
The Join Calculus:
a Language for Distributed Mobile Programming

Cédric Fournet1 and Georges Gonthier2?

1 Microsoft Research
2 INRIA Rocquencourt

Abstract In these notes, we give an overview of the join calculus, its
semantics, and its equational theory. The join calculus is a language that
models distributed and mobile programming. It is characterized by an
explicit notion of locality, a strict adherence to local synchronization, and
a direct embedding of the ML programming language. The join calculus is
used as the basis for several distributed languages and implementations,
such as JoCaml and functional nets.
Local synchronization means that messages always travel to a set des-
tination, and can interact only after they reach that destination; this
is required for an efficient implementation. Specifically, the join calcu-
lus uses ML’s function bindings and pattern-matching on messages to
program these synchronizations in a declarative manner.
Formally, the language owes much to concurrency theory, which provides
a strong basis for stating and proving the properties of asynchronous
programs. Because of several remarkable identities, the theory of process
equivalences admits simplifications when applied to the join calculus.
We prove several of these identities, and argue that equivalences for the
join calculus can be rationally organized into a five-tiered hierarchy, with
some trade-off between expressiveness and proof techniques.
We describe the mobility extensions of the core calculus, which allow the
programming of agent creation and migration. We briefly present how
the calculus has been extended to model distributed failures on the one
hand, and cryptographic protocols on the other.

? This work is partly supported by the RNRT project MARVEL 98S0347

Applied Semantics Summer School (Caminha, 9–15 September 2000)
Draft 7/01, pp. 1–66,



Contents

The Join Calculus: a Language for Distributed Mobile Programming . . . . . . . . . . 1
Cédric Fournet, Georges Gonthier

1 The core join calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1 Concurrent functional programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Synchronization by pattern-matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 The asynchronous core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4 Operational semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5 The reflexive chemical abstract machine . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Basic equivalences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1 May testing equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Trace observation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3 Simulation and coinduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4 Bisimilarity equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5 Bisimulation proof techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 A hierarchy of equivalences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1 Too many equivalences? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Fair testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 Coupled Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4 Two notions of congruence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.5 Summary: a hierarchy of equivalences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Labeled semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.1 Open syntax and chemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Observational equivalences on open terms . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3 Labeled bisimulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.4 Asynchronous bisimulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.5 The discriminating power of name comparison . . . . . . . . . . . . . . . . . . . . . . 52

5 Distribution and mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.1 Distributed mobile programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2 Computing with locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.3 Attaching some meaning to locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62



The Join Calculus: a Language for Distributed Mobile Programming 3

Introduction

Wide-area distributed systems have become an important part of modern pro-
gramming, yet most distributed programs are still written using traditional lan-
guages, designed for sequential architectures. Distribution issues are typically
relegated to libraries and informal design patterns, with little support in the
language for asynchrony and concurrency. Conversely, distributed constructs are
influenced by the local programming model, with for instance a natural bias to-
wards RPCs or RMIs rather than asynchronous message passing.

Needless to say, distributed programs are usually hard to write, much harder
to understand and to relate to their specifications, and almost impossible to
debug. This is due to essential difficulties, such as asynchrony or partial failures.
Nonetheless, it should be possible to provide some high-level language support
to address these issues.

The join calculus is an attempt to provide language support for asynchronous,
distributed, and mobile programming. While it is clearly not the only approach,
it has a simple and well-defined model, which has been used as the basis for
several language implementations and also as a specification language for study-
ing the properties of such programs. These notes give an overview of the model,
with an emphasis on its operational semantics and its equational theory.

JoCaml [27] is the latest implementation of the join calculus; it is a dis-
tributed extension of Objective Caml [29], a typed high-level programming lan-
guage with a mix of functional, object-oriented, and imperative features. OCaml
already provides native-code and bytecode compilers, which is convenient for
mobile code. The JoCaml language extends OCaml, in the sense that OCaml
programs and libraries are just a special kind of JoCaml programs and libraries.
JoCaml also implements strong mobility and provides support for distributed
execution, including a dynamic linker and a garbage collector. The language
documentation includes extensive tutorials; they can be seen as a concrete coun-
terpart for the material presented in these notes (Sections 1 and 5) with larger
programming examples.

In these notes, we present a core calculus, rather than a full-fledged lan-
guage. This minimalist approach enables us to focus on the essential features
of the language, and to develop a simple theory: the calculus provides a precise
description of how the distributed implementation should behave and, at the
same time, it yields a formal model that is very close to the actual programming
language. Thus, one can directly study the correctness of distributed programs,
considering them as executable specifications. Ideally, the model should provide
strong guiding principles for language design and, conversely, the model should
reflect the implementation constraints.

The join calculus started out as an attempt to take the models and methods
developed by concurrency theory, and to adapt and apply them to the program-
ming of systems distributed over a wide area network. The plan was to start
from Milner’s pi calculus [31,30,41], extend it with constructs for locality and
mobility, and bring to bear the considerable body of work on process calculi
and their equivalences on the problem of programming mobile agents. During



4 Applied Semantics Summer School, Draft 7/01

the course of this work, the implementation constraints of asynchronous systems
suggested changing the pi calculus’s CCS-based communication model. The idea
was that the model had to stick to what all basic protocol suites do, and decouple
transmission from synchronization, so that synchronization issues can always be
resolved locally.

To us, the natural primitives for doing this in a higher-order setting were
message passing, function call, and pattern-matching, and these suggested a
strong link with the programming language ML. This connection allowed us to
reuse a significant portion of the ML programming technology—notably the ML
type system—for the “programming” part of our project. Thus the join calculus
was born out of the synergy between asynchronous process calculi and ML.

Many of the ideas that we adapted from either source took new meaning
in the location-sensitive, asynchronous framework of the join calculus. The con-
nection with ML illuminates the interaction between functional and imperative
features, down to their implications for typing. The highly abstract chemical ab-
stract machine of Berry and Boudol [7] yields a much more operational instance
for the join calculus. The intricate lattice of equivalences for synchronous and
asynchronous calculi [19] simplifies remarkably in the pure asynchronous setting
of the join calculus, to the point that we can reasonably concentrate on a single
five-tiered hierarchy of equivalences, where each tier can be clearly argued for.
These lecture notes contains a summary of these results, as well as much of the
rationale that joins them into a coherent whole.

These notes are organized as follows. In Section 1, we gradually introduce the
join calculus as a concurrent extension of ML, describe common synchronization
patterns, and give its chemical semantics. In Section 2, we define and motivate
our main notions of observational equivalences, and illustrate the main proof
techniques for establishing equivalences between processes. In Section 3, we refine
our framework for reasoning about processes. We introduce intermediate notions
of equivalence that account for fairness and gradual commitment, and organize
all our equivalences in a hierarchy, according to their discriminating power. In
Section 4, we supplement this framework with labeled semantics, and discuss
their relation. In Section 5, we finally refine the programming model to account
for locality information and agent migration.



The Join Calculus: a Language for Distributed Mobile Programming 5

1 The core join calculus

Although the join calculus was designed as a process calculus for distributed
and mobile computation, it turned out to be a close match to ML-style (impure)
functional programming. In these notes we will use this connection to motivate
and explain the computational core of the calculus.

First we will introduce the primitives of the join calculus by showing how
they mesh in a typical ‘mini-ML’ lambda-like calculus. At a more concrete level,
there is a similar introduction to the JoCaml language as an extension of the
OCaml programming language [27].

We will then show how a variety of synchronization primitives can be easily
encoded in the join calculus and argue that the general join calculus itself can
be encoded by its “asynchronous” fragment, i.e., that function calls are just a
form of message-passing. This allows us to limit the formal semantics of the join
calculus to its asynchronous core.

We conclude the section by exposing the computational model that underlies
the formal semantics of the join calculus. This simple model guarantees that
distributed computation can be faithfully represented in the join calculus.

1.1 Concurrent functional programming

Our starting point is a small ML-like syntax for the call-by-value polyadic lambda
calculus:

E,F ::= expressions
x, y, f variable

|| f(Ẽ) function call
|| let x = E in F local value definition
|| let f(x̃) = E in F local recursive function definition

The notation x̃ stands for a possibly empty comma-separated tuple x1, x2, . . . , xn
of variables; similarly Ẽ is a tuple of expressions. We casually assume that the
usual Hindley-Milner type system ensures that functions are always called with
the proper number of arguments.

We depart from the lambda calculus by taking the ML-style function defi-
nition as primitive, rather than λ-expressions, which can be trivially recovered
as λx.E def= let f(x) = E in f . This choice is consistent with the usual ML
programming practice, and will allow us to integrate smoothly primitives with
side effects, such as the join calculus primitives, because the let provides a syn-
tactic “place” for the state of the function. An immediate benefit, however, is
that values in this calculus consist only of names: (globally) free variables, or
let-defined function names. This allows us to omit altogether curried function
calls from our syntax, since the function variable in a call can only be replaced
by a function name in a call-by-value computation.

We are going to present the join calculus as an extension of this functional
calculus with concurrency. The most straightforward way of doing this would



6 Applied Semantics Summer School, Draft 7/01

be to add a new run E primitive that returns immediately after starting a
concurrent evaluation of E. However, we want to get a model in which we can
reason about concurrent behavior, not just a programming language design. In
order to develop an operational semantics, we also need a syntax that describes
the situation after run E returns, and the evaluation of E and the evaluation
of the expression F that contained the run E proceed concurrently. It would
be quite awkward to use run for this, since it would force us to treat E and F
asymmetrically.

It is much more natural to denote the concurrent computation of E and F by
E | F , using a parallel composition operator ‘|’. However, we must immediately
realize the E | F cannot be an “expression”, since an expression denotes a
computation that returns a result, and there is no natural way of defining a
unique “result” for E | F . Therefore we need to extend our calculus with a
second sort for processes, i.e., computations that aren’t expected to produce a
result (and hence, don’t terminate). In fact, the operands E and F of E | F
should also be processes, rather than expressions, since they aren’t expected to
return a result either. Thus, ‘|’ will simply be an operation on processes.

We will use the letters P,Q,R for processes. We still need the run P primitive
to launch a process from an expression; conversely, we allow let constructs in
processes, so that processes can evaluate expressions.

P,Q,R ::= processes
let x = E in P compute expression

|| let f(x̃) = E in P local recursive function definition
|| P |Q parallel composition
|| 0 inert process

E,F ::= expressions
. . .

|| run P spawn process

In this minimal syntax, invoking an abstraction for a process P is quite
awkward, since it involves computing an expression that calls a function whose
body will execute run P . To avoid this, we add a “process abstraction” construct
to mirror the function abstraction construct; we use a different keyword ‘def’ and
different call brackets ‘〈 〉’ to enforce the separation of expressions and processes.

P,Q,R ::= processes
. . .

|| p〈Ẽ〉 execute abstract process
|| def p〈x̃〉 . P in Q process abstraction

E,F ::= expressions
. . .

|| def p〈x̃〉 . P in E process abstraction

Operationally, “executing” an abstract process really means computing its pa-
rameters and shipping their values to the ‘def’, where a new copy of the process



The Join Calculus: a Language for Distributed Mobile Programming 7

body can be started. Hence, we will use the term channel for the “abstract
process” defined by a def, and message send for a “process call” p〈Ẽ〉.

Our calculus allows the body E of a function f to contain a subprocess P .
From P ’s point of view, returning the value for f ’s computation is just sending
data away on a special “channel”; we extend our calculus with a return primitive
to do just that. Since messages carry a tuple of values, the return primitive also
gives us a notation for returning several values from a function; we just need to
extend the let so it can bind a tuple of variables to the result of such tuple-
valued functions.

P,Q,R ::= processes
. . .

|| return Ẽ to f return value(s) to function call
|| let x̃ = E in P compute expression

E,F ::= expressions
. . .

|| let x̃ = E in F local definition(s)

Note that the tuple may be empty, for functions that only perform side effects;
we write the matching let statement E;P (or E;F ) rather than let = E in P .
Also, we will omit the to part for returns that return to the closest lexically
enclosing function.

With the E;P and return statements, it is now more convenient to write
function bodies as processes rather than expressions. We therefore extend the
def construct to allow for the direct definition of functions with processes.

P,Q,R ::= processes
. . .

|| def f(x̃) . P in Q recursive function definition

E,F ::= expressions
. . .

|| def f(x̃) . P in E recursive function definition

Hence def f(x̃) . P is equivalent to let f(x̃) = run P . Conversely, let f(x̃) = E
is equivalent to def f(x̃) . return E, so, in preparation for the next section,
we take the def form as primitive, and treat the let f(x̃) = . . . form as an
abbreviation for a def.

1.2 Synchronization by pattern-matching

Despite its formal elegance, the formalism we have developed so far has limited
expressiveness. While it allows for the generation of concurrent computation, it
provides no means for joining together the results of two such computations, or
for having any kind of interaction between them, for that matter. Once spawned,
a process will be essentially oblivious to its environment.



8 Applied Semantics Summer School, Draft 7/01

A whole slew of stateful primitives have been proposed for encapsulating vari-
ous forms of inter-process interaction: concurrent variables, semaphores, message-
passing, futures, rendez-vous, monitors, . . . just to name a few. The join cal-
culus distinguishes itself by using that basic staple of ML programming, pattern-
matching, to provide a declarative means for specifying inter-process synchro-
nization, thus leaving state inside processes, where it rightfully belongs.

Concretely, this is done by allowing the joint definition of several functions
and/or channels by matching concurrent call and message patterns; in a nutshell,
by allowing the ’|’ operator on the left of the ‘B’ definition symbol. The syntax
for doing this is a bit more complex, partly because we also want to allow for
multiple patterns, so we create new categories for definitions and join patterns.

P,Q,R ::= processes
. . .

|| def D in P process/function definition

E,F ::= expressions
. . .

|| def D in E process/function definition

D ::= definitions
J . P execution rule

|| D ∧ D′ alternative definitions
|| > empty definition

J ::= join patterns
x〈ỹ〉 message send pattern

|| x(ỹ) function call pattern
|| J | J ′ synchronization

Definitions whose join pattern consists of a single message pattern (or a single
call pattern) correspond to the abstract processes (or functions) presented above.
More interestingly, the meaning of a joint definition p〈x〉 |q〈y〉 . P is that, each
time messages are concurrently sent on both the p and q channels, the process P
is run with the parameters x and y set to the contents of the p and q messages,
respectively. For instance, this two-message pattern may be used to join the
results of two concurrent computations:

def jointCall(f1, f2, t) .
def p〈x〉 |q〈y〉 . return x, y in
p〈f1(t)〉 | q〈f2(t)〉 in

let x, y = jointCall(cos, sin, 0.1) in . . .

In this example, each call to jointCall(f1, f2, t) starts two processes p〈f1(t)〉 and
q〈f2(t)〉 that compute f1(t) and f2(t) in parallel and send their values on the
local channels p and q, respectively. When both messages have been sent, the



The Join Calculus: a Language for Distributed Mobile Programming 9

inner def rule joins the two messages and triggers the return process, which
returns the pair f1(t), f2(t) to the caller of jointCall(f1, f2, t).

If there is at least a function call in the pattern J of a rule J . P , then the
process body P may contain a return for that call, as in the functional core.
We can thus code an asynchronous pi calculus “channel” x as follows

def x〈v〉 |x() . return v in
. . . x〈E〉 . . . | let u = x() in P

Since a pi calculus channel x supports two different operations, sending and
receiving, we need two join calculus names to implement it: a channel name x
for sending, and a function name x for receiving a value. The meaning of the joint
definition is that a call to x() returns a value v that was sent on an x〈〉 message.
Note that the pi calculus term x〈v〉, which denotes a primitive “send” operation
on a channel x, gets encoded as x〈v〉, which sends a message on the (ordinary)
channel name x in the join calculus. The primitive pi calculus reception process
x(u).P , which runs P{v/u} after receiving a single x〈v〉 message, gets encoded
as let u = x() in P .

In the example above, u will be thus bound to the value of E for the execution
of P—if there are no other x() calls or x〈v〉 messages around. If there are, then
the behavior is not deterministic: the join calculus semantics does ensure that
each x() call grabs at most one x〈v〉 message, and that each x〈v〉 message fulfills
at most one x() call (the def rule consumes its join pattern), but it does not
specify how the available x() and x〈v〉 are paired. Any leftover calls or messages
(there cannot be both1) simply wait for further messages or calls to complete;
however the calculus makes no guarantee as to the order in which they will
complete. To summarize, running

x〈1〉 | x〈2〉 | x〈3〉 | (print(x()); print(x());0)

can print 1 2 and stop with a leftover x〈3〉 message, or print 3 2 and stop with
a leftover x〈1〉 message, etc. The join calculus semantics allows any of these
possibilities. On the other hand,

x〈1〉 |
(
print(x()); (x〈2〉 | print(x());0)

)
can only print 1 2, as the x〈2〉 message is sent only after the first x() call has
completed.

We can use higher-order constructs to encapsulate this encoding in a single
newChannel function that creates a new channel and returns its interface:

def newChannel() .
def send〈v〉 | receive() . return v in
return send , receive in

let x, x = newChannel() in
let y, y = newChannel() in . . .

1 Under the fairness assumptions usually provided by implementations, and implied
by most process equivalences (see Section 3.2).



10 Applied Semantics Summer School, Draft 7/01

(Because the join calculus has no data structures, we encode the channel “ob-
jects” by the tuple of join calculus names send , receive that implement their
operations. In JoCaml, we would return a record.)

This kind of higher-order abstraction allows us to return only some of the
names that define an object’s behavior, so that the other names remain private.
An especially common idiom is to keep the state of a concurrent object in a
single private message, and to use function names for the methods. Since the
state remains private, it is trivial to ensure that there is always exactly one state
message available. For example, here is the join calculus encoding of a “shared
variable” object.

def newVar(v0) .
def put(w) | val〈v〉 . val〈w〉 | return
∧ get() | val〈v〉 . val〈v〉 | return v in

val〈v0〉 | return put , get in . . .

The inner definition has two rules that define three names—two functions put
and get , and a channel val . The val name remains private and always carries a
single state message with the current value; it initially carries the value v0 passed
as a parameter when the shared variable is created. Note that since the state
must be joined with a call to run a method, it is easy to ensure that at most one
method runs at a time, by reissuing the state message only when the method
completes. This is the classical monitor construct (also known as a synchronized
object).

It is often natural to use different channel names to denote different synchro-
nization states of an object. Compare, for instance, the encoding for a shared
variable above with the encoding for a one-place buffer:

def newBuf () .
def put(v) | empty〈〉 . full〈v〉 | return
∧ get() | full〈v〉 . empty〈〉 | return v in

empty〈〉 | return put , get in . . .

The join calculus gives us considerably more flexibility for describing the
synchronization behavior of the object. For instance, the state may at times
be divided among several concurrent asynchronous state messages, and method
calls may be joined with several of these messages. In short, we may use a Petri
net rather than a finite state machine to describe the synchronization behavior.
For example, a concurrent two-place buffer might be coded as

def newBuf2 () .
def put(v) | emptyTail〈〉 . fullTail〈v〉 | return
∧ emptyHead〈〉 | fullTail〈v〉 . fullHead〈v〉 | emptyTail〈〉
∧ get() | fullHead〈v〉 . emptyHead〈〉 | return v in

emptyHead〈〉 | emptyTail〈〉 | return put , get in . . .

Note that these concurrent objects are just a programming idiom; there is
nothing specific to them in the join calculus, which can accomodate other pro-
gramming models equally well. For instance, we get the actors model if we make



The Join Calculus: a Language for Distributed Mobile Programming 11

the “methods” asynchronous, and put the methods’ code inside the state, i.e.,
the state contains a function that processes the method message and returns a
function for processing the next message:

def newActor(initBehavior) .
def request〈v〉 | state〈behavior〉 . state〈behavior(v)〉 in
state〈initBehavior〉 | return request in . . .

We can also synchronize several calls, to model for instance the CCS syn-
chronous channels. (In this case, we have to specify to which calls the return
statements return).

def newCCSchan() .
def send(v) | receive() . return to send | return v to receive in

return send , receive in
. . .

The Ada rendez-vous can be modeled similarly; in this case, the “acceptor”
task sends a message-processing function, and the function result is returned to
the “caller” task:

def newRendezVous() .
def call(v) | accept(f) .

let r = f(v) in (return r to call | return to accept) in
return call , accept in . . .

The let ensures that the acceptor is suspended until the rendez-vous process-
ing has completed, so that the message-processing “function” can freely access
the acceptor’s imperative variables without race conditions. An accept e(x) do
E end Ada statement would thus be modeled as accepte(λx.E).

In theory, adding any of the above constructs—even the imperative variable—
to the concurrent lambda calculus of Section 1.1 gives a formalism equivalent
to the join calculus in terms of expressiveness. What are, then, the advantages
of the join pattern construct? If a specific synchronization device is taken as
primitive (say, the one-place buffer), other devices must be coded in terms of that
primitive. These encodings are usually abstracted as functions (often the only
available form of abstraction). This means that the synchronization behavior
of an application that relies mostly on non-primitive devices is mostly hidden
in the side effects of functions. On the contrary, the join calculus encodings we
have presented above make the synchronization behavior of the encoding devices
explicit. The join calculus gives us a general language for writing synchronization
devices; devices are just common idioms in that language. This makes it much
easier to turn from one type of device to another, to use several kinds of devices,
or even to combine devices, e.g., provide method rendez-vous for a synchronized
object.

Also, the join calculus syntax favors statically binding code to a synchro-
nization event. This increases the “referential transparency”2 of join calculus
2 A misnomer, of course, since a language with synchronization must have side effects.



12 Applied Semantics Summer School, Draft 7/01

programs, because this code is easily found by a lexical lookup of the functions
and channels involved in the event. In other words, this code gives a first ap-
proximation of what happens when the corresponding functions are called, and
the corresponding messages are sent. The longer the code in the definition, the
better the approximation. It should be noted that for most of the devices we
have presented here this static code is very short. The pi calculus asynchronous
channel encoding is probably a worst case. It only says “a value sent on x can
be returned by an x() call”, so that any other properties of the channel have to
be inferred from the dynamic configuration of the program.

Finally—and this was actually the main motivation for the join calculus
design—the join calculus synchronization can always be performed locally. Any
contention between messages and/or calls is resolved at the site that holds their
joint definition. The transmission of messages, calls, and returns, on the other
hand, can never cause contention. As we will see in section 4, this property is
required if the calculus is to be used for modeling distributed systems, and a
fortiori mobility.

This property is the reason for which the CCS (or pi calculus) “external
choice” operator is conspicuously absent from our list of encodings : this device
can express an atomic choice between communication offers on arbitrary chan-
nels, and thus intrinsically creates non-local contention. Its join calculus encoding
would necessarily include some rather cumbersome mechanism for resolving this
contention (see [35]). We should however point out that global atomic choice is
a rarely needed device, and that the join calculus provides versatile local choice
in the form of alternative rules.

Even without choice, the pi calculus does not enjoy the locality property
(unlike many other models, such as monitors or actors, which do exhibit locality).
This is because the contention between senders on one hand, and receivers on
the other hand, cannot be both resolved simultaneously and locally at a sender
or at a receiver site. The join calculus encoding introduces an explicit “channel
definition” site in which the resolution can take place.

1.3 The asynchronous core

In spite of some simplifications at the end of Section 1.1, the syntax of the general
join calculus is rather large and complex. It would be preferable to carry out a few
other simplifications before trying to formulate a precise operational semantics
for the calculus. In particular, the semantics of rendez-vous type definitions,
where two calls are synchronized, is going to be painful to describe formally.

A standard trick in operational semantics is to use Q{E/f(ṽ)} to denote
a state where Q is computing an expression E for the function call f(ṽ). This
neatly averts the need for a new syntax for such states, but clearly does not work
if E is run by a rendez-vous between two calls f(ṽ) and g(w̃); we would need new
syntax for that. For that matter, we would also need new syntax for the case
where E has forked off a separate process P that contains some return F to f
primitives. We would also need special rules to allow messages (and possibly
definitions) to move in and out of such “inner processes”.



The Join Calculus: a Language for Distributed Mobile Programming 13

Fortunately, we can avoid these complications by defining function calls by
a message protocol. We will take literally the analogy we used to introduce
the return primitive, and actually implement the return with a message send
on a continuation channel. The function call will be implemented by a message
carrying both the arguments and the continuation channel. The precise “wiring”
of the continuations will specify exactly the evaluation order.

We assume that, for each function name f , we have a fresh channel name κf
for the return channel of f (we will reuse the function name f for the call
channel). Then the continuation-passing style (CPS) encoding of function calls
in the join calculus can be specified by the equations:

f(x̃) def= f〈x̃, κf 〉 (in join patterns J)
return Ẽ to f

def= κf 〈Ẽ〉
p〈E1, . . . , En〉

def= let v1 = E1 in
...
let vn = En in p〈v1, . . . , vn〉
(when at least one Ei is not a variable)

let v = u in P
def= P{u/v}

let x̃ = f(Ẽ) in P def= def κ〈x̃〉 . P in f〈Ẽ, κ〉
let x̃ = def D in E in P

def= def D in let x̃ = E in P

let x̃ = let ỹ = F in E in P
def= let ỹ = F in let x̃ = E in P

let = run P in Q
def= P | Q

The equations above make the general assumption that there are no spurious
variable captures : the names κ and v1, . . . , vn are fresh, and the names defined
by D or bound by ỹ are not free in P in the let-def and let-let equations.
Expanded repeatedly, these definitions translate up to alpha-conversion any full
join calculus process into an equivalent asynchronous join calculus process—one
that does not involve function calls or let, return, or run primitives.

In addition to choosing an evaluation order, the translation assigns a “con-
tinuation capture” semantics to multiple returns: if several returns are executed
for the same function call, then the calling context will be executed several times
with different return values. While this feature may be useful for implementing,
e.g., a fail-retry construct, it is not really compatible with the stack implemen-
tation of function calls, so JoCaml for instance puts severe syntactic restrictions
on the use of return statements to rule out multiple returns.

We could apply further internal encodings to remove other “complex” fea-
tures from the join calculus: alternative definitions, n-way join patterns for n 6= 2,
n-ary messages for n 6= 1, even 0. . . However, none of these “simplifications”
would really simplify the operational semantics, and the behavior of the encod-
ing would be significantly more complex than behavior of the encoded term. This
is not the case for the CPS encoding presented above; we are simply providing,
within the asynchronous join calculus, the “extra syntax” that was called for at
the top of this section.



14 Applied Semantics Summer School, Draft 7/01

P, Q, R ::= processes
x〈ỹ〉 asynchronous message

|| def D in P local definition
|| P | Q parallel composition
|| 0 inert process

D ::= definitions
J . P reaction rule

|| D ∧ D′ composition
|| > void definition

J ::= join patterns
x〈ỹ〉 message pattern

|| J | J ′ synchronization

Figure 1. Syntax for the core join calculus

1.4 Operational semantics

Since in the asynchronous join calculus the only expressions are variables, we can
altogether do away with the “expressions” syntactic class. The remaining syntax,
summarized in Figure 1, is quite regular: messages and parallel composition in
both processes and patterns, plus definitions in processes.

The precise binding rules for the asynchronous join calculus are those of
mutually-recursive functions in ML:

(i) A rule x1〈ỹ1〉 | · · · | xv〈ỹn〉 . P binds the formal parameters ỹ1, . . . , ỹn with
scope P ; the variables in each tuple ỹi must be distinct, and the tuples must
be pairwise disjoint. Also, the rule defines the channel names x1, . . . , xn.

(ii) A definition def J1 . P1 ∧ . . . ∧ Jn . Pn in Q recursively binds in
Q,P1, . . . , Pn all the channel names defined in J1 . P1, . . . , Jn . Pn.

We will denote rv(J) the set of variables bound by a join-pattern J in (i),
and dv(D) the set of channel names defined by a definition D in (ii). We will
denote fv(P ) the set of free names or variables in a process P . Similarly, fv(D)
will denote the set of free variables in a definition D; by convention we take
dv(D) ⊆ fv(D). The inductive definition for rv(J), dv(D), fv(D), and fv(P )
appears in Figure 5 page 47.

Since we have eliminated all the synchronous primitives by internal transla-
tion, our operational semantics only needs to define two operations:

(a) sending a message on a channel name
(b) triggering a definition rule whose join pattern has been fulfilled.

Operation (a) means moving the message from its sending site to its definition
site. This operation is not quite as trivial as it might first appear to be, because
this move might conflict with the scoping rules of the join calculus: some of the
message’s arguments might be locally defined channel names, as in

def p〈x〉 . P in (def q〈y〉 . Q in p〈q〉)



The Join Calculus: a Language for Distributed Mobile Programming 15

In the lambda calculus, this problem is solved by combining the sending
and triggering operations, and directly replacing p〈q〉 by P{q/x} in the process
above. This solution does not work for the join calculus in general, however,
since a rule might need several messages from several sites to trigger, as in

def p〈x〉 | p′〈x′〉 . P in (def q〈y〉 . Q in p〈q〉) | (def q〈y〉 . Q′ in p′〈q〉)

The solution, which was first discovered for the pi calculus [32], lies in doing
things the other way around: rather than moving the contents of the outer defi-
nition inside the inner one, we extend the scope of the argument’s definition to
include that of the message’s channel. This operation is called a scope extrusion.
This is a fairly complex operation, since it involves doing preliminary alpha-
conversion to avoid name captures, and moving a full definition, along with all
the messages associated with it.

In contrast, the trigger operation (b) means selecting a particular rule J . P ,
assembling a group M of messages that match the rule’s join pattern J , and
simply replacing M with an appropriate instance of P (with the arguments
of M substituted for the parameters rv(J) of the rule).

Although it might seem much simpler, only operation (b) has real computa-
tional contents in the core join calculus (for the distributed join calculus, moving
a message across sites does impact computation in subtle ways—see Section 5).
Operation (a) only rearranges the order of subterms in a way that preserves all
bindings. The selecting and assembling steps of operation (b) can also be viewed
as similar rearrangements. Finally, we note that such rearrangements never take
place in guarded subterms (subterms of a process P that appears on the right
hand side of a definition rule J . P ).

Thus, if we denote by P ≡ Q the structural equivalence relation “P and Q are
the same up to alpha-conversion and rearrangement of unguarded subterms that
preserve bindings”, then the entire operational semantics of the join calculus can
be expressed by a single rule:

R ≡ def J . P ∧ D in Jρ | Q
R′ ≡ def J . P ∧ D in Pρ | Q

ρ maps variables in rv(J) to channel names
R −→ R′

where the process R is decomposed as follows: J . P is the active rule, Jρ are the
messages being consumed, andD and Q collect all other rules and processes of R.
The ‘≡’ in the second premise could be replaced by ‘=’ since it is only necessary
to shift messages and definitions around before the trigger step. However, this ‘≡’
gives us additional flexibility in writing series of reduction steps, since it allows
us to keep the syntactic shape of the term by undoing the “rule selection” steps,
and moving back the process Pρ to the original place of one of the triggering
messages.



16 Applied Semantics Summer School, Draft 7/01

The structural equivalence relation ≡ itself is easily (but tediously) axioma-
tized as the least equivalence relation such that:

P ≡ P ′ if P and P ′ are alpha-equivalent
D ≡ D′ if D and D′ are alpha-equivalent

P | Q ≡ P ′ | Q′ if P ≡ P ′ and Q ≡ Q′

def D in P ≡ def D′ in P ′ if D ≡ D′ and P ≡ P ′

D1 ∧ D2 ≡ D′
1 ∧ D′

2 if D1 ≡ D′
1 and D2 ≡ D′

2

P | 0 ≡ P
P | (Q | R) ≡ (Q | P ) | R

D ∧ > ≡ D
D1 ∧ (D2 ∧ D3) ≡ (D2 ∧ D1) ∧ D3

def > in P ≡ P
(def D in P ) | Q ≡ def D in (P | Q) provided dv(D) ∩ fv(Q) = ∅

def D1 in def D2 in P ≡ def D1 ∧ D2 in P provided dv(D2) ∩ fv(D1) = ∅

1.5 The reflexive chemical abstract machine

The operational semantics we just described may be technically sound and conve-
nient to manipulate, but it does not quite give an intuitively satisfying account
of the execution of processes. The reason is that, in order to simplify the ex-
position, we have lumped together and hidden in the “trivial rearrangements”
equivalence ‘≡’ a number of operations that must occur in a real implementation:

1. Programmed parallelism (the ‘|’ operator) must be turned into runtime par-
allelism (multiple kernel or virtual machine threads) and, conversely, threads
must terminate with either the null process 0 or with a message send.

2. The alpha-conversions required for scope extrusion are usually implemented
by dynamically allocating a new data structure for the names of each local
definition.

3. The selection of the definition containing the next rule to be triggered is
done by thread scheduling.

4. The selection of the actual rule within the definition is done by a finite
state automaton that tracks the names of messages that have arrived. This
automaton also enables the scheduling of the definition in 3.

5. Messages must be routed to their definition, where they are sorted by name
and queued.

All this should concern us, because there might be some other implementation
issue that is hidden in the use of ‘≡’ and that could not be resolved like the above.
For instance, the asynchronous pi calculus has an equivalence-based semantics
that is very similar to that of the join calculus. It has a a single reduction rule,
up to unguarded contexts and ‘≡’:

x〈ṽ〉 | x(ỹ).P −→ P{ṽ/ỹ}



The Join Calculus: a Language for Distributed Mobile Programming 17

As we have seen in Section 1.2, despite the similarities with the join calculus,
this semantics does not possess the important locality property for communi-
cations on channel x and, in fact, cannot be implemented without global syn-
chronization. Term-based operational semantics may mask such implementation
concerns, because by essence they can only describe global computation steps.

In this section, we address this issue by exhibiting a computational model
for the join calculus, called the reflexive chemical abstract machine (rcham),
which can be refined into an efficient implementation. Later, we will also use the
rcham and its extensions to explicitly describe distributed computations. Our
model addresses issues 1 and 2 directly, and resorts to structural (actually, de-
notational) equivalence for issues 3–5, which are too implementation-dependent
to be described convincingly in a high-level model: issue 3 would require a model
of thread scheduling, and issue 5 would require a model of the data structures
used to organize threads; without 3 and 5, issue 4 is meaningless. However, we
will show that the structural properties of the rcham ensure that issues 3–5 can
be properly resolved by an actual implementation.

The state of the rcham tracks the various threads that execute a join cal-
culus program. As is apparent from the discussion of 1–5, the rcham should
contain two kinds of (virtual) threads:

– process threads that create new channels and end by sending a message;
they will be represented by join calculus processes P .

– definition threads that monitor queued messages and trigger reaction rules;
they will be represented by join calculus definitions D.

We do not specify the data structures used to organize those terms; instead, we
just let the rcham state consist of a pair of multisets, one for definition threads,
one for process threads.

Definition 1 (Chemical Solutions). A chemical solution S is a pair D ` P
of a multiset D = {|D1, . . . , Dm|} of join calculus definitions, and a multiset
P = {|P1, . . . , Pn|} of join calculus processes.

The intrinsic reordering of multiset elements is the only structural equivalence
we will need to deal with issues 3–5. The operational semantics of the rcham
is defined up to this reordering. Chemical solutions and the rcham derive their
names from the close parallel between this operational semantics and the reaction
rules of molecular chemistry. This chemical metaphor, first coined in [7], can be
carried out quite far:

– a message M = x〈v1, . . . , vn〉 is an atom, its channel name x is its valence.
– a parallel composition M1 | · · · |Mn of atoms is a simple molecule; any other

process P is a complex molecule.
– a definition rule J . P is a reaction rule that specifies how a simple molecule

may react and turn into a new, complex molecule. The rule actually specifies
a reaction pattern, based solely on the valences of the reaction molecule.
(And of course, in this virtual world, there is no conservation of mass, and
P may be arbitrarily large or small.)



18 Applied Semantics Summer School, Draft 7/01

– the multisets composing the rcham state are chemical solutions; multiset
reordering is “Brownian motion”.

The rcham is “reflexive” because its state contains not only a solution of
molecules that can interact, but also the multiset of the rules that define those
interactions; furthermore, this multiset can be dynamically extended with new
rules for new valences (however, the rules for a given set of valences cannot be
inspected, changed, or extended).

Computation on the rcham is compactly specified by the six rules given
in Figure 2. By convention, the rule for a computation step shows only the
processes and definitions that are involved in the step; the rest of the solution,
which remains unchanged, is implicit. Rule Str-Def is a bit of an exception: its
side condition formally means that σ(dv(D))∩(fv(D)∪ fv(P)) = ∅, where D ` P
is the global state of the rcham. (There are several ways to make this a local
operation, such as address space partitioning or random number generation, and
it would be ludicrous to hard code a specific implementation in the rcham.)

Figure 2 defines two different kinds of computation steps:

– reduction steps ‘→’ describe actual “chemical” interactions, and correspond
to join calculus reduction steps;

– heating steps ‘⇀’ describe how molecules interact with the solution itself, and
correspond in part to join calculus structural equivalence. Heating is always
reversible; the converse ‘⇁’ steps are called cooling steps; the Str-rules in
Figure 2 define both kinds of steps simultaneously, hence the ‘
’ symbol.

There is not a direct correspondence between ‘
’ and ‘≡’: while scope extrusion
is obviously linked to Str-Def, commutativity-associativity of parallel com-
position is rather a consequence of the multiset reordering. Unlike structural
equivalence, heating rules have a direct operational interpretation:

– Str-Par
⇀ and Str-Null

⇀ correspond to forking and ending process threads (issue 1).
– Str-Def

⇀ corresponds to allocating a new address for a definition (issue 2), and
forking a new definition thread there.

– Str-And
⇀ and Str-Top

⇀ correspond to entering rules in the synchronization automa-
ton of a definition (issue 4 in part).

With one exception, cooling steps do not have a similar operational inter-
pretation; rather, they are used to tie back the rcham computation to the join
calculus syntax. The exception is for Str-Par

⇁ steps that aggregate simple molecules
whose names all appear in the same join pattern; there Str-Par

⇁ steps model the
queuing and sorting performed by the synchronization automaton of the defini-
tion in which that pattern appears (again, issue 4 in part). We will denote such
steps by Join

⇁.
These observations, and the connection with the direct join calculus opera-

tional semantics are supported by the following theorem (where the reflexive-
transitive closure of a relation R is writtten R∗, as usual).



The Join Calculus: a Language for Distributed Mobile Programming 19

Str-Null ` 0 
 `
Str-Par ` P |P ′ 
 ` P, P ′

Str-Top > ` 
 `
Str-And D ∧ D′ ` 
 D, D′ `
Str-Def ` def D in P 
 Dσ ` Pσ

React J . P ` Jρ → J . P ` Pρ

Side conditions:
in Str-Def, σ substitutes distinct fresh names for the defined names dv(D);
in React, ρ substitutes names for the formal parameters rv(J).

Figure 2. The reflexive chemical abstract machine (rcham)

Theorem 2. Let P, P ′ and S,S ′ be join calculus processes and rcham solu-
tions, respectively. Then

1. P ≡ P ′ if and only if ` P 
∗ ` P ′

2. P → P ′ if and only if ` P 
∗→
∗ ` P ′

3. S 
∗ S ′ if and only if S ⇀∗⇁∗ S ′

4. S 
∗→
∗ S ′ if and only if S ⇀∗ Join
⇁

∗
→⇁∗ S ′

Corollary 3. If P0 → P1 → · · · → Pn is a join calculus computation sequence,
then there exist chemical solutions S1, . . . ,Sn such that

` P0 ⇀∗ Join
⇁ ∗→ S1 ⇀∗ Join

⇁ ∗→ · · · ⇀∗ Join
⇁ ∗→ Sn

with Si ⇁∗ ` Pi for 1 ≤ i ≤ n.

We still have to examine issues 3–5, which we have deliberately abstracted.
The rcham, and chemical machines in general, assumes that the atoms that
interact are brought together by random motion. This is fine for theory, but a
real implementation cannot be based only on chance. In our case, by Theorem 2,
an rcham computation relies on this “magical mixing” only for Join

⇁ and React→
steps. In both cases, we can show that no magic needs to be invoked:

– Join
⇁ steps only brings together atoms that have been routed to the definition of
their valence, and then only if these valences match one of the finite number
of join patterns of that definition.

– React→ simply selects one matching in the finite set of completed matches that
have been assembled at that definition.

Because synchronization decisions for a definition are always based on a finite
fixed set of valences, they can be compiled into a finite state automaton; this is
the compilation approach used in JoCaml—see [28] for an extensive discussion
of this implementation issue.

To keep up with the chemical metaphor, definitions are very much like the
enzymes of biochemistry: they enable reactions in a sparse solution, by providing



20 Applied Semantics Summer School, Draft 7/01

a fixed reaction site on which reactants can assemble. It is interesting to note
that the chemical machine for the pi calculus, which is in many aspects very
similar to the rcham, fails the locality property on exactly this count: it relies
solely on multiset reordering to assemble senders and receivers on a channel.

2 Basic equivalences

So far, the join calculus is a calculus only by name. We have argued that it is
a faithful and elegant model for concurrent programming. A true calculus im-
plies the ability to do equational reasoning—i.e., to calculate. To achieve this
we must equip the join calculus with a proper notion of “equality”; since join
calculus expressions model concurrent programs, this “equality” will be a form
of program equivalence. Unfortunately, finding the “right” equivalence for con-
current programs is a tall order:

1. Two programs P and Q should be equivalent only when they have exactly
the same properties; in particular it should always be possible to replace one
with the other in a system, without affecting the system’s behavior in any
visible way. This is a prerequisite, for instance, to justify the optimizations
and other program transformations performed by a compiler.

2. Conversely, if P and Q are not equivalent, it should always be possible to
exhibit a system for which replacing P by Q results in a perceivable change
of behavior.

3. The equivalence should be technically tractable; at least, we need effective
proof techniques for establishing identities, and these techniques should also
be reasonably complete.

4. The equivalence should generate a rich set of identities, otherwise there won’t
be much to “calculate” with. We would at least expect some identities that
account for asynchrony, as well as some counterpart of the lambda calculus
beta equivalence.

Unfortunately, these goals are contradictory. Taken literally, goal 1 would all
but force us to use syntactic equality, which certainly fails goal 4. We must thus
compromise. We give top priority to goal 4, because it wouldn’t make much sense
to have a “calculus” without equations. Goal 3 is our next priority, because a
calculus which requires an inordinate amount of efforts to establish basic identi-
ties wouldn’t be too useful. Furthermore, few interesting program equivalences
can be proven from equational reasoning alone, even with a reasonable set of
identities; so it is important that reasoning from first principles be tractable.

Goal 1 thus only comes in third position, which means that we must com-
promise on soundness. Thus we will consider equivalences that do not preserve
all observable properties, i.e., that only work at a certain level of abstraction.
Common examples of such abstractions, for sequential programs, are observing
runtime only up to a constant factor (O(·) complexity), not observing runtime
at all (only termination), or even observing only return values (partial correct-
ness). Obviously, we must very carefully spell out the set of properties that are



The Join Calculus: a Language for Distributed Mobile Programming 21

preserved, for it determines how the equations of calculus (and to some extent,
the calculus itself) can be used.

Even though it comes last on our priority list, we should not neglect goal 2.
Because of the abstractions it involves, a correctness proof based on a formal
model provides only a relative guarantee. Hence such a proof is often more
useful when if fails, because this allows one to find errors in the system. Goal 2
is to make sure that all such failures can be traced to actual errors, and not to
some odd technical property of the equivalence that is used. The reason goal 2
comes last is that the proof process has to be tractable in the first place for this
“debugging” approach to make any practical sense.3

The priorities we have set are not absolute, and therefore it makes sense to
consider several equivalences, that strike different compromises between goals
1–4. We will study two of them in subsections 2.1 and 2.4: may testing, which
optimizes goals 4 and 2, at the expense of goals 1 and 3, and bisimilarity equiv-
alence (which we will often simplify to bisimilarity in the following), which sac-
rifices goal 2 to get a better balance between the other goals. May testing is in
fact coarser than bisimilarity, so that in practice one can attempt to prove a
bisimilarity, and in case of failure “degrade” to may testing to try to get a good
counterexample. In sections 3 and 4 we will study three other equivalences; the
complete hierarchy is summarized in Figure 3 on page 45.

2.1 May testing equivalence

The first equivalence we consider follows rigidly from the priorities we set above:
it is the coarsest equivalence that reasonably preserves observations, and it also
turns out to have reasonable proof techniques, which we will present in sub-
sections 2.2 and 2.3. Moreover, may testing fulfills goal 2: when may testing
equivalence fails, one can always exhibit a finite counter-example trace.

May testing is the equivalence that preserves all the properties that can be
described in terms of a finite number of interactions (message exchanges in the
case of the join calculus), otherwise known as safety properties. This restriction
may seem severe, but it follows rather directly from the choice of the syntax and
semantics of the join calculus. As we noted in Section 1.5, we deliberately chose
to abstract away the scheduling algorithm. In the absence of any hypothesis
on scheduling, it is in practice impossible to decide most complexity, termina-
tion, or even progress properties. Moreover, such liveness properties are just
abstractions of the timing properties which the system really needs to satisfy;
and timing properties can be obtained fairly reliably by measuring the actual
implementation. So, it makes practical sense for now to exclude liveness proper-
ties; but we will reconsider this decision in sections 2.4 and 3.2, using abstract
scheduling assumptions.

The “testing” in may testing refers to the way safety properties are charac-
terized in the formal definition of the may testing equivalence. We represent a

3 Also, a clear successful proof will identify the features that actually make the system
work, and often point out simplifications that could be made safely.



22 Applied Semantics Summer School, Draft 7/01

safety property P by a test T (·), such that a process P has property P if and
only if T (P ) succeeds. Hence, P and Q will be equivalent if, for any test T , T (P )
succeeds iff T (Q) succeeds.

To make all this formal, we need to fix a formal syntax for tests, and a
formal semantics for “succeeds”. We restricted ourselves to properties that can
be described in terms of finite message exchanges, which can certainly be carried
out by join calculus programs, or rather contexts. Since the join calculus contains
the lambda calculus, we can boldly invoke Church’s thesis and assume that a
test T (·) can always be represented by a pair (C[·], x) of a join calculus evaluation
context, and channel name x, which C[·] uses to signal success: T (P ) succeeds
iff C[P ] may send an x〈. . . 〉 message.

Evaluation contexts Evaluation contexts are simply join calculus processes
with a “hole” [·]S that is not inside a definition (not guarded)—they are called
static contexts in [30]. They are defined by the following grammar:

C[·]S ::= evaluation contexts
[·]S hole

|| P | C[·]S left parallel composition
|| C[·]S | P right parallel composition
|| def D in C[·]S process/function definition

Formally, a context and its hole are sorted with a set S of captured names.
If P is any process, C[P ]S is the process obtained by replacing the hole in C[·]S
by P , after alpha converting bound names not in S of C[·]S that clash with fv(P ).
Provided S contains enough channel names, for example all the channel names
bound in C[·]S , or all the channel names free in P , this means replacing [·]S by P
without any conversion whatsoever. We will often drop the S subscript in this
common case.

The structural equivalence and reduction relations are extended to con-
texts C[·]S of the same sort S, with the proviso that alpha conversion of names
in S is not allowed. The substitution relation is similarly extended to contexts:
C[C ′[·]S′ ]S is a context of type S′.

By convention, we only allow ourselves to write a reduction C[P ]S → C ′[P ′]S′
when the identity of the hole is preserved—that is, when in fact we have

C[P | [·]S∩S′ ]S → C ′[P ′ | [·]S∩S′ ]S′

Similarly, C[P ]→ C ′[P ′] really means that C[P ]S → C ′[P ′]S′ for some suitably
large sets S and S′.

Evaluation contexts are a special case of program contexts P [·], which are
simply process terms with a (possibly guarded) hole. An equivalence relation
R such that Q R Q′ implies P [Q] R P [Q′] for any program context P [·] is
called a congruence; if R is only a preorder then it is called a precongruence.
A congruence can be used to describe equations between subprograms. All of
our equivalences are congruences for evaluation contexts, which means they can
describe equations between subsystems, and most are in fact congruences (the
exception only occurs for an extension of the join calculus with name testing).



The Join Calculus: a Language for Distributed Mobile Programming 23

Output observation The success of a test is signaled by the output of a specific
message; this event can be defined syntactically.

Definition 4 (Output predicates). Let P be a join calculus process and x be
a channel name.

– P ↓x iff P = C[x〈ṽ〉]S for some tuple ṽ of names and some evaluation
context C[·]S that does not capture x—that is, such that x 6∈ S.

– P ⇓x iff P →∗ P ′ for some P ′ such that P ′ ↓x .

The predicate ↓x tests syntactically for immediate output on x, and is called the
strong barb on x. The (weak) barb on x predicate ⇓x only tests for the possibility
of output.

The strong barb can also be defined using structural equivalence, as P ↓x if
and only if P ≡ def D in Q | x〈ṽ〉 for some D,Q, ṽ such that x 6∈ dv(D).

We say that a relation R preserves barbs when, for all x, P R Q and P ⇓x
implies Q ⇓x . By the above, structural equivalence preserves barbs.

May testing With the preceding definitions, we can easily define may testing:

Definition 5 (May testing preorder and equivalence). Let P,Q be join
calculus processes, and let C[·]S range over evaluation contexts.

– P vmay Q when, for any C[·]S and x, C[P ]S ⇓x implies C[Q]S ⇓x .
– P 'may Q when, for any C[·]S and x, C[P ]S ⇓x iff C[Q]S ⇓x .

The preorder vmay is called the may testing preorder, and the equivalence 'may

is called the may testing equivalence.

The may testing preorder P vmay Q indicates that P ’s behaviors are included
in those of Q, and can thus be used to formalize “P implements Q”. Clearly, the
equivalence 'may = vmay ∩ wmay is the largest symmetric subrelation of vmay.

As an easy example of may testing, we note that structural equivalence is finer
than may testing equivalence: P ≡ Q implies C[P ]S ≡ C[Q]S , and ≡ preserves
barbs. By the same token, we note that we can drop the S sorts in the definition
of 'may: C[·]S , x, C ′[·]S , x test the same property if C[·]S ≡ C ′[·]S , so it is enough
to consider contexts where no alpha conversion is needed to substitute P or Q.

As a first non-trivial example, let us show a simple case of beta conversion:

def x〈y〉 . P in C[x〈u〉]u 'may def x〈y〉 . P in C[P{u/y}]u

For any test C ′[·]S , t we let S′ = S ∪ {x, u} and define

C ′′[·]S′
def= C ′[def x〈y〉 . P in C[[·]S′ ]u]S

then we show that C ′′[x〈u〉]S′ ⇓t iff C ′′[P{u/y}]S′ ⇓t . The “if” is obvious, since
C ′′[x〈u〉]S′ → C ′′[P{u/y}]S′ . (More generally, we have → ⊂ wmay.) For the
converse, suppose that C ′′[x〈u〉]S′ →∗ Q ↓t . If the reduction does not involve



24 Applied Semantics Summer School, Draft 7/01

the x〈u〉 message, then C ′′[R]S′ ⇓t for any R—including R = P{u/y}. Otherwise,
the definition that uses x〈u〉 can only be x〈y〉 . P , hence we have

C ′′[x〈u〉]S′ →∗ C ′′′[x〈u〉]S′ → C ′′′[P{u/y}]S′ →∗ Q ↓t

whence we also have C ′′[P{u/y}]→∗ C ′′′[P{u/y}]S′ ⇓t .
The same proof can be carried out if x〈u〉 appears in a general context

Q[x〈u〉], using the notion of general context reduction from Section 2.3. This
gives strong beta equivalence, for we have

let f(x) = E in Q[let z = f(u) in R]
def= let f(x) = E in Q[def κ〈z〉 . R in f〈u, κ〉]
'may let f(x) = E in Q[def κ〈z〉 . R in let v = E{u/x} in κ〈v〉]
'may let f(x) = E in Q[def κ〈z〉 . R in let v = E{u/x} in R{v/z}]
≡ let f(x) = E in Q[(def κ〈z〉 . R in 0) | let z = E{u/x} in R]
'may let f(x) = E in Q[let z = E{u/x} in R]

since obviously def D in 0 'may 0 for any D.

2.2 Trace observation

We defined may testing in terms of evaluation contexts and barbs. This allowed
us to stay as close as possible to our intuitive description, and exhibit compliance
with goals 4 and 1. However, this style of definition does not really suit our other
two goals.

In general, proving that P vmay Q can be quite intricate, because it involves
reasoning about C[P ]S ⇓x—an arbitrary long reduction in an arbitrarily large
context. This double quantification may not be much of an issue for showing
simple, general reduction laws such as the above, but it can quickly become
unmanageable if one wants to show, say, the correctness of a given finite-state
protocol. Moreover it all but precludes the use of automated model-checking
tools.

If P vmay Q fails, then there must be a test C[·]S , x that witnesses this
failure. However the existence of this C[·]S , x only partly fulfills goal 2, because
it illustrates the problem with the programs P and Q only indirectly, by the
means of a third, unrelated program. Moreover, the definition of vmay gives no
clue for deriving this witness from a failing proof attempt.

In this section we present an alternative characterization of vmay and 'may

that mitigates the proof problem, and largely solves the counter-example prob-
lem. This characterization formalizes the fact, stated in Section 2.1, that 'may

preserves properties based on finite interaction sequences. We formalize such se-
quences as traces, define the trace-set of a process P , and then show that vmay

corresponds to the inclusion of trace-sets, and 'may to their equality.
Informally, a trace is simply an input/output sequence; however we must

account for the higher-order nature of the join calculus, and this makes the
definition more involved.



The Join Calculus: a Language for Distributed Mobile Programming 25

Definition 6 (Traces). A trace T is a finite sequence J0 . M0, . . . , Jn . Mn

such that

1. For each element Ji . Mi of the trace, Mi is a single message xi〈yi1, . . . , yili〉,
and Ji is either 0 or a join pattern.

2. The variables yik and in rv(Jj) are all pairwise distinct.
3. Each channel name defined by Jj is a yik for some i < j (hence, J0 = 0).
4. Dually, xi 6= yjk for any j, k, and xi 6∈ rv(Jj) for any j > i.

We set TI(i) = {yjk | 0 ≤ j < i, 1 ≤ k ≤ lj}, so that condition 3 can be stated
as dv(Ji) ⊆ TI(i).

Intuitively, to each element Ji . Mi of a trace should correspond a reduction
that behaves (roughly) as the join definition Ji . Mi: that is, the reduction
should input Ji and output Mi. The names in the TI(i) and the rv(Ji) are
formally bound in the trace. In matching a process run, the rv(Ji) names should
be substituted by fresh names, and the yjk by the arguments of the actual
outputs.

Definition 7 (Trace sets). A trace T = J0 . M0, . . . , Jn . Mn is allowed by
a process P (notation P |= T ), if there is a substitution σ that maps names in
the rv(Ji) to distinct names not in fv(P ), and names in the TI(i) to channel
names, and a sequence Ci[·]Si of evaluation contexts of sort Si = σ(TI(i)), such
that P = C0[0]∅ and

Ci[Jiσ]Si
→∗ Ci+1[Miσ]Si+1

for each i, 0 ≤ i ≤ n. Note that according to the convention we set in 2.1, this
notation implies that the identity of the hole is preserved during the reduction.

The trace-set Tr(P ) of P is the set of all its allowed traces.

Tr(P ) = {T | P |= T}

The main motivation for this rather complex set of definitions is the following
result

Theorem 8 (Trace equivalence). For any two processes P and Q, we have
P vmay Q if and only if Tr(P ) ⊆ Tr(Q), and consequently P 'may Q if and only
if Tr(P ) = Tr(Q).

This theorem allows us to reach goal 2: if P vmay Q fails, then there must be
some finite input/output trace that is allowed by P but that is barred by Q. In
principle, we can look for this trace by enumerating all the traces of P and Q.
This search can also be turned into a proof technique for P vmay Q that does
not involve trying out arbitrary large contexts, and may be more amenable to
model-checking. Note, however, that the technique still involves arbitrary long
traces, and in that sense fails to meet goal 3.

As an application, let us prove the correctness of the compilation of a three-
way join into two two-way joins:

def x〈〉 | y〈〉 . t〈〉 ∧ t〈〉 | z〈〉 . u〈〉 in v〈x, y, z〉
'may def x〈〉 | y〈〉 | z〈〉 . u〈〉 in v〈x, y, z〉



26 Applied Semantics Summer School, Draft 7/01

For either terms, a trace must start with 0 . v〈x, y, z〉, and thereafter consist
of outputs of u〈〉 after inputs of x〈〉, y〈〉, z〈〉. In either case, there must be at
least n x〈〉s, y〈〉s, and z〈〉s in J1, . . . , Jn, so both terms have exactly the same
set of traces.

2.3 Simulation and coinduction

While in many respects an improvement over the basic definition of 'may, the
trace sets do not really help with the real difficulty of 'may proofs—the quan-
tification over arbitrary long reduction sequences that is hidden in the definition
of barbs ⇓x . Because the shape of a term changes during a reduction step, it is
very hard to reason on the effect of several successive reduction steps. The kind
of offhand argument we used for our first examples often turn out to be incorrect
in more complex cases.

To do a rigorous equivalence proof, it is necessary to analyze reduction steps
one case at a time. In many calculi this analysis is based on structural induction
on the syntax, but in the join calculus this would be inappropriate because of
structural equivalence. Hence we base our analysis on the triggered rule and the
set of messages that match its pattern, since those are invariant under structural
equivalence.

In this section we will present yet another characterization of may testing,
which this time will be appropriate for step-by-step analysis. To avoid the com-
plexity of higher-order traces, we will revert to modeling interaction with arbi-
trary evaluation contexts; those barely add to the overall complexity of a proof
because interaction with them can be highly stylized, as Theorem 8 shows.

In order to formulate our new characterization, we turn to the technique
of coinductive definition, which has been the power horse of most concurrent
program equivalences. This simply means that we invoke Tarski’s theorem to
define an equivalence E as the greatest fixed point of a monotonic functional F .
The beauty of this definition is that it immediately gives us a generic method
for proving P E Q: P E Q iff we can find some subfixpoint relation R such that
P R Q, and that for any P ′, Q′, P ′ R Q′ implies P ′ F(R) Q′.

To get a monotonic F , we rely on definitions of the form “P F(R) Q iff
P(P,Q,R)” whereR appears only in positive P ′ R Q′ subformulas in P(P,Q,R).
In this case a relation R is a subfixpoint of F iff P R Q implies P(P,Q,R), a
property which we will denote by P∗(R). As ·∗ distributes over conjunction, we
will generally define our equivalences by a conjunction of such properties: “E
is the coarsest relation such that P∗1 (E) and . . . and P∗n(E)”. In fact, we have
already encountered such P∗i s:
1. Barb preservation: “if P R Q then for any x, P ⇓x implies Q ⇓x”.
2. Symmetry: “if P R Q then Q R P”.
3. Precongruence for evaluation contexts:

“if P R Q then for any C[·]S , C[P ]S R C[Q]S”.

From this observation, we get our first coinductive definition of 'may: it is the
greatest symmetric relation that preserves barbs and is a congruence for evalu-
ation contexts. Note that property 1 really means that R is contained in a fixed



The Join Calculus: a Language for Distributed Mobile Programming 27

relation, in this case the barb inclusion relation v⇓ , defined by “P v⇓ Q iff for
any x P ⇓x implies Q ⇓x”.

This first characterization of 'may merely rephrases Definition 5. To improve
on this, it will prove extremely convenient to introduce diagrammatic notation.
To describe a property P∗, we lay out the relations occurring in P∗ in a two-
dimensional diagram. We indicate negatively occurring, universally-quantified
relations by solid lines, and positively occurring, existentially quantified relations
by dashed lines. For instance, property 3 is expressed by the diagram

P
R

Q

CS [P ] R
CS [Q]

The main property that we are interested in is commutation with the reduction
relation →∗, which is called simulation.

Definition 9 (Simulation). A relation R between join calculus terms is a sim-
ulation if for any P, P ′, Q, if P →∗ P ′ and P R Q, there is a term Q′ such that
Q→∗ Q′ and P ′ R Q′. In a diagram:

P

∗
��

R
Q

∗
��

P ′ R
Q′

What we call here simulation is often called weak simulation in the literature, a
simulation being a relation that commutes with single-step reductions. Counting
steps makes no sense in the abstract, asynchronous setting of the join calculus,
so we simply drop the “weak” adjective in the rest of these notes.

Let us say that a relationR preserves immediate barbs if P R Q and P ↓x im-
plies Q ⇓x . We can now use the simulation property to replace barb preservation
by immediate barb preservation in the coinductive characterization of vmay.

Theorem 10. May testing preorder is a simulation, hence it is also the great-
est simulation that is an evaluation context precongruence and that preserves
immediate barbs.

This is an improvement, since to consider immediate barbs it is not neces-
sary to consider reduction steps. It would appear that we have only pushed the
problem over to the simulation property, but this is not the case, as by a simple
tiling argument we have

Theorem 11. A relation R is a simulation iff

P

��

R
Q

∗
��

P ′ ≡R
Q′



28 Applied Semantics Summer School, Draft 7/01

We consider a single step, rather than a series of steps on the left. The ‘≡’ allows
us to study reductions only up to structural equivalence. To illustrate the power
of this new characterization, let us show that

Theorem 12. May testing preorder is a precongruence, and may-testing equiv-
alence is a (full) congruence.

We begin with the following lemma

Lemma 13. For any (well-typed) P , x, y, and any tuple ṽ of distinct variables
that matches the arity of both x and y, we have:

def x〈ṽ〉 . y〈ṽ〉 in P 'may P{y/x}

Hence, both 'may and vmay are closed under substitution.

The conclusion of lemma 13 also holds without the arity assumption, but with
a more involved proof. Here, we just take a candidate relation S consisting of
all pairs of processes structurally equivalent to C[def x〈ṽ〉 . y〈ṽ〉 in P ]S or
C[P{y/x}]S , for some P, x, y, ṽ satisfying the hypotheses of the lemma. Now S
is obviously a congruence for evaluation contexts. It trivially preserves strong
barbs ↓z in C[·]S or even in P if z 6= x, and if P{y/x} ↓y because P ↓x , then
(def x〈ṽ〉 . y〈ṽ〉 in P ) ⇓y .

To show that S is a simulation, consider a reduction C[def x〈ṽ〉 . y〈ṽ〉 in
P ]S → Q; we must have Q ≡ C ′[def x〈ṽ〉 . y〈ṽ〉 in P ′]S′ . If the rule used is
x〈ṽ〉 . y〈ṽ〉, then C ′[P ′{y/x}]S′ = C[P{y/x}]S , else C[P{y/x}]S → C ′[P ′{y/x}]S′ .
Conversely, if C[P{y/x}]S → Q, and we are not in the first case above, then it
can only be because the rule used matches some ys that have replaced xs. But
then the x〈ṽ〉 . y〈ṽ〉 can be used to perform these replacements, and bring us
back to the first case. Thus S ⊆ 'may, from which we deduce lemma 13.

To establish theorem 12, we need a careful definition of a multi-holed general
context. A general context P [·]S of sort S is a term which may contain several
holes [·]σ, where σ is a substitution with domain S; different holes may have
different σs. Bindings, alpha conversion, structural equivalence, and reduction
are extended to general contexts, by taking fv([·]σ) = σ(S). The term P [Q]S
is obtained by replacing every hole [·]σ in P [·]S by Qσ, after alpha converting
bound names in P [·]S to avoid capturing names in fv(Q) \ S.

Consider the candidate relation

R def= {(P [Q]S , R) | Q vmay Q
′ and P [Q′]S vmay R}

R is trivially closed under evaluation contexts. Let P ′[·]S be obtained by replac-
ing all unguarded holes [·]σ in P [·]S with Qσ, and similarly P ′′[·]S be obtained
by replacing [·]σ with Q′σ. Then P ′[Q′]S vmay P ′′[Q′]S = P [Q′]S by several
applications of Lemma 13, hence P ′[Q′]S vmay R.

If P [Q]S = P ′[Q]S ↓x , the x〈· · · 〉 is in P ′[·]S , so P ′[Q′]S ↓x , hence R ⇓x .
Similarly, any reduction step in P ′[Q]S must actually take place in P ′[·]S , i.e.,
it must be a P ′[Q]S → P ′′′[Q]S step with P ′[·]S → P ′′′[·]S . Thus we have
P ′[Q′]S → P ′′′[Q′]S , hence R →∗ R′ for some R′ such that P ′′′[Q′]S vmay R

′,
hence such that P ′′′[Q]S R R′. So R is also a simulation, hence R ⊂ vmay.



The Join Calculus: a Language for Distributed Mobile Programming 29

2.4 Bisimilarity equivalence

Despite our success with the proofs of Lemma 13 and Theorem 12, in general
the coinductive approach will not always allow us to avoid reasoning about
arbitrarily long traces. This line of reasoning has only been hidden under the
asymmetry of the simulation condition. This condition allows us to prove that
P vmay Q with the candidate relation R = {(P ′, Q) | P →∗ P ′}, which is
a simulation iff P vmay Q. But of course, proving that R is a simulation is
no easier than proving that P vmay Q—it requires reasoning at once about
all sequence P →∗ P ′. So to really attain goal 3 we need to use a different
equivalence.

There is, however, a more fundamental reason to be dissatisfied with 'may: it
only passes goal 1 for a very restrictive notion of soundness, by ignoring any sort
of liveness properties. Thus it can label as “correct” programs that are grossly
erroneous. For example, one can define in the join calculus an “internal choice”
process

⊕
i∈I Pi between different processes Pi, by

def
∧
i∈I(τ〈〉 . Pi) in τ〈〉

Let us also write P1 ⊕ P2 for
⊕2

i=1 Pi. Then we have the following for any P :

P ⊕ 0 'may P

This equation states that a program that randomly decides whether to work at
all or not is equivalent to one that always works! In this example, the “error” is
obvious; however, may testing similarly ignores a large class of quite subtle and
malign errors called deadlock errors. Deadlocks occur when a subset of compo-
nents of a system stop working altogether, because each is waiting for input from
another before proceeding. This type of error is rather easy to commit, hard to
detect by testing, and often has catastrophic consequences.

For nondeterministic sequential system, this problem is dealt with by com-
plementing may testing with a must testing, which adds a “must” predicate to
the barbs:

P �↓x
def= if P →∗ P ′ 6→ , then P ′ ↓x

However, must testing is not very interesting for asynchronous concurrent com-
putations, because it confuses all diverging behaviors. We refer to [26] for a
detailed study of may and must testing in the join calculus.

It turns out that there is a technical solution to both of these problems, if
one is willing to compromise on goal 2: simply require symmetry and simulation
together.

Definition 14. A bisimulation is a simulation R whose converse R−1 is also
a simulation.

The coarsest bisimulation that respects (immediate) barbs is denoted
.
≈.

The coarsest bisimulation that respects (immediate) barbs and is also a con-
gruence for evaluation context is called bisimilarity equivalence, and denoted ≈.



30 Applied Semantics Summer School, Draft 7/01

When no confusion arises, we will simply refer to ≈ as “bisimilarity”. The
definition of bisimilarity avoids dummy simulation candidates : since R−1 is also
a simulation, P R Q implies that P and Q must advance in lockstep, making
exactly the same choices at the same time. The erroneous P ⊕ 0 ≈ P is avoided
in a similar way. This equation can only hold if P →∗ Q ≈ 0, that is, if P is
already a program that may not work at all.

In fact, we will show in Section 3.2 that under a very strong assumption of
scheduling fairness, ≈ preserves liveness properties, so we meet goal 1 fairly well.
However there are still classes of errors that we miss entirely, notably livelocks,
i.e., situations where components careen endlessly sending useless messages to
themselves, rather than producing useful output. However, we do detect livelocks
where the components can only send useless messages to themselves, and in the
cases where they could send useful output, randomized scheduling usually will
avoid such livelocks.

Unfortunately, the previously perfect situation with respect to goals 4 and 2 is
now compromised. While all of the example equations we have seen so far are still
valid for ≈, the three-way to two-way join compilation of Section 2.2 now fails
to check if we add arguments to the x, y, and z messages, and use several such
messages with different values. The three-way join cannot emulate the decision
of the two-way merger to group two x and y values, without deciding which z
value will go with them. Nonetheless the compilation is intuitively correct, and
does preserve all liveness properties; but ≈ fails, and the reasons for the failure
are only technical.

2.5 Bisimulation proof techniques

The basic definition of bisimulation give only a rough idea of how to prove a
bisimilarity equation. There are a number of now well-established techniques for
showing bisimilarity, notably to deal with contexts and captures, and to “close”
large diagrams.

First of all, let us consider the problem of quantifying over arbitrary contexts.
In Section 4 we present an extension of the join calculus, and a new equivalence,
that avoid the need to consider arbitrary contexts altogether. For the time being,
let us show that they are really not much of an issue. Suppose we want to show
P ≈ Q; then we should have (P,Q) in our candidate relation, as well as all
terms (C[P ], C[Q]). Now, as soon as P (and Q) starts exchanging messages
with C[·], C[·] and P will become intermingled. However, if we use structural
equivalence to decompose C[·], P , and Q, it becomes clear that the situation is
not so intricate : we can take C[·] ≡ def DC in (MC | [·]), P ≡ def DP inMP ,
Q ≡ def DQ inMQ, where MC , MP , MQ are parallel compositions of messages,
and all bound names are fresh, except that DC may define some free names of
P and Q. With those notations, we see that elements of R will have the shape

(def DC ∧ DP in (MC |MP ), def DC ∧ DQ in (MC |MQ))

To allow for extrusions from P to C[·], we simply allow DC and MC to contain
channel names that have been exported by P and Q, and are thus defined in



The Join Calculus: a Language for Distributed Mobile Programming 31

both DP and DQ; this may require applying different substitutions σP and σQ
to DC and MC , to account for different names in P and Q.

It should also be clear that in this setting, the reduction step analysis is not
especially complicated by the presence of the arbitrary context. We can classify
reduction steps in four categories:

1. reductions that use an unknown rule in DC , with only unknown messages
in MC .

2. reductions that use an unknown rule in DC , with some messages in MP .
3. reductions that use a known rule in DP , but with some unknown messages

in MCσP .
4. reductions that use a known rule in DP , with only known messages in MP .

The first two cases are easy, since a syntactically similar reduction must be
performed by the right hand term. In the second case the messages in MP must
be matched by messages in MQ, possibly after some internal computation using
known rules in DQ and other known messages in MQ. Cases 3 and 4 may be
harder, since Q need not match the reduction precisely. In case 3, the exact
number and valence of the “unknown” messages is determined by the known
rule and messages, and those messages are similarly available to Q.

Note that cases 2, 3, and 4 correspond directly to output, input, and internal
steps in a trace or labeled semantics. Hence, the extra work required for those
“arbitrary contexts” amounts to two generic placeholders DC and MC in the
description of the candidate bisimulation, and one extra trivial case. . . that is,
not very much. Furthermore, we can often simplify the relation by hiding parts
common to DP and DQ, or MP and MQ, inside DC or MC , respectively. This
is equivalent to the “up to context” labeled bisimulation proof technique.

There is one final wrinkle to this proof technique : to be an evaluation context
congruence, a relation R of the shape above should contain all alpha variants of
def DP in MP and def DQ in MQ, to avoid clashes with the components of a
new context C ′[·] that is being added. This is easily handled by completing R
with all pairs (C[P ]ρ,C[Q]ρ) for all injective renamings ρ. Reduction diagrams
established for R also hold for the extended R, and we can use the renamings
to avoid name clashes with C ′[·]. In fact, we can further use the renamings to
reserve a set of private bound names for the DP and DQ definitions.

The second technique we explore facilitates the diagram proof part, and
makes it possible to meet the bisimulation requirement with a smaller relation.
The general idea is to use equational reasoning to “close off” these diagrams,
as we did in the proof of theorem 12. Unfortunately, the unrestricted use of ≈
in simulation diagrams is unsound: let P = def x〈〉 . y〈〉 in x〈〉, and consider
the singleton relation {(P,0)}. If P → Q then Q ≡ def x〈〉 . y〈〉 in y〈〉, so
Q ≈ P by the analog of lemma 13. So {(P,0)} is a simulation up to ≈, and it
also preserves immediate barbs (there are none). But {(P,0)} does not preserve
barbs (P ⇓y but 0 6⇓y), so it certainly is not a simulation.

To allow some measure of equational reasoning, we define a more restrictive
notion of simulation, following [40]. This notion does not really have a valid
semantic interpretation (it does step counting), but it is a convenient technical



32 Applied Semantics Summer School, Draft 7/01

expedient that allows the use of several important equations inside simulation
diagrams, the most important of which is beta reduction.

Definition 15 (Tight simulations). A relation R is a tight simulation when

P

=
��

R
Q

=
��

P ′ R
Q′

where P →= P ′ means P → P ′ or P = P ′.

Definition 16 (Expansion). An expansion is a simulation whose converse,
called a compression, is a tight simulation. The coarsest expansion that respects
the barbs is denoted �.

A tight bisimulation is a tight simulation whose converse is a tight simula-
tion. The coarsest tight bisimulation that respects the barbs is denoted �.

These technical definitions find their use with the following reformulations:

Theorem 17 (Simulations up to).
A relation R is a tight bisimulation when

P

��

R
Q

=
��

P ′
(�∪R)∗

Q′

P

=
��

R
Q

��
P ′

(�∪R)∗

Q′

A relation R is an expansion when

P

��

R
Q

∗
��

P ′ �R�
Q′

P

=
��

R
Q

��
P ′

(�∪R)∗

Q′

A relation R is a bisimulation when

P

��

R
Q

∗
��

P ′ �R≈
Q′

P

∗
��

R
Q

��
P ′ ≈R�

Q′

Most of the equations established with 'may are in fact valid compressions,
and so can be used to close diagrams in bisimulation proofs. In particular, beta
reduction is a compression.

Theorem 18 (Beta compression). If Q[·]S is a general context that does not
capture f or any names free in E (S ∩ ({f} ∪ fv(E)) = ∅), then

let f(x̃) = E in Q[let z = f(ũ) in R]S
� let f(x̃) = E in Q[let z = E{ũ/̃x} in R]S



The Join Calculus: a Language for Distributed Mobile Programming 33

3 A hierarchy of equivalences

In this section and the next one, we continue our comparative survey of equiv-
alences and their proof techniques. We provide useful intermediate equivalences
between may-testing and bisimilarity. We give finer labeled semantics with purely
coinductive proofs of equivalence. We also discuss the trade-off between different
definitions of these equivalences. At the end of this section, we summarize our
results as a hierarchy of equivalences ordered by inclusion.

Although we develop this hierarchy for establishing the properties of pro-
grams written in the join calculus, most of these equivalences and techniques
are not specific to the join calculus. In principle, they can be applied to any
calculus with a small-step reduction-based semantics, evaluation contexts, and
some notion of observation. They provide a flexible framework when considering
new calculi, or variants of existing calculi (see for instance [15,1,17]).

3.1 Too many equivalences?

In concurrency theory, there is a frightening diversity of calculi and equiva-
lences (see, for instance, Glabbeek’s classification of weak equivalences [19]).
Even in our restricted setting—asynchronous concurrent programs—there are
several natural choices in the definition of process equivalence, and for many of
these choices there is a record of previous works that exclusively rely on each
resulting equivalence.

In Section 2, we detailed the (largely contradictory) goals for the “right”
equivalences. Before introducing useful variants, we now highlight some of the
technical choices in their definitions. In order to choose the variant best adapted
to the problem at hand, we need to understand the significance of such choices.
For example, different styles of definition may yield the same equivalence and still
provide different proof techniques. Conversely, some slight changes in a definition
may in fact strongly affect the resulting equivalence and invalidate its expected
properties.

Context closures As illustrated in the previous section, one may be interested
in several classes of contexts. Evaluation contexts are easy to interpret in a test-
ing scenario, but more general context-closure properties may also be useful in
lemmas (e.g., beta compression). Technically, the main novelty of general con-
texts is that different free variables appearing under a guard may be instantiated
to the same name. In the join calculus, this is inessential because relays from
one name to another have the same effect, as expressed in Lemma 13 for may
testing, but this is not the case in extensions of the join calculus considered in
Section 4.5.

Conversely, it may be convenient to consider smaller classes of contexts to
establish context closure. For instance, one may constrain the names that appear
in the context, considering only contexts with a few, chosen free variables, or
contexts whose local names never clash with those of the processes at hand, or
contexts with a single, “flat” definition.



34 Applied Semantics Summer School, Draft 7/01

In the following discussion, we write R◦ for the congruence of relation R,
defined as P R◦ Q iff ∀C[·], C[P ] R C[Q]. As our usual equivalences are all
closed by application of evaluation contexts, we use plain relation symbols (',
≈,. . . ) for them, and “dotted” relation symbols for the sibling relations defined
without a context-closure requirement (

.',
.
≈,. . . ).

Primitive Observations The notion of basic observation is largely arbitrary.
So far, we have been using the output predicates of Definition 4, given as the
syntactic presence of particular messages on free names in evaluation contexts.
Moreover, in our definitions of equivalences, we use a distinct predicate ↓x for
every channel name, and we don’t discriminate according to the content of mes-
sage. Another, very detailed observation predicate of Section 2 is given by Def-
inition 7, as one can test whether a particular execution trace is allowed by a
process. Other, natural alternatives are considered below.

Fortunately, the details of observation often become irrelevant when consid-
ering relations that are (at least) closed by application of evaluation contexts.
Indeed, as soon as we can use a primitive observation predicate to separate two
processes, then any other “reasonable” notion of observation should be express-
ible using a particular context that observes it, then conveys the result of this
internal observation by reducing to either of these two processes.

Existential Predicates. In the initial paper on barbed equivalences [33], and in
most definitions of testing equivalences, a single predicate is used instead of an
indexed family. Either there is a single observable action, often written ω, or
there is a single, “existential” predicate that collectively tests the presence of
any message on a free name. Accordingly, for every family of predicates such as
⇓x , we may define an existential predicate P ⇓def= ∃x.P ⇓x , and obtain existential
variants for any observation-based equivalence. For instance, we let '∃may be the
largest relation closed by application of evaluation contexts that refines P ⇓. As
suggested above, existential equivalences coincide with their basic equivalence
when they are context-closed. For instance, one can specifically detect ⇓x by
testing ⇓ in a context that restricts all other free names of the process being
tested, and one can test for ⇓ as a the conjunction of all predicates ⇓x , hence
'∃may = 'may. In the following, we will consider equivalences whose existential
variant is much weaker.

Transient Observations. In the join calculus, strong barbs ↓x appear as messages
on free names, which are names meant to be defined by the context. Due to the
locality property, these messages are preserved by internal reductions, hence the
strong barbs are stable: if P ↓x and P →∗ P ′, then also P ′ ↓x ).

This is usually not the case in process calculi such as CCS or the pi cal-
culus, where messages on free names can disappear as the result of internal
communication. For instance, the reduction x〈〉 |x() → 0 erases the barb ↓x .
Transient barbs may be harder to interpret in terms of observation scenarios,
and they complicate the hierarchy of equivalence [15]. However, one can enforce



The Join Calculus: a Language for Distributed Mobile Programming 35

the permanency of barbs using a derived committed message predicate P ↓↓x
def=

if Ps→∗ P ′ then P ′ ↓x , instead of the predicate ↓x in every definition. One can
also rely on the congruence property (when available) to turn transient barbs
into permanent ones. In the pi calculus for instance, we let Tx[·]

def= νx.(x().t〈〉|[·])
and, for any process P where t is fresh, we have Tx[P ]→∗↓↓t iff P ⇓x .

Relations between internal states So far, we considered a “pure” testing
semantics 'may and a much finer bisimulation-based semantics ≈ that requires
an exact correspondence between internal states. The appearance of bisimulation
raises two questions:

Can we use a coarser correspondence between internal states? This is an im-
portant concern in our setting, because asynchronous algorithms typically use
a series of local messages to simulate an atomic “distributed” state transition.
Since these messages are received independently, there is a gradual commitment
to this state transition, which introduces transient states. Hence, the two pro-
cesses do not advance in lockstep, and they are not bisimilar. In Section 3.3, we
explain how we can retain some benefits of coinductive definitions in such cases.

Should this correspondence depend on the context? In the previous section, we
defined ≈ all at once, as the largest ⇓x -preserving bisimulation that is also closed
by application of evaluation contexts. This style of equivalence definition was first
proposed for the ν-calculus in [21,23,22].

However, there is another, more traditional definition for CCS and for the
pi calculus [33,38,41]. First, define the largest barbed bisimulation (written

.
≈);

then, take the largest subrelation of
.
≈ that is closed by application of evalu-

ation contexts (written
.
≈◦). We believe that this original, two-stage definition

has several drawbacks: the bare bisimulation
.
≈ is very sensitive to the choice

of observation predicates, and the correspondence between internal states may
depend on the context.

The two diagrams below detail the situation: once a context has been ap-
plied on the left, the stable relation is a bisimulation, and not a congruence.
Conversely, the bisimulation-and-congruence relation on the right retains the
congruence property after matching reductions, and allows repeated application
of contexts after reductions.

P
.
≈◦

Q

C[P ]

��

.
≈

C[Q]
∗

��
T

.
≈

T ′

is coarser than P
≈

Q

C[P ]

��

≈
C[Q]

∗
��

T
≈

T ′

From the two definitions, we obtain the simple inclusion ≈ ⊆
.
≈◦, but the

converse
.
≈◦ ⊆ ≈ is far from obvious: the latter inclusion holds if and only if

.
≈◦

is itself a bisimulation. In Section 3.4, we will sketch a proof that
.
≈◦ ⊆ ≈ in the



36 Applied Semantics Summer School, Draft 7/01

join calculus. Conversely, we will show that this is not the case for some simple
variants of

.
≈.

Even if the two definitions yield the same equivalence, they induce distinct
proof techniques. In our experience, ≈ often leads to simpler proofs, because
interaction with the context is more abstract: after reduction, the context may
change, but remains in the class being considered in the candidate bisimulation-
and-congruence.

3.2 Fair testing

We are now ready to revisit our definition of testing equivalences. May testing is
most useful for guaranteeing safety properties but, as illustrated by the equation
P ⊕ 0 'may P , it does not actually guarantee that anything useful happens.

As we argued in subsection 2.4, for concurrent programs it is not desirable to
supplement may testing with must testing in order to capture liveness properties.
We briefly considered the usual must predicate �↓x , but dismissed it because
the predicate always failed on processes with infinite behavior (cf. page 29).

Instead, we use a stronger predicate that incorporates a notion of “abstract
fairness”. The fair-must predicate �⇓x detects whether a process always retains
the possibility of emitting on x:

P �⇓x
def= if P →∗ P ′, then P ′ →∗ P ′′ ↓x

Hence, �⇓x tests for “permanent weak barbs”. For all processes P , the test
P �⇓x implies P ⇓x and P �↓x . Conversely, (1) if all reductions from P are
deterministic, then �⇓x and ⇓x coincide; (2) if there is no infinite computation,
then �↓x and �⇓x coincide.

Much like weak barbs, fair-must predicates induces a contextual equivalence:

Definition 19 (Fair testing equivalence). We have P vmay Q when, for any
evaluation context C[·] and channel name x, C[P ] �⇓x if and only if C[Q] �⇓x .

That is, fair testing is the largest congruence that respects all fair-must predi-
cates. Similar definitions appear in [9,34,10]. Fair testing detects deadlocks: we
have x〈〉 ⊕ (x〈〉 ⊕ 0) 'fair x〈〉 ⊕ 0, but x〈〉 ⊕ 0 6'fair x〈〉 and x〈〉 ⊕ 0 6'fair 0.

The particular notion of fairness embedded in fair testing deserves further
explanations: both may and fair-must predicates state the existence of reductions
leading to a particular message, but they don’t provide a reduction strategy.
Nonetheless, we can interpret P �⇓x as a successful observation “P eventually
emits the message x〈〉”. As we do so, we consider only infinite traces that emit
on x and we disregard any other infinite trace. Intuitively, the model is the set
of barbs present on finite and infinite fair traces, for a very strong notion of
fairness. For example, we have the fair testing equivalence:

def t〈〉 . x〈〉 ∧ t〈〉 . t〈〉 in t〈〉 'fair x〈〉

where the first process provides two alternatives in the definition of t: either
the message x〈〉 is emitted, or the message t〈〉 is re-emitted, which reverts the



The Join Calculus: a Language for Distributed Mobile Programming 37

process to its initial state. It is possible to always select the second, stuttering
branch of the alternative, and thus there are infinite computations that never
emit x〈〉. Nonetheless, the possibility of emitting on x always remains, and any
fair evaluation strategy should eventually select the first branch.

Fair testing may seem unrelated to may testing; at least, these relations are
different, as can be seen using x〈〉 ⊕ 0 and x〈〉. Actually, fair testing is strictly
finer: 'fair ⊂ 'may. Said otherwise, fair testing is also the largest congruence
relation that refines both may- and fair-must predicates.

To prove that 'fair also preserves weak barbs ⇓x , we use the congruence
property with non-deterministic contexts of the form

C[·] def= def r〈z〉 | once〈〉 . z〈〉 in
(
r〈y〉 | once〈〉 | def x〈〉 . r〈x〉 in [·]

)
and establish that P ⇓x iff C[P ] 6�⇓y . This property of fair testing also holds in
CCS, in the pi calculus, and for Actors, where a similar equivalence is proposed
as the main semantics [5].

As regards discriminating power, fair testing is an appealing equivalence for
distributed systems: it is stronger than may-testing, detects deadlocks, but re-
mains insensitive to termination and livelocks. Note, however, that “abstract
fairness” is much stronger than the liveness properties that are typically guar-
anteed in implementations (cf. the restrictive scheduling policy in JoCaml).

Fair testing suffers from another drawback: direct proofs of equivalence are
very difficult because they involve nested inductions for all quantifiers in the
definition of fair-must tests in evaluation context. As we will see in the next
section, the redeeming feature of fair testing is that it is coarser than bisimilarity
equivalence (≈ ⊆ 'fair). Thus, many equations of interest can be established in
a coinductive manner, then interpreted in terms of may and fair testing scenarios.
Precisely, we are going to establish an tighter characterization of fair testing in
terms of coupled simulations.

3.3 Coupled Simulations

The relation between fair testing and bisimulations has been initially studied
in CCS; in [9,34] for instance, the authors introduce the notion of fair testing
(actually should testing in their terminology), and remark that weak bisimula-
tion equivalences incorporates a particular notion of fairness; they identify the
problem of gradual commitment, and in general of sensitivity to the branching
structure, as an undesirable property of bisimulation; finally, they establish that
observational equivalence is finer than fair testing and propose a simulation-
based sufficient condition to establish fair testing.

Independently, coupled simulations have been proposed to address similar
issues [36]; this coarse simulation-based equivalence does not require an exact
correspondence between the internal choices of processes, and is thus less sen-
sitive than bisimulation to their branching structure. In our setting, we use a
barbed counterpart of weakly-coupled simulations [37] that is not sensitive to di-
vergence. A similar equivalence appears in the asynchronous pi calculus, where
it is used to establish the correctness of the encoding of the choice operator [35].



38 Applied Semantics Summer School, Draft 7/01

Definition 20. A pair of relations 6,1 are coupled simulations when 6 and
1−1 are two simulations that satisfy the coupling conditions 6 ⊆ 1←∗ and
1 ⊆ →∗6.

A barbed coupled-simulations relation is an intersection 6 ∩ 1 for some
pair 6,1 such that 6 and 1−1 preserve the barbs.

The coarsest barbed coupled-simulation relation is denoted
.
≶. The coarsest

barbed coupled-simulation obtained from simulations that are also precongruences
for evaluation contexts is called coupled-similarity equivalence, and denoted ≶.

The definition can be stated in a more readable manner using diagrams for
all simulation and coupling requirements:

Sim

6qqq
qqq

qqq
qqq

∗
��

∗
��

6

Cpl

6qqq
qqq

qqq
qqq

∗

��
1

&&

Sim

∗
��

1
MMM

MMM

MMM
MMM

1 ∗
��

Cpl∗

��

1
MMM

MMM

MMM
MMM

6

When we also have 6 = 1, the coupling diagrams are trivially verified,
and the coupled-simulation relation is in fact a bisimulation—in particular, we
immediately obtain the inclusions

.
≈ ⊆

.
≶ and ≈ ⊆ ≶.

Typically, the discrepancy between 6 and 1 is used to describe processes
that are in a transient state, bisimilar neither to the initial state nor to any final
state. For instance, using our derived internal choice operator ⊕, we have the
diagram

(P ⊕Q)⊕R
≶

��

P ⊕ (Q⊕R)

��

P ⊕Q

��

6
ppppppppppppp

1

P
≶

P

The precise relation between fair testing and coupled simulations is intrigu-
ing. These equivalences have been applied to the same problems, typically the
analyses of distributed protocols where high-level atomic steps are implemented
as a negotiation between distributed components, with several steps that per-
form a gradual commitment. Yet, their definitions are very different, and they
both have their advantages: fair-testing is arguably more natural than coupled
simulations, while coupled simulations can be established by coinduction.

It is not too hard to establish that barbed coupled-simulation relations also
preserve fair-must barbs. The proof uses simulations in both directions, which
somehow reflects the alternation of quantifiers in the definition of fair-must
barbs.



The Join Calculus: a Language for Distributed Mobile Programming 39

Lemma 21. Let 6,1 be barbed coupled simulations. If P 1 Q and P �⇓x , then
also Q �⇓x .

Proof. If Q→∗ Q′, these reductions can be simulated by P →∗ P ′ 1 Q′. Using
the coupling condition, we also have P ′ →∗ P ′′ 6 Q′. By definition of P �⇓x ,
we have P ′′ ⇓x . Finally, 6 preserves weak barbs, and thus Q′ ⇓x .

As is the case for weak bisimulation, we can either add precongruence re-
quirements to the definition of barbed coupled simulations and obtain a barbed
coupled-simulations congruence (≶) or take the largest congruence that is con-
tained in the largest barbed coupled-simulation relation (written

.
≶◦).

From these definitions and the previous lemma, we obtain the inclusions
≶ ⊆

.
≶◦ ⊆ 'fair. Conversely, the congruence relation

.
≶◦ is not a coupled-

simulation relation, and thus ≶ is strictly finer than
.
≶◦. The difference appears

as soon as internal choices are spawned between visible actions. The counter-
example is especially simple in asynchronous CCS, where we have:

a.b⊕ a.c 6≶ a.(b⊕ c)
a.b⊕ a.c

.
≶◦ a.(b⊕ c)

In these processes, the outcome of the internal choice becomes visible only after
communication on a, but the choice can be immediately performed on the left
only, e.g. a.b ⊕ a.c → a.b. If the context is applied once for all, then we know
whether that context can provide a message on a. If this is the case, then we
simulate the step above by getting that message, communicating on a, and re-
ducing b⊕ c to b on the right. Otherwise, we simulate the step by doing nothing,
because both processes are inert. In contrast, if the reduction occurs on the left
before the context is chosen, then we cannot simulate it on the right in a uniform
manner. A similar counter-example holds in the join calculus [13].

Our next theorem relates fair testing and barbed coupled similarities; it relies
on the preceding remarks, plus the surprising inclusion 'fair ⊆

.
≶◦, whose proof

is detailed below.

Theorem 22. 'fair =
.
≶◦ ⊂ ≶.

To prove 'fair ⊆
.
≶◦, we develop a semantic model of coupled simulations.

We first consider a family of processes whose behavior is especially simple. We
say that a process P is committed when, for all x, we have P ⇓x iff P �⇓x .
Then, no internal reduction may visibly affect P : let S be the set of names

S
def= {x | P �⇓x} = {x | P ⇓x}

For all P ′ such that P →∗ P ′, P ′ is still committed to S. In a sense, P has
converged to S, which determines its outcome.

To every process P , we now associate the semantics P [ ∈ P(P(N )) that
collects these sets of names for all the committed derivatives of P :

P [
def=

{
S ⊆ N | ∃P ′ . P →∗ P ′ and S = {x |P ′ �⇓x} = {x |P ′ ⇓x}

}



40 Applied Semantics Summer School, Draft 7/01

For example, 0[ is the singleton {∅} and (x〈〉⊕y〈〉)[ is the pair
{
{x}, {y}

}
. As is

the case for weak barbs, P [ decreases by reduction. The predicates ⇓x and �⇓x
can be recovered as follows: we have P ⇓x if and only if x ∈

⋃
P [, and P �⇓x

if and only if x ∈
⋂
P [.

Let ⊆[ be the preorder defined as P ⊆[ Q
def= P [ ⊆ Q[. By definition of

may testing and fair testing preorders, we immediately obtain ⊆[◦ ⊆ vmay and
⊆[◦ ⊆ v−1

fair. Actually, the last two preorders coincide.

Lemma 23. ⊆[◦ = v−1
fair.

Proof. For any finite sets of names S and N such that S ⊆ N and t 6∈ N , we
define the context

TNS [·] def= def once〈〉 . t〈〉 ∧ once〈〉|
∏
x∈S x〈〉 . 0 ∧

∧
x∈N\S

x〈〉 . t〈〉 in once〈〉 | [·]

and we show that TNS [·] fair-tests exactly one set of names in our semantics: for
all P such that fv(P ) ⊆ N , we have TNS [P ] �⇓t if and only if S 6∈ P [.

The first two clauses of the definition compete for the single message once〈〉,
hence at most one of the two may be triggered. The first clause (once〈〉 . t〈〉) can
be immediately triggered. The second clause can preempt this reduction only by
consuming a message for each name in S. The third clause detects the presence
of any message on a name in N \ S. The predicate TNS [P ] �⇓t holds iff all the
derivatives of P keep one of the two possibilities to emit the message t〈〉, namely
either don’t have messages on some of the names in S, or can always produce a
message on a name outside of S.

Let P v−1
fair Q. We let N = fv(P ) ∪ fv(Q) to establish P [ ⊆ Q[. For every

set of names S ⊆ N , we have S ∈ P [ iff TNS [P ] 6�⇓t ; this entails TNS [Q] 6�⇓t
and S ∈ Q[. For every other set of names S, neither P [ nor Q[ may contain S
anyway. Thus v−1

fair ⊆ ⊆[, by context-closure for fair-testing v−1
fair ⊆ ⊆[

◦, and,
since the converse inclusion follows from the characterization of fair barbs given
above, ⊆[◦ = v−1

fair.

The next lemma will be used to relate ⊆[ to
.
≶:

Lemma 24. P [ 6= ∅

Proof. For every process P , consider the series of processes P ′
0, P

′
1, . . . , P

′
n such

that P = P ′
0 →∗ P ′

1 →∗ · · · →∗ P ′
n and such that {x | P ′

i �⇓x} strictly increases
with i. There is a least one such series (P ), and the length of any series is
bounded by the number of names free in P , hence there is at least a series that
is maximal for prefix-inclusion.

To conclude, we remark that S ∈ P [ iff there is a maximal series of processes
ending at P ′

n such that S = {x | P ′
n �⇓x}.

We now establish that our semantics refines barbed coupled similarity.

Lemma 25. (⊆[,⊇[) are coupled barbed simulations, and thus ⊆[ ∩ ⊇[ ⊆
.
≶.



The Join Calculus: a Language for Distributed Mobile Programming 41

Proof. We successively check that ⊆[ preserves the barbs, is a simulation, and
meets the coupling diagram. Assume P ⊆[ Q.

1. The barbs can be recovered from the semantics: P ⇓x iff x ∈
⋃
P [, and if

P ⊆[ Q then also x ∈
⋃
Q[ and Q ⇓x . hence P ⇓x implies Q ⇓x .

2. Weak simulation trivially holds: by definition, P [ decreases with reductions,
and is stable iff P [ is a singleton; for every reduction P → P ′, P ′ ⊆[ P ⊆[ Q,
and thus reductions in P are simulated by the absence of reduction in Q.

3. P [ is not empty, so let S ∈ P [. By hypothesis, S ∈ Q[ and thus for some
process Q′

S we have Q →∗ Q′
S and Q′

S
[ = {S} ⊆ P [, which provides the

coupling condition from ⊆[ to ⊇[. �

By composing Lemmas 23 and 25, we obtain 'fair =
.
≶◦ (Theorem 22).

The proof technique associated with this characterization retains some of the
structure of the purely coinductive technique for the stronger relation ≶, so it
is usually an improvement over the triple induction implied by the definition
of 'fair (but not always, as was pointed out in subsection 2.4 for coinductive
may-testing proofs).

3.4 Two notions of congruence

We finally discuss the relation between the equivalences ≈ and
.
≈◦, which de-

pend on the choice of observables. To this end, we consider bisimulations weaker
than

.
≈, obtained by considering only a finite number of observation predicates.

Let single-barbed bisimilarity
.
≈∃ be the largest weak bisimulation that refines

the barb ⇓, i.e. that detects the ability to send a message on any free name.

– The equivalence
.
≈∃ partitions join calculus processes into three classes char-

acterized by the predicates �⇓, 6⇓, and ⇓ ∧ 6�⇓. Hence, the congruence
of single-barbed bisimilarity is just fair testing equivalence:

.
≈◦∃ = 'fair.

This characterization implies yet another proof technique for 'fair, but the
technique implied by Theorem 22 is usually better.

– In contrast, both ≈∃ and ≈ are congruences and weak bisimulations. More-
over, using the existential contexts given above, we can check that ≈∃ pre-
serves nominal barbs ⇓x and that ≈ preserves existential barbs ⇓. This
establishes ≈∃ = ≈.

We thus obtain a pair of distinct “bisimulation congruences”
.
≈◦∃ 6= ≈∃.

While there is a big difference between one and several observation predicates,
it turns out that two predicates are as good as an infinite number of them, even
for the weaker notion of bisimulation congruence. In the following, we fix two
nullary names x and y, and write

.
≈2 for the bisimilarity that refines ⇓x and ⇓y .

This technical equivalence is essential to prove ≈ =
.
≈◦, Precisely, we are going

to establish

Theorem 26.
.
≈◦2 = ≈



42 Applied Semantics Summer School, Draft 7/01

Since we clearly have ≈ ⊆
.
≈◦ ⊆

.
≈◦2, we obtain ≈ =

.
≈◦ as a corollary.

We first build a family of processes that are not
.
≈2-equivalent and retain

this property by reduction. Informally, this show that there are infinitely many
ways to hesitate between two messages in a branching semantics. We define an
operator S(·) that maps every finite set of processes to the set of its (strict,
partial) internal sums:

S(P) def=
{⊕

P∈P′ P | P ′ ⊆ P and |P ′| ≥ 2
}

Lemma 27. Let R be a weak bisimulation and P be a set of processes such that,
for all P,Q ∈ P, the relation P →∗R Q implies P = Q. Then we have:

1. The set S(P) retains this property.
2. The set

⋃
n≥0 Sn(P) that collects the iterated results of S(·) contains only

processes that are not related by R.

Proof. We first show that (0) if P →∗R Q for some Q ∈ S(P), then P 6∈ P.
Since Q has at least two summands, it must have a summand Q′ 6= P . But then
P →∗R Q′ since R is a bisimulation, and since Q′ ∈ P we cannot have P ∈ P.

We then deduce (1) of the lemma. Let P,Q be two processes in S(P) such
that P →∗R Q. Let Q′ be a summand of Q; we must have P →∗R Q′ since R
is a bisimulation, and in fact P → P ′ →∗R Q′ (since Q′ ∈ P, Q′ R P would
break (0)); but P ′, Q′ ∈ P, so P ′ = Q′ and Q′ is also a summand of P . Now we
must in fact have P R Q since P → P ′ →∗R Q would imply P ′ ∈ P and thus
contradict (0). Hence by symmetry any summand of P is also a summand of Q,
so P = Q.

To prove (2), let P ∈ Sn(P) and Q ∈ Sn+k(P) such that P R Q. By
induction and (1), if k = 0 then P = Q; and we must have k = 0, since otherwise
we have Q→∗ Q′ for some Q′ ∈ Sn+1(P), hence P →∗R Q′, which breaks (0).

As a direct consequence, the bisimilarity
.
≈2 separates numerous processes

with a finite behavior. We build an infinite set of processes as follows:

P0
def= { 0, x〈〉, y〈〉 } Pn+1

def= S(Pn) Pω
def=

⋃
n≥0 Pn

The size of each layer Pn grows exponentially. Thus, Pω contains infinitely many
processes that are not related by

.
≈2: if P ∈ Pn and Q ∈ Pn+m, then we have

Q →m Q′ for some Q′ ∈ Pn \ {P}, and by construction at rank n this series of
reduction cannot be matched by any series reductions starting from P .

This construction captures only processes with finite behaviors up to our
bisimilarity, whereas

.
≈2 has many more classes than those exhibited here (e.g.

classes of processes that can reach an infinite number of classes in Pω).
Note that the same construction applies for single-barb bisimilarity, but

quickly converges. Starting from the set {0, x〈〉}, we obtain a third, unrelated
process 0⊕ x〈〉 at rank 1, then the construction stops.

The next lemma states that a process can effectively communicate any integer
to the environment by hesitating between two exclusive barbs ⇓x and ⇓y , thanks
to the discriminating power of bisimulation.



The Join Calculus: a Language for Distributed Mobile Programming 43

In the following, we rely on encodings for booleans and for integers à la
Church inside the join calculus. To every integer n ∈ N, we associate the rep-
resentation n; we also assume that our integers come with operations is zero〈·〉
and and pred〈·〉.

To every integer, we associate a particular equivalence class of
.
≈2 in the

hierarchy of processes Pω, then we write a process that receives an integer and
conveys that integer by evolving to its characteristic class. Intuitively, the context
N [·] transforms integer-indexed barbs int〈n〉 (where int is a regular name of the
join calculus) into the two barbs ⇓x and ⇓y .

Lemma 28. There is an evaluation context N [·] such that, for any integers n
and m, the three following statements are equivalent:

1. n = m
2. N [int〈n〉]

.
≈2N [int〈m〉]

3. N [int〈n〉]→∗ .
≈2N [int〈m〉]

To establish the lemma, we program the evaluation context N [·] as follows,
and we locate the derivatives of N [int〈n〉] in the hierarchy of processes (Pn)n.

N [·] def=

def int〈n〉|once〈〉 .
def c〈n, x, y, z〉 .
if is zero〈n〉 then z〈〉
else c〈pred〈n〉, z, x, y〉 ⊕ c〈pred〈n〉, y, z, x〉 in

def z〈〉 . 0 in
c〈n, x, y, z〉 ⊕ c〈n, y, z, x〉 ⊕ c〈n, z, x, y〉


in once〈〉|[·]

In N [·], the name z is used to encode the process 0; hence the three processes
in P0 are made symmetric, and we can use permutations of the names x, y,
and z to represent them. Each integer n is associated with a ternary sum of
nested binary sums in the n+ 1 layer of P: when an encoded integer is received
as int〈n〉, a reduction triggers the definition of int and yields the initial ternary
sum; at the same time this reduction consumes the single message once〈〉, hence
the definition of int becomes inert.

The next lemma uses this result to restrict the class of contexts being con-
sidered in congruence properties to contexts with at most two free (nullary)
variables.

Lemma 29. Let S be a finite set of names. There is an evaluation context C2[·]
such that, for any processes P and Q with free variables in S, we have P

.
≈Q iff

C2[P ]
.
≈2C2[Q].

In order to establish that
.
≈◦2 is a bisimulation, we need to retain the con-

gruence property after matching reduction steps. Since we can apply only one
context before applying the bisimulation hypothesis, this single context must
be able to emulate the behavior of any other context, to be selected after the



44 Applied Semantics Summer School, Draft 7/01

reductions. We call such a context a “universal context”. The details of the
construction appear in [13].

The first step is to define an integer representation for every process P , writ-
ten [[P ]], and to build an interpreter De that takes (1) an integer representation
[[P ]] ∈ N and (2) the encoding of an evaluation environment ρ that binds all
the free names fv(P ). The next lemma relates the source process P to its inter-
preted representation; this result is not surprising, inasmuch as the join calculus
has well enough expressive power. Some care is required to restrict the types that
may appear at P ’s interface. The lemma is established using a labeled bisimu-
lation, as defined in Section 4. We omit the details of the encoding and of the
interpreter.

Lemma 30. Let Σ be a finite set of types closed by decomposition. There is a
definition De such that, for every process P whose free variables can be typed
in Σ and such that fv(P ) ∩ {e, ρ} = ∅, and for every environment ρ such that
∀x ∈ fv(P ), ρ([[x]]) = x, we have def De in e〈[[P ]], ρ〉 ≈ P .

The second step is to reduce quantification over all contexts first to quantifi-
cation over all processes (using a specific context that forwards the messages),
then to quantification over all integers (substituting the interpreter for the pro-
cess). Finally, the universal context uses internal choice to select any integer,
then either manifest this choice using integer barbs, or run the interpreter on
this input with an environment ρ that manifests every barb using integer barbs.
At each stage, the disappearance of specific integer barbs allows the bisimulation
to keep track of the behavior of the context.

Lemma 31 (Universal Context). Let S be a finite set of names There is an
evaluation context US [·] such that, for all processes P and Q with fv(P )∪fv(Q) ⊆
S, we have US [P ]

.
≈2US [Q] implies P ≈ Q

Combining these encodings, we eventually obtain the difficult bisimulation prop-
erty of

.
≈◦2, hence

.
≈◦2 = ≈ and finally

.
≈◦ = ≈.

3.5 Summary: a hierarchy of equivalences

Anticipating on the labeled semantics in the next section, we summarize our
results on equivalences in Figure 3. Each tier in the hierarchy correspond to
a notion of equivalence finer than the lower tiers. When stating and proving
equational properties in a reduction-based setting, this hierarchy provides some
guidance. For instance, the same proof may involve lemmas expressed as equiv-
alences much finer (and easier to establish) than the final result. Conversely, a
counter-example may be easier to exhibit at a tier lower than required.

The reader may be interested in applications of these techniques to establish
more challenging equations. For detailed applications, we refer for instance to [1]
for a detailed proof of the security of a distributed, cryptographic implementation
of the join calculus, to [13] for a series of fully abstract encodings between variants
of the join calculus, and to [17] for the correctness proof of an implementation
of Ambients in JoCaml using coupled simulations.



The Join Calculus: a Language for Distributed Mobile Programming 45

labeled bisimilarities ≈l = ≈a = ≈g

comparison between names

bisimilarity equivalence ≈ =
.
≈◦

internal choice
between visible actions

coupled-similarity equivalence ≶

internal choice
interleaved with visible actions

fair testing 'fair =
.
≶◦ =

.
≈◦
∃

abstract fairness

may testing 'may

Figure 3. A hierarchy of equivalences for the join calculus

4 Labeled semantics

Labeled transition systems traditionally provide useful semantics for process
calculi, by incorporating detailed knowledge of the operational semantics in
their definitions and their proof techniques. Seen as auxiliary semantics for a
reduction-based calculus, they offer several advantages, such as purely coinduc-
tive proofs and abstract models (e.g. synchronization trees). On the other hand,
they are specific to the calculus at hand, and they may turn out to be too
discriminating for asynchronous programming.

We present two variants of labeled semantics for the join calculus, and relate
their notions of labeled bisimilarities to observational equivalence, thus compar-
ing the discriminating power of contexts and labels. We refer to [16] for a more
detailed presentation.

4.1 Open syntax and chemistry

In the spirit of the trace semantics given in Section 2.2, we introduce a refined
semantics—the open rcham—that makes explicit the interactions with an ab-
stract environment. Via these interactions, the environment can receive locally-
defined names of the process when they are emitted on free names, and the
environment can also emit messages on these names. We call these interactions
extrusions and intrusions, respectively. To keep track of the defined names that
are visible from the environment, definitions of the join calculus are marked with
their extruded names when extrusions occur. In turn, intrusions are allowed only
on names that are marked as extruded. The refined syntax for the join calculus
has processes of the form defS D in P , where S is the set of names defined
by D and extruded to the environment. Informally, extruded names represent
constants in the input interface of the process.



46 Applied Semantics Summer School, Draft 7/01

A, B ::= open processes
P plain process

|| defS D in P open definition
|| A |B parallel composition

Figure 4. Syntax for the open join calculus

As a first example, consider the process def∅ x〈〉 . y〈〉 in z〈x〉. The interface
contains no extruded name and two free names y, z. The message z〈x〉 can be
consumed by the environment, thus exporting x:

def∅ x〈〉 . y〈〉 in z〈x〉
{x}z〈x〉−−−−−→ def{x} x〈〉 . y〈〉 in 0

Once x is known by the environment, it cannot be considered local anymore—the
environment can emit on x—, but it is not free either—the environment cannot
modify or extend its definition. A new transition is enabled:

def{x} x〈〉 . y〈〉 in 0
x〈〉−−→ def{x} x〈〉 . y〈〉 in x〈〉

Now the process can input more messages on x, and also perform the two tran-
sitions below to consume the message on x and emit a message on y:

def{x} x〈〉 . y〈〉 in x〈〉 → def{x} x〈〉 . y〈〉 in y〈〉
{}y〈〉−−−→ def{x} x〈〉 . y〈〉 in 0

We now extend the rcham of [14] with extrusions, intrusions, and explicit book-
keeping of extruded names.

Definition 32. Open chemical solutions, ranged over by S, T , . . ., are triples
(D, S,A), written D `S A, where D is a multiset of definitions, S is a subset of
the names defined in D, and A is a multiset of open processes with disjoint sets
of extruded names that are not defined in D.

The interface of an open solution S consists of two disjoint sets of free names
fv(S) and extruded names xv(S), defined in Figure 5. Functions dv(·), fv(·), and
xv(·) are extended to multisets of terms by taking unions for all terms in the
multisets.

The chemical rules for the open rcham are given in Figure 6; they define
families of transitions between open solutions 
, →, and α−→ where α ranges
over labels of the form Sx〈ṽ〉 and x〈ṽ〉.

The structural rules and rule React are unchanged, but they now apply to
open solutions. Rule Str-Def performs the bookkeeping of exported names, and
otherwise enforces a lexical scoping discipline with scope-extrusion for any name
that is not exported. When applied to open solutions, these structural rules
capture the intended meaning of extruded names: messages sent on extruded



The Join Calculus: a Language for Distributed Mobile Programming 47

In join patterns:
rv(x〈ṽ〉) = {u ∈ ṽ} dv(x〈ṽ〉) = {x}
rv(J | J ′) = rv(J) ] rv(J ′) dv(J | J ′) = dv(J) ] dv(J ′)

In definitions:
dv(J . P ) = dv(J) fv(J . P ) = dv(J) ∪ (fv(P )\rv(J))
dv(D ∧ D′) = dv(D) ∪ dv(D′) fv(D ∧ D′) = fv(D) ∪ fv(D′)

In processes:
fv(A |A′) = (fv(A) ∪ fv(A′)) \ (xv(A) ] xv(A′)) fv(0) = ∅
xv(A |A′) = xv(A) ] xv(A′) xv(0) = ∅
fv(defS D inA) = (fv(D) ∪ fv(A)) \ (dv(D) ] xv(A)) fv(x〈ṽ〉) = {x, ṽ}
xv(defS D inA) = S ] xv(A) xv(x〈ṽ〉) = ∅

In chemical solutions:
fv(D `S A) = (fv(D) ∪ fv(A)) \ (dv(D) ] xv(A))
xv(D `S A) = S ] xv(A)

Figure 5. Scopes in the open join calculus

Str-Null `S 0 
 `S

Str-Par `S A | A′ 
 `S A, A′

Str-Top > `S 
 `S

Str-And D ∧ D′ `S 
 D, D′ `S

Str-Def `S defS′ D in A 
 Dσ `S]S′ Aσ

React J . P `S Jρ → J . P `S Pρ

Ext `S x〈ỹ〉 S′x〈ỹ〉−−−−→ `S∪S′

Int `S∪{x}
x〈ỹ〉−−−→ `S∪{x} x〈ỹ〉

Side conditions on the reacting solution S = (D `S A):
in Str-Def, σ substitutes distinct fresh names for dv(D) \ S′;
in React, ρ substitutes names for rv(J);
in Ext, the name x is free, and S′ = {ỹ} ∩ (dv(D) \ S);
in Int, the names ỹ are either free, or fresh, or extruded.

Figure 6. The open rcham



48 Applied Semantics Summer School, Draft 7/01

names can be moved inside or outside their defining process. For instance, we
have the structural rearrangement

`S x〈ṽ〉 | defS′ D in A 
 `S defS′ D in (x〈ṽ〉 |A)

for any extruded name x, and as long as the names in ṽ are not captured by D
({ṽ} ∩ dv(D) ⊆ S′).

In addition, rules Ext and Int model interaction with the context. According
to rule Ext, messages emitted on free names can be received by the environment;
these messages export any defined name that was not previously known to the
environment, thus causing the scope of its definition to be opened. This is made

explicit by the set S′ in the label of the transition
S′x〈ṽ〉−−−−→. Names in S′ must

be distinct from any name that appears in the interface before the transition;
once these names have been extruded, they cannot be α-converted anymore, and
behave like constants. Our rule resembles the Open rule for restriction in the
pi calculus [32], with an important constraint due to locality: messages are either
emitted on free names, to be consumed by Ext, or on names defined in the open
solution, to be consumed by React.

The rule Int enables the intrusion of messages on exported names names. It
can be viewed as a disciplined version of one of the two Input rules proposed by
Honda and Tokoro for the asynchronous pi calculus, which enables the intrusion
of any message [21]. The side condition of Int requires that intruded messages
do not clash with local names of processes. (More implicitly, we may instead rely
on the silent α-conversion on those local names; this is the original meaning of
“intrusion” in [32].)

4.2 Observational equivalences on open terms

The notions of reduction-based equivalence defined in sections 2 and 3 are easily
extended to open processes, with the same definitions and the additional require-
ment that related processes have the same exported names. (Indeed, it makes
little sense to compare processes with incompatible interfaces such as 0 and the
open deadlocked solution def{y} x〈〉 | y〈〉 .in 0.) Context-closure properties are
also easily extended to take into account open contexts. Note that, whenever we
apply a context, we implicitly assume that the resulting open process is well-
formed. Finally, extrusions and strong barbs are in direct correspondence—we

have A ↓x if and only if A
Sx〈ṽ〉−−−−→ A′ for any S,ṽ, and A′.

In fact, the open syntax provides convenient notations to give selective give
access to some defined names in the processes being compared, but it does not
introduce any interesting new equation. Consider for instance bisimilarity equiv-
alence on open terms:

Lemma 33. For all processes P1, P2 and definitions D1, D2, let x̃ be a tuple
of names defined in both D1 and D2, and let plug be a fresh name. The three
following statements are equivalent:

1. def{x̃} D1 in P1 ≈ def{x̃} D2 in P2



The Join Calculus: a Language for Distributed Mobile Programming 49

2. def D1 in P1 | plug〈x̃〉 ≈ def D2 in P2 | plug〈x̃〉
3. for all D and P such that fv(def D in P ) ∩ (dv(D1) ∪ dv(D2)) ⊆ {x̃} and

dv(D)∩ (dv(D1)∪ dv(D2)) = ∅, we have def D ∧ D1 in P |P1 ≈ def D ∧
D2 in P |P2.

The first formulation is the most compact; it relies on open terms. Instead, the
second formulation makes explicit the communication of extruded names to the
environment using a message on a fresh name plug; the third formulation is
closed by application of evaluation contexts, and is often used in direct proofs
of bisimilarity equivalence (see for instance, [1]).

4.3 Labeled bisimulation

By design, the open join calculus can also be equipped with the standard notion
of labeled bisimilarity:

Definition 34. A relation R on open processes is a labeled simulation if, when-
ever A R B, we have

1. if A→ A′ then B →∗ B′ and A′ R B′;
2. if A α−→ A′ then B →∗ α−→→∗ B′ and A′ R B′,

for all labels α of shape x〈ṽ〉 or Sx〈ṽ〉 such that fv(B) ∩ S = ∅.

A relation R is a labeled bisimulation when both R and R−1 are labeled
simulations. Labeled bisimilarity ≈l is the largest labeled bisimulation.

The simulation clause for intrusions makes weak bisimulation sensitive to
input interfaces: A ≈l B implies xv(A) = xv(B). The simulation clause for ex-
trusion does not consider labels whose set of extruded names S clashes with
the free names of B, inasmuch as these transitions can never be simulated; this
standard technicality does not affect the intuitive discriminating power of bisim-
ulation, because names in S can be α-converted before the extrusion.

As opposed to contextual equivalences, it is possible to tell whether two pro-
cesses are weakly bisimilar by comparing their labeled synchronization trees,
rather than reasoning on their possible contexts. For example, x〈u〉 6≈l x〈v〉 be-
cause each process performs an extrusion with distinct labels. Likewise, x〈y〉 6≈l
def z〈u〉 . y〈u〉 in x〈z〉 because the first process emits a free name (label x〈y〉)
while the latter emits a local name that gets extruded (label {z}x〈z〉).

Besides, a whole range of “up to proof techniques” is available to reduce the
size of the relation to exhibit when proving labeled bisimilarities [30,33,39,41].
For instance, one can reason up to other bisimilarities, or up to the restriction
of the input interface.

While its definition does not mention contexts, labeled bisimilarity is closed
by application of any context:

Theorem 35. Weak bisimilarity is a congruence.



50 Applied Semantics Summer School, Draft 7/01

The proof is almost generic to mobile process calculi in the absence of external
choice (see, e.g., [21,6] for the asynchronous pi calculus); it relies on two simpler
closure properties: ≈l is closed by application of evaluation contexts, and ≈l is
closed by renamings. We refer to [16] for the details.

As an immediate corollary, we can place labeled bisimilarity in our hierarchy
of equivalence, and justify its use as an auxiliary proof technique for observational
equivalence: we have that ≈l is a reduction-based bisimulation that respects
all barbs and that is closed by application of contexts, hence ≈l ⊆ ≈. This
inclusion is strict, as can be seen from the paradigmatic example of bisimilarity
equivalence:

x〈z〉 ≈ def u〈v〉 . z〈v〉 in x〈u〉

That is, emitting a free name z is the same as emitting a bound name u that
forwards all the messages it receives to z, because the extra internal move for
every use of u is not observable. On the contrary, labeled bisimilarity separates
these two processes because their respective extrusion labels reveal that z is free
and u is extruded. Since the contexts of the open join calculus cannot identify
names in messages, more powerful contexts are required to reconcile the two
semantics (see Section 4.5).

4.4 Asynchronous bisimulation

In order to prove that two processes are bisimilar, a large candidate bisimula-
tion can be a nuisance, as it requires the analysis of numerous transition cases.
Although they are not necessarily context-closed, labeled bisimulations on open
chemical solutions are typically rather large. For example, a process with an
extruded name has infinitely many derivatives even if no “real” computation is
ever performed. Consider the equivalence:

def x〈u〉 | y〈v〉 . P in z〈x〉 ≈l def x〈u〉 | y〈v〉 . Q in z〈x〉

These two processes are bisimilar because their join-pattern cannot be triggered,
regardless of the messages the environment may send on x. Still, one is confronted
with infinite models on both sides, with a distinct chemical solution for every
multiset of messages that have been intruded on x so far. This problem with
labeled bisimulation motivates an alternative formulation of labeled equivalence.

The join open rcham We modify the open rcham by allowing inputs only
when they immediately trigger a guarded process. For example, the two processes
above become inert after an extrusion {x}z〈x〉, hence trivially bisimilar. If we
applied this refinement with the same labels for input as before, however, we
would obtain a dubious result. The solution x〈〉 | y〈〉 | z〈〉 . P `{x,y} z〈〉 can
progress by first inputing two messages x〈〉 and y〈〉, then performing a silent step
that consumes these two messages together with the local message z〈〉 already
in the solution. Yet, neither x〈〉 nor y〈〉 alone can trigger the process P , and



The Join Calculus: a Language for Distributed Mobile Programming 51

React-Int J . P `S M
M′
−−→ J . P `S Pρ

Side conditions:
ρ substitute names for rv(J), Jρ ≡ M |M ′, and dv(M ′) ⊆ S.

The rules Str-(Null,Par,And,Def) and Ext are the same as in Figure 6.

Figure 7. The join open rcham

therefore this solution would become inert, too. This suggests the use of join-
inputs on x and y in transitions such as

x〈〉 | y〈〉 | z〈〉 . P `{x,y} z〈〉
x〈〉 | y〈〉−−−−−→ x〈〉 | y〈〉 | z〈〉 . P `{x,y} P

On the other hand, the solution x〈〉 | y〈〉 | z〈〉 . P `{x} z〈〉 is truly inert, since
the environment has no access to y, and thus cannot trigger P . In this case, our
refinement suppresses all input transitions.

The join open rcham is defined in Figure 7 as a replacement for the intrusion
rule. In contrast with rule Int of Figure 6, the new rule React-Int permits the
intrusion of messages only if these messages are immediately used to trigger a
process. This is formalized by allowing labels M ′ that are parallel compositions
of messages. If the solution contains a complementary process M such that
the combination M |M ′ matches the join-pattern of a reaction rule, then the
transition occurs and triggers this reaction rule. As for Int, we restrict intrusions
in M ′ to messages on extruded names.

We identify intrusions in the case M ′ = 0 with silent steps; the rule React
is thus omitted from the new chemical machine. Nonetheless, we maintain the
distinction between internal moves and proper input moves in the discussion. In
the sequel, we shall keep the symbol α−→ for the open rcham and use α−→J for the
join open rcham; we may drop the subscript J when no ambiguity can arise.

Each open process now has two different models: for instance, the process
def{x} x〈〉 | y〈〉 . P in 0 has no transition in the join open rcham, while it has

infinite series of transitions
x〈〉−−→ x〈〉−−→ x〈〉−−→ · · · in the open rcham. A comparison

between the two transition systems yields the following correspondence between
their intrusions:

Proposition 36. Let A be an open process.

1. If A
x1〈ṽ1〉 |··· | xn〈ṽn〉−−−−−−−−−−−→J B, then A

x1〈ṽ1〉−−−−→ · · · xn〈ṽn〉−−−−→→ B.
2. If A |x〈ũ〉 M−→J B and x ∈ xv(A), then

(a) either A M−→J A
′ with A′ |x〈ũ〉 ≡ B;

(b) or A
M | x〈ũ〉−−−−−→J B.

Accordingly, we adapt the definition of labeled bisimulation (Definition 34)
to the new join open rcham. Consider the two processes:

P
def= def x〈〉 . a〈〉 ∧ a〈〉 | y〈〉 . R in z〈x, y〉

Q
def= def x〈〉 | y〈〉 . R in z〈x, y〉



52 Applied Semantics Summer School, Draft 7/01

and assume a /∈ fv(R). With the initial open rcham, the processes P and Q
are weakly bisimilar. With the new join open rcham and the same definition
of weak bisimulation, this does not hold because P can input x〈〉 after emitting
on z while Q cannot. But if we consider the bisimulation that uses join-input
labels instead of single ones, Q can input x〈〉 | y〈〉 while P cannot, and P and Q
are still separated. It turns out that labeled bisimulation discriminates too much
in the join open rcham.

In order to retain an asynchronous semantics, labeled bisimulation must be
relaxed, so that a process may simulate a React-Int transition even if it does
not immediately consume all its messages. This leads us to the following defini-
tion:

Definition 37. A relation R is an asynchronous simulation if, whenever A R
B, we have

1. if A
Sx〈ṽ〉−−−−→ A′ then B →∗ Sx〈ṽ〉−−−−→→∗ B′ and A′ R B′

for all labels Sx〈ṽ〉 such that fv(B) ∩ S = ∅;
2. if A M−→ A′, then B | M →∗ B′ and A′ R B′;
3. xv(A) = xv(B).

A relation R is an asynchronous bisimulation when both R and R−1 are asyn-
chronous simulations. Asynchronous bisimilarity ≈a is the largest asynchronous
bisimulation.

In the definition above, the usual clause for silent steps is omitted (it is
subsumed by the clause for intrusions with M = 0). On the other hand, a clause
explicitly requires that related solutions have the same extruded names.

Asynchronous bisimilarity and labeled bisimilarity do coincide. This validates
asynchronous bisimulation as an efficient proof technique.

Theorem 38. ≈a = ≈l.

To conclude our discussion on variants of labeled bisimulations, let us men-
tion ground bisimulation, which is obtained by restricting the intrusions to labels
that convey fresh names. As first observed in the pi calculus [21,6,8], asynchrony
brings another interesting property as regards the number of transitions to con-
sider: the ground variant of bisimilarities coincide with the basic one. This prop-
erty also holds in the join calculus, thus providing proof techniques with, for
every chemical solution, exactly one intrusion per extruded name when using
labeled bisimulation, and one intrusion per “active” partial join-pattern when
using asynchronous bisimulation.

4.5 The discriminating power of name comparison

Labeled bisimilarity is finer than (reduction-based, barbed) bisimilarity equiva-
lence and, as in other process calculi, these two semantics coincide only if we add



The Join Calculus: a Language for Distributed Mobile Programming 53

an operator for name comparisons [23,6]. In this section, we extend the syntax
of the join calculus accordingly, in the same style as [32].

A
def= . . . | [x=y]A P

def= . . . | [x=y]P

We also extend our chemical machines with a new reduction rule.

Compare `S [x=x]A → ` A

A technical drawback of this extension is that renamings do not preserve bisim-
ilarity anymore. For instance, 0 ≈l [x=y]x〈〉, while after applying the renaming
{x/y}, 0 6≈l [x=x]x〈〉. Accordingly, labeled bisimilarity is not a congruence any-
more. For instance, the context C[·] def= def z〈x, y〉 . [·] in z〈u, u〉 separates 0
and [x=y]x〈〉. We consider equivalences that are closed only by application of
evaluation contexts.

In the presence of comparisons, we still have:

Lemma 39. Labeled bisimilarity is closed by application of evaluation contexts

As regards observational equivalence, we let bisimilarity equivalence ≈be be
the largest barb-preserving bisimulation in the open join calculus with name
comparison that is closed by application of plain evaluation contexts. Bisimilarity
equivalence now separates x〈z〉 from def u〈v〉 . z〈v〉 in x〈u〉 by using the context
def x〈y〉 . [y=z] a〈〉 in [·], and labeled bisimilarity clearly remains finer than
bisimilarity equivalence. More interestingly, the converse inclusion also holds:

Theorem 40. With name comparison, we have ≈be = ≈l.

To establish the theorem, it suffices to show that, for every label, there is an
evaluation context that specifically “captures” the label. Intrusions are very easy,
since it suffices to use the parallel context x〈ỹ〉 |[·]. Extrusions are more delicate,
inasmuch as a context of the join calculus must define a name in order to detect
an output transition on that name; this case is handled by creating a permanent
relay for all other messages on that name. Without additional care, this relay
can be detected by name matching, so we use instead a family of contexts that
separate two aspects of a name. For every name x ∈ N , we let

Rx[·]
def= def x〈ỹ〉 . x′〈ỹ〉 in vx〈x〉 |[·]

where the length of ỹ matches the arity of x. Assuming x ∈ fv(A), the process
Rx[A] uses x′ as a free name instead of x, and forwards all messages from x
to x′. The context should still be able to discriminate whether the process sends
the name x or not by using name matching; this extra capability is supplied
in an auxiliary message vx〈x〉. The next lemma captures the essential property
of Rx[·]:

Lemma 41 (Accommodating the extrusions). For all open processes A
and B such that x 6∈ xv(A) ∪ xv(B) and x′, vx are not in the interface of A and
B, we have A ≈be B if and only if Rx[A] ≈be Rx[B].



54 Applied Semantics Summer School, Draft 7/01

Informally, the contexts Rx[·] are the residuals of contexts that test for labels
of the form {S}x〈ỹ〉. Once we have a context for every label, we easily prove
that ≈be is a labeled bisimulation. Remark that the proof of the theorem would
be much harder if we were using the other notion of bisimilarity equivalence (see
Section 3.1), because we would have to characterize the whole synchronization
tree at once in a single context, instead of characterizing every label in isolation.
This explains why many similar results in the literature apply only to processes
with image-finite transitions.

5 Distribution and mobility

Although distributed programming is the main purpose of the join calculus,
the distribution of resources has been kept implicit so far. As we described its
semantics, we just argued that the join calculus had enough built-in locality to
be implemented in a distributed, asynchronous manner.

This section gives a more explicit account of distributed programming. We
extend the join calculus with locations and primitives for mobility. The resulting
calculus allows us to express mobile agents that can move between physical sites.
Agents are not only programs but core images of running processes with their
communication capabilities and their internal state. Inevitably, the resulting
distributed join calculus is a bit more complex than the core calculus of Section 1.

Intuitively, a location resides on a physical site, and contains a group of
processes and definitions. We can move atomically a location to another site.
We represent mobile agents by locations. Agents can contain mobile sub-agents
represented by nested locations. Agents move as a whole with all their current
sub-agents, thereby locations have a dynamic tree structure. Our calculus treats
location names as first class values with lexical scopes, as is the case for channel
names; the scope of every name may extend over several locations, and may
be dynamically extended as the result of message passing or agent mobility. A
location controls its own moves, and can move towards another location by pro-
viding the name of the target location, which would typically be communicated
only to selected processes.

Since we use the distributed join calculus as the core of a programming lan-
guage (as opposed to a specification language), the design for mobility is strongly
influenced by implementation issues. Our definition of atomic reduction steps
attempts to strike some balance between expressiveness and realistic concerns.
Except for the (partial) reliable detection of physical failures, the refined opera-
tional semantics has been faithfully implemented [18,12]. In these notes, however,
we omit any specific discussion of these implementations.

5.1 Distributed mobile programming

We introduce the language with a few examples that assume the same approach
to runtime distribution as in JoCaml. Execution occurs among several machines,



The Join Calculus: a Language for Distributed Mobile Programming 55

which may dynamically join or quit the computation; the runtime support con-
sists of several system-level processes that communicate using TCP/IP. Processes
and definitions can migrate from one machine to another but, at any given point,
every process and definition of the language is running at a single machine.

From an asynchronous viewpoint, and in the absence of partial failures, lo-
cality is transparent. Programs can be written independently of their runtime
distribution, and their visible results do not depend on their localization. In-
deed, it is “equivalent” to run processes P and Q at different machines, or to
run the compound process P |Q at a single machine. In particular, the scopes for
channel names and other values do not depend on their localization: whenever a
channel appears in a process, it can be used to form messages (using the name
either as the address, or as the message contents) without knowing whether this
channel is locally- or remotely-defined.

Of course, locality matters in some circumstances: side effects such as printing
values on the local terminal depend on the current machine; besides, efficiency
can be affected as message-sending over the network takes much longer than
local calls; finally, the termination of some underlying runtime will affect all
its local processes. For all these reasons, locality is explicitly controlled in the
language; this locality can be adjusted using migration. In contrast, resources
such as definitions and processes are not silently relocated or replicated by the
system.

In JoCaml, programs being run on different machines do not initially share
any channel name; therefore, they would normally not be able to interact with
one another. To bootstrap a distributed computation, it is necessary to exchange
a few names; this is achieved using a built-in library called the name server. Once
this is done, these names can be used to communicate some more names and to
build more complex communication patterns. The interface of the name server
consists of two functions to register and look up arbitrary values in a “global
table” indexed by plain strings (JoCaml actually performs some dynamic type
checking at this stage). For instance, the process on the left below defines a local
name cos and registers it to the name server:

def cos(x) = 1− x2/2 in
NS.register(”cos”, cos)

def cos = NS.lookup(“cos′′) in
print(cos(0.1)); . . .

Using the same key “cos”, a remote program (such as the one on the right) can
obtain the name cos then perform remote calls. The computation takes place on
the machine that defines cos (in the example, the machine hosting the program
on the left).

More explicitly, the program defining cos may define a named location that
wraps this function definition, and may also export the location name under the
key “here”:

def here[
cos(x) = 1− x2/2 :
NS.register(“cos′′, cos); . . . ] in

NS.register(“here′′, here); . . .



56 Applied Semantics Summer School, Draft 7/01

The location definition does not affect cos, which can still be called locally or re-
motely. In addition to remote access to cos, another program can now obtain the
location name here, create locally a mobile sub-location—its “agent”—and relo-
cate this agent to here. This makes sense, for instance, if the agent implements
processes that often call cos. The code on the client program may be:

def f(machine) .
agent[

go machine;
def cos = NS.lookup(”cos”) in
def sum(s, n) = if n = 0 then s else sum(s+ cos(n), n− 1) in
return sum(0, 10) ]

print(f(NS.lookup(”here”))); . . .

The new statement “go location;P” causes the enclosing location to migrate as
a whole towards location’s machine before executing the following process P . In
the program above, location agent migrates with its running process towards
the machine that hosts here and cos, locally retrieves cos using the name server
and runs some computation, then eventually returns a single result to f ’s caller
on the client machine.

A more complex example is an “applet server” that provides a function to
create new instances of a library at a remote location provided by the caller. To
this end, the server creates a mobile agent that wraps the instance of the library,
migrates to the target location, and delivers the library interface once there. For
instance, the code below implements a “one-place-buffer” library with some log
mechanism:

def newOnePlaceBuffer(there) .
def log(s) = print(”the buffer is ” + s) in
def applet [

go there;
def put(v) | empty〈〉 . log(”full”); (full〈v〉 | return)
∧ get() | full〈v〉 . log(”empty”); (empty〈〉 | return v) in

empty〈〉 | return put , get to newBuf ] in
log(”created”); in

NS.register(”applet”, newOneP laceBuffer); . . .

A simple applet client may be:

def newBuf = NS.lookup(”newBuffer”) in
def here[

def put , get = newBuf (here) in
put(1); . . . ] in . . .

In contrast with plain code mobility, the new applet can keep static access to
channels located at the applet server; in our case, every call to the one-place
buffer is local to the applet client, but also causes a remote log message to be
sent to the applet server.



The Join Calculus: a Language for Distributed Mobile Programming 57

5.2 Computing with locations

We now model locations and migrations as a refinement of the rcham. We
proceed in two steps. First, we partition processes and definitions into several
local chemical solutions. This flat model suffices for representing both local com-
putation on different sites and global communication between them. Then, we
introduce some more structure to account for the creation and the mobility of
local solutions: we attach location names to solutions, and we organize them as
a tree of nested locations. The refined syntax and chemical semantics appear in
figures 8 and 9.

Distributed machines A distributed reflexive chemical machine (drcham) is
a multiset of rchams. We write the global state of a drcham as several local
solutions D `α P connected by a commutative-associative operator ‖ that
represents distributed composition. Each local solution has a distinct label α—
we will detail below the role of these labels.

Locally, every solution D `α P within a drcham evolves as before, according
to the chemical rules given for the join calculus in Figure 2. Technically, the
chemical context law is extended to enable computation in any local solution, and
the side condition in Str-Def requires that globally-fresh names be substituted
for locally-defined names.

Two solutions can interact by using a new rule Comm that models global
communication. This rule states that a message emitted in a given solution α on
a channel name x that is remotely defined can be forwarded to the solution β
that contains the definition of x. Later on, this message can be used within β to
assemble a pattern of messages and to consume it locally, using a local React
step. This two-step decomposition of communication reflects the separation of
message transport and message processing in actual implementations.

In the following, we consider only drchams where every name is defined in
at most one local solution. This condition is preserved by the chemical semantics,
and simplifies the usage of rule Comm: for every message, the rule applies at
most once, and delivers the message to a unique receiving location. The actual
mapping from channel names to their defining locations is static; it is maintained
by the implementation. (In contrast, some recent models of distributed systems
detail the explicit routing of messages in the calculus [20,11]. From a language
design viewpoint, we believe that the bookkeeping of routing information is a
low-level activity that is best handled at the implementation level. At least in
the distributed join calculus, the locality property makes routing information
simple enough to be safely omitted from the language.)

Remote message passing To illustrate the use of several local solutions, we
model a simplistic “print spooler” that matches available printers and job re-
quests. The spooler can be described by the rule

D
def= ready〈printer〉|job〈file〉 . printer〈file〉



58 Applied Semantics Summer School, Draft 7/01

A, B ::= configurations
D `ϕ P local solution (with path ϕ and contents D and P )

|| A ‖ B parallel composition

P, Q, R ::= processes
x〈ỹ〉 asynchronous message

|| go a; P migration request
|| def D in P local definition
|| P | Q parallel composition
|| 0 inert process

D ::= join calculus definition
J . P reaction rule

|| a [D : P ] sub-location (named a, with contents D and P )
|| D ∧ D′ composition
|| > void definition

J ::= join pattern
x〈ỹ〉 message pattern

|| J | J ′ synchronization

Figure 8. Syntax for the distributed join calculus

Comm `α x〈ỹ〉 ‖ D `β → `α ‖ D `β x〈ỹ〉

Go `αa ‖ `βb go a; P → `αa ‖ `αab P

Str-Loc a[D : P ] `α 
 D `αa P ‖ `α

Side conditions:
in Comm, x ∈ dv(D);
in Go, b does not occur in any other path;
in Str-Loc, a does not occur in any other path
and {D}, {P} is the only content of solution αa.

The local rules are unchanged (cf. figure 2)
distributed parallel composition ‖ is associate-commutative.

Figure 9. The distributed rcham



The Join Calculus: a Language for Distributed Mobile Programming 59

We assume that there are three machines: a user machine u that issues some
print request, a server machine s that hosts the spooler D, and a laser printer p
that registers to the spooler. We let P represent the printer code. We have the
series of chemical steps:

`u job〈1〉 ‖ D `s ‖ laser〈f〉 . P `p ready〈laser〉
Comm→ `u ‖ D `s job〈1〉 ‖ laser〈f〉 . P `p ready〈laser〉
Comm→ `u ‖ D `s job〈1〉, ready〈laser〉 ‖ laser〈f〉 . P `p
React→ `u ‖ D `s laser〈1〉 ‖ laser〈f〉 . P `p
Comm→ `u ‖ D `s ‖ laser〈f〉 . P `p laser〈1〉

The first step forwards the message job〈1〉 from the user machine u to the ma-
chine that defines job, here the spooler s. Likewise, the second step forwards the
message ready〈laser〉 to the spooler. Next, synchronization occurs within the
spooler between these two messages as a local reduction step. As a result, a new
message on the spooler is sent to the laser printer, where it can be forwarded
then processed.

From this example, we can also illustrates global lexical scope. To model that
laser is initially private to the printer machine p, we can use a preliminary local,
structural step on machine p:

`p def laser〈f〉 . P in ready〈laser〉
Str-def


 laser〈f〉 . P `p ready〈laser〉

Then, the second Comm step in the series above extends the scope of laser to
the server, which gains the ability to send messages to the printer. In contrast,
the scoping rules guarantees that no other process may send such messages at
this stage.

Nested locations Assuming that every location is mapped to its host machine,
agent migration is naturally represented as an update of this mapping from
locations to machines. For instance, a location that contains the running code of
a mobile agent may migrate to the machine that hosts another location providing
a particular service.

Our model of locality is hierarchical, locations being attached to a parent lo-
cation rather than a machine. A migration request is expressed using the process
go(a);P where a is the name of the target location and P is a guarded process
triggered after completing the migration. The migration is subjective, inasmuch
as it applies to the location that runs the process go(a);P and its sublocations.

As regards distributed programming, there are many situations where sev-
eral levels of moving resources are useful. For example, the server itself may
sometimes move from one machine to another to continue the service while a
machine goes down, and the termination of a machine and of all its locations can
be modeled using the same mechanisms as a migration. Also, some agents nat-
urally make use of sub-agents, e.g., to spawn some parts of the computation to
other machines. When a mobile agent returns to its client machine, for instance,



60 Applied Semantics Summer School, Draft 7/01

it may contain running processes and other resources; logically, the contents of
the agent should be integrated with the client: later on, if the client moves, or
fails, this contents should be carried away or discarded accordingly.

From the implementor’s viewpoint, the hierarchical model can be imple-
mented as efficiently as the flat model, because each machine only has to keep
track of its own local hierarchy of locations. Nonetheless, the model provides ad-
ditional expressiveness to the programmer, who can assemble groups of resources
that move from one machine to another as a whole. This may explain why most
implementations of mobile objects provide a rich dynamic structure for control-
ling migration, for instance by allowing objects to be temporarily attached to
one another (cf. [25,24]).

Consider for instance the case of concurrent migrations: a client creates an
agent to go and get some information on a server; in parallel, the server goes to
another machine.

– With a flat location structure, the migration from the client to the server
must be dynamically resolved to a migration to a particular machine, e.g. the
machine that currently hosts the server. In the case the server moves after
the arrival of the agent, the agent is left behind. That is, the mapping from
locations to machines depends on the scheduling of the different migrations,
and the migration to the server yields no guarantee of being on the same
machine as the server.

– With a hierarchical structure, the ordering of nested migrations becomes
irrelevant, and the agent is guaranteed to remain with the server as long as
the agent does not explicitly request another migration, even as the server
moves.

Relating locations to local chemical solutions We must represent locations
both as syntactic definitions (when considered as a sublocation, or in a guarded
process) and as local chemical solutions (when they interact with one another).
We rely on location names to relate the two structures. We assume given a
countable set of location names a, b, . . . ∈ L. We also write α, β, ab, αb, . . . ∈
L∗ for finite strings of location names, or paths. Location names are first-class
values. Much as channel names, they can be created locally, sent and received in
messages, and they have a lexical scope. To introduce new locations, we extend
the syntax of definitions with a new location constructor:

D
def= . . . | a [D′ :P ]

where D′ gathers the definitions of the location, where P is the code running in
the location, and where a is a new name for the location. As regards the scopes,
a [D′ :P ] defines the name a and the names defined in D′.

Informally, the definