
This paper is included in the Proceedings of the
2015 USENIX Annual Technical Conference (USENIC ATC ’15).

July 8–10, 2015 • Santa Clara, CA, USA

ISBN 978-1-931971-225

Open access to the Proceedings of the
2015 USENIX Annual Technical Conference
(USENIX ATC ’15) is sponsored by USENIX.

Tiered Replication: A Cost-effective Alternative to
Full Cluster Geo-replication

Asaf Cidon, Stanford University; Robert Escriva, Cornell University; Sachin Katti and
Mendel Rosenblum, Stanford University; Emin Gün Sirer, Cornell University

https://www.usenix.org/conference/atc15/technical-session/presentation/cidon

USENIX Association 2015 USENIX Annual Technical Conference 31

Tiered Replication: A Cost-effective Alternative to Full
Cluster Geo-replication

Asaf Cidon1, Robert Escriva2, Sachin Katti1, Mendel Rosenblum1, and Emin Gün Sirer2

1Stanford University
2Cornell University

ABSTRACT
Cloud storage systems typically use three-way random
replication to guard against data loss within the cluster,
and utilize cluster geo-replication to protect against cor-
related failures. This paper presents a much lower cost
alternative to full cluster geo-replication. We demon-
strate that in practical settings, using two replicas is suf-
ficient for protecting against independent node failures,
while using three random replicas is inadequate for pro-
tecting against correlated node failures.

We present Tiered Replication, a replication scheme
that splits the cluster into a primary and backup tier. The
first two replicas are stored on the primary tier and are
used to recover data in the case of independent node fail-
ures, while the third replica is stored on the backup tier
and is used to protect against correlated failures. The
key insight of our paper is that, since the third replicas
are rarely read, we can place the backup tier on sep-
arate physical infrastructure or a remote location with-
out affecting performance. This separation significantly
increases the resilience of the storage system to corre-
lated failures and presents a low cost alternative to geo-
replication of an entire cluster. In addition, the Tiered
Replication algorithm optimally minimizes the probabil-
ity of data loss under correlated failures. Tiered Repli-
cation can be executed incrementally for each cluster
change, which allows it to supports dynamic environ-
ments in which nodes join and leave the cluster, and
it facilitates additional data placement constraints re-
quired by the storage designer, such as network and rack
awareness. We have implemented Tiered Replication
on HyperDex, an open-source cloud storage system, and
demonstrate that it incurs a small performance overhead.
Tiered Replication improves the cluster-wide MTTF by a
factor of 20,000 compared to random replication and by
a factor of 20 compared to previous non-random replica-
tion schemes, without increasing the amount of storage.

1. INTRODUCTION
Popular cloud storage systems like HDFS [33],

GFS [15] and Azure [6] typically replicate their data on
three random machines to guard against data loss within
a single cluster, and geo-replicate the entire cluster to a
separate location to guard against correlated failures.

In prior literature, node failure events are broadly cat-
egorized into two types: independent node failures and
correlated node failures [4, 5, 7, 14, 25, 38]. Indepen-
dent node failures are defined as events during which
nodes fail individually and independently in time (e.g.,
individual disk failure, kernel crash). Correlated failures
are defined as failures in which several nodes fail simul-
taneously due to a common root cause [7, 11] (e.g., net-
work failure, power outage, software upgrade). In this
paper, we are focused on events that affect data durability
rather than data availability, and are therefore concerned
with node failures that cause permanent data loss, such
as hardware and disk failures, in contrast to transient data
availability events, such as software upgrades.

The conventional wisdom is that three-way replication
is cost-effective for guarding against node failures within
a cluster. We also note that, in many storage systems, the
third replica was introduced mainly for durability and not
for read performance [7, 8, 13, 34].

Our paper challenges this conventional wisdom. We
show that two replicas are sufficient to protect against
independent node failures, while three replicas are inad-
equate to protect against correlated node failures.

We show that in storage systems in which the third
replica is only read when the first two are unavailable
(i.e., the third replica is not used for client reads), the
third replica would be used almost only during correlated
failure events. In such a system, the third replica’s work-
load is write-dominated, since it would be written to on
every system write, but very infrequently read from.

This property can be leveraged by storage systems to
increase durability and reduce storage costs. Storage
systems can split their clusters into two tiers: the pri-
mary tier would contain the first and second copy of
each replica, while the backup tier would contain the
backup third replicas. The backup tier would only be

1

32 2015 USENIX Annual Technical Conference USENIX Association

used when data is not available in the primary tier. Since
the backup tier’s replicas will be read infrequently they
do not require high performance for read operations. The
relaxed read requirements for the third replica enable
system designers to further increase storage durability,
by storing the backup tier on a remote site (e.g., Amazon
S3), which significantly reduces the correlation in fail-
ures between nodes in the primary tier and the backup
tier. This is a much lower cost alternative to full cluster
geo-replication, in which all three replicas are stored in a
remote site. Since the backup tier does not require high
read performance, it may also be compressed, dedupli-
cated or stored on a low-cost storage medium that does
not offer low read latency but supports high write band-
width (e.g., tape) to reduce storage capacity costs.

Existing replication schemes cannot effectively sepa-
rate the cluster into tiers while maintaining cluster dura-
bility. Random replication, the scheme widely used by
popular cloud storage systems, scatters data uniformly
across the cluster and has been shown to be very sus-
ceptible to frequent data loss due to correlated fail-
ures [2, 7, 9]. Non-random replication schemes, like
Copyset Replication [9], have significantly lower prob-
ability of data loss under correlated failures. However,
Copyset Replication is not designed to split the repli-
cas into storage tiers, does not support nodes joining and
leaving, and does not allow storage system designers to
add additional placement constraints, such as supporting
chain replication or requiring replicas to be placed on dif-
ferent network partitions and racks.

We present Tiered Replication, a simple dynamic
replication scheme that leverages the asymmetric work-
load of the third replica. Tiered Replication allows sys-
tem designers to divide the cluster into primary and
backup tiers, and its incremental operation supports
nodes joining and leaving. In addition, unlike Random
Replication, Tiered Replication enables system design-
ers to limit the frequency of data loss under correlated
failures. Moreover, Tiered Replication can support any
data layout constraint, including support for chain repli-
cation [37] and topology-aware data placement.

Tiered Replication is an optimization-based algorithm
that places chunks into the best available replication
groups. The insight behind its operation is to select repli-
cation groups that both minimize the probability of data
loss under correlated failures by reducing the overlap be-
tween replication groups, and satisfy data layout con-
straints defined by the storage system designer. Tiered
Replication increases the MTTF by a factor of 20,000
times compared to Random Replication, and by a factor
of 20 compared to Copyset Replication.

We implemented Tiered Replication on HyperDex, a
cloud storage system that can scale up to hundreds of
thousands of nodes [13]. Our implementation of Tiered

Replication is versatile enough to satisfy constraints on
replica assignment and load balancing, including Hyper-
Dex’s data layout requirements for chain replication [37].
We analyze the performance of Tiered Replication on a
HyperDex installation on Amazon, in which the backup
tier, containing the third replicas, is stored on a separate
Amazon availability zone. We show that Tiered Repli-
cation incurs a small performance overhead for normal
operations and preserves the performance of node recov-
ery. Our open source implementation of Tiered Replica-
tion on HypderDex is publicly available.

2. MOTIVATION
In this section, we demonstrate why three-way repli-

cation is not cost-effective. First, we demonstrate that it
is superfluous to use a replication factor of three to pro-
vide data durability against independent failures, and that
two replicas provide sufficient redundancy for this type
of failure. Second, building on previous work [7, 9], we
show that random three-way replication falls short in pro-
tecting against correlated failures. These findings pro-
vide motivation for a replication scheme that more effi-
ciently handles independent node failures and provides
stronger durability in the face of correlated failures.

2.1 Analysis of Independent Node Failures
Consider a storage system with N nodes and a repli-

cation factor of R. Independent node failures are mod-
eled as a Poisson Process with an arrival rate of λ. Typ-
ical parameters for storage systems are N = 1, 000 to
N = 10, 000 and R = 3 [5, 7, 14, 33].
λ = N

MTTF , where MTTF is the mean time to per-
manent failure of a standard node. We borrow the fail-
ure assumption used by Yahoo and LinkedIn, for which
about 1% of the nodes in a typical cluster fail indepen-
dently each month [7, 33]. Consequently, we use a node
MTTF of 10 years. We also assume in the model that
the number of nodes remains constant and that there is
always an idle server available to replace a failed node.

When a node fails, the cluster re-replicates its data
from several servers, which store replicas of the node’s
data and write the data into another set of nodes.
The node’s recovery time depends on the number of
servers that can be read from in parallel to recover the
data. Using previously defined terminology [9], we term
scatter width or S as the average number of servers
that participate in a single node’s recovery. For exam-
ple, a node that has S = 10 has its data replicated uni-
formly on 10 other nodes, and when the node fails, the
storage system can re-replicate the data by reading from
and writing to 10 nodes in parallel.

A single node’s recovery time is modeled as an ex-
ponential random variable, with a recovery rate of µ.
We assume that recovery rate is a linear function of the

2

USENIX Association 2015 USENIX Annual Technical Conference 33

0	 1	

λ	 λ	

μ	 2μ	

2	

λ	

3μ	

i	

λ	

(i+1)μ	

i+1	

λ	

(i+2)μ	

λ	

iμ	

…	 …	

Figure 1: Markov chain of data loss due to indepen-
dent node failures. Each state represents the number
of nodes that are down simultaneously.

scatter width, or a linear function of the number of
nodes that recover in parallel. µ = S

τ , where τ
S is the

time to recover an entire server over the network with S
nodes participating in the recovery. Typical values for τ

S
are between 1-30 minutes [7, 14, 33]. For example, if a
node stores 1 TB of data and has a scatter width of 10
(i.e., its data would be scattered across 10 nodes), and
each node was read from at a rate of 500 MB/s, it would
take about three minutes to recover the node’s data. As
a reference, Yahoo has reported that when the cluster re-
covers a node in parallel, it takes about two minutes to
recover a node’s data [33].

Throughout the paper we use τ = 60 minutes with
a scatter width of 10, which results in a recovery time
of 6 minutes (three times higher than the recovery time
reported by Yahoo [33]). Note that there is a practical
lower bound to recovery time. Most systems first make
sure the node has permanently failed before they start
recovering the data. Therefore, we do not consider re-
covery times that are below one minute. We also assume
that each node has a single 2 TB disk that can be recov-
ered at a rate of 500 MB/s, and that each node’s data is
split into 10,000 chunks. These numbers match standard
industry parameters [6, 9, 17].

The rate of data loss due to independent node failures
is a function of two probabilities. The first is the prob-
ability that i nodes in the cluster have failed simultane-
ously at a given point in time: Pr(i failed). The second
is the probability of loss given i nodes failed simultane-
ously: Pr(loss|i failed). In the next two subsections,
we show how to compute these probabilities, and in the
final subsection we show how to derive the overall rate
of failure due to independent node failures.

2.1.1 Probability of i Nodes Failing
We first express Pr(i failed) using a Continuous-

time Markov chain, depicted in Figure 1. Each state in
the Markov chain represents the number of failed nodes
in a cluster at a given point in time.

The rate of transition between state i and i + 1 is
the rate of independent node failures across the cluster,
namely λ. The rate of the reverse transition between state

Number
of Nodes

Pr(2 Failures) Pr(3 Failures) Pr(4 Failures)

1,000 6.51× 10−7 2.48× 10−10 7.07× 10−14

5,000 1.62× 10−5 3.08× 10−8 4.40× 10−11

10,000 6.44× 10−5 2.45× 10−7 7.00× 10−10

50,000 1.54× 10−3 2.93× 10−5 4.18× 10−7

100,000 5.81× 10−3 2.21× 10−4 6.31× 10−6

Table 1: Probability of simultaneous node failures
due to independent node failures under different clus-
ter sizes. The model uses S = 10, R = 3, τ =
60 minutes and an average node MTTF of 10 years.

i and i − 1 is the recovery rate of single node’s data.
Since there are i failed nodes, the recovery rate of a sin-
gle node is (i) ·µ (in other words, as the number of nodes
the cluster is trying to recover increases, the time it takes
to recover the first node decreases, because more nodes
participate in recovery). We assume that the number of
failed nodes does not affect the rate of recovery. This as-
sumption holds true as long as the number of failures is
relatively small compared to the total number of nodes,
which is true in the case of independent node failures in
a large cluster (we demonstrate this below).

The probability of each state in a Markov chain with N
states can always be derived from a set of N linear equa-
tions. However, since N is on the order of magnitude of
1,000 or more, and the number of simultaneous failures
due to independent node failures in practical settings is
very small compared to the number of nodes, we derived
an approximate closed-form solution that assumes an in-
finite sized cluster. This solution is very simple to com-
pute, and we provide the analysis for it in Appendix 8.

The probability of i nodes failing simultaneously is:

Pr(i failed) =
ρi

i!
e−ρ

Where ρ =
λ

µ
. The probabilities for different cluster

sizes are depicted in Table 1. The results show that for
clusters smaller than 10,000 nodes, the probability of two
or more simultaneous independent failures is very low.

2.1.2 Data Loss Given i Node Failures
Now that we have estimated Pr(i failed), we need to

estimate Pr(loss|i failed). Previous work has shown
how to compute this probability for different types of
replication techniques using simple combinatorics [9].
Replication algorithms map each chunk to a set of R
nodes. A copyset is a set that stores all of the copies of
a chunk. For example, if a chunk is replicated on nodes
{7, 12, 15}, then these nodes form a copyset.

Random replication selects copysets randomly from
the entire cluster. Facebook has implemented its own

3

34 2015 USENIX Annual Technical Conference USENIX Association

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10

0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

Number of Nodes

M
T

T
F

 i
n
 Y

e
a
rs

Copyset Replication, Independent, R = 3

Facebook Random Replication, Independent, R = 3

Random Replication, Independent, R = 3

Copyset Replication, Independent, R = 2

Facebook Replication, Independent, R = 2

Random Replication, Independent, R = 2

Copyset Replication, Correlated, R = 3

Facebook Replication, Correlated, R = 3

Random Replication, Correlated, R = 3

Figure 2: MTTF due to independent and correlated
node failures of a cluster with a scatter width of 10.

random replication technique in which the R nodes are
selected from a pre-designated window of nodes. For
example, if the first replica is placed on node 10, the
remaining two replicas will randomly be placed on two
nodes out of a window of 10 subsequent nodes (i.e., they
will be randomly selected from nodes {11, ..., 20}) [2, 9].

