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Abstract
Functional logic programming and probabilistic programming have
demonstrated the broad benefits of combining laziness (non-strict
evaluation with sharing of the results) with non-determinism. Yet
these benefits are seldom enjoyed in functional programming, be-
cause the existing features for non-strictness, sharing, and non-
determinism in functional languages are tricky to combine.

We present a practical way to write purely functional lazy
non-deterministic programs that are efficient and perspicuous. We
achieve this goal by embedding the programs into existing lan-
guages (such as Haskell, SML, and OCaml) with high-quality im-
plementations, by making choices lazily and representing data with
non-deterministic components, by working with custom monadic
data types and search strategies, and by providing equational laws
for the programmer to reason about their code.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.1.6 [Program-
ming Techniques]: Logic Programming; F.3.3 [Logics and Mean-
ings of Programs]: Studies of Program Constructs—Type structure

General Terms Design, Languages

Keywords Monads, side effects, continuations, call-time choice

1. Introduction
Non-strict evaluation, sharing, and non-determinism are all valu-
able features in functional programming. Non-strict evaluation lets
us express infinite data structures and their operations in a modular
way (Hughes 1989). Sharing lets us represent graphs with cycles,
such as circuits (surveyed by Acosta-Gómez 2007), and express
memoization (Michie 1968), which underlies dynamic program-
ming. Since Rabin and Scott’s Turing-award paper (1959), non-
determinism has been applied to model checking, testing (Claessen
and Hughes 2000), probabilistic inference, and search.

These features are each available in mainstream functional
languages. A call-by-value language can typically model non-
strict evaluation with thunks and observe sharing using reference
cells, physical identity comparison, or a generative feature such as
Scheme’s gensym or SML’s exceptions. Non-determinism can be
achieved using amb (McCarthy 1963), threads, or first-class con-
tinuations (Felleisen 1985; Haynes 1987). In a non-strict language
like Haskell, non-determinism can be expressed using a list monad
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(Wadler 1985) or another MonadPlus instance, and sharing can be
represented using a state monad (Acosta-Gómez 2007; §2.4.1).

These features are particularly useful together. For instance,
sharing the results of non-strict evaluation—known as call-by-need
or lazy evaluation—ensures that each expression is evaluated at
most once. This combination is so useful that it is often built-in:
as delay in Scheme, lazy in OCaml, and memoization in Haskell.

In fact, many programs need all three features. As we illustrate
in §2, lazy functional logic programming (FLP) can be used to
express search problems in the more intuitive generate-and-test
style yet solve them using the more efficient test-and-generate
strategy, which is to generate candidate solutions only to the extent
demanded by the test predicate. This pattern applies to property-
based test-case generation (Christiansen and Fischer 2008; Fischer
and Kuchen 2007; Runciman et al. 2008) as well as probabilistic
inference (Goodman et al. 2008; Koller et al. 1997).

Given the appeal of these applications, it is unfortunate that
combining the three features naively leads to unexpected and un-
desired results, even crashes. For example, lazy in OCaml is not
thread-safe (Nicollet et al. 2009), and its behavior is unspecified if
the delayed computation raises an exception, let alone backtracks.
Although sharing and non-determinism can be combined in Haskell
by building a state monad that is a MonadPlus instance (Hinze
2000; Kiselyov et al. 2005), the usual monadic encoding of non-
determinism in Haskell loses non-strictness (see §2.2). The triple
combination has also been challenging for theoreticians and prac-
titioners of FLP (López-Fraguas et al. 2007, 2008). After all, Algol
has made us wary of combining non-strictness with any effect.

The FLP community has developed a sound combination of
laziness and non-determinism, call-time choice, embodied in the
Curry language. Roughly, call-time choice makes lazy non-deter-
ministic programs predictable and comprehensible because their
declarative meanings can be described in terms of (and is often
same as) the meanings of eager non-deterministic programs.

1.1 Contributions
We embed lazy non-determinism with call-time choice into main-
stream functional languages in a shallow way (Hudak 1996), rather
than, say, building a Curry interpreter in Haskell (Tolmach and
Antoy 2003). This new approach is especially practical because
these languages already have mature implementations, because
functional programmers are already knowledgeable about lazi-
ness, and because different search strategies can be specified as
MonadPlus instances and plugged into our monad transformer.
Furthermore, we provide equational laws that programmers can
use to reason about their code, in contrast to previous accounts of
call-time choice based on directed, non-deterministic rewriting.

The key novelty of our work is that non-strictness, sharing,
and non-determinism have not been combined in such a general
way before in purely functional programming. Non-strictness and
non-determinism can be combined using data types with non-
deterministic components, such that a top-level constructor can be



computed without fixing its arguments. However, such an encod-
ing defeats Haskell’s built-in sharing mechanism, because a piece
of non-deterministic data that is bound to a variable that occurs
multiple times may evaluate to a different (deterministic) value at
each occurrence. We retain sharing by annotating programs explic-
itly with a monadic combinator for sharing. We provide a generic
library to define non-deterministic data structures that can be used
in non-strict, non-deterministic computations with explicit sharing.

Our library is implemented as a monad transformer and can,
hence, be combined with arbitrary monads for non-determinism.
We are, thus, not restricted to the list monad (which implements
depth-first search) but can also use monads that backtrack more
efficiently or provide a complete search strategy. The library does
not directly support logic variables—perhaps the most conspicu-
ous feature of FLP—and the associated solution techniques of nar-
rowing and residuation, but logic variables can be emulated using
non-deterministic generators (Antoy and Hanus 2006) or managed
using an underlying monad of equality and other constraints.

We present our concrete code in Haskell, but we have also im-
plemented our approach in OCaml. Our monadic computations per-
form competitively against corresponding computations in Curry
that use non-determinism, narrowing, and unification.

1.2 Structure of the paper
In §2 we describe non-strictness, sharing, and non-determinism and
why they are useful together. We also show that their naive combi-
nation is problematic, to motivate the explicit sharing of non-deter-
ministic computations. In §3 we clarify the intuitions of sharing and
introduce equational laws to reason about lazy non-determinism.
Section 4 develops an easy-to-understand implementation in sev-
eral steps. Section 5 generalizes and speeds up the simple imple-
mentation. We review the related work in §6 and then conclude.

2. Non-strictness, sharing, and non-determinism
In this section, we describe non-strictness, sharing, and non-deter-
minism and explain why combining them is useful and non-trivial.

2.1 Lazy evaluation
Lazy evaluation is illustrated by the following Haskell predicate,
which checks whether a given list of numbers is sorted:

isSorted :: [Int] -> Bool
isSorted (x:y:zs) = (x <= y) && isSorted (y:zs)
isSorted _ = True

In a non-strict language such as Haskell, the arguments to a func-
tion are only evaluated as much as demanded by the definition of
the function. The predicate isSorted only demands the complete
input list if it is sorted. If the list is not sorted, then it is only de-
manded up to the first two elements that are out of order.

As a consequence, we can apply isSorted to infinite lists and it
will yield False if the given list is unsorted. Consider the following
function that produces an infinite list:

iterate :: (a -> a) -> a -> [a]
iterate next x = x : iterate next (next x)

The test isSorted (iterate (‘div‘2) n) yields the result
False if n>0. It does not terminate if n<=0 because an infinite
list cannot be identified as being sorted without considering each
of its elements. In this sense, isSorted is not total (Escardó 2007).

A lazy evaluation strategy is not only non-strict. Additionally,
it evaluates each expression bound to a variable at most once—
even if the variable occurs more than once. For example, the
variable x occurs twice in the right-hand side of the definition
of iterate. Although iterate never evaluates its argument x,

the duplication of a computation bound to x does not cause it to
be evaluated twice. In a lazy language, the value of the expression
factorial 100 would only be computed once when evaluating
iterate (‘div‘2) (factorial 100). This property—called
sharing—makes lazy evaluation strictly more efficient than eager
evaluation, at least on some problems (Bird et al. 1997).

