
not proved.

Brodal [Bro95, Bro96] achieves equivalent worst-case bounds. His original data structure
[Bro95] can be implemented purely functionally (and thus made persistent) by combining the
recursive-slowdown technique of Kaplan and Tarjan [KT95] with a purely functional imple-
mentation of real-time deques, such as the real-time deques of Section 5.4.3. However, such
an implementation would be both complicated and slow. Brodal and Okasaki simplify thisim-
plementation in [BO96], using skew binomial heaps (Section 6.4.2) and structural abstraction
(Section 7.2.2).

Polymor phicRecursion  Several attempts have been made to extend Standard ML with poly-
morphic recursion, such as [Myc84, Hen93, KTU93]. One complication is that type inference
is undecidable in the presence of polymorphic recursion [Hen93, KTU93], even though it is
tractable in practice. Haskell 1.3 [P+96] sidesteps this problem by allowing polymorphic re-
cursion whenever the programmer provides an explicit type signature.
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Chapter 8

| mplicit Recursive Slowdown

Implicit recursive slowdown is a lazy variant of the recursive-slowdown technique of Kaplan
and Tarjan [KT95]. We first review recursive slowdown, and then show how lazy evaluation
can significantly simplify this technique. Finally, we illustrate implicit recursive slowdown
with implementations of queues and catenable deques.

8.1 Recursve Slowdown

The simplest illustration of recursive slowdown is a variant of binary numbers that can be
incremented in O(1) worst-case time. (We have aready seen several such variants, including
skew binary numbers and segmented binary numbers.) Asalways, thetrick isto avoid cascades
of carries. In recursive slowdown, we allow digitsto be 0, 1, or 2. 2s exist only temporarily
and represent a carry in progress. To increment a number, we first increment the first digit,
which is guaranteed not to be 2. We then find the first non-1 digit. If itis 0, we do nothing,
butif itis2, we convert it to 0 and increment the following digit, which is aso guaranteed not
to be 2. Changing a 2 to a 0 and incrementing the following digit corresponds to executing a
single carry step.

It is easy to show that following the above rules maintains the invariant that the first 2 is
preceded by at least one 0 (and any number of 1) and that any pair of 2sis separated by at |east
one 0 (and any number of 1s). Thisinvariant guarantees that we never attempt to increment a
digit that is aready 2.

Since we want the increment function to run in O(1) worst-case time, we cannot afford to
scan the digits to find the first non-1 digit. Instead, we choose a representation that groups
contiguous blocks of 1stogether.

datatype Digit = Zero | Ones of int | Two
type Nat = Digit list
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The integer associated with Ones is the size of the block. Now the first non-1 digit is either
the first element of the Digit list or the second element if the first element isa Ones block.

To increment anumber, we first blindly increment thefirst digit, whichiseither 0 or 1. If it
IS0, it becomes 1 (and possibly joins an existing block of 1s). If itis1, it becomes 2 (possibly
eliminating an existing block of 1s). Thisis achieved by the following function:

fun simplelnc[] = [Ones 1]
| simplelnc (Zero :: ds) = ones (1, ds)
| smplelnc (Ones & :: ds) = Two :: ones (k—1, ds)

wherethe ones pseudo-constructor discards empty blocks and combines adjacent blocks of 1s.

fun ones (0, ds) = ds
| ones (kl, Ones kg . dS) = Ones (k1+k2) ds
| ones (k, ds) =Onesk :: ds

The fizup function finds the first non-1 digit, and if it is 2, convertsit to 0 and blindly incre-
ments the following digit.

fun fixup (Two :: ds) = Zero :: simplelnc ds
| fixup (Ones % :: Two :: ds) = Ones k :: Zero :: smplelnc ds
| fixup ds = ds

Finally, inc cals simplelnc, followed by fizup.

fun inc ds = fixup (simplelnc ds)

Remark: Actualy, inafunctional language, inc would typically be implemented using func-
tion composition, asin

val inc = fixup o simplelnc

o isahigher-order operator that takes two functionsand returnsafunction such that (f o g) = =
/(g ). &

This implementation can serve as a template for many other data structures. Such a data
structure comprises a sequence of levels, where each level can be classified as green, yellow, or
red. Each color corresponds to a digit in the above implementation, with green=0, yellow=1,
and red=2. We maintain the invariants that the first red level is preceded by at least one green
level, and that any two red levels are separated by at least one green level. An operation on
any given object may degrade the first level from green to yellow, or from yellow to red, but
never from greentored. A fizup procedure then checksif the first non-yellow level isred, and
if so convertsit to green, possibly degrading the following level from green to yellow, or from
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yellow to red. Consecutive yellow levels are grouped in a block to support efficient access to
the first non-yellow level. Kaplan and Tarjan [KT95] describe two implementations based on
thistemplate: real-time deques and real-time catenable lists.

8.2 Implicit Recursive Slowdown

The essence of the recursive-slowdown implementation of binary numbers is a method for
executing carriesincrementally. By now we have seen many examples of incremental functions
implemented with lazy evaluation. By combining the ideas of recursive slowdown with lazy
evaluation, we obtain anew technique, called implicit recursive slowdown, that is significantly
simpler than the original.

Consider the following, straightforward implementation of binary numbers as streams of
osand 1s:

datatype Digit = Zero | One
type Nat = Digit Stream

fun inc ($Nil) = $Cons (One, $Nil)
| inc ($Cons (Zero, ds)) = $Cons (One, ds)
| inc ($Cons (One, ds)) = $Cons (Zero, inc ds)

This is exactly the same as the original presentation of binary numbers in Chapter 6, except
with streams instead of lists.

Remark: Thisimplementationislesslazy thanit could be. It forcesitsargument immediately,
and then creates a suspension of the result. A reasonable aternative would be to also suspend
forcing the argument, asin

funinc’ ds = $caseforce ds of
Nil = Cons (One, $Nil)
| Cons (Zero, ds') = Cons (One, ds’)
| Cons (One, ds") = Cons (Zero, inc ds')

However, in this chapter, we will often need to force one level ahead of the current level, sowe
stick with the first implementation. &
Theorem 8.1 inc runsin O(1) amortized time.

Proof: We use the banker’s method. By inspection, the unshared cost of inc is O(1). There-
fore, to show that inc runsin O(1) amortized time, we must merely show that inc discharges
only O(1) debits per operation. In fact, we show that inc discharges only two debits.
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Each suspension except the outermost is the tail of some digit. We allow the tail of a 0 to
retain a single debit, but require that the tail of a 1 be fully paid off. In addition, the outermost
suspension may not have any debits.

We argue by debit passing. Whenever a suspension has more debits than it is allowed,
we pass those debits to the enclosing suspension, which is the tail of the previous digit. We
discharge debits whenever they reach the outermost suspension. Debit passing is safe because
earlier tails must be forced before later tails can be forced. Passing responsibility for discharg-
ing debits from alater tail to an earlier tail ensures that those debits will be discharged before
the earlier tail isforced, and hence before the later tail can be forced. We show by induction
on the depth of recursion that, after any cascade of incs, the outermost suspension always has
two debits that must be discharged.

First, consider acall to inc that changesao toa1 (i.e., thefinal call in acascade). We begin
by creating a debit to cover the cost of the new suspension. In addition, the new suspension
receives adebit from the current digit's tail, since that tail’s debit allowance has dropped from
one to zero. Altogether, the new suspension has been charged two debits.