Unlike random schemes, Copyset Replication mini-
mizes the number of copysets [9]. The following exam-
ple demonstrates the difference between Copyset Repli-
cation and Facebook’s scheme. Assume our storage sys-
tem has: R = 3, N = 9 and S = 4. In Facebook’s
scheme, each chunk will be replicated on another node
chosen randomly from a group of S nodes following the
first node. E.g., if the primary replica is placed on node
1, the secondary replica will be randomly placed either
on node 2, 3, 4 or 5. Therefore, if our system has a large
number of chunks, it will create 54 distinct copysets.

In the case of a simultaneous failure of three nodes, the
probability of data loss is the number of copysets divided
by the maximum number of sets:

copysets(
N
R

) =
54(
9
3

) = 0.64

Now, examine an alternative scheme using the same pa-
rameters. Assume we only allow our system to replicate
its data on the following copysets:

{1, 2, 3}, {4, 5, 6}, {7, 8, 9}{1, 4, 7}, {2, 5, 8}, {3, 6, 9}

That is, if the primary replica is placed on node 3, the
two secondary replicas can only be randomly placed on
nodes 1 and 2 or 6 and 9. Note that with this scheme,
each node’s data will be split uniformly on four other
nodes. The new scheme creates only 6 copysets. Now, if
three nodes fail, the probability of data loss is:

copysets

84
=

6

84
= 0.07.

Consequently, as we decrease the number of copysets,
Pr(loss|i failed) decreases. Therefore, this probabil-

ity is significantly lower with Copyset Replication com-
pared to Facebook’s Random Replication.

Note however, that as we decrease the number of copy-
sets, the frequency of data loss under correlated failures
will decrease, but each correlated failure event will incur
a higher number of lost chunks. This is a desirable trade-
off for many storage system designs, in which each data
loss event incurs a fixed cost [9]. Another design choice
that affects the number of copysets is the scatter width.
As we increase the scatter width, the number of copysets
used by the system also increases.

2.1.3 MTTF Due to Independent Node Failures
We can now compute the rate of loss due to indepen-

dent node failures, which is:

Rate of Loss =
1

MTTF
=

λ
N∑
i=1

Pr(i− 1 failed) · (1− Pr(loss|i− 1 failed))·

Pr(loss|i failed)

The equation accounts for all events in which the
Markov chain switches from state i− 1, in which no loss
occurs, to state i, in which data loss occurs. λ is the tran-
sition rate between state i− 1 and i, Pr(i− 1 failed) is
the probability of state i−1, (1−Pr(loss|i−1 failed))
is the probability that there was no data loss when i − 1
nodes failed, and Pr(loss|i failed) is the probability of
data loss when i nodes failed. Since no data loss can oc-
cur when i < R, the sum can be computed from i = R.

In addition, Table 1 shows that under practical system
parameters, the probability of i simultaneous node fail-
ures due to independent node failures drops dramatically
as i increases. Therefore:

Rate of Loss =
1

MTTF
≈

λ · Pr(R− 1 failed) · Pr(loss|R failed)

Using this equation, Figure 2 depicts the MTTF of
data loss under independent failures for R = 2 and R =
3 with three replication schemes, Random Replication,
Facebook’s Random Replication and Copyset Replica-
tion, as a function of the cluster’s size. It is evident that
Facebook’s Random Replication and Copyset Replica-
tion have a much higher MTTF than Random Replica-
tion. The reason is that they use a much smaller number
of copysets than Random Replication, and therefore their
Pr(loss|i failed) is smaller.

2.2 Analysis of Correlated Node Failures
Correlated failures occur when an infrastructure fail-

ure causes multiple nodes to be unavailable for a long
period of time. Such failures include power outages that
may affect an entire cluster, and network switch and

4

USENIX Association 2015 USENIX Annual Technical Conference 35

5 10 15 20 25 30
10

0

10
2

10
4

10
6

10
8

10
10

10
12

Scatter Width

M
T

T
F

 i
n
 Y

e
a
rs

Copyset Replication, Independent, R = 3

Facebook Random Replication, Independent, R = 3

Copyset Replication, Independent, R = 2

Facebook Random Replication, Independent, R = 2

Copyset Replication, Correlated, R = 3

Facebook Random Replication, Correlated, R = 3

Figure 3: MTTF due to independent and correlated
node failures of a cluster with 4000 nodes.

rack failures [7, 11]. Storage systems can avoid data
loss related to some common correlated failure scenar-
ios, by placing replicas on different racks or network
segments [5, 7, 14]. However, these techniques only
go so far to mitigate data loss, and storage systems still
face unexpected simultaneous failures of nodes that share
replicas. Such data loss events have been documented
by multiple data center operators, such as Yahoo [33],
LinkedIn [7] and Facebook [2, 5].

In order to analyze the affect of correlated failures on
MTTF, we use the observation made by LinkedIn and
Yahoo, that about once a year, 1% of the nodes do not
recover after a cluster-wide power outage. This has been
documented as the most common severe correlated fail-
ure [7, 33]. We can compute the probability of data loss
for this event using combinatorics [9].

Figure 2 also presents the MTTF of data loss under
correlated failures. It is evident from the graph that the
MTTF due to correlated failures for R = 3 is three or-
ders of magnitude lower than that for independent fail-
ures with R = 2 and six orders of magnitude lower than
that for independent failures with R = 3, for any repli-
cation scheme.

We conclude that R = 2 is sufficient to protect against
independent node failures, and that system designers
should only focus on further increasing the MTTF under
correlated failures, which is by far the main contributing
factor to data loss. This has been corroborated in empir-
ical studies conducted by Google [14] and LinkedIn [7].

This provides further evidence that random replication
is very susceptible to correlated and independent failures.
Therefore, in the rest of the paper we compare Tiered
Replication only against Facebook’s Random Replica-
tion and Copyset Replication.

Figure 3 plots the MTTF for correlated and indepen-
dent node failures using the same model as before, as a
function of the scatter width. This graph demonstrates
that Copyset Replication provides a much higher MTTF
than Facebook’s Random Replication scheme. The fig-

ure also shows that increasing the scatter width has an
opposite effect on MTTF for independent and correlated
node failures. The MTTF due to independent node fail-
ures increases as a function of the scatter width, since a
higher scatter width provides faster node recovery times,
since more nodes participate in simultaneous recovery.
In contrast, the MTTF due to correlated node failures de-
creases as a function of the scatter width, since a higher
scatter width produces more copysets.

Since the MTTF is determined primarily by correlated
failures, we can also conclude that if system designers
wish to reduce the cluster-wide MTTF, they should use a
small scatter width.

2.3 The Peculiar Case of the Nth (or Third)
Replica

This analysis prompted us to investigate whether we
can further increase the MTTF under correlated fail-
ures. We assume that the third replica was introduced
in most cases to provide increased durability and not for
increased read throughput [7, 8, 13, 34].

Therefore, consider a storage system in which the third
replica is never read unless the first two replicas have
failed. We estimate how frequently the system requires
the use of a third replica, by analyzing the probability of
data loss under independent node failures for a replica-
tion factor of two. If a system loses data when it uses
two replicas, it means that if a third replica existed and
did not fail, the system would recover the data from it.

In the independent failure model depicted by Fig-
ures 2 and 3, Facebook Random Replication and Copyset
Replication require the third replica very rarely, on the
order of magnitude of every 105 years.