2.2 Non-determinism
Programming non-deterministically can simplify the declarative
formulation of an algorithm. For example, many languages are eas-
ier to describe using non-deterministic rather than deterministic au-
tomata. As logic programming languages such as Prolog and Curry
have shown, the expressive power of non-determinism simplifies
programs because different non-deterministic results can be viewed
individually rather than as members of a (multi-)set of possible re-
sults (Antoy and Hanus 2002).

In Haskell, we can express non-deterministic computations us-
ing lists (Wadler 1985) or, more generally, monads that are in-
stances of the type class MonadPlus. A monad m is a type con-
structor that provides two polymorphic operations:

return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b

The operation return builds a deterministic computation that
yields a value of type a, and the operation >>= (“bind”) chains
computations together. Haskell’s do-notation is syntactic sugar for
long chains of >>=. For example, the expression

do x <- e1
e2

desugars into e1 >>= \x -> e2. If a monad m is an instance of
MonadPlus, then two additional operations are available:

mzero :: m a
mplus :: m a -> m a -> m a

Here, mzero is the primitive failing computation, and mplus
chooses non-deterministically between two computations. For the
list monad, return builds a singleton list, mzero is an empty list,
and mplus is list concatenation.

As an example, the following monadic operation computes all
permutations of a given list non-deterministically:

perm :: MonadPlus m => [a] -> m [a]
perm [] = return []
perm (x:xs) = do ys <- perm xs

zs <- insert x ys
return zs

insert :: MonadPlus m => a -> [a] -> m [a]
insert x xs = return (x:xs)

‘mplus‘ case xs of
[] -> mzero
(y:ys) -> do zs <- insert x ys

return (y:zs)

The operation perm permutes a list by recursively inserting ele-
ments at arbitrary positions. To insert an element x at an arbitrary
position in xs, the operation insert either puts x in front of xs or
recursively inserts x somewhere in the tail of xs if xs is not empty.

Non-determinism is especially useful when formulating search
algorithms. Following the generate-and-test pattern, we can find
solutions to a search problem by non-deterministically describing
candidate solutions and using a separate predicate to filter results.
It is much easier for a programmer to express generation and
testing separately than to write an efficient search procedure by
hand, because the generator can follow the structure of the data



(to achieve completeness easily) and the test can operate on fully
determined candidate solutions (to achieve soundness easily).

We demonstrate this technique with a toy example, permutation
sort, which motivates our combination of non-strictness, sharing,
and non-determinism. Below is a simple declarative specification
of sorting. In words, to sort a list is to compute a permutation of the
list that is sorted. The convenience function guard is semi-deter-
ministic: it yields () if its argument is True and fails otherwise.

sort :: MonadPlus m => [Int] -> m [Int]
sort xs = do ys <- perm xs

guard (isSorted ys)
return ys

Unfortunately, this program is grossly inefficient, because it iterates
through every permutation of the list. It takes about a second to sort
10 elements, more than 10 seconds to sort 11 elements, and more
than 3 minutes to sort 12 elements. The inefficiency is mostly be-
cause we do not use the non-strictness of the predicate isSorted.
Although isSorted rejects a permutation as soon as it sees two el-
ements out of order, sort generates a complete permutation before
passing it to isSorted. Even if the first two elements of a permu-
tation are already out of order, exponentially many permutations of
the remaining elements are computed.

In short, the usual, naive monadic encoding of non-determinism
in Haskell loses non-strictness.

2.3 Retaining non-strictness by sacrificing sharing
The problem with the naive monadic encoding of non-determinism
is that the arguments to a constructor must be deterministic. If these
arguments are themselves results of non-deterministic computa-
tions, these computations must be performed completely before we
can apply the constructor to build a non-deterministic result.

To overcome this limitation, we can redefine all data structures
such that their components may be non-deterministic. A data type
for lists with non-deterministic components is as follows:

data List m a = Nil | Cons (m a) (m (List m a))

We define operations to construct such lists conveniently:

nil :: Monad m => m (List m a)
nil = return Nil

cons :: Monad m => m a -> m (List m a) -> m (List m a)
cons x y = return (Cons x y)

We redefine the non-strict isSorted to test non-deterministic lists:

isSorted :: MonadPlus m => m (List m a) -> m Bool
isSorted ml = ml >>= \l ->

case l of
Cons mx mxs -> mxs >>= \xs ->
case xs of
Cons my mys -> mx >>= \x -> my >>= \y ->
if x <= y then isSorted (cons (return y) mys)

else return False
_ -> return True

_ -> return True

By generating lists with non-deterministic arguments, we can de-
fine a lazier version of the permutation algorithm.

perm :: MonadPlus m => m (List m a) -> m (List m a)
perm ml = ml >>= \l ->

case l of Nil -> nil
Cons mx mxs -> insert mx (perm mxs)

Note that we no longer evaluate (bind) the recursive call of perm in
order to pass the result to the operation insert, because insert
now takes a non-deterministic list as its second argument.

insert :: MonadPlus m
=> m a -> m (List m a) -> m (List m a)

insert mx mxs = cons mx mxs
‘mplus‘ do Cons my mys <- mxs

cons my (insert mx mys)

The operation insert either creates a new list with the non-
deterministic mx in front of the non-deterministic mxs or it inserts
mx somewhere in the tail of mxs. Here, the pattern match in the
do-expression binding is non-exhaustive. If the computation mxs
returns Nil, the pattern-match failure is a failing computation.

Now, we can define a permutation-sort algorithm that lazily
checks whether generated permutations are sorted:

sort :: MonadPlus m
=> m (List m Int) -> m (List m Int)

sort xs = let ys = perm xs in
do True <- isSorted ys

ys

Unfortunately, this version of the algorithm does not sort. It yields
every permutation of its input, not only the sorted permutations.
This is because the shared variable ys in the new definition of sort
is bound to the non-deterministic computation yielding a permuta-
tion of the input rather than to the result of this computation. Con-
sequently, isSorted checks whether there is a sorted permutation
and, if so, sort yields an arbitrary permutation.

In short, the presence of non-deterministic components in data
structures conflicts with the intuition that shared variables such as
ys denote values, fully determined if not yet fully computed. In
order for sort to work, the shared non-deterministic computation
ys, used twice in sort, must yield the same result each time.

2.4 Explicit sharing
Our new approach to non-determinism is lazy in that it preserves
both non-strictness and sharing. We provide a combinator share
for explicit sharing, which can be used to introduce variables for
non-deterministic computations that represent values rather than
computations. The combinator share has the signature1

share :: m a -> m (m a)

where m is an instance of MonadPlus that supports explicit sharing.
(We describe the implementation of explicit sharing in §§4–5.) The
function sort can then be redefined to actually sort:

sort xs = do ys <- share (perm xs)
True <- isSorted ys
ys

In this version of sort, the variable ys denotes the same permuta-
tion wherever it occurs but is nevertheless only computed as much
as demanded by the predicate isSorted.

3. Programming with lazy non-determinism
In this section we formalize the share combinator and specify
equational laws with which a programmer can reason about non-
deterministic programs with share and predict their observations.
Before the laws, we first present a series of small examples to
clarify how to use share and what share does.