Next, consider a cal to inc that changes a 1 to a 0 and recurses. Again, we begin by
creating a debit to cover the cost of the new suspension. When forced, this suspension will
force the current digit’stail, but that is okay since the tail of a 1 has no debits. Finally, the new
suspension receives a single debit from the recursive call to in¢, since that suspension (which
isthe tail of a 0) isalowed one debit, but, by the inductive hypothesis, has been charged two
debits. Again, the new suspension has been charged a total of two debits. O

As with recursive slowdown, this very simple implementation can serve as a template for
many other data structures. Such a data structure consists of alazy sequence of levels (digits),
where each level can be classified as green (0) or yellow (1). An operation on an object begins
at the outer level and only occasionally propagates to the next level. In particular, an operation
on a green level never propagates to the next level but may degrade the level from green to
yellow. Operations on yellow levels may (lazily) propagate to the next level, but only after
upgrading the current level to green. For example, with binary numbers, incrementing a 0
produces a 1 and stops. Incrementing a 1 recurses to the next level, but produces a 0 at the
current level.

The intuition behind this framework is that successive operations at a given level cannot
both propagate to the next level; there is a delay of at least one operation when the level is
changed from green to yellow. Hence, every other operation may affect the second level,
but only every fourth operation may affect the third level, and so on. Intuitively, then, the
amortized cost of asingle operation is approximately O(1 + 1/2 4+ 1/4 +1/8 +---) = O(1).
Unfortunately, this clean intuitive picture is complicated by persistence. However, the above
proof can be generalized to apply to any problem in this framework.

Clearly, implicit recursive slowdown is much simpler than recursive slowdown. We have
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eliminated the headache of grouping yellow levelsinto blocks, and have also eliminated explicit
representations of red levels. In a sense, red levels are still present, but they are represented
implicitly as suspended computations that have not yet been executed. However, recursive
slowdown has the advantage that it naturally yields data structures with worst-case bounds,
whereas implicit recursive slowdown naturally yields data structures with amortized bounds.
If desired, we can often regain worst-case bounds using the scheduling techniques of Chapter 4.
We illustrate the use of scheduling on binary numbers.

We extend the type of binary numbers with a schedule of type Digit Stream list. The
elements of this list will be suspended calls to lazylnc, where lazylnc isjust the inc function
defined above.

fun lazylnc ($Nil) = $Cons (One, $Nil)
| lazylnc ($Cons (Zero, ds)) = $Cons (One, ds)
| lazylnc ($Cons (One, ds)) = $Cons (Zero, lazyInc ds)

Theinitial schedule is empty.

type Nat = Digit Stream x Digit Stream list
val zero = ($Nil, [])

To execute a suspension, we simply inspect the first digit of a stream. If itis 0, then thereis
another recursive call to lazylne, SO we put the remaining stream back in the schedule. If itis
1, then this call to lazylnc terminates, so we discard the rest of the stream.

funexec[] =[]
| exec (($Cons (One, _)) :: sched) = sched
| exec (($Cons (Zero, ds)) :: sched) = ds :: sched

Altogether, inc calls lazylne, places the resulting stream on the schedule, and then executes
two suspensions from the schedule.

funinc (ds, sched) =
let val ds’ =lazylnc ds
in (ds’, exec (exec (ds' :: sched))) end

To show that inc runsin O(1) worst-case time, we prove that, whenever exec executes
a suspension of the form lazylnc ds, ds has aready been forced and memoized. Define the
range of acall to lazylne to be the set of indices of all digits altered by that /azylnc. Note that
digits for any given range form a (possibly empty) sequence of 0s followed by a 1. We say
two ranges overlap if their intersection is non-empty. At any given moment, all unevaluated
suspensions in a digit stream are at indices in the range of some suspension in the schedule.
Therefore, we can show that ds has already been executed whenever we execute a suspension
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of the form lazyInc ds by proving that no two suspensions in the schedule have overlapping
ranges.

Infact, we proveasdlightly stronger result. Define acompleted 0 to bea 0 whose suspension
has already been forced and memoized.

Theorem 8.2 inc maintains the invariant that every digit stream contains at least two com-
pleted os prior to the first range in the schedule, and at least one completed 0 between every
two adjacent ranges in the schedule.

Proof: Consider the situation just beforeacall to inc. Let r and r, be the first two rangesin
the schedule. Let z, and z; be the two completed 0s before r,, and let =, be the completed 0
between r; and r,. Now, before executing two suspensions from the schedule, inc first adds a
new ranger, to the front of the schedule. Note that r, terminatesin a1 that replaces z,. Let m
be the number of 0sin ry. There are three cases.

e m = 0. Theonlydigitinryisal, sor, iseiminated by executing a single suspension.
Executing the second suspension forces the first digit of . If this digit is 0, then it
becomes the second completed 0 (along with z;) before the first range. If thisdigitis 1,
then r; iseliminated and r, becomes the new first range. The two completed zeros prior
to ry are z; and zs.

e m = 1. Thefirsttwodigitsof theold digit stream were 1 and 0 (=), but they are replaced
with 0 and 1. Executing two suspensions evaluates and memoizes both of these digits,
and eliminates r,. The leading 0 replaces z, as one of the two completed 0s before the
first range.

e m > 2. Thefirst two digits of ry are both 0s. They are both completed by executing the
first two suspensions, and become the two completed 0s before the new first range (the

rest of o). z; becomes the single completed zero between rq and 4.
0

8.3 Supporting a Decrement Function

We have now presented several implementations of an increment function, but of course such
a function is useless without some other operations on binary numbers, such as addition and
comparisons. These operations typically have an O(log n) cost, since they must inspect ev-
ery digit. In the lazy implementation (without scheduling), a digit stream contains at most
O(log n) debits, so discharging those debits does not increase the asymptotic complexity of
these operations.

But something interesting happens when we consider the decrement function.
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fun dec ($Cons (One, $Nil)) = $Nil
| dec ($Cons (One, ds)) = $Cons (Zero, ds)
| dec ($Cons (Zero, ds)) = $Cons (One, dec ds)

Since this function follows exactly the same pattern as inc¢, but with the roles of 0 and 1
reversed, we would expect that asimilar proof would yield asimilar bound. And, infact, it does
provided we do not use both increments and decrements. However, if we use both functions,
then at least one must be charged O(log n) amortized time. Simply consider a sequence of
increments and decrements that cycle between 28 — 1 and 2*. In that case, every operation
touches every digit.

But didn’t we prove that both functions run in O(1) amortized time? What went wrong?
The problem is that the two proofs require contradictory debit invariants. To prove that inc
runsin O(1) amortized time, we require that the tail of a 0 has one debit and the tail of a1 has
zero debits. To prove that dec runsin O(1) amortized time, we require that the tail of a 1 has
one debit and the tail of a 0 has zero debits. Put another way, inc needs the green digit to be
smaller than the yellow digit while dec needs the green digit to be larger than the yellow digit.
We cannot satisfy both requirements simultaneously in this representation.

However, we can achieve O(1) amortized bounds for both operations at the same time by
changing the implementation slightly. For increments, we want the largest digit to be yellow,
with a smaller green digit. For decrements, we want the smallest digit to be yellow, with a
larger green digit. We can satisfy both requirements by alowing digitsto be 1, 2, or 3, where
2 isgreenand 1 and 3 areyellow.

This observation leads immediately to the following implementation:

datatype Digit = One | Two | Three
datatype Nat = Digit Stream

fun inc ($Nil) = $Cons (One, $Nil)
| inc ($Cons (One, ds)) = $Cons (Two, ds)
| inc ($Cons (Two, ds)) = $Cons (Three, ds)
| inc ($Cons (Three, ds)) = $Cons (Two, inc ds)

fun dec ($Cons (One, $Nil)) = $Nil
| dec ($Cons (One, ds)) = $Cons (Two, dec ds)
| dec ($Cons (Two, ds)) = $Cons (One, ds)
| dec ($Cons (Three, ds)) = $Cons (Two, ds)

Now it is simple to show that both functions run in O(1) amortized time using a proof in
which the tail of every green digit has one debit and the tail of every yellow digit has zero
debits.



112 Implicit Recur sive Slowdown

8.4 Queuesand Deques

As our first substantial example of implicit recursive slowdown, we present an implementation
of queues that also integrates aspects of numerical representations and structural decomposi-
tion.

A queueiseither shallow or deep. A shallow queue contains either zero or one elements. A
deep queue is decomposed into three segments: afront, containing either one or two elements;
arear, containing either zero or one elements; and a middle, which is a suspended queue of
pairs.

datatype o ZeroOne = Zero | One of «
datatype o OneTwo = On€ of o | Two' of a x «
datatype oo Queue = Shallow of o« ZeroOne
| Deep of {F: o OneTwo, M : (o x «) Queue susp, R : a ZeroOne}

To add an element to a deep queue using snoc, welook at R. If itis 0, then we add the element
to R. If itis 1, then we pair the new element with the existing element, and add the pair to M,
resetting R to 0. We also need afew special cases for adding an element to a shallow queue.

fun snoc (Shallow Zero, i) = Shallow (One y)
| snoc (Shallow (One z), y) = Deep {F = Twd (z, y), M = $empty, R = Zero}
| snoc (Deep {F=/,M =m, R=Zero}, y) =Deep{F=f,M=m,R=0ne y}
| snoc (Deep {F=f,M =8¢, R=0nez}, y) =
Deep {F=f, M = $snoc (¢, (¢, y)), R = Zero}

Note that in the final clause of snoc, we force M earlier than we need to. Instead, we could
write this clause as

| snoc (Deep {F=f,M=m,R=0nexz}, y) =
Deep {F=f, M =$snoc (force m, (z, y)), R = Zero}

However, this change has no effect on the running time.

To remove an element from adeep queue using tail, welook at F. If itis 2, then we simply
remove the element, setting /' to 1. If itis 1, then we “borrow” apair from M, and set /' to 2.
Again, there are several special cases dealing with shallow queues.

fun tail (Shallow (One x)) = Shallow Zero
| tail (Deep {F=Twa' (z, y),M =m,R=7r})=Deep{F=0n€ y,M =m,R=r}
| tail (Deep {F=0n€ 2, M =$¢,R=r})=
if iSEmpty ¢ then Shallow r
elselet val (y, z) = head ¢
in Deep {F=Two (y, ), M = $tail ¢, R=r} end
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structure ImplicitQueue: QUEUE =  (x assumes polymorphicrecursion! x)
struct
datatype oo ZeroOne = Zero | One of «
datatype o OneTwo = On€ of « | Two' of a x «
datatype o Queue = Shallow of « ZeroOne
| Deep of {F: a OneTwo, M : (o X «) Queuesusp, R : « ZeroOne}

exception EMPTY

val empty = Shallow Zero
fun isEmpty (Shallow Zero) = true
| isEmpty _ =false

fun snoc (Shallow Zero, y) = Shalow (One y)
| snoc (Shallow (One z), y) = Deep {F = Twd (z, y), M = $empty, R = Zero}
| snoc (Deep {F=f,M =m, R=Zero}, y) =Deep {F=f,M =m, R=0ne y}
| snoc (Deep {F=f,M =$¢, R=0nez}, y) =Deep {F=f, M =$snoc (¢, (2, y)), R = Zero}
fun head (Shallow Zero) = raise EMPTY
| head (Shallow (One z)) =
| head (Deep {F=0On€ z,...}) ==z
| head (Deep {F=Tw0d (2, y),...}) ==
fun tail (Shallow Zero) =raise EMPTY
| tail (Shallow (One z)) = Shallow Zero
| tail (Deep {F=Tw0' (z, y),M=m,R=r})=Deep{F=0n€ y,M =m,R=r}
| tail (Deep {F=0n€ z,M =$¢,R=r}) =
if isEmpty ¢ then Shallow r
elselet val (y, z) = head ¢
in Deep {F=Two (y, z), M = $tail ¢, R=r} end

end

Figure 8.1: Queues based on implicit recursive slowdown.

Note that in the last clause of tail, we have choice but to force M since we must test whether
M is empty, and if not, query its first pair. However, we can delay the recursive call to tail.
The complete code appearsin Figure 8.1.

Remark: Thisimplementation highlights a third simplification that implicit recursive slow-
down offers as compared to ordinary recursive slowdown, along with not explicitly represent-
ing red nodes and not grouping yellow nodes into blocks. Whereas this implementation limits
F' to contain one or two elements and £ to contain zero or one elements, an implementation
based on ordinary recursive slowdown would allow both ' and R to contain from zero to three
elements. For /', 0 isred, 1 isyellow, and 2 and 3 are green. For R, 3 isred, 2 is yellow,
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and 1 and 0 are green. We expect the addition of ared digit, but the extra green digit in each
case issurprising. It arises because, under recursive slowdown, when we convert either £ or R
from red to green by doing a “carry” or “borrow”, we must ensure that the other is also green
by doing a second “carry” or “borrow”, if necessary. So, for instance, when we convert /' from
red to green, if R is 3 (red), then we move two elements to the middle, changing R to 1. If R
is 2 (yellow), then again we move two elements to the middle, changing R to 0. Without the
second green digit, there would be no way to convert ayellow node to a green node. &

To analyze thisimplementation, we assign debits to every suspension, each of whichisthe
middle field of some deep queue. We adopt a debit invariant that allows each suspension a
number of debits governed by the colors of the front and rear fields. F isgreenifitis2 and
yellowifitis1l. Risgreenifitiso andyellowifitis1. M may havetwo debitsif both /' and
R aregreen, one debit if oneof /" and R is green, and zero debitsif both /" and R are yellow.

Theorem 8.3 snoc and tail runin O(1) amortized time.

Proof: The unshared cost of each functionis O(1), so we must merely show that both func-
tions discharge no more than O(1) debits. The analysis of both functions is identical, so we
describe only the tail function.

We argue by debit passing. Each cascade of tails ends in acall to tail that changes F
from 2 to 1. (For simplicity of presentation, we ignore the possibility of shallow queues).
This decreases the debit allowance of M by one, so we pass the excess debit to the enclosing
suspension.

Every intermediate call to ta:/ changes F' from 1 to 2 and recurses. There are two subcases:

e R is0. M has one debit, which must be discharged before M can be forced. We pass
this debit to the enclosing suspension. We create one debit to cover the unshared cost
of the suspended recursive cal. In addition, this suspension is passed one debit by the
recursive call. Since this suspension has a debit allowance of two, we are done.

e Ris1. M haszero debits, so we can forceit for free. We create one debit to cover the
unshared cost of the suspended recursive call. In addition, this suspension is passed one
debit by the recursive call. Since this suspension has a debit allowance of one, we keep
one debit and pass the other to the enclosing suspension.