To leverage this property, we can split our storage sys-
tem into two tiers. The primary tier contains the first
and second replicas of each chunk (or the N-1 replicas
of each chunk), while the backup tier contains the third
(or Nth) replica of each chunk. If possible, failures in the
primary tier will always be recovered using nodes from
the primary tier. We only recover from the backup tier if
both the first and second replicas fail simultaneously. In
case the storage system requires more than two nodes for
read availability, the primary tier will contain the num-
ber of replicas required for availability, while the backup
tier will contain an additional replica. Additional backup
tiers (containing a single replica) can be added to support
read availability in multiple geographies.

Therefore, the backup tier will be mainly used for
durability during severe correlated failures, which are in-
frequent (on the order of once a year), as reported by
various operators [5, 7, 33]. Consequently, the backup
tier can be viewed as write-dominated storage, since it
is written to on every write (e.g., thousands of times per
second), but only read from a few times a year.

5

36 2015 USENIX Annual Technical Conference USENIX Association

Splitting the cluster into tiers provides multiple advan-
tages. The storage system designer can significantly re-
duce the correlation between failures in the primary tier
and the backup tier similar to full cluster geo-replication.
This can be achieved by storing the backup tier in a geo-
graphically remote location, or by other means of physi-
cal separation such as using different network and power
infrastructure. It has been shown by Google that storing
data in a physical remote location significantly reduces
the correlation between failures across the two sites [14].

Another possible advantage is that the backup tier can
be stored more cost-effectively than the primary tier,
since it does not require low read latency. For exam-
ple, the backup tier can be stored on a cheaper storage
medium (e.g., tape, or disk in the case of an SSD-based
cluster), its data may be compressed [17, 19, 22, 28, 30],
deduplicated [12, 27, 40] or may be configured in other
ways to be optimized for a write dominated workload.

The idea of using full cluster geo-replication has been
explored extensively. However, existing geo-replication
techniques replicate all replicas from one cluster to a sec-
ond cluster, which multiplies the cost of storage [14, 23].

In the next section, we design a replication technique,
Tiered Replication, that supports tiered clusters and does
not duplicate the entire cluster. Unlike random replica-
tion, Tiered Replication is not susceptible to correlated
node failures, and unlike previous non-random tech-
niques like Copyset Replication, it supports data topol-
ogy constraints such as tiered replicas and minimizes the
number of copysets, even when the number of nodes in
the cluster changes over time [9].

3. DESIGN
The goal of Tiered Replication is to create copysets

(groups of nodes that contain all copies of a single
chunk). When a node replicates its data, it will ran-
domly choose a copyset that it is a member of, and place
the replicas of the chunk on all the nodes in its copy-
set. Tiered Replication attempts to minimize the number
of copysets while providing sufficient scatter width (i.e.,
node recovery bandwidth), and ensuring that each copy-
set contains a single node from the backup tier. Tiered
Replication also flexibly accommodates any additional
constraints defined by the storage system designer (e.g.,
split copysets across racks or network tiers).

Algorithm 1 describes Tiered Replication, while Ta-
ble 2 contains the definitions used in the algorithm.
Tiered Replication continuously creates new copysets
until all nodes are replicated with sufficient scatter width.
Each copyset is formed by iteratively picking candidate
nodes with a minimal scatter width that meet the con-
straints of the nodes that are already in the copyset. Al-
gorithm 2 describes the part of the algorithm that checks
whether the copyset has met the constraints. The first

Name Description

cluster list of all the nodes in the cluster
node the state of a single node
R replication factor (e.g., 3)
cluster.S desired minimum scatter width

of all the nodes in the cluster
node.S the current scatter width of a

node
cluster.sort returns a sorted list of the nodes

in increasing order of scatter
width

cluster.addCopyset(copyset) adds copyset to the list of copy-
sets

cluster.checkTier(copyset) returns false if there is more than
one node from the backup tier, or
R nodes from the primary tier

cluster.didNotAppear(copyset) returns true if each node never
appeared with other nodes in pre-
vious copysets

Table 2: Tiered Replication algorithm’s variables and
helper functions.

Algorithm 1 Tiered Replication
1: while ∃ node ∈ cluster s.t. NODE.S < CLUSTER.S do
2: for all node ∈ cluster do
3: if NODE.S < CLUSTER.S then
4: copyset = {node}
5: sorted = CLUSTER.SORT
6: for all sortedNode ∈ sorted do
7: copyset = copyset ∪ {sortedNode}
8: if CLUSTER.CHECK(copyset) == false then
9: copyset = copyset - {sortedNode}

10: else if COPYSET.SIZE == R then
11: CLUSTER.ADDCOPYSET(copyset)
12: break
13: end if
14: end for
15: end if
16: end for
17: end while

Algorithm 2 Check Constraints Function
1: function CLUSTER.CHECK(copyset)
2: if CLUSTER.CHECKTIER(copyset) == true AND

CLUSTER.DIDNOTAPPEAR(copyset) AND
... // additional data layout constraints then

3: return true
4: else
5: return false
6: end if
7: end function

constraint satisfies the tier requirements, i.e., having ex-
actly one node in each copyset that belongs to the backup
tier. The second constraint enforces the minimization of
the number of copysets, by requiring that the nodes in
the new copyset do not appear with each other in pre-
vious copysets. This constraint minimizes the number of
copysets, because each new copyset contributes the max-
imum increase of scatter width.

6

USENIX Association 2015 USENIX Annual Technical Conference 37

MTTF Improvement

Figure 4: MTTF improvement of Tiered Replication
with a scatter width of 10.

10
3

10
4

10
5

10
6

10
−2

10
0

10
2

10
4

10
6

10
8

10
10

Number of Nodes

M
T

T
F

 i
n
 Y

e
a
rs

Tiered Replication, Independent, R = 3 + 1

Tiered Replication, Correlated, R = 3 + 1

Tiered Replication, Independent, R = 2 + 1

Tiered Replication, Correlated, R = 2 + 1

MTTF of 100 years

Figure 5: Tiered Replication would require 4 replicas
to maintain an MTTF of 100 years once the cluster
scales to 25,000 nodes with a scatter width of 10.

Note that there may be cases in which the algorithm
does not succeed to find a copyset that satisfies all the
constraints. In this case, the algorithm is run again, with
a relaxed set of constraints (e.g., we can relax the con-
straint of minimizing the number of copysets, and allow
more overlap between copysets). In practical scenarios,
in which the number of nodes is an order of magnitude
or more greater than S, the algorithm will easily satisfy
all constraints.

3.1 Analysis of Tiered Replication
We evaluate the durability of Tiered Replication under

independent and correlated node failures. To measure
the MTTF under independent node failures, we use the
same Continuous-time Markov model that we presented
in Section 2. The results are presented in Figures 4 and 5.
Note that R = 2 + 1 means we use Tiered Replication
with two replicas in the primary tier and one replica in
the backup tier.

Under Tiered Replication, when a replica fails in the
primary tier, if possible, it is only recovered from other
nodes in the primary tier. Therefore, fewer nodes will

participate in recovery, because the backup tier nodes
will not be recovered from. In order to compensate for
this effect, system designers that use Tiered Replication
may choose to increase the scatter width. For our analy-
sis we compute the MTTF using the same scatter width
for Tiered Replication and other replication schemes.
Figure 4 shows that for S = 10, the MTTF under inde-
pendent node failures is higher for Copyset Replication
compared to Tiered Replication, because fewer nodes
participate in the recovery of primary replicas and its
single-node recovery time is therefore higher.

Also, note that in Figures 4 and 5, we assume that for
R = 2+1, the third replica is never used to recover from
independent node failures. In reality, the backup tier is
used for any failure of two nodes from the primary tier,
and therefore will be used in the rare case of an indepen-
dent node failure that simultaneously affects two nodes in
the primary tier that are in the same copyset. Hence, the
MTTF under independent node failures for Tiered Repli-
cation is even higher than depicted by the graphs.

To evaluate the durability of Tiered Replication under
correlated failures, we quantify the probability that all
the nodes in one copyset or more fail. Since the primary
and backup tiers are stored on separate infrastructure, we
assume that their failures are independent.

Since each copyset includes two nodes from the pri-
mary tier, when these nodes fail simultaneously, data loss
will occur only if the third copyset node from the backup
tier failed at the same time. Since our assumption is that
correlated failures occur once a year and affect 1% of the
nodes each time (i.e., an MTTF of 100 years for a sin-
gle node), while independent failures occur once in ev-
ery 10 years for a node, it is 10 times more likely that if
a backup node fails, it is due to an independent node fail-
ure. Therefore, the dominant cause of failures for Tiered
Replication is when a correlated failure occurs in the pri-
mary tier, and at the same time an independent node fail-
ure occured in the backup tier.

To compute the MTTF due to this scenario, we need to
compute the probability that a node failure will occur in
the backup cluster while a correlated failure event is oc-
curring in the primary cluster. To be on the conservative
side, we assume that it takes 12 hours to fully recover
the data after the correlated failure in the primary tier
(LinkedIn data center operators report that unavailabil-
ity events typically take 1-3 hours to recover from [7]).
We compute the probability of data loss in this scenario,
using the same combinatorial methods that we used to
compute the MTTF under correlated failures before.

Figure 4 shows that the MTTF of Tiered Replication is
more than two orders of magnitude greater than Copyset
Replication. This is due to the fact that it is much less
likely to lose data under correlated failures when one of
the replicas is stored on an independent cluster. Recall

7

38 2015 USENIX Annual Technical Conference USENIX Association

that Copyset Replication’s MTTF was already three or-
ders of magnitude greater than random replication.

In Figure 5 we explore the following: what is the turn-
ing point, when a storage system needs to use R = 4
instead of R = 3? We plot the MTTF of Tiered Repli-
cation and extend it N = 1, 000, 000, which is a much
larger number of nodes than is used in today’s clusters.
Assuming that storage designers are targeting an MTTF
of at least 100 years, our results show that at around
25,000 nodes, storage systems should switch to a de-
fault of R = 4. Note that Figure 4 shows that Copyset
Replication needs to switch to R = 4 much sooner, at
about 5,000 nodes. Other replication schemes, like Face-
book’s scheme, fail to achieve an MTTF of 100 years
with R = 3, even for very small clusters.

3.2 Dynamic Cluster Changes
Since running Tiered Replication is fast to execute

(on the order of milliseconds, see Section 4) and the al-
gorithm is structured to create new copysets incremen-
tally, the storage system can run it every time the cluster
changes its configuration.

When a new node joins the cluster, we simply run
Tiered Replication again. Since the new node does not
belong to any copysets, it starts with a scatter width of
0. Tiered Replication’s greedy operation ensures that the
node is assigned to a sufficient number of copysets that
will increase its scatter width to the value of S.

When a node dies (or leaves the cluster), it leaves be-
hind copysets that are missing a single node. The sim-
plest way to re-instate the copysets is to assume that the
old copysets are down and run the algorithm again. The
removal of these copysets will reduce the scatter width
of the nodes that were contained in the removed copy-
sets, and the algorithm will create a new set of copysets
to replace the old ones. The data in the old copysets will
need to be re-replicated R times again. We chose this
approach when implementing Tiered Replication on Hy-
perDex, due to its simplicity.

Alternatively, the algorithm can be optimized to look
for a replacement node, which addresses the constraints
of the remaining nodes in the copyset. In this scenario, if
the algorithm succeeds in finding a replacement, the data
will be re-replicated only once.

3.3 Additional Constraints
Tiered Replication can be extended to support differ-

ent requirements of storage system designers by adding
more constraints to the cluster.check(copysets) func-
tion. The following provides two examples.

Controlled Power Down: Some storage designers
would like to allow parts of the cluster to be temporarily
switched off to reduce power consumption (e.g., accord-
ing to diurnal patterns). For example, Sierra [36], allows

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

Tiered	 Replica7on	 Tiered	 Replica7on	
with	 Power	

Propor7onality	

Tiered	 Replica7on	
with	 Chain	 Sets	

Tiered	 Replica7on	
with	 Power	

Propor7onality	 and	
Chain	 Sets	

Facebook	 Random	
Replica7on	

Co
py
se
t	 E

ffi
ci
en

cy
	

Figure 6: Adding constraints on Tiered Replication
increases the number of copysets, on a cluster with
N = 4000, R = 3 and S = 10.

a cluster with three replicas to power down two thirds
of its cluster and still allow access to data. This feature
can easily be added as a constraint to Tiered Replication
by forcing each copyset to contain a node that belongs
to a different tier. This feature is also important for sup-
porting controlled software or hardware upgrades, during
which parts of the cluster may be powered down without
affecting the cluster availability.

Chain Replication: Chain replication can provide im-
proved performance and consistency. Each replica is
assigned a position in the chain (e.g., head, middle,
tail) [37]. A desirable property of chain replication is
that each node will have an equal number of replicas in
each position. It is straightforward to incorporate this
requirement into Tiered Replication. In order to ensure
that nodes have an even distribution of chain positions
for their replicas, when the algorithm assigns nodes to
copysets and chain positions, it tries to balance the num-
ber of times the node will appear in each chain position.
For example: if a node has been assigned to the head po-
sition twice, middle position twice and tail position once,
the algorithm will enforce that it will be assigned to a tail
position in the next copyset the node will belong to.

To demonstrate the ability to incorporate additional
constraints to Tiered Replication, we implemented it on
HyperDex [13], a storage system that uses chain replica-
tion. Note that Copyset Replication and Random Repli-
cation are inefficient for supporting balanced chain sets.
Copyset Replication is not designed for incorporating
such constraints because it randomly permutes the en-
tire set of nodes. Random Replication is not effective for
this requirement because its random placement of nodes
frequently creates imbalanced chain positions.

3.4 Analysis of Additional Constraints
Figure 6 demonstrates the effect of adding constraints

on the number of copysets. In the figure, copyset effi-

8

USENIX Association 2015 USENIX Annual Technical Conference 39

ciency is equal to the ratio between the number of copy-
sets generated by an optimal replication scheme that min-
imizes the number of copysets, and the number of copy-
sets generated by the replication scheme with the con-
straint. Note that in an optimal replication scheme, nodes
will not appear more than once with each other in differ-
ent copysets, or in other words, the number of copysets
would be equal to S · (R− 1).

The graph shows that as we further constrain Tiered
Replication, it is less likely to generate copysets that
meet multiple constraints, and its copyset efficiency will
decrease. The figure also shows that the chain set con-
straint has a greater impact on the number of copysets
than the power down constraint. In any case, Tiered
Replication with additional constraints significantly out-
performs any Random Replication scheme.