3.1 The intuition of sharing
We define two simple programs. The computation coin flips a coin
and non-deterministically returns either 0 or 1.

coin :: MonadPlus m => m Int
coin = return 0 ‘mplus‘ return 1

1 In fact, the signature has additional class constraints; see §5.



The function duplicate evaluates a given computation a twice.

duplicate :: Monad m => m a -> m (a, a)
duplicate a = do u <- a

v <- a
return (u,v)

3.1.1 Sharing enforces call-time choice
We contrast three ways to bind x:

dup_coin_let = let x = coin in duplicate x
dup_coin_bind = do x <- coin

duplicate (return x)
dup_coin_share = do x <- share coin

duplicate x

The programs dup_coin_let and dup_coin_bind do not use
share, so we can understand their results by treating m as any
non-determinism monad, such as the set monad. The program
dup_coin_let binds the variable x to the non-deterministic
computation coin. The function duplicate executes x twice—
performing two independent coin flips—so dup_coin_let yields
four answers, namely (0,0), (0,1), (1,0), and (1,1). In con-
trast, dup_coin_bind binds x, of type Int, to share not the coin
computation but its result. The function duplicate receives a de-
terministic computation return x, whose two evaluations yield
the same result, so dup_coin_bind yields only (0,0) and (1,1).

The shared computation x in dup_coin_share behaves like
return x in dup_coin_bind: both arguments to duplicate
are deterministic computations, which yield the same results even
when evaluated multiple times. As in §§2.3–2.4, we wish to share
the results of computations, and we wish variables to denote values.
In dup_coin_bind, x has the type Int and indeed represents an in-
teger. In dup_coin_share, x has the type m Int, yet it represents
one integer rather than a set of integers. Thus dup_coin_share
yields the same two results as dup_coin_bind.

3.1.2 Sharing preserves non-strictness
Shared computations, like the lazy evaluation of pure Haskell ex-
pressions, take place only when their results are needed. In particu-
lar, if the program can finish without a result from a shared compu-
tation, then that computation never happens. The sorting example
in §2 shows how non-strictness can improve performance dramati-
cally. Here, we illustrate non-strictness with two shorter examples:

strict_bind = do x <- undefined :: m Int
duplicate (const (return 2)

(return x))

lazy_share = do x <- share (undefined :: m Int)
duplicate (const (return 2) x)

The evaluation of strict_bind diverges, whereas lazy_share
yields (2,2). Of course, real programs do not contain undefined
or other intentionally divergent computations. We use undefined
above to stand for an expensive search whose results are unused.

Alternatively, undefined above may stand for an expensive
search that in the end fails to find any solution. If the rest of the
program does not need any result from the search, then the shared
search is not executed at all. Thus, if we replace undefined with
mzero in the examples above, strict_bind would fail, whereas
lazy_share would yield (2,2) as before.

3.1.3 Sharing recurs on non-deterministic components
We turn to data types that contain non-deterministic computations,
such as List m a introduced in §2.3. We define two functions for
illustration: the function first takes the first element of a List;
the function dupl builds a List with the same two elements.

first :: MonadPlus m => m (List m a) -> m a
first l = l >>= \(Cons x xs) -> x

dupl :: Monad m => m a -> m (List m a)
dupl x = cons x (cons x nil)

The function dupl is subtly different from duplicate: whereas
duplicate runs a computation twice and returns a data structure
with the results, dupl returns a data structure containing the same
computation twice without running it.

The following two examples illustrate the benefit of data struc-
tures with non-deterministic components.

heads_bind = do x <- cons coin undefined
dupl (first (return x))

heads_share = do x <- share (cons coin undefined)
dupl (first x)

Despite the presence of undefined, the evaluation of both exam-
ples terminates and yields defined results. Since only the head of
the list x is needed, the undefined tail of the list is not evaluated.

The expression cons coin undefined above denotes a de-
terministic computation that returns a data structure contain-
ing a non-deterministic computation coin. The monadic bind in
heads_bind shares this data structure, coin and all, but not the
result of coin. The monad laws entail that heads_bind yields
cons coin (cons coin nil). When we later execute the la-
tent computations (to print the result, for example), the two copies
of coin will run independently and yield four outcomes [0,0],
[0,1], [1,0], [1,1], so heads_bind is like dup_coin_let
above. Informally, monadic bind performs only shallow sharing,
which is not enough for data with non-deterministic components.

Our share combinator performs deep sharing: all components
of a shared data structure are shared as well.2 For example, the
variable x in heads_share stands for a fully determined list with
no latent non-determinism. Thus, heads_share yields only two
outcomes, [0,0] and [1,1].

3.1.4 Sharing applies to unbounded data structures
Our final example involves a list of non-deterministic, unbounded
length, whose elements are each also non-deterministic. The set of
possible lists is infinite, yet non-strictness lets us compute with it.

coins :: MonadPlus m => m (List m Int)
coins = nil ‘mplus‘ cons coin coins

dup_first_coin = do cs <- share coins
dupl (first cs)

The non-deterministic computation coins yields every finite list
of zeroes and ones. Unlike the examples above using undefined,
each possible list is fully defined and finite, but there are an infinite
number of possible lists, and generating each list requires an un-
bounded number of choices. Even though, as discussed above, the
shared variable cs represents the fully determined result of such an
unbounded number of choices, computing dup_first_coin only
makes the few choices demanded by dupl (first cs). In partic-
ular, first cs represents the first element and is demanded twice,
each time giving the same result, but no other element is demanded.
Thus, dup_first_coin produces two results, [0,0] and [1,1].

3.2 The laws of sharing
We now formalize the intuitions illustrated above in a set of equa-
tional laws that hold up to observation as detailed in §3.3. We show

2 Applying share to a function does not cause any non-determinism in
its body to be shared. This behavior matches the intuition that invoking
a function creates a copy of its body by substitution.



here how to use the laws to reason about—in particular, predict
the results of—non-deterministic computations with share, such
as the examples above. In §4, we further use the laws to guide an
implementation.

The laws of our monad are shown in Figure 1. We write ret for
return, /0 for mzero, � for ‘mplus‘, and ? for undefined.

First of all, our monad satisfies the monad laws, (Lret), (Rret)
and (Bassc). Our monad is also a MonadPlus instance, but the laws
for MonadPlus are not agreed upon (MonadPlus 2008); we include
two commonly accepted laws, (Ldistr) and (Lzero). We do not
however require that� be associative or that /0 be a left or right unit
of�, so that our monad can be a weighted non-determinism monad,
for which � means averaging weights. Weighted non-determinism
is useful for probabilistic inference.

Using the laws in Figure 1, we can reduce a computation expres-
sion in our monad to an expression like ( /0� · · ·)� (ret v1� · · ·), a
(potentially infinite) tree whose branches are � and whose leaves
are ?, /0, or ret v. To observe the computation, we apply a func-
tion run to convert it to another MonadPlus instance such as the
set monad. Figure 2 gives the laws of run. The right-hand sides use
primes (ret0,�=0, /00,�0) to refer to operations of the target monad.

Using the (Lret) and (Ldistr) laws, we can compute the result of
the example dup_coin_bind above, which does not use share.

(ret0� ret1)�= lx. ret x�= lu. ret x�= lv. ret (u,v)
= (ret0� ret1)�= lx. ret (x,x)
= (ret0�= lx. ret (x,x))� (ret1�= lx. ret (x,x))
= ret (0,0)� ret (1,1)

To show how the laws enforce call-time choice, we derive the same
result for dup_coin_share, which is

share (ret0� ret1)�= lx.x�= lu.x�= lv. ret (u,v).

We first use the (Choice) law to reduce share (ret 0 � ret 1)
to share (ret 0) � share (ret 1). To proceed further, we reduce
share (ret 0) to ret (ret 0) (and share (ret 1) to ret (ret 1)) using
the (HNF) law (HNF is short for “head normal form”). In the law,
c stands for a constructor with n non-deterministic components.
Since 0 has no non-deterministic components, n = 0 and we have

ret (ret0)�= lx.x�= lu.x�= lv. ret (u,v)
= ret0�= lu. ret0�= lv. ret (u,v) = ret (0,0)

The overall result is thus the same as that for dup_coin_bind.
The preservation of non-strictness is illustrated by lazy_share.

After reducing const (ret2) x there to ret2, we obtain

share?�= lx.duplicate (ret2).

Because x is unused, the result can be computed without evaluating
the shared expression. And it is, as assured by the (Bot) law, which
reduces share? to ret? (not to?). The (Lret) law then reduces the
expression to duplicate (ret2), and the final result is ret (2,2). The
next section discusses (Bot) further. The (Fail) law works similarly.

We turn to data structures with non-deterministic components.
Using the monad laws, the heads_bind example easily reduces to
ret (Cons coin (ret (Cons coin (ret Nil)))), in which the construc-
tor Cons takes two non-deterministic computations as arguments.
Whereas applying run to observe results without non-deterministic
components is a trivial matter of replacing /0 by /00, � by �0, and
ret by ret

0 (so trivial as to be glossed over above), observing the
result of heads_bind requires using the (rRet) law in Figure 2 in a
non-trivial way, with c being Cons and n being 2. The result is

runcoin�=0 ly1.
run (ret (Conscoin (retNil)))�=0 ly2.
ret

0 (Cons (ret0 y1) (ret0 y2)),

ret x�= k = kx (Lret)
a�= ret = a (Rret)

(a�= k1)�= k2 = a�= lx.k1x�= k2 (Bassc)
/0�= k = /0 (Lzero)

(a�b)�= k = (a�= k)� (b�= k) (Ldistr)
share (a�b) = sharea� shareb (Choice)

share /0 = ret /0 (Fail)
share?= ret? (Bot)

share (ret (c x1 . . .xn)) = share x1 �= ly1. . . . (HNF)
share xn �= lyn. ret (ret (c y1 . . .yn))

where c is a constructor with n non-deterministic components

Figure 1. The laws of a monad with non-determinism and sharing

run /0 = /00 (rZero)

run (a�b) = (runa)�0 (runb) (rPlus)

run (ret (c x1 . . .xn)) = run x1 �=0 ly1. . . . (rRet)
run xn �=0 lyn. ret

0 (c (ret0 y1) . . .(ret0 yn))

Figure 2. The laws of observing a monad with non-determinism
and sharing in another monad with non-determinism

which eventually yields four solutions due to two independent ob-
servations of coin. In general, (rRet) ensures that the final observa-
tion yields only fully determined values.

To predict the result of heads_share, we need to apply the
(HNF) law in a non-trivial way, with c being Cons and n being 2:

share (ret (Conscoin?))
= share coin�= ly1.share?�= ly2. ret (ret (Cons y1 y2))
= share coin�= ly1. ret (ret (Cons y1?))
= share (ret0� ret1)�= ly1. ret (ret (Cons y1?))
= (share (ret0)� share (ret1))�= ly1. ret (ret (Cons y1?))
= (share (ret0)�= ly1. ret (ret (Cons y1?)))
� (share (ret1)�= ly1. ret (ret (Cons y1?)))
= ret (ret (Cons (ret0)?))� ret (ret (Cons (ret1)?))

This derivation shows that applying share to ret (Cons coin?) ex-
poses and lifts the latent choice coin in the list to the top level.
Therefore, sharing a list that contains a choice is equivalent to shar-
ing a choice of a list, so heads_share yields only two outcomes.

The (Bot) law and our discussion of lazy_share above suggest
a more general law

sharea�= l .b = b, (Ignore)

which says that any unused shared computation, not just ?, can
simply be skipped. This law implies that� is idempotent: b�b = b.
The proof of the implication is that

b�b = (share (ret0)�= l .b)� (share (ret1)�= l .b)
= share coin�= l .b = b.

Idempotence is justified if we observe a non-deterministic com-
putation as a set of outcomes, that is, if we care only whether a
particular result is produced, not how many times or in what order.
This perspective on non-deterministic programming is popular; for
instance, it is customary in FLP (López-Fraguas et al. 2007, 2008).



The (Ignore) law enables a simpler analysis of our last example
program dup_first_coin, which creates an infinite number of
choices but demands only a few of them. Without (Ignore), we can
only reduce the program using (Choice) and (HNF) to /0� (a�b),
where a = d0� (a�a), b = d1� (b�b), and

di = ret (Cons (ret i) (ret (Cons (ret i) (retNil)))).

Using (Ignore), we can arrive at a simpler result with no duplicate
solutions, namely /0� (d0�d1).

3.3 Intuitions behind our laws
Call-time choice makes shared non-determinism feel like famil-
iar call-by-value evaluation in monadic style, except /0 and ? are
treated like values. Indeed, the laws (Fail) and (Bot) would be sub-
sumed by (HNF) if ? and /0 were ret c for some c. The intuition
of treating divergence like a value to express laziness guides stan-
dard formalizations of FLP (González-Moreno et al. 1999; López-
Fraguas et al. 2007, 2008) that inspired our laws.

Still, for an equational law, (Bot) is unusual in two ways. First,
(Bot) is not constructive: its left-hand side matches a computation
that diverges, which is in general not decidable. Therefore, it does
not correspond to a clause in the implementation of share, as we
detail in §§4–5 below. Second, the function share is computable
and thus monotonic in the domain-theoretic sense, so (Bot) entails
that share a � share? = ret? for all a. In particular, we have by
(Choice) that sharea� shareb = share (a�b)� ret?. How can a
non-deterministic value sharea� shareb possibly be as defined as
the deterministic value ret??

The key is that our laws hold only up to observation. That is,
they only say that replacing certain expressions by others does
not affect the (non)termination of well-typed programs3 when the
monad type constructors are held abstract (Hinze 2000; Lin 2006).
Observing a computation in our monad requires applying run then
observing the result in the target monad. Each of the two steps may
identify many computations. For example, the order of choices may
be unobservable because the target monad is the set monad.4 Also,
we may be unable to disprove that sharea� shareb is as defined as
ret? because run (ret?) diverges.

A positive example of our laws holding up to observation lies
in Constructor-Based Rewriting Logic (CRWL) (González-Moreno
et al. 1999), a standard formalization of FLP. To every term e
(which we assume is closed in this informal explanation), CRWL
assigns a denotation JeK, the set of partial values that e can reduce
to. A partial value is built up using constructors such as Cons and
Nil, but any part can be replaced by ? to form a lesser value. A
denotation is a downward-closed set of partial values.

López-Fraguas et al.’s Theorem 1 (2008) is a fundamental prop-
erty of call-time choice. It states that, for every context C and
term e, the denotation JC[e]K equals the denotation

S
t2JeKJC[t]K,

i.e., the union of denotations of C[t] where t is drawn from the deno-
tation of e. Even if e is non-deterministic, the denotation of a large
term that contains e can be obtained by considering each partial
value e can reduce to. Especially, if e is an argument to a function
that duplicates its argument, this argument denotes the same value
wherever it occurs. The monadic operation� for non-deterministic
choice resembles the CRWL operation ? defined as follows:

x ? y -> x x ? y -> y

Using the theorem above, we conclude that JC[a?b]K = JC[a]?C[b]K,
which inspired our (Choice) law.

3 without selective strictness via seq
4 The set monad can be implemented in Haskell just like the list monad, with
the usual Monad and MonadPlus instances that do not depend on Eq or Ord,
as long as computations can only be observed using the null predicate.

4. Implementing lazy non-determinism
We start to implement share in this section. We begin with a
very specific version and generalize it step by step. Revisiting the
equational laws for share, we show how memoization can be used
to achieve the desired properties. First, we consider values without
non-deterministic components, namely values of type Int. We then
extend the approach to non-deterministic components, namely lists
of numbers. An implementation for arbitrary user-defined non-
deterministic types in terms of a transformer for arbitrary instances
of MonadPlus is given in §5.

4.1 The tension between late demand and early choice
Lazy evaluation means to evaluate expressions at most once and
not until they are demanded. The law (Ignore) from the previous
section, or more specifically, the laws (Fail) and (Bot) from Figure 1
formalize late demand. In order to satisfy these laws, we could be
tempted to implement share as follows:

share :: Monad m => m a -> m (m a)
share a = return a

and so share undefined is trivially return undefined, just as
the law (Bot) requires; (Fail) is similarly satisfied. But (Choice)
fails, because ret (a�b) is not equal to ret a� ret b. For example,
if we take dup_coin_share from §3.1.1 and replace share with
return, we obtain dup_coin_let—which, as explained there,
shares only a non-deterministic computation, not its result as de-
sired. Instead of re-making the choices in a shared monadic value
each time it is demanded, we must make the choices only once and
reuse them for duplicated occurrences.

We could be tempted to try a different implementation of share
that ensures that choices are performed immediately:

share :: Monad m => m a -> m (m a)
share a = a >>= \x -> return (return x)

This implementation satisfies the (Choice) law, but it does not sat-
isfy the (Fail) and (Bot) laws. The (Lzero) law of MonadPlus
shows that this implementation renders share mzero equal to
mzero, which is observationally different from the return mzero
required by (Fail). This attempt ensures early choice using early de-
mand, so we get eager sharing, rather than lazy sharing as desired.

4.2 Memoization
We can combine late demand and early choice using memoization.
The idea is to delay the choice until it is demanded, and to remem-
ber the choice when it is made for the first time so as to not make it
again if it is demanded again.

To demonstrate the idea, we define a very specific version of
share that fixes the monad and the type of shared values. We use
a state monad to remember shared monadic values. A state monad
is an instance of the following type class, which defines operations
to query and update a threaded state component.

class MonadState s m where
get :: m s
put :: s -> m ()

In our case, the threaded state is a list of thunks that can be either
unevaluated or evaluated.

data Thunk a = Uneval (Memo a) | Eval a

Here, Memo is the name of our monad. It threads a list of Thunks
through non-deterministic computations represented as lists.

newtype Memo a = Memo {
unMemo :: [Thunk Int] -> [(a, [Thunk Int])] }



The instance declarations for the type classes Monad, MonadState,
and MonadPlus are as follows:

instance Monad Memo where
return x = Memo (\ts -> [(x,ts)])
m >>= f =
Memo (concatMap (\(x,ts) -> unMemo (f x) ts)

. unMemo m)

instance MonadState [Thunk Int] Memo where
get = Memo (\ts -> [(ts,ts)])
put ts = Memo (\_ -> [((),ts)])

instance MonadPlus Memo where
mzero = Memo (const [])
a ‘mplus‘ b =
Memo (\ts -> unMemo a ts ++ unMemo b ts)

It is crucial that the thunks are passed to both alternatives separately
in the implementation of mplus. The list of thunks thus constitutes
a first-class store (Morrisett 1993)—using mutable global state to
store the thunks would not suffice because thunks are created and
evaluated differently in different non-deterministic branches.

We can implement a very specific version of share that works
for integers in the Memo monad.

share :: Memo Int -> Memo (Memo Int)
share a = memo a

memo a =
do thunks <- get

let index = length thunks
put (thunks ++ [Uneval a])
return
(do thunks <- get

case thunks!!index of
Eval x -> return x
Uneval a ->
do x <- a

thunks <- get
let (xs,_:ys) = splitAt index thunks
put (xs ++ [Eval x] ++ ys)
return x)

This implementation of share adds an unevaluated thunk to the
current store and returns a monadic action that, when executed,
queries the store and either returns the already evaluated result
or evaluates the unevaluated thunk before updating the threaded
state. The argument a given to share is not demanded until the
inner action is performed. Hence, this implementation of share
satisfies the (Fail) and (Bot) laws. Furthermore, the argument is
only evaluated once, followed by an update of the state to remember
the computed value. Hence, this implementation of share satisfies
the (Choice) law (up to observation, as defined in §4.4). If the inner
action is duplicated and evaluated more than once, then subsequent
calls will yield the same result as the first call due to memoization.

4.3 Non-deterministic components
The version of share just developed memoizes only integers. How-
ever, we want to memoize data with non-deterministic components,
such as permuted lists that are computed on demand. So instead of
thunks that evaluate to numbers, we redefine the Memo monad to
store thunks that evaluate to lists of numbers now.

newtype Memo a = Memo {
unMemo :: [Thunk (List Memo Int)]

-> [(a, [Thunk (List Memo Int)])] }

The instance declarations for Monad and MonadPlus stay the same.
In the MonadState instance only the state type needs to be adapted.

We also reuse the memo function, which has now a different type.
We could try to define share simply as a renaming for memo again:

share :: Memo (List Memo Int)
-> Memo (Memo (List Memo Int))

share a = memo a

However, with this definition lists are not shared deeply. This be-
havior corresponds to the expression heads_bind where the head
and the tail of the demanded list are still executed whenever they are
demanded and may hence yield different results when duplicated.
This implementation does not satisfy the (HNF) law.

We can remedy this situation by recursively memoizing the head
and the tail of a shared list:

share :: Memo (List Memo Int)
-> Memo (Memo (List Memo Int))

share a = memo (do l <- a
case l of

Nil -> nil
Cons x xs -> do y <- share x

ys <- share xs
cons y ys)

This implementation of share memoizes data containing non-
deterministic components as deeply as demanded by the compu-
tation. Each component is evaluated at most once and memoized
individually in the list of stored thunks.5

4.4 Observing non-deterministic results
In order to observe the results of a computation that contains non-
deterministic components, we need a function (such as run in Fig-
ure 2) that evaluates all the components and combines the resulting
alternatives to compute a non-deterministic choice of deterministic
results. For example, we can define a function eval that computes
all results from a non-deterministic list of numbers.

eval :: List Memo Int -> Memo (List Memo Int)
eval Nil = return Nil
eval (Cons x xs) =
do y <- x >>= eval

ys <- xs >>= eval
return (Cons (return y) (return ys))

The lists returned by eval are fully determined. Using eval, we
can define an operation run that computes the results of a non-
deterministic computation:

run :: Memo (List Memo Int) -> [List Memo Int]
run m = map fst (unMemo (m >>= eval) [])

In order to guarantee that the observed results correspond to pre-
dicted results according to the laws in §3.2, we place two require-
ments on the monad used to observe the computation ([] above).
(In contrast, the laws in §3.2 constrain the monad used to express
the computation (Memo above).)

Idempotence of mplus The (Choice) law predicts that the com-
putation run (share coin �= l . ret Nil) gives ret

0
Nil�0 ret0 Nil.

However, our implementation gives a single solution ret

0
Nil (fol-

lowing the (Ignore) law, as it turns out). Hence, we require�0 to be
idempotent; that is, m�0m = m.

This requirement is satisfied if we abstract from the multiplic-
ity of results (considering [] as the set monad rather than the list

5 This implementation of share does not actually type-check because
share x in the body needs to invoke the previous version of share, for
the type Int, rather than this version, for the type List Memo Int. The
two versions can be made to coexist, each maintaining its own state, but we
develop a polymorphic share combinator in §5 below, so the issue is moot.



monad), as is common practice in FLP, or if we treat �0 as averag-
ing the weights of results, as is useful for probabilistic inference.