Every call to tail passes one debit to its enclosing suspension, except the outermost call,
which has no enclosing suspension. That call simply discharges its excess debit. O

Remark: In practice, these queues are slower than the implementations in Chapters 3, 4, and
7. However, like many other numerical representations, these queues have the advantage of
supporting random access efficiently. In particular, we can lookup or update the :th element
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in O(log ¢) time. Aswith the numerical representations in Chapter 6, these queues contain a
logarithmic number of trees of logarithmic depth. Random access is a two stage process of
finding the right tree and then finding the right element.

In the implementation as presented, the presence of trees is somewhat obscured by the use
of structural decomposition. However, recall that the first level contains elements, the second
level contains pairs of elements, the third level contains pairs of pairs of elements, and so on.
These are just complete binary leaf trees. &

Finally, we show how to modify this implementation of queues to support double-ended
gueues. To support deques, we must be able to insert or remove elements from either the front
or rear. Thisis anaogous to supporting both increments and decrements for binary numbers.
We saw in Section 8.3 that this could be accomplished by allowing digitsto rangeover 1, 2, and
3. Thus, to implement deques, we modify the earlier implementation to alow both the front
and rear fields of a deep queue to contain one, two, or three elements. Thisimplementationis
shown in Figure 8.2. The analysisis amost identical to that of queues, except that 1sand 3s
areyellow, and 2s are green.

We can a'so easily implement several forms of restricted deques, including

¢ Output-restricted deques, which support insertions on both sides, but removalsonly from
the front. We alow thefront field to contain one, two, or three elements, but the rear field
to contain only zero or one elements.

¢ Input-restricted deques, which support removals from both sides, but insertions only at
the front. We alow the front field to contain one, two, or three elements, but the rear
field to contain only one or two elements.

8.5 Catenable Double-Ended Queues

Finally, we use implicit recursive slowdown to implement catenable double-ended queues,
with the signature shown in Figure 8.3. We first describe a relatively simple implementation
that supports + in O(log n) amortized time and all other operationsin O(1) amortized time.
We then describe a much more complicated implementation that improves the running time of
#+1t00(1).

Consider the following representation for catenable double-ended queues, or c-deques. A
c-dequeis either shallow or deep. A shallow c-dequeis simply an ordinary deque, such asthose
presented in Chapter 5 or in the previous section. A deep c-deque is decomposed into three
segments: afront, amiddle, and arear. The front and rear are both ordinary deques containing
two or more elements each. The middle is a c-deque of ordinary deques, each containing two
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structure ImplicitDeque: DEQUE =  (x assumes polymorphicrecursion! x)
struct
datatype o D = Zero | Oneof o | Twoof of @ x o | Threeof o x v X av
datatype o Queue = Shallow of « D
| Degpof {F:a D,M: (a x a) Queuesusp, R: a D}

exception EMPTY

val empty = Shallow Zero
fun isEmpty (Shallow Zero) = true

| isEmpty _ =false
fun dcons (z, Zero) = One z fun dsnoc (Zero, z) = One z

| dcons (2, One a) = Two (z, a) | dsnoc (One a, ) = Two (a, z)

| dcons (z, Two (a, b)) = Three (z, a, b) | dsnoc (Two (a, b), ) = Three (a, b, z)
fun dhead Zero = raise EMPTY fun dlast Zero = raise EMPTY

| dhead (One a) = a | dlast (One a) = a

| dhead (Two (a, b)) = a | dlast (Two (a, b)) = b

| dhead (Three (a, b, ¢)) = a | dlast (Three (a, b, ¢)) = ¢
fun dtail Zero =raise EMPTY fun dinit Zero = raise EMPTY

| dtail (One @) = Zero | dinit (One a) = Zero

| dtail (Two (a, b)) =One b | dinit (Two (a, b)) =One a

| dtail (Three (a, b, ¢)) = Two (b, ¢) | dinit (Three (a, b, ¢)) = Two (a, b)

fun cons (z, Shalow (Three («, b, ¢))) = Deep {F = Two (z, a), M = $empty, R = Two (b, ¢)}
| cons (z, Shallow d) = Shallow (dcons (z, d))
| cons (z, Deep {F=Three(a, b, ¢c), M =m,R=r})=
Deep {F =Two (z, a), M =$cons ((b, ¢), force m), R=r}
| cons (z, Deep {F=f,M =m,R=1r})=Deep {F=dcons(z, f), M =m,R=r}
fun head (Shallow d) = dhead d
| head (Deep {F=/,...}) =dhead f
fun tail (Shallow d) = Shallow (dtail d)
| tail (Deep {F=0Onea, M =$ps,R=r}) =
if isEmpty ps then Shallow r
elselet val (b, ¢) = head ps
in Deep {F =Two (b, ¢), M = $tail ps, R=r} end
| tail (Deep{F=f,M =m,R=r})=Deep{F=dtail f,M=m,R=r}

...snoc, last, and init defined symmetrically. . .
end

Figure 8.2: Double-ended queues based on implicit recursive slowdown.
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signature CATENABLEDEQUE =
sig

type « Cat

exception EMPTY

val empty : o Cat

val isEmpty : « Cat — bool

valcons o x aCa— oCa

valhead :aCa— « (x raises EMPTY if deque isempty *)
val tail caCat — o Cat (x raises EMPTY if deque isempty *)
valsnoc :aCax oa— aCa

val last aCat— o (x raises EMPTY if dequeisempty *)
val init o Ca — o Cat (x raises EMPTY if deque isempty )
val + o Ca x o Cat — o Cat

end

Figure 8.3: Signature for catenable double-ended queues.

or more elements. We assume that D is an implementation of deques satisfying the signature
DEQUE.

datatype o Cat = Shallow of oo D.Queue
| Deep of {F: a D.Queue, M : a D.Queue Cat susp, R : o D.Queue}

Note that this definition assumes polymorphic recursion.

To insert an element at either end, we simply insert the element into either the front deque
or the rear deque. For instance, cons isimplemented as

fun cons (x, Shallow ) = Shallow (D.cons (z, d))
| cons (z, Deep {F=f,M =m,R=r})=Deep {F=D.cons (z, f),M =m,R=r}

To remove an element from either end, we remove an element from either the front deque or
therear deque. If thisdropsthe length of that deque below two, then we remove the next deque
from the middle, add the one remaining element from the old deque, and install the result as
the new front or rear. With the addition of the remaining element from the old deque, the
new degue now contains at least three elements, so the next operation on that deque will not
propagate to the next level. For example, the code for tail is

fun tail (Shallow d) = Shallow (D.tail d)
| tail (Deep{F=f,M=m,R=r})=
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if D.sizef > 2then Deep {F=D.tail /,M =m,R=r}
elseif isEmpty (force m) then Shallow r
else Deep {F = D.cons (D.last f, head (force m)), M = $tail (force m), R = r}

It is simple to see that the proof techniques of this chapter will yield O(1) amortized time
bounds on each of these functions.