4. IMPLEMENTATION
In order to evaluate Tiered Replication in a practi-

cal setting, we have extended the open-source Hyper-
Dex [13] key-value store to use Tiered Replication for
replica set selection. HyperDex is a distributed, fault-
tolerant, and strongly consistent key-value store. For our
purposes, HyperDex’s architecture is especially suited
for evaluating different replication strategies. In Hyper-
Dex, a replicated state machine serves as the coordina-
tor, and is responsible for maintaining the cluster mem-
bership and metadata. Part of this metadata includes the
complete specification of all replica sets in the system.

Since Tiered Replication can be implemented effi-
ciently, and is only run when nodes join or leave the
cluster, we implement the greedy algorithm directly in
the replicated HyperDex coordinator.

In HyperDex, a variant of chain replication [37] called
value-dependent chaining specifies the replica set of an
object as a chain of nodes through which writes propa-
gate. We incorporate this into Tiered Replication in the
form of additional constraints that track the positions of
nodes within chains as well as the replica sets each node
appears in. This helps ensure that each node will be bal-
anced across different positions in the chain.

We implement Tiered Replication using synchronous
replication. All writes will be acknowledged by all repli-
cas in both tiers before the client is notified of success.
Practically, this means writes will not be lost except in
the case of correlated failure of all replicas in both tiers.

In total, our changes to HyperDex are minimal. We
added or changed about 600 lines of C++ code, of which
250 lines constitute the greedy Tiered Replication algo-
rithm. The rest of our implementation provides the ad-
ministrator with tools to denote whether a node belongs
to the primary or the backup tier of the cluster.

5. EVALUATION
In order to measure the performance impact of Tiered

Replication in a practical setting, we do not attempt to
measure the frequency of data loss under realistic scenar-
ios, because it is impractical to run a cluster of thousands
of nodes for decades.

5.1 Performance Benchmarks
We set up a 9 node HyperDex cluster on Amazon EC2

using M3 xlarge instances. Each node has a high fre-
quency Intel Xeon E5-2670 v2 (Ivy Bridge) with 15 GiB
of main memory and two 40 GB SSD volumes config-
ured to store HyperDex data.

We compare Tiered Replication to HyperDex’s default
replication scheme, which does not support smart place-
ment across two different availability zones. We ran 6
nodes in one availability zone (us-east-1a) and the three
remaining nodes in a second availability zone (us-east-
1b). In Amazon EC2, each availability zone runs on
its own physically distinct, independent infrastructure.
Common points of failures like generators and cooling
equipment are not shared across availability zones. Ad-
ditionally, they are physically separate, such that even
extremely uncommon disasters such as fires, tornados or
flooding would only affect a single availability zone [1].

In both deployments, the cluster is physically split
across the availability zones, but only the tiered replica-
tion scheme ensures that there is exactly one node from
the backup tier in each chain. In both deployments, we
measured the throughput and latency of one million re-
quests with the Yahoo! Cloud Serving Benchmark [10].
YCSB is an ideal choice of benchmark, because it has be-
come the de-facto standard for benchmarking key-value
stores, and provides a variety of workloads drawn from
real workloads in place at Yahoo. We configured YCSB
to run 32 client threads per host on each of the hosts in the
cluster, with the database prepopulated with 10 million
1KiB objects. Figure 7 shows the throughput measured
for both deployments. The difference in throughput is
due to the fact that Tiered Replication does not load bal-
ance the nodes evenly in very small clusters. The figure
includes error bars for the observed throughput over any
one second interval through the course of the experiment.

5.2 Write Latency
We measure the write latency overhead of Tiered

Replication. The workload consists of 50% read oper-
ations and 50% write operations. When we compared
the write latency of Tiered Replication across two avail-
ability zones with Random Replication across two zones,
we did not find any difference in latency.

Figure 8 comares the write latency of Tiered Replica-
tion across two zones with Random Replication across a
single zone. As expected, Tiered Replication adds some

9

40 2015 USENIX Annual Technical Conference USENIX Association

0

20

40

60

80

100

120

140

Loading A B C D F

T
hr

ou
gh

pu
t(

th
ou

sa
nd

op
/s

) Random Replication, 2 Zones
Tiered Replication, 2 Zones

Figure 7: Tiered Replication throughput under
YCSB benchmark. Each bar represents the through-
put under a different YCSB workload.

0

20

40

60

80

100

10 20 30 40 50 60 70 80 90 100

C
D

F

Latency (ms)

Random Replication, 1 Zone
Tiered Replication, 2 Zones

Figure 8: Comparison of write latency between
Tiered Replication across two availability zones and
Random Replication on a single availability zone un-
der YCSB benchmark.

latency overhead, because it spreads the requests across
two availability zones, and our implementation uses syn-
chronous replication, which requires waiting for all repli-
cas to be written before acknowledging the write.

5.3 Recovery Evaluation
We measured single node recovery times under two

scenarios: a node failure in the primary tier and in the
backup tier. We repeated the experiment from the first
two benchmarks and ran YCSB workload B. Thirty sec-
onds into the benchmark, we forcibly failed one node in
the cluster, and initiated recovery thirty seconds later.

In the primary tier node failure experiment, it took ap-
proximately 80 seconds to recover the failed node. It then
took another 48 seconds for the recovered node to syn-
chronize missing data with nodes in the backup tier. This
two-step reintegration process is required by chain repli-

cation: in the first step, the node performs state transfer
with its predecessor, while in the second step, the node
verifies its data with its successor. The recovered node
only transfers to the backup tier nodes the data written
during the thirty seconds of down time, and not the total
data set.

When we repeated the same experiment and failed a
node in the backup tier, it took 91 seconds to recover the
node. Because this node is the last in the chain, the node
can completely reintegrate with the cluster in one step.
The recovery time for both of these experiments is simi-
lar to that of the default HyperDex replication algorithm.

5.4 Bandwidth Across Availability Zones
Tiered Replication relies on having two failure-

independent locations, with a high bandwidth intercon-
nect between them. Our testing shows that Amazon’s
availability zones are an ideal setup. They provide reli-
able links with high bandwidth and low latency. Using
the same machines from the previous experiments, we
conducted pairwise bandwidth tests using the iperf per-
formance measuring tool. All servers in the cluster were
able to communicate at 1.09Gbit/s (even when commu-
nicating across availability zones), which seems to be the
maximum capability of the instances we purchased.

6. RELATED WORK
Several researchers have made observations that the

MTTF under independent failures is much higher than
from correlated failures [25, 38]. A LinkedIn field study
reported no record of data loss due to independent node
failures [7]. Google researchers have shown that the
MTTF with three replicas under correlated failures is al-
most three orders of magnitude lower than the MTTF un-
der independent node failures [14].

Google researchers developed an analysis based on
a Markov model that computes the MTTF for a single
stripe under independent and correlated failures. How-
ever, they did not provide an analysis for the MTTF of the
entire cluster [14]. Nath et al. modeled the affect of cor-
related node failures and demonstrated that replication
techniques that prevent data loss under independent node
failures are not always effective for preventing correlated
node failures [25]. In addition, several researchers have
modeled the MTTF for individual device components,
and in particular for disks [3, 18, 26, 31, 32].

Several replication schemes addressed the high prob-
ability of data loss under correlated failures. Facebook’s
HDFS implementation [2, 5] limits the scatter width of
Random Replication, in order to reduce the probability
of data loss under correlated failures. Copyset Repli-
cation [9] improved Facebook’s scheme, by restricting
the replication to a minimal number of copysets for a
given scatter width. Tiered Replication is the first repli-

10

USENIX Association 2015 USENIX Annual Technical Conference 41

cation technique that not only minimizes the probabil-
ity of data loss under correlated failures, but also lever-
ages the much higher MTTF under independent failures
to further increase the MTTF under correlated failures.
In addition, unlike Copyset Replication, Tiered Repli-
cation can gracefully tolerate dynamic cluster changes,
such as nodes joining and leaving and planned cluster
power downs. It also supports chain replication and the
ability to distribute replicas to different racks and failure
domains, which is a desirable requirement of replication
schemes [5, 24].

The common way to increase durability under cor-
related failures is to use geo-replication of entire clus-
ter to a remote site [14, 21, 23, 35, 39]. Therefore,
if the cluster was using three replicas, once it is geo-
replicated, the storage provider will effectively use six
replicas. Similarly, Glacier [16] and Oceanstore [20, 29]
design an archival storage layer that provides extra pro-
tection against correlated failures by adding multiple new
replicas to the storage system. While the idea of using
archival replicas is not new, Tiered Replication is more
cost-efficient, since does not require any additional stor-
age for the backup: it migrates one replica from the orig-
inal cluster to a backup tier. In addition, previous repli-
cation techniques utilize random placement schemes and
do not minimize the number of copysets, which leaves
them susceptible to correlated failures.

Storage coding is used for reducing the storage over-
head of replication [17, 19, 22, 28, 30]. De-duplication is
also commonly used to reduce the overhead of redundant
copies of data [12, 27, 40]. Tiered Replication is fully
compatible with any coding or de-duplication schemes
for further reduction of storage costs of the backup tier.
Moreover, Tiered Replication enables storage systems to
further reduce costs by storing the third replicas of their
data on a cheap storage medium such as tape, or hard
disks in the case of an solid-state based storage cluster.

7. CONCLUSION
Cloud storage systems typically rely on three-way

replication within a cluster to protect against indepen-
dent node failures, and on full geo-replication of an en-
tire cluster to protect against correlated failures. We pro-
vided an analytical framework for computing the proba-
bility of data loss under independent and correlated node
failures, and demonstrated that the standard replication
architecture used by cloud storage systems is not cost-
effective. Three-way replication is excessive for protect-
ing against independent node failures, and clearly falls
short of protecting storage systems from correlated node
failures. The key insight of our paper is that since the
third replica is rarely needed for recovery from indepen-
dent node failures, it can be placed on a geographically
separated cluster, without causing a significant impact to

the recovery time from independent node failures, which
occur frequently in large clusters.

We presented Tiered Replication, a replication tech-
nique that automatically places the n-th replica on a sep-
arate cluster, while minimizing the probability of data
loss under correlated failures, by minimizing the num-
ber of copysets. Tiered Replication improves the cluster-
wide MTTF by a factor of 20,000 compared to ran-
dom replication, without increasing the storage capac-
ity. Tiered Replication supports additional data place-
ment constraints required by the storage designer, such
as rack awareness and chain replication assignments, and
can dynamically adapt when nodes join and leave the
cluster. An implementation of Tiered Replication on Hy-
perDex, a key-value storage system, demonstrates that it
incurs a small performance overhead.

8. APPENDIX
This section contains the closed-form solution for the

Markov chain described in Section 2 and Figure 1 with
an infinite number of nodes. The state transitions the
Continuous-time Markov chain state i are:

i · µ · Pr(i) = λ · Pr(i− 1)

Therefore:

Pr(i) =
ρ

i
Pr(i− 1)

Where ρ =
λ

µ
. If we apply this formula recursively:

Pr(i) =
ρ

i
Pr(i−1) =

ρ2

i · (i− 1)
Pr(i−2) =

ρi

i!
Pr(0)

In order to find Pr(0), we use the fact that the sum of
all the Markov state probabilities is equal to 1:

∞∑
i=0

Pr(i) = 1

If we apply the recursive formula:

∞∑
i=0

Pr(i) =
∞∑
i=0

ρi

i!
Pr(0) = 1

Using the equality
∞∑
i=0

ρi

i!
= eρ, we get: Pr(0) = e−ρ.

Therefore, we now have a simple closed-form formula
for all of the Markov state probabilities:

Pr(i) =
ρi

i!
e−ρ

11

42 2015 USENIX Annual Technical Conference USENIX Association

References
[1] How isolated are availability zones from one another? http:

//aws.amazon.com/ec2/faqs/#How_isolated_
are_Availability_Zones_from_one_another.

[2] Intelligent block placement policy to decrease probability of data
loss. https://issues.apache.org/jira/browse/
HDFS-1094.

[3] L. N. Bairavasundaram, G. R. Goodson, S. Pasupathy, and
J. Schindler. An analysis of latent sector errors in disk drives.
In Proceedings of the 2007 ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer Systems,
SIGMETRICS ’07, pages 289–300, New York, NY, USA, 2007.
ACM.

[4] M. Bakkaloglu, J. J. Wylie, C. Wang, and G. R. Ganger. On cor-
related failures in survivable storage systems. Technical report,
DTIC Document, 2002.

[5] D. Borthakur, J. Gray, J. S. Sarma, K. Muthukkaruppan,
N. Spiegelberg, H. Kuang, K. Ranganathan, D. Molkov,
A. Menon, S. Rash, R. Schmidt, and A. Aiyer. Apache Hadoop
goes realtime at Facebook. In Proceedings of the 2011 interna-
tional conference on Management of data, SIGMOD ’11, pages
1071–1080, New York, NY, USA, 2011. ACM.

[6] B. Calder, J. Wang, A. Ogus, N. Nilakantan, A. Skjolsvold,
S. McKelvie, Y. Xu, S. Srivastav, J. Wu, H. Simitci, J. Hari-
das, C. Uddaraju, H. Khatri, A. Edwards, V. Bedekar, S. Mainali,
R. Abbasi, A. Agarwal, M. F. u. Haq, M. I. u. Haq, D. Bhardwaj,
S. Dayanand, A. Adusumilli, M. McNett, S. Sankaran, K. Mani-
vannan, and L. Rigas. Windows Azure Storage: a highly available
cloud storage service with strong consistency. In Proceedings of
the Twenty-Third ACM Symposium on Operating Systems Prin-
ciples, SOSP ’11, pages 143–157, New York, NY, USA, 2011.
ACM.

[7] R. J. Chansler. Data Availability and Durability with the Hadoop
Distributed File System. ;login: The USENIX Magazine, 37(1),
February 2012.

[8] B.-G. Chun, F. Dabek, A. Haeberlen, E. Sit, H. Weatherspoon,
M. F. Kaashoek, J. Kubiatowicz, and R. Morris. Efficient replica
maintenance for distributed storage systems. NSDI, 6:4–4, 2006.

[9] A. Cidon, S. M. Rumble, R. Stutsman, S. Katti, J. Ousterhout, and
M. Rosenblum. Copysets: Reducing the frequency of data loss in
cloud storage. In Proceedings of the 2013 USENIX Conference
on Annual Technical Conference, USENIX ATC’13, pages 37–
48, Berkeley, CA, USA, 2013. USENIX Association.

[10] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears. Benchmarking cloud serving systems with YCSB. In
Proceedings of the 1st ACM Symposium on Cloud Computing,
SoCC ’10, pages 143–154, New York, NY, USA, 2010. ACM.

[11] J. Dean. Evolution and future directions of large-scale storage
and computation systems at Google. In SoCC, page 1, 2010.

[12] C. Dubnicki, L. Gryz, L. Heldt, M. Kaczmarczyk, W. Kilian,
P. Strzelczak, J. Szczepkowski, C. Ungureanu, and M. Welnicki.
HYDRAstor: A scalable secondary storage. In FAST, volume 9,
pages 197–210, 2009.

[13] R. Escriva, B. Wong, and E. G. Sirer. HyperDex: A dis-
tributed, searchable key-value store. In Proceedings of the ACM
SIGCOMM 2012 Conference on Applications, Technologies, Ar-
chitectures, and Protocols for Computer Communication, SIG-
COMM ’12, pages 25–36, New York, NY, USA, 2012. ACM.

[14] D. Ford, F. Labelle, F. I. Popovici, M. Stokely, V.-A. Truong,
L. Barroso, C. Grimes, and S. Quinlan. Availability in globally
distributed storage systems. In Proceedings of the 9th USENIX
Conference on Operating Systems Design and Implementation,
OSDI’10, pages 1–7, Berkeley, CA, USA, 2010. USENIX Asso-
ciation.

[15] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google file sys-
tem. In SOSP, pages 29–43, 2003.

[16] A. Haeberlen, A. Mislove, and P. Druschel. Glacier: highly
durable, decentralized storage despite massive correlated failures.
In IN PROC. OF NSDI, 2005.

[17] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan,
J. Li, and S. Yekhanin. Erasure coding in Windows Azure Stor-
age. In Proceedings of the 2012 USENIX Conference on Annual
Technical Conference, USENIX ATC’12, pages 2–2, Berkeley,
CA, USA, 2012. USENIX Association.

[18] W. Jiang, C. Hu, Y. Zhou, and A. Kanevsky. Are disks the dom-
inant contributor for storage failures?: A comprehensive study
of storage subsystem failure characteristics. Trans. Storage,
4(3):7:1–7:25, Nov. 2008.

[19] R. Kotla, L. Alvisi, and M. Dahlin. SafeStore: a durable and prac-
tical storage system. In USENIX Annual Technical Conference,
pages 129–142, 2007.

[20] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton,
D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer,
et al. Oceanstore: an architecture for global-scale persistent stor-
age. ACM Sigplan Notices, 35(11):190–201, 2000.

[21] C. Li, D. Porto, A. Clement, J. Gehrke, N. Preguiça, and R. Ro-
drigues. Making geo-replicated systems fast as possible, con-
sistent when necessary. In Proceedings of the 10th USENIX
Conference on Operating Systems Design and Implementation,
OSDI’12, pages 265–278, Berkeley, CA, USA, 2012. USENIX
Association.

[22] R. Li, P. P. Lee, and Y. Hu. Degraded-first scheduling for MapRe-
duce in erasure-coded storage clusters.

[23] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen.
Stronger semantics for low-latency geo-replicated storage. In
Symposium on Networked Systems Design and Implementation,
2013.

[24] J. MacCormick, N. Murphy, V. Ramasubramanian, U. Wieder,
J. Yang, and L. Zhou. Kinesis: A new approach to replica place-
ment in distributed storage systems. ACM Transactions On Stor-
age (TOS), 4(4):11, 2009.

[25] S. Nath, H. Yu, P. B. Gibbons, and S. Seshan. Subtleties in toler-
ating correlated failures in wide-area storage systems. In NSDI,
volume 6, pages 225–238, 2006.

[26] E. Pinheiro, W.-D. Weber, and L. A. Barroso. Failure trends in a
large disk drive population. In 5th USENIX Conference on File
and Storage Technologies (FAST 2007), pages 17–29, 2007.

[27] S. Quinlan and S. Dorward. Venti: A new approach to archival
data storage. In Proceedings of the 1st USENIX Conference on
File and Storage Technologies, FAST ’02, Berkeley, CA, USA,
2002. USENIX Association.

[28] K. Rashmi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur, and
K. Ramchandran. A solution to the network challenges of data
recovery in erasure-coded distributed storage systems: A study
on the Facebook warehouse cluster. In Presented as part of the
5th USENIX Workshop on Hot Topics in Storage and File Systems.
USENIX, 2013.

12

USENIX Association 2015 USENIX Annual Technical Conference 43

[29] S. C. Rhea, P. R. Eaton, D. Geels, H. Weatherspoon, B. Y. Zhao,
and J. Kubiatowicz. Pond: The oceanstore prototype. In FAST,
volume 3, pages 1–14, 2003.

[30] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G. Dimakis,
R. Vadali, S. Chen, and D. Borthakur. XORing elephants: novel
erasure codes for big data. In Proceedings of the 39th interna-
tional conference on Very Large Data Bases, PVLDB’13, pages
325–336. VLDB Endowment, 2013.

[31] B. Schroeder and G. A. Gibson. Disk failures in the real world:
What does an mttf of 1,000,000 hours mean to you? In Proceed-
ings of the 5th USENIX Conference on File and Storage Technolo-
gies, FAST ’07, Berkeley, CA, USA, 2007. USENIX Association.

[32] B. Schroeder, E. Pinheiro, and W.-D. Weber. DRAM errors in the
wild: A large-scale field study. In Proceedings of the Eleventh
International Joint Conference on Measurement and Modeling
of Computer Systems, SIGMETRICS ’09, pages 193–204, New
York, NY, USA, 2009. ACM.

[33] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The hadoop
distributed file system. Mass Storage Systems and Technologies,
IEEE / NASA Goddard Conference on, 0:1–10, 2010.

[34] E. Sit, A. Haeberlen, F. Dabek, B.-G. Chun, H. Weatherspoon,
R. Morris, M. F. Kaashoek, and J. Kubiatowicz. Proactive repli-
cation for data durability. In IPTPS, 2006.

[35] Y. Sovran, R. Power, M. K. Aguilera, and J. Li. Transactional
storage for geo-replicated systems. In Proceedings of the Twenty-
Third ACM Symposium on Operating Systems Principles, pages
385–400. ACM, 2011.

[36] E. Thereska, A. Donnelly, and D. Narayanan. Sierra: practical
power-proportionality for data center storage. Proceedings of Eu-
rosys 11, pages 169–182, 2011.

[37] R. van Renesse and F. B. Schneider. Chain replication for sup-
porting high throughput and availability. In Proceedings of the
6th Conference on Symposium on Opearting Systems Design &
Implementation - Volume 6, OSDI’04, pages 7–7, Berkeley, CA,
USA, 2004. USENIX Association.

[38] P. Yalagandula, S. Nath, H. Yu, P. B. Gibbons, and S. Seshan.
Beyond availability: Towards a deeper understanding of machine
failure characteristics in large distributed systems. In USENIX
WORLDS, 2004.

[39] Y. Zhang, R. Power, S. Zhou, Y. Sovran, M. K. Aguilera, and J. Li.
Transaction chains: achieving serializability with low latency in
geo-distributed storage systems. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles, pages
276–291. ACM, 2013.

[40] B. Zhu, K. Li, and H. Patterson. Avoiding the disk bottleneck
in the Data Domain deduplication file system. In Proceedings
of the 6th USENIX Conference on File and Storage Technologies,
FAST’08, pages 18:1–18:14, Berkeley, CA, USA, 2008. USENIX
Association.

13