Distributivity of bind over mplus According to the (Choice) law,
the result of the computation

run (share coin�= lc.coin�= ly.c �= lx.
ret (Cons (ret x) (ret (Cons (ret y) (retNil)))))

is the following non-deterministic choice of lists (we write hx,yi to
denote ret

0 (Cons (ret0 x) (ret0 (Cons (ret0 y) (ret0Nil))))).

(h0,0i�0 h0,1i)�0 (h1,0i�0 h1,1i)
However, our implementation yields

(h0,0i�0 h1,0i)�0 (h0,1i�0 h1,1i).
In order to equate these two trees, we require the following dis-
tributive law between �=0 and �0.

a �=0 lx.( f x�0 g x) = (a �=0 f )�0 (a �=0 g)

If the observation monad satisfies this law, then the two expressions
above are equal (we write coin

0 to denote ret

0 0�0
ret

0 1):

(h0,0i�0 h0,1i)�0 (h1,0i�0 h1,1i)
= (coin

0 �=0 ly.h0,yi)�0 (coin

0 �=0 ly.h1,yi)
= coin

0 �=0 ly.(h0,yi�0 h1,yi)
= (h0,0i�0 h1,0i)�0 (h0,1i�0 h1,1i).

Hence, the intuition behind distributivity is that the observation
monad does not care about the order in which choices are made.
This intuition captures the essence of implementing call-time
choice: we can perform choices on demand and the results are
as if we performed them eagerly.

In general, it is fine to use our approach with an observation
monad that does not match our requirements, as long as we are
willing to abstract from the mismatch. For example, the list monad
satisfies neither idempotence nor distributivity, yet our equational
laws are useful in combination with the list monad if we abstract
from the order and multiplicities of results. We also do not require
that �0 be associative or that /00 be a left or right unit of �0.

5. Generalized, efficient implementation
In this section, we generalize the implementation ideas described
in the previous section such that

1. arbitrary user-defined types with non-deterministic components
can be passed as arguments to the combinator share, and

2. arbitrary instances of MonadPlus can be used as the underlying
search strategy.

We achieve the first goal by introducing a type class with the inter-
face to process non-deterministic data. We achieve the second goal
by defining a monad transformer Lazy that adds sharing to any
instance of MonadPlus. After describing a straightforward imple-
mentation of this monad transformer, we show how to implement
it differently in order to improve performance significantly.

Both of these generalizations are motivated by practical appli-
cations in non-deterministic programming.

1. The ability to work with user-defined types makes it easier
to compose deterministic and non-deterministic code and to
draw on the sophisticated type and module systems of existing
functional languages.

2. The ability to plug in different underlying monads makes it
possible to express techniques such as breadth-first search
(Spivey 2000), heuristics, constraint solving (Nordin and Tol-
mach 2001), and weighted results.

For example, we have applied our approach to express and sample
from probability distributions as OCaml programs in direct style
(Filinski 1999). With less development effort than state-of-the-
art systems, we achieved comparable concision and performance
(Kiselyov and Shan 2009).

The implementation of our monad transformer is available as a
Hackage package at: http://hackage.haskell.org/cgi-bin/
hackage-scripts/package/explicit-sharing-0.1

5.1 Non-deterministic data
We have seen in the previous section that in order to share nested,
non-deterministic data deeply, we need to traverse it and apply
the combinator share recursively to every non-deterministic com-
ponent. We have implemented deep sharing for the type of non-
deterministic lists, but want to generalize this implementation to
support arbitrary user-defined types with non-deterministic compo-
nents. It turns out that the following interface to non-deterministic
data is sufficient:

class MonadPlus m => Nondet m a where
mapNondet

:: (forall b . Nondet m b => m b -> m (m b))
-> a -> m a

A non-deterministic type a with non-deterministic components
wrapped in the monad m can be made an instance of Nondet m by
implementing the function mapNondet, which applies a monadic
transformation to each non-deterministic component. The type of
mapNondet is a rank-2 type: the first argument is a polymorphic
function that can be applied to non-deterministic data of any type.

We can make the type List m Int, of non-deterministic num-
ber lists, an instance of Nondet as follows.

instance MonadPlus m => Nondet m Int where
mapNondet _ c = return c

instance Nondet m a => Nondet m (List m a) where
mapNondet _ Nil = return Nil
mapNondet f (Cons x xs) = do y <- f x

ys <- f xs
return (Cons y ys)

The implementation mechanically applies the given transformation
to the non-deterministic arguments of each constructor. In fact
the implementation is so regular that we believe it can be easily
automated using generic programming (Lämmel and Peyton Jones
2003) or Template Haskell. We plan to investigate this possibility.

An example for the use of mapNondet is the following oper-
ation, which computes the fully determined values from a non-
deterministic value.

eval :: Nondet m a => a -> m a
eval = mapNondet (\a -> a>>=eval>>=return.return)

This operation generalizes the specific version for lists given
in §4.4. In order to determine a value, we determine values for
the arguments and combine the results. The bind operation of the
monad nicely takes care of the combination.

Our original motivation for abstracting over the interface of
non-deterministic data was to define the operation share with a
more general type. In order to generalize the type of share to allow
not only different types of shared values but also different monad
type constructors, we define another type class.

class MonadPlus m => Sharing m where
share :: Nondet m a => m a -> m (m a)

Non-determinism monads that support the operation share are
instances of this class. We next define an instance of Sharing with
the implementation of share for arbitrary non-deterministic types.



5.2 State monad transformer
The implementation of memoization in §4 uses a state monad to
thread a list of thunks through non-deterministic computations. The
straightforward generalization is to use a state monad transformer
to thread thunks through computations in arbitrary monads. A state
monad transformer adds the operations defined by the type class
MonadState to an arbitrary base monad.

The type for Thunks generalizes easily to an arbitrary monad:

data Thunk m a = Uneval (m a) | Eval a

Instead of using a list of thunks, we use a ThunkStore with the
following interface. Note that the operations lookupThunk and
insertThunk deal with thunks of arbitrary type.

emptyThunks :: ThunkStore
getFreshKey :: MonadState ThunkStore m => m Int
lookupThunk :: MonadState ThunkStore m

=> Int -> m (Thunk m a)
insertThunk :: MonadState ThunkStore m

=> Int -> Thunk m a -> m ()

There are different options to implement this interface. We have
implemented thunk stores using the generic programming features
provided by the Data.Typeable and Data.Dynamic modules but
omit corresponding class contexts for the sake of clarity.

Lazy monadic computations can now be performed in a monad
that threads a ThunkStore. We obtain such a monad by apply-
ing the StateT monad transformer to an arbitrary instance of
MonadPlus.

type Lazy m = StateT ThunkStore m

For any instance m of MonadPlus, the type constructor Lazy m is
an instance of Monad, MonadPlus, and MonadState ThunkStore.
We only need to define the instance of Sharing ourselves, which
implements the operation share.

instance MonadPlus m => Sharing (Lazy m) where
share a = memo (a >>= mapNondet share)

The implementation of share uses the operation memo to memoize
the argument and the operation mapNondet to apply share recur-
sively to the non-deterministic components of the given value. The
function memo resembles the specific version given in §4.2 but has
a more general type.

memo :: MonadState ThunkStore m => m a -> m (m a)
memo a =
do key <- getFreshKey

insertThunk key (Uneval a)
return (do thunk <- lookupThunk key

case thunk of
Eval x -> return x
Uneval b ->
do x <- b

insertThunk key (Eval x)
return x)

The only difference in this implementation of memo from before is
that it uses more efficient thunk stores instead of lists of thunks.

In order to observe a lazy non-deterministic computation, we
use the functions eval to compute fully determined values and
evalStateT to execute actions in the transformed state monad.

run :: Nondet (Lazy m) a => Lazy m a -> m a
run a = evalStateT (a >>= eval) emptyThunks

This function is the generalization of the run function to arbitrary
data types with non-deterministic components that are expressed in
an arbitrary instance of MonadPlus.