But what about catenation? To catenate two deep c-deques ¢; and ¢, we retain the front of
¢, asthenew front, the rear of ¢, asthe new rear, and combine the remaining segments into the
new middle by inserting the rear of ¢; into the middle of ¢, and the front of ¢, into the middle
of ¢,, and then catenating the results.

fun (D%p {F:fl, M = my, R= 7“1}) + (Deep{Fng, M = msy, R= 7“2}) =
Deep {F = f;, M = $(snoc (force my, r1) # cons (f;, force my)), R= 1}

(Of course, there are also cases where ¢; and/or ¢, are shallow.) Note that + recurses to the
depth of the shallower c-deque. Furthermore, + creates O(1) debits per level, which must be
immediately discharged to restore the debit invariant required by the ta:l function. Therefore,
4 runsin O(min(log ny, log ny)) amortized time, where n; is the size of ¢;.

The complete code for this implementation of c-deques appearsin Figure 8.4.

To improve the running time of + to O(1) we modify the representation of c-degues so
that + does not recurse. The key is to enable + at one level to cal only cons and snoc at
the next level. Instead of a front, a middle, and a rear, we expand deep c-deques to contain
five segments. a front (#), an antemedial (4), a middle (M), a postmedial (B), and a rear
(R). F, M, and R are al ordinary deques; F' and R contain three or more elements each,
and M contains two or more elements. A and B are c-deques of compound elements. A
degenerate compound element is simply an ordinary deque containing two or more elements.
A full compound element has three segments: a front (/), a middle (C), and a rear (R),
where F' and R are ordinary deques containing at least two elements each, and C' is a c-
deque of compound elements. This datatype can be writtenin Standard ML (with polymorphic
recursion) as

datatype o Cat = Shallow of o D.Queue
| Deep of {F : o D.Queue (x > 3 %),
A : a CmpdElem Cat susp,
M : a D.Queue (x > 2 %),
B : a CmpdElem Cat susp,
R : a D.Queue (x > 3 *)}
and o CmpdElem = Simpleof a D.Queue (x > 2 %)
| CE of {F : a D.Queue (x > 2 %),
C : o« CmpdElem Cat susp,
R: a D.Queue (x > 2 )}
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functor SimpleCatenableDeque (structure D : DEQUE) : CATENABLEDEQUE =
(* assumes polymorphic recursion! )
Sstruct
datatype o Cat = Shallow of o D.Queue
| Deep of {F: o D.Queue, M : o D.Queue Cat susp, R : o D.Queue}

exception EMPTY

val empty = Shallow D.empty
fun isEmpty (Shallow d) = D.isEmpty d
| isEmpty _ =false

fun cons (z, Shallow d) = Shallow (D.cons (z, d))
| cons (2, Deep {F=f,M =m,R=1r})=Deep {F=D.cons(z, f),M =m,R=r}
fun head (Shallow d) = if D.isEmpty d then raise EMPTY else D.head d
| head (Deep {F=/,...}) =D.head f
fun tail (Shallow d) = if D.isEmpty d then raise EMPTY else Shallow (D.tail d)
| tail (Deep{F=f,M=m,R=r})=
if D.size f > 2then Deep {F=D.tal f,M =m, R=r}
elseif isEmpty (force m) then Shallow r
else Deep {F =D.cons (D.last f, head (force m)), M = $tail (force m), R=r}

...snoc, last, and init defined symmetrically. ..

fun shortAppendL (d;, d;) = if D.isEmpty d; then d; else D.cons(D.head d;, ;)
fun shortAppendR (d;, d;) = if D.isSEmpty d; then d; else D.snoc (d;, D.last d;)

fun (Shalow d;) + (Shalow d;) =

if D.size d; < 2then Shallow (shortAppendL (dy, ds))
elseif D.size d; < 2then Shallow (shortAppendR (dy, d3))
elseDeep {F=d;, M =$empty, R=d»}

| (Shallow d) #+ (Deep {F=f,M=m,R=r})=
if D.size d < 2then Deep {F = shortAppendL (d, f), M =m,R=r}
elseDeep {F=d, M =$cons (f, force m), R=r}

| (Deep {F=f,M =m,R=r})+ (Shalow d) =
if D.size d < 2then Deep {F=f, M =m, R = shortAppendR (r, d)}
else Deep {F = f, M = $snoc (force m, r), R=d}

| (Deep {F=fi,M =my, R=r}) # (Deep{F=fo, M =my, R=13}) =
Deep {F = fi, M = $(snoc (force my, r) + cons(fz, force my)), R=ry}

end

Figure 8.4: Simple catenable deques.
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Now, given two deep c-deques ¢; = (Fi, Ay, My, By, R1) and ¢y = (F», Az, Ma, By, Ry), we
compute their catenation asfollows: First, weretain F; as the front of the result, and R, asthe
rear of the result. Next, we build the new middle deque from the last element of £; and thefirst
element of F,. We then combine A, B, and the rest of R, into a compound element, which
we snoc onto A;. This becomes the antemedial segment of the result. Finally, we combine the
rest of F5, Ay, and M, into a compound element, which we cons onto B,. This becomes the
postmedial segment of the result. Altogether, thisisimplemented as

fun (D%p{F:fl,A: a, M = mq, B= bl, R= 7“1})
'H'(Deep{F:fQ,A:CLQ, M = My, B:bz, R:TQ}):
let val (r{, m, f;) = share (r, f2)
val a; =$snoc (force a;, CE{F=m;,A=b,R=1})
val b} =$cons (CE{F =], A = a3, R=my}, force b,)
inDeep{F=fi,A=a,M=m,B=0,R=n}end

where

fun share (f, r) = (D.init f, D.cons (D.last f, D.cons (D.head r, D.empty)), D.tail r)

funcons(z, Deep {F=f,A=a,M=m,B=b,R=r})=
Deep {F=D.cons(z, f),A=a,M=m,B=b,R=1r})

funsnoc (Deep {F=f,A=a,M=m,B=b,R=1r},2) =
Deep{F=f,A=a,M=m,B=0,R=D.snoc (r, z)})
(For simplicity of presentation, we have ignored all cases involving shallow c-deques.)

Unfortunately, in this implementation, ¢ei/ and init are downright messy. Since the two
functionsare symmetric, we describeonly tail. Givensomedeep c-dequec = (F, A, M, B, R),
there are six cases:

o |F|> 3.
o |F|=3.

— A isnon-empty.

+ Thefirst compound element of A is degenerate.
+ The first compound element of A isfull.

— Alisempty and B is non-empty.

+ Thefirst compound element of B is degenerate.
+ The first compound element of B isfull.

— A and B are both empty.
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Here we describe the behavior of tail ¢ inthefirst three cases. The remaining cases are covered
by the complete implementation in Figures 8.5 and 8.6. If |F'| > 3 then we ssimply replace F
with D.tail F. If |F| = 3, then removing an element from /" would drop its length below the
allowable minimum. Therefore, we remove a new front deque from A and combine it with the
remaining two elements of theold /. The new F' contains at least four elements, so the next
call to tail will fall intothe |F'| > 3 case.

When we remove the first compound element of A to find the new front deque, we get
either a degenerate compound element or a full compound element. If we get a degenerate
compound element (i.e., asimple deque), then the new value of A is $tail (force A). If we get
afull compound element (F’, C’, R’), then F’ becomes the new F' (along with the remaining
elements of the old F'), and the new value of A is

$(force €’ + cons (Simple k', tail (force A)))

But note that the effect of the cons and tail isto replace the first element of A. We can do this
directly, and avoid an unnecessary call to tail, using the function replace Head.

fun replaceHead («, Shalow d) = Shallow (D.cons (z, D.tall d))
| replaceHead (¢, Deep {F=f,A=a,M=m,B=b,R=r}) =
Deep {F=D.cons(z, D.tal f),A=a,M=m,B=06,R=1})

The remaining cases of tail are similar, each doing O(1) work followed by at most one call to
tail.

The cons, snoc, head, and last functions make no use of lazy evaluation, and are easily
seen to take O(1) worst-case time. We analyze the remaining functions using the banker’s
method and debit passing.

As always, we assign debits to every suspension, each of which is the antemedial (A) or
postmedial (B) segment of a deep c-deque, or the middle (C') of a compound element. Each
C field is alowed four debits, but A and B fields may have from zero to five debits, based
on the lengths of the /" and R fields. A and B have a base alowance of zero debits. If ¥
contains more than three elements, then the allowance for A increases by four debits and the
allowancefor B increases by onedebit. Similarly, if £ contains more than three elements, then
the allowancefor B increases by four debits and the allowancefor A increases by one debit.

Theorem 8.4 +, tail, and init runin O(1) amortized time.

Proof: (#) The interesting case is catenating two deep c-deques ¢; = (Fy, Ay, My, By, Ry)
and ¢; = (Fs, Az, Ma, By, Ry). Inthat case, + does O(1) unshared work and discharges at
most four debits. First, we create two debits for the suspended snoc and cons onto A; and B,,
respectively. We always discharge these two debits. Inaddition, if B; or A, hasfive debits, then
we must discharge one debit when that segment becomes the middle of a compound element.
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functor ImplicitCatenableDeque (structure D : DEQUE) : CATENABLEDEQUE =
struct
datatype o Cat = Shallow of o D.Queue
| Deep of {F: @ D.Queue, A : o CmpdElem Cat susp, M : a D.Queue,
B : « CmpdElem Cat susp, R : @ D.Queue}
and o CmpdElem = Simple of o D.Queue
| CEof {F:a D.Queue, A : o CmpdElem Cat susp, R : v D.Queue}

exception EMPTY

val empty = Shallow D.empty
fun isEmpty (Shallow d) = D.isEmpty d
| isEmpty _ =false

fun cons (z, Shallow d) = Shallow (D.cons (z, d))
| cons(z, Deep {F=f,A=a,M=m,B=b,R=7r})=
Deep {F=D.cons(z, f),A=a,M=m,B=b,R=r})
fun head (Shallow d) = if D.isEmpty d then raise EMPTY else D.head d
| head (Deep {F=f,...}) =D.head f

...snoc and last defined symmetrically. ..

fun share (f, r) = (D.init f, D.cons(D.last f, D.cons (D.head r, D.empty)), D.tail r)
fun shortAppendL (d;, d;) =

if D.isEmpty d; then d; else shortAppendL (D.init dy, D.cons(D.last d;, d;))
fun shortAppendR (dy, d;) =

if D.isEmpty d; then d; else shortAppendR (D.snoc (d;, D.head d;), D.tail d;)

fun (Shalow d;) + (Shalow d;) =
if D.size d; < 4then Shallow (shortAppendL (dy, ds))
elseif D.size d; < 4then Shallow (shortAppendR (dy, d3))
elselet val (f, m, r) = share (d;, d3)
in Deep {F=f, A =$empty, M = m, B =$empty, R=r} end
| (Shallow d) + (Deep{F=f,A=a,M=m,B=b,R=1r})=
if D.size d < 3then Deep {F = shortAppendL (d, f),A=a,M=m,B=b,R=1r}
else Deep {F=d, A =$cons(Simple f, force ), M =m,B=b,R=r
| (Deep {F=f,A=a,M=m,B=b,R=r})+ (Shallow d) =
if D.sized < 3then Deep {F=f, A =a, M =m, B =15, R =shortAppendR (r, d)}
elseDeep {F=f,A =a, M =m, B =%snoc (force b, Smpler), R=d}
|(Deep{F=f1,A=a1,M=m1,B=b1,R=r1})
+I-(Deep{F=f2,A=a2,M=m2,B=b2,R=r2})=
let val (T{, m,fQ’) =Share(r1,f2)
val a] = $snoc (force a;, CE{F=m,A=b,R=1r{})
val b}, =$cons (CE {F=f,, A = az, R=mgy}, force b,)
inDeep{F=fi,A=a;,M=m,B=0,, R=r;} end

Figure 8.5: Catenable deques using implicit recursive slowdown (part I).
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fun replaceHead (z, Shallow d) = Shallow (D.cons (z, D.tail d))
| replaceHead (z, Deep {F=f,A=a,M=m,B=b,R=r}) =
Deep {F = D.cons (z, D.tail f), A=a,M=m,B=b,R=r})

fun tail (Shallow d) = if D.isEmpty d then raise EMPTY else Shallow (D.tail d)
| tail (Deep {F=f,A=a,M=m,B=b,R=r})=
if D.sizef > 3then Deep {F=D.tal f,A=a,M=m,B=b,R=r}
elseif not (iIsEmpty (force a)) then
case head (force a) of
Simpled =
let val f’ = shortAppendL (D.tail f, d)
in Deep {F= /', A = $tail (force¢), M =m,B=b,R=r} end
|CE{F=f,A=d ,R=/}=
let val f”" = shortAppendL (D.tail f, /')
val «” = $(force o’ + replaceHead (Simple 1/, force «))
inDeep{F=f"A=d",M=m,B=b,R=r}end
elseif not (isEmpty (force b)) then
case head (force b) of
Simpled =
let val f/ = shortAppendL (D.tail f, m)
in Deep {F= /', A =$empty, M = d, B = $tail (force b), R=r} end
|CE{F=f",A=d ,R=/r}=
let val f”" = shortAppendL (D.tail f, m)
val «” = $cons (Simple f’, force a’)
inDeep{F=f",A=d",M =+, B =$tail (force b), R=r} end
else Shallow (shortAppendL (D.tail f, m)) + Shallow r

...replacelast and init defined symmetrically. ..
end

Figure 8.6: Catenable deques using implicit recursive slowdown (part 11).
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Also, if F; hasonly threeelementsbut /-, has morethan three elements, then we must discharge
a debit from B, as it becomes the new B. Similarly for R, and R,. However, note that if B,
has five debits, then F; has more than three elements, and that if A, has five debits, then R,
has more than three elements. Therefore, we must discharge at most four debits altogether, or
at least pass those debits to an enclosing suspension.

(tail and init) Since tail and init are symmetric, we include the argument only for tail.
By ingpection, tail does O(1) unshared work, so we must show that it discharges only O(1)
debits. In fact, we show that it discharges at most five debits.

Since tail can call itself recursively, we must account for a cascade of tails. We argue by
debit passing. Given some deep c-dequec = (F', A, M, B, R), thereis one case for each case
of tail.

If |F'| > 3, then thisis the end of a cascade. We create no new debits, but removing an
element from F might decrease the alowance of A by four debits, and the alowance of B by
one debit, so we pass these debits to the enclosing suspension.

If |F"| = 3, then assume A is non-empty. (The cases where A is empty are similar.) If
|R| > 3, then A might have one debit, which we pass to the enclosing suspension. Otherwise,
A has no debits. If the head of A is a degenerate compound element (i.e., a ssmple deque of
elements), then this becomes the new £ along with the remaining elements of the old F'. The
new A isasuspension of thetail of the old A. This suspension receives at most five debitsfrom
the recursive call to tail. Since the new allowance of A is at least four debits, we pass at most
one of these debits to the enclosing suspension, for atotal of at most two debits. (Actually, the
total is at most one debit since we pass one debit here exactly in the case that we did not have
to pass one debit for the original A).

Otherwise, if the head of A isafull compound element (F', C’, R'), then I’ becomes the
new F aong with the remaining elements of the old /. The new A involves calls to + and
replaceHead. The total number of debits onthenew A isnine: four debitsfrom C”, four debits
from the +, and one newly created debit for the replace Head. The allowance for the new A is
either four or five, so we pass either five or four of these nine debitsto the enclosing suspension.
Since we pass four of these debits exactly in the case that we had to pass one debit from the
original A, we always pass at most five debits. O

8.6 Reated Work

Recursive Slowdown Kaplan and Tarjan introduced recursive slowdown in [KT95], and
used it again in [KT96b], but it is closely related to the regularity constraints of Guibas et
a. [GMPR77]. Brodal [Bro95] used a similar technique to implement heaps.
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Implicit Recursive Slowdown and Binomial Heaps Lazy implementations of binomial
heaps [Kin94, Oka96b] can be viewed as using implicit recursive slowdown. Such implemen-
tations support insert in O(1) amortized time and all other operationsin O(logn) amortized
time. [Oka96b] extends a lazy implementation of binomial heaps with scheduling to improve
these bounds to worst-case.

Catenable Deques Buchsbaum and Tarjan [BT95] presented a purely functional implemen-
tation of catenable deques that supports t«il and init in O(log™ n) worst-case timeand all other
operationsin O(1) worst-case time. Our implementation improves that bound to O(1) for all
operations, although in the amortized rather than worst-case sense. Kaplan and Tarjan have in-
dependently developed a similar implementation with worst-case bounds [KT96a]. However,
the details of their implementation are quite complicated.
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Chapter 9

Conclusions

In the preceding chapters, we have described a framework for designing and analyzing func-
tional amortized data structures (Chapter 3), a method for eliminating amortization from such
data structures (Chapter 4), four general data structure design techniques (Chapters 5-8), and
sixteen new implementations of specific data structures. We next step back and reflect on the
significance of thiswork.

9.1 Functional Programming

Functional programming languages have historically suffered from the reputation of being
slow. Regardless of the advances in compiler technology, functional programs will never be
faster than their imperative counterparts as long as the algorithms available to functional pro-
grammers are significantly slower than those available to imperative programmers. Thisthesis
provides numerous functional data structures that are asymptotically just as efficient as the
best imperative implementations. More importantly, we also provide numerous design tech-
nigues so that functional programmers can create their own data structures, customized to their
particular needs.

Our most significant contribution to the field of functional programming, however, is the
new understanding of the relationship between amortization and lazy evaluation. In the one
direction, the techniques of amortized analysis — suitably extended as in Chapter 3 — pro-
vide the first practical approach to estimating the complexity of lazy programs. Previoudly,
functional programmers often had no better option than to pretend their lazy programs were
actualy strict.

In the other direction, lazy evaluation allows us to implement amortized data structures
that are efficient even when used persistently. Amortized data structures are desirable because
they are often both simpler and faster than their worst-case counterparts. Without exception,
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the amortized data structures described in this thesis are significantly simpler than compet-
ing worst-case designs.! Because of the overheads of lazy evaluation, however, our amortized
data structures are not necessarily faster than their strict worst-case cousins. When used in a
mostly single-threaded fashion, our implementations are often slower than competing imple-
mentations not based on memoization, because most of the time spent doing memoization is
wasted. However, when persistence is used heavily, memoization more than pays for itself and
our implementationsfly.

In a followup to [Pip96], Bird, Jones, and de Moor [BJdAM96] have recently exhibited a
problem for which a lazy solution exists that is asymptotically superior to any possible strict
solution. However, this result depends on several extremely restrictive assumptions. Our work
suggests a promising approach towards removing these restrictions. What is required is an
example of a data structure for which a lazy, amortized solution exists that is asymptotically
superior to any possible strict, worst-case solution. Unfortunately, at this time, we know of no
such data structure — for every lazy, amortized data structure we have developed, there is a
strict, worst-case data structure with equivalent bounds, albeit one that is more complicated.

9.2 Pergstent Data Structures

We have shown that memoization, in the form of lazy evaluation, can resolve the apparent
conflict between amortization and persistence. We expect to see many persistent amortized
data structures based on these ideas in the coming years.

We have al so reinforced the observation that functional programmingis an excellent medium
for developing new persistent data structures, even when the target language is imperative. It
is trivial to implement most functional data structures in an imperative language such as C,
and such implementations suffer few of the complications and overheads associated with other
methods for implementing persistent data structures, such as [DSST89] or [Die89]. Further-
more, unlike these other methods, functional programming has no problems with data struc-
tures that support combining functions such as list catenation. It is no surprise that the best
persistent implementations of data structures such as catenable lists (Section 7.2.1) and caten-
able deques (Section 8.5) are all purely functional (see also [KT95, KT964a]).

9.3 Programming Language Design

Next, we briefly discuss the implications of thiswork on programming language design.

IAs partia evidence for thisfact, we note that only one of these implementations takes more than one page.
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Order of Evaluation Most functional programming languages support either strict evalu-
ation or lazy evaluation, but not both. Algorithmicaly, the two orders of evaluation fulfill
complementary roles — strict evaluation is useful in implementing worst-case data structures
and lazy evaluation is useful in implementing amortized data structures. Therefore, functional
programming languages that purport to be general-purpose should support both. $-notation
offersalightweight syntax for integrating lazy evaluation into a predominantly strict |anguage.

Polymor phic Recursion  Data structures based on structural decomposition, such asthosein
Chapters 7 and 8, often obey invariantsthat can be precisely captured by non-uniformrecursive
datatypes. Unfortunately, processing such datatypes requires polymorphic recursion, which
causes difficulties for type inference and hence is disallowed by most functional programming
languages. We can usually sidestep this restriction by rewriting the datatypes to be uniform,
but then the types fail to capture the desired invariants and the type system will not catch
bugs involving violations of those invariants. All in all, we believe the compromise taken by
Haskell 1.3 [PT96] is best: alow polymorphic recursion in those cases where the programmer
explicitly provides atype signature, and disallow it everywhere el se.

Higher-order, RecursiveModules The bootstrapped heaps of Section 7.2.2 (seealso [BO96])
demonstrate the usefulness of higher-order, recursive modules. In languages such as Standard
ML that do not support higher-order, recursive modules, we can often sidestep this restriction
by manually inlining the desired definitions for each instance of bootstrapping. Clearly, how-
ever, it would be cleaner, and much less error-prone, to provide a single module-to-module
transformation that performs the bootstrapping. In the case of bootstrapped heaps, Simon Pey-
ton Jones and Jan Nicklisch [private communication] have recently shown how to implement
the desired recursion using constructor classes [Jon95].

Pattern Matching Ironically, pattern matching — one of the most popular features in func-
tional programming languages — is also one of the biggest obstacles to the widespread use
of efficient functional data structures. The problem is that pattern matching can only be per-
formed on data structures whose representation is known, yet the basic software-engineering
principle of abstraction tells us that the representation of non-trivial data structures should be
hidden. The seductive allure of pattern matching leads many functional programmersto aban-
don sophisticated data structures in favor of simple, known representations such as lists, even
when doing so causes an otherwise linear algorithm to explode to quadratic or even exponential
time.

Views [Wad87] and their successors [BC93, PPN96] offer one way of reconciling the con-
venience of pattern matching with the desirability of data abstraction. In fact, $-patterns are
just a specia case of views. Unfortunately, views are not supported by any major functional
programming language.
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Implementation Finally, we note that functional catenable lists are an essential ingredient
in the implementation of certain sophisticated control structures [FWFD88]. The advent of
new, efficient implementations of catenable lists, both here and in [KT95], makes the efficient
implementation of such control structures possible for the first time.

9.4 Open Problems
We conclude by describing some of the open problems related to this thesis.

e What are appropriate empirical measurements for persistent data structures? Standard
benchmarks are misleading since they do not measure how well a data structure sup-
ports access to older versions. Unfortunately, the theory and practice of benchmarking
persistent data structuresis still in its infancy.

e For ephemeral data structures, the physicist’'s method is just as powerful as the banker’s
method. However, for persistent data structures, the physicist’'s method appears to be
substantially weaker. Can the physicist’'s method, as described in Section 3.5, be im-
proved and made more widely applicable?

e The catenable deques of Section 8.5 are substantially more complicated than the caten-
able lists of Section 7.2.1. Is there a simpler implementation of catenable deques closer
in spirit to that of catenable lists?

e Finally, can scheduling be applied to these implementations of catenable lists and de-
ques? In both cases, maintaining a schedule appears to take more than O(1) time.



Appendix A

The Definition of Lazy Evaluation in
Standard ML

The syntax and semantics of Standard ML areformally specified in The Definition of Sandard
ML [MTH90]. This appendix extends the Definition with the syntax and semantics of the lazy
evaluation primitives ($-notation) described in Chapter 2. This appendix is designed to be read
in conjunction with the Definition; it describes only the relevant changes and additions.

Paragraph headers such as[2.8 Grammar (8,9)] refer to sections within the Definition. The
numbers in parentheses specify the relevant pages.

A.l Syntax

[2.1 Reserved Words (3)] $isareserved word and may not be used as an identifier.

[2.8 Grammar (8,9)] Add thefollowing productions for expressions and patterns.

exp = $exp and pat ::= $pat

[Appendix B: Full Grammar (71-73)] Add the following productions for expressions and
patterns.
exp = $exp  and pat ::= $pat

These productions have lower precedence than any alternative form (i.e., appear last in thelists
of alternatives).
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A.2 Static Semantics

[4.4 Types and Typefunctions(18)] 7 susp does not admit equality.
Remark: Thisis an arbitrary choice. Allowing an equality operator on suspensions that

automatically forces the suspensions and compares the results would also be reasonable, but
would be moderately complicated. &

[4.7 Non-expansive Expressions (20)]  $ expressions are non-expansive.

Remark: The dynamicevaluation of a$ expression may in fact extend the domain of memory,
but, for typechecking purposes, suspensions should be more like functions than references. <

[4.10 Inference Rules (24,29)] Add the following inference rules.

Chep=r and Crpat=r
ChH$exp= 7suyp C+ $pat = 7 susp

[4.11 Further Restrictions (30)] Because matching against a $ pattern may have effects (in
particular, may cause assignments), it is now more difficult to determine if matches involving
both suspensions and referencesareirredundant and exhaustive. For example, thefirst function
below is non-exhaustive even though the first and third clauses appear to cover all cases and
the second is irredundant even though the first and fourth clauses appear to overlap.

funf (reftrue, ) =0 funf (reftrue, ) =0
| f (ref false, $0) = 1 | f (ref false, $0) =1
| f (ref fase, ) =2 | f (ref false, ) =2

| f (ref true, _)=3
(Consider theexecutionof £ (r, $(r := true; 1)) whererinitidlyegqualsref false.)

[Appendix C: Thelnitial Static Basis (74,75)] Extend T; to include susp, which has arity
1 and does not admit equality.

Add force to VE, (Figure 23), where

force—V’a.’a susp— 'a
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A.3 Dynamic Semantics

[6.3 Compound Objects (47)] Add the following definitions to Figure 13.

(exp, £) € Thunk = Exp x Env
mem € Mem = Addr ™ (val U Thunk)

Remark: Addresses and memory are overloaded to represent both references and suspensions.
The values of both references and suspensions are addresses. Addresses representing refer-
ences are always mapped to values, but addresses representing suspensions may be mapped
to either thunks (if unevaluated) or values (if evaluated and memoized). The static semantics
ensures that there will be no confusion about whether avalue in memory represents areference
or a memoized suspension. &

[6.7 Inference Rules (52,55,56)] Add thefollowing inferencerule for suspending an expres-
sion.
a ¢ Dom(memof s)

s,EF$exp=a,s+ {a— (exp, )}

Extend the signatures involving pattern rows and patterns to allow exceptions to be raised
during pattern matching.
E.,r - patrow = VE/FAIL/p

E,v + pat = VE/FAIL/p
Add the following inference rules for forcing a suspension.

s(a)=w s, E, vt pat = VE/FAIL, s’
s, E,at $pat = VE/FAIL, s’

s(a) = (exp, ') s, E'Fexp=v,s s +{a— v} F vt pat= VE/FAIL,s"
s, E,at $pat = VE/FAIL, s"

Thefirst rule looks up a memoized value. The second rule eval uates a suspension and memo-
izes the result.

Finally, modify Rule 158 to reflect the fact that matching against a pattern may change the
state.
s(la) =w s, E,v I atpat = VE/FAIL, s’

s, E,at ref atpat = VE/FAIL, s’

(158)
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Remark: The interaction between suspensions and exceptions is specified by the exception
convention. If an exception is raised while forcing a suspension, the evaluation of that sus-
pension is aborted and the result is not memoized. Forcing the suspension a second time will
duplicate any side effects it may have. A reasonable alternative would be to memoize raised
exceptions, so that forcing such a suspension asecond time would simply rerai se the memoized
exception without duplicating any side effects. &

[Appendix D: The Initial Dynamic Basis (77,79)] Extend £ with the following declara-
tion:

fun force ($x) = x

A.4 Recursion

This section detail s the changes necessary to support recursive suspensions.

[2.9 Syntactic Restrictions(9)] Lift the syntactic restriction on rec to allow value bindings
of theformvar = $ exp within rec.

[6.7 Inference Rules (54)] Modify Rule 137 as follows.

s, B F valbind = VE, s VE' = RecVE s = SRec(VE', s')

s, B rec valbind = VE', " 137

where
SRec : VarEnv x State — State

and
e ens of SRec(VE, s) = ens of s
e Dom(mem of SRec(VE, s)) = Dom(mem of s)
e If « ¢ Ran(VE), then SRec(VE, s)(a) = s(a)

e If « € Ran(VE) and s(a) = (exp, £), then SRec(VE, s)(a) = (exp, £ + VE)
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The SRec operator defines recursive suspensions by “tying the knot” through the memory. Note
that in the definition of SRec, it will never be the case that « € Ran(VE) and s(a) ¢ Thunk,
because the suspension could not have been forced yet.

Remark: In the presence of recursion, a suspension might be memoized more than once
if evaluating its body somehow forces itself. Then, the inner evaluation might produce and
memoize a value that is subsequently overwritten by the result of the outer evaluation. Note,
however, that evaluating a suspension that forces itself will not terminate unless side effects
areinvolved. If desired, the “blackhole” technique [Jon92] can be used to detect such circular
suspensions and guarantee that a given suspension is only memoized once. &
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