This completes an implementation of our monad transformer
for lazy non-determinism, with all of the functionality motivated in
§§2–3.

5.3 Optimizing performance
We have applied some optimizations that improve the performance
of our implementation significantly. We use the permutation sort
in §2 for a rough measure of performance. The implementation
just presented exhausts the search space for sorting a list of length
20 in about 5 minutes.6 The optimizations described below reduce
the run time to 7.5 seconds. All implementations run permutation
sort in constant space (5 MB or less) and the final implementation
executes permutation sort on a list of length 20 roughly three times
faster than the fastest available compiler for Curry, the Münster
Curry Compiler (MCC).

As detailed below, we achieve this competitive performance by

1. reducing the amount of pattern matching in invocations of the
monadic bind operation,

2. reducing the number of store operations when storing shared
results, and

3. manually inlining and optimizing library code.

5.3.1 Less pattern matching
The Monad instance for the StateT monad transformer performs
pattern matching in every call to >>= in order to thread the store
through the computation. This is wasteful especially during com-
putations that do not access the store because they do not perform
explicit sharing. We can avoid this pattern matching by using a dif-
ferent instance of MonadState.

We define the continuation monad transformer ContT:7

newtype ContT m a = C {
unC :: forall w . (a -> m w) -> m w }

runContT :: Monad m => ContT m a -> m a
runContT m = unC m return

We can make ContT m an instance of the type class Monad without
using operations from the underlying monad m:

instance Monad (ContT m) where
return x = C (\c -> c x)
m >>= k = C (\c -> unC m (\x -> unC (k x) c))

An instance for MonadPlus can be easily defined using the corre-
sponding operations of the underlying monad. The interesting ex-
ercise is to define an instance of MonadState using ContT. When
using continuations, a reader monad—a monad where actions are
functions that take an environment as input but do not yield one as
output—can be used to pass state. More specifically, we need the
following operations of reader monads:

ask :: MonadReader s m => m s
local :: MonadReader s m => (s -> s) -> m a -> m a

The function ask queries the current environment, and the func-
tion local executes a monadic action in a modified environment.
In combination with ContT, the function local is enough to im-
plement state updates:

instance Monad m
=> MonadState s (ContT (ReaderT s m)) where

get = C (\c -> ask >>= c)
put s = C (\c -> local (const s) (c ()))

6 We performed our experiments on an Apple MacBook with a 2.2 GHz
Intel Core 2 Duo processor using GHC with optimizations (-O2).
7 This implementation differs from the definition shipped with GHC in that
the result type w for continuations is higher-rank polymorphic.



With these definitions, we can define our monad transformer Lazy:

type Lazy m = ContT (ReaderT ThunkStore m)

We can reuse from §5.2 the definition of the Sharing instance and
of the memo function used to define share.

After this optimization, searching all sorted permutations of a
list of length 20 takes about 2 minutes rather than 5.

5.3.2 Fewer state manipulations
The function memo just defined performs two state updates for each
shared value that is demanded: one to insert the unevaluated shared
computation and one to insert the evaluated result. We can save half
of these manipulations by inserting only evaluated head-normal
forms and using lexical scope to access unevaluated computations.
We use a different interface to stores now, again abstracting away
the details of how to implement this interface in a type-safe manner.

emptyStore :: Store
getFreshKey :: MonadState Store m => m Int
lookupHNF :: MonadState Store m

=> Int -> m (Maybe a)
insertHNF :: MonadState Store m

=> Int -> a -> m ()

Based on this interface, we can define a variant of memo that only
stores evaluated head normal forms.

memo :: MonadState Store m => m a -> m (m a)
memo a =
do key <- getFreshKey

return (do hnf <- lookupHNF key
case hnf of

Just x -> return x
Nothing -> do x <- a

insertHNF key x
return x)

Instead of retrieving a thunk from the store on demand if it is not yet
evaluated, we can use the action a directly because it is in scope.
As a consequence, a cannot be garbage collected as long as the
computation returned by share is reachable, which is a possible
memory leak. We did not experience memory problems during our
experiments, however. After this optimization, searching all sorted
permutations of a list of length 20 takes 1.5 minutes rather than 2.

5.3.3 Mechanical simplifications
The final optimization is to

1. expand the types in ContT (ReaderT State m),
2. inline all definitions of monadic operations,
3. simplify them according to monad laws, and
4. provide a specialized version of memo that is not overloaded.

This optimization, like the previous ones, affects only our library
code and not its clients; for instance, we did not inline any defi-
nitions into our benchmark code. Afterwards, searching all sorted
permutations of a list of length 20 takes 7.5 seconds rather than
1.5 minutes. This is the most impressive speedup during this se-
quence of optimizations, even though it is completely mechanical
and should ideally be performed by the compiler.

Surprisingly, our still high-level and very modular implementa-
tion (it works with arbitrary monads for non-determinism and ar-
bitrary types for nested, non-deterministic data) outperforms the
fastest available Curry compiler. A Curry program for permutation
sort, equivalent to the program we used for our benchmarks, runs
for 25 seconds when compiled with MCC and -O2 optimizations.

We have also compared our performance on deterministic
monadic computations against corresponding non-monadic pro-
grams in Haskell and Curry. Our benchmark is to call the naive

reverse function on long lists, which involves a lot of deterministic
pattern-matching. In this benchmark, the monadic code is roughly
20% faster than the corresponding Curry code in MCC. The over-
head compared to a non-monadic Haskell program is about the
same order of magnitude.

Our library does not directly support narrowing and unifica-
tion of logic variables but can emulate it by means of lazy non-
determinism. We have measured the overhead of such emulation
using a functional logic implementation of the last function:

last l | l =:= xs ++ [x] = x where x,xs free

This Curry function uses narrowing to bind xs to the spine of the
init of l and unification to bind x and the elements of xs to the
elements of l. We can translate it to Haskell by replacing x and
xs with non-deterministic generators and implementing the unifi-
cation operator =:= as equality check. When applying last to a list
of determined values, the monadic Haskell code is about six times
faster than the Curry version in MCC. The advantage of unification
shows up when last is applied to a list of logic variables: in Curry,
=:= can unify two logic variables deterministically, while an equal-
ity check on non-deterministic generators is non-deterministic and
leads to search-space explosion. More efficient unification could be
implemented using an underlying monad of equality constraints.

All programs used for benchmarking are available under: http:
//github.com/sebfisch/explicit-sharing/tree/0.1.1

6. Related work
In this section we compare our work to foundational and practical
work in various communities. We refer to other approaches to im-
plementing monads for logic programming. We also point out sim-
ilarities to the problems solved for hardware description languages.

6.1 Functional logic programming
The interaction of non-strict and non-deterministic evaluation has
been studied in the FLP community, leading to different seman-
tic frameworks and implementations. They all establish call-time
choice, which ensures that computed results correspond to strict
evaluation. An alternative interpretation of call-time choice is that
variables denote values rather than (possibly non-deterministic)
computations. As call-time choice has turned out to be the most
intuitive model for lazy non-determinism, we also adopt it.

Unlike approaches discussed below, however, we do not de-
fine a new programming language but implement our approach in
Haskell. In fact, functional logic programs in Curry or Toy can be
compiled to Haskell programs that use our library.

Semantic frameworks There are different approaches to formal-
izing the semantics of FLP. CRWL (González-Moreno et al. 1999)
is a proof calculus with a denotational flavor that allows to rea-
son about functional logic programs using inference rules and to
prove program equivalence. Let Rewriting (López-Fraguas et al.
2007, 2008) defines rewrite rules that are shown to be equivalent
to CRWL. It is more operational than CRWL but does not define
a constructive strategy to evaluate programs. Deterministic proce-
dures to run functional logic programs are described by Albert et al.
(2005) in the form of operational big-step and small-step semantics.

We define equational laws for monadic, lazy, non-deterministic
computations that resemble let rewriting in that they do not fix an
evaluation strategy. However, we provide an efficient implemen-
tation of our equational specification that can be executed using
an arbitrary MonadPlus instance. Hence, our approach is a step
towards closing the gap between let rewriting and the operational
semantics, as it can be seen as a monadic let calculus that can be
executed but does not fix a search strategy.



Implementations There are different compilers for FLP lan-
guages that are partly based on the semantic frameworks discussed
above. Moreover, the operational semantics by Albert et al. (2005)
has been implemented as Haskell interpreters by Tolmach and An-
toy (2003) and Tolmach et al. (2004). We do not define a compiler
that translates an FLP language; nor do we define an interpreter in
Haskell. We rather define a monadic language for lazy FLP within
Haskell. Instead of defining data types for every language construct
as the interpreters do, we only need to define new types for data
with non-deterministic components. Instead of using an untyped
representation for non-deterministic data, our approach is typed.

This tight integration with Haskell lets us be much more effi-
cient than is possible using an interpreter. The KiCS compiler from
Curry to Haskell (Braßel and Huch 2009) also aims to exploit the
fact that many functional logic programs contain large determinis-
tic parts. Unlike our approach, KiCS does not use monads to imple-
ment sharing but generates unique identifiers using impure features
that prevent compiler optimizations on the generated Haskell code.

Naylor et al. (2007) implement a library for functional logic
programming in Haskell which handles logic variables explicitly
and can hence implement a more efficient version of unification.
It does not support data types with non-deterministic components
or user-defined search strategies. The authors discuss the conflict
between laziness and non-determinism in §5.4 without resolving it.

Monad transformers Hinze (2000) derived monad transformers
for backtracking from equational specifications. Spivey (2000) and
Kiselyov et al. (2005) improved the search strategy in monadic
computations to avoid the deficiencies of depth-first search. How-
ever, we are the first to introduce laziness in non-deterministic
computations modeled using monads in Haskell. Any instance of
MonadPlus—including those developed in these works—can be
used in combination with our approach.

6.2 Call-by-need calculi
The combination of sharing and non-strictness—known as call-by-
need or lazy evaluation—has been extensively investigated theo-
retically. The first “natural” semantics for call-by-need evaluation
(Launchbury 1993; Seaman 1993) both rely on heaps, which store
either evaluated or unevaluated bindings of variables. Later, Ariola
et al. (1995), Ariola and Felleisen (1997), and Maraist et al. (1998)
proposed call-by-need calculi to avoid the explicit heap: Maraist
et al.’s sequence of let-bindings and Ariola and Felleisen’s bind-
ing context play the role of a heap but use bindings present in the
original program instead of creating fresh heap references.

The calculi developed equational theories to reason about call-
by-need programs. However, the laws presented in these calculi are
quite different from ours (Figure 1). Although Ariola et al. add
constructors as an extension of their calculus, constructed values
cannot have non-value components. To construct data lazily, one
must explicitly let-bind computations of all components, however
deeply nested. They do not have an analogue of our (HNF) law.
Maraist et al. briefly discuss an extension for constructed values
with non-value components; their law V K corresponds to our law
(HNF). Our laws (Choice), (Fail) and (Bot) are not reflected in any
call-by-need calculus. Ariola et al. mention our law (Ignore) as a
potential addition (adopted by Maraist et al. later). Unlike these
call-by-need calculi, we do not need a special syntactic category of
answers, since we introduce the notion of observation (Figure 2).

Since our implementations are based on store passing, they
closely correspond to Launchbury’s natural semantics (1993). Eval-
uating memo a returns a computation that behaves like a variable
reference in Launchbury’s semantics. Evaluating the variable refer-
ence for the first time evaluates the associated term and updates the
store by binding the variable to the resulting value. The main dif-
ference of our evaluator is non-determinism. We cannot get by with

a single global heap—we need first-class stores (Morrisett 1993),
one for each branch of the non-deterministic computation.

Garcia et al. (2009) recently reduced call-by-need (again, with-
out non-determinism) to stylized uses of delimited continuations.
In particular, they simulate call-by-need in a call-by-value calcu-
lus with delimited control. We have similarly (Kiselyov and Shan
2009) embedded lazy probabilistic programs (Koller et al. 1997) in
OCaml, a call-by-value language with delimited control. Like Gar-
cia et al., we use first-class control delimiters to represent shared
variables on the heap. A useful (Goodman et al. 2008) and straight-
forward generalization is to memoize probabilistic functions.

6.3 Hardware description languages
The problem of explicit sharing has also been addressed in the
context of hardware description languages (Acosta-Gómez 2007;
Bjesse et al. 1998). In order to model a circuit as an algebraic
data type in a purely functional language, one needs to be able to
identify shared nodes. The survey by Acosta-Gómez (2007; §2.4.1)
discusses four different solutions to this problem:

Explicit labels clutter the code with identifiers that are—apart
from expressing sharing—unrelated to the design of a circuit.
Moreover, the programmer is responsible for passing unique
labels in order to correctly model the nodes of a circuit.

State monads can be used to automate the creation of unique la-
bels. However, writing monadic code is considered such a ma-
jor paradigm shift in the context of circuit description that, for
example, Lava (Bjesse et al. 1998) resorts to the next solution.

Observable sharing is the preferred solution because it maintains
the usual recursive structure of the circuit description, but it re-
quires impure features that often make it extremely complicated
to reason about or debug programs (de Vries 2009).

Source transformations can also label the nodes of a circuit au-
tomatically. For example, Template Haskell can be used to add
unique labels at compile time to unlabeled circuit descriptions.

Observable sharing is very similar to the approach used cur-
rently in KiCS (Braßel and Huch 2009). The problem of im-
pure features—especially their hindering compiler optimizations—
seems much more severe in FLP than in hardware description. As
non-deterministic computations are usually expressed monadically
in Haskell anyway, there is no paradigm shift necessary to use our
monadic approach to sharing. It integrates smoothly by introducing
a new operation to share the results of monadic computations.

7. Conclusions
We have presented an equational specification and an efficient
implementation of non-strictness, sharing, and non-determinism
embedded in a pure functional language.

Our specification (Figure 1) formalizes call-time choice, a com-
bination of these three features that has been developed in the FLP
community. This combination is intuitive and predictable because
the results of computations resemble results of corresponding ea-
ger computations and shared variables represent fully determined
values as opposed to possibly non-deterministic computations. Our
equational laws for lazy non-determinism can be used to reason
about the meaning of non-deterministic programs on a high level.
They differ from previous formalizations of call-time choice, which
use proof calculi, rewriting, or operational semantics. We describe
intuitively the correspondence of López-Fraguas et al.’s formaliza-
tions (2007, 2008) with our laws as well as why our implementation
satisfies them. A more formal treatment is left as future work.

Our implementation is novel in working with custom monadic
data types and search strategies; in expressing the sharing of non-
deterministic choices explicitly; and in implementing the sharing
using first-class stores of typed data.



Our high-level monadic interface was crucial in order to op-
timize our implementation as described in §5.3. Initial compar-
isons of monadic computations with corresponding computations
in Curry that use non-determinism, narrowing, and unification are
very promising. We outperform the currently fastest Curry compiler
(MCC) on the highly non-deterministic permutation sort algorithm.
In our deterministic benchmark we incur acceptable overhead com-
pared to pure Haskell. Simulated narrowing turned out competitive
while simulated unification can lead to search space explosion. Our
results suggest that our work can be used as a simple, high-level,
and efficient implementation target for FLP languages.
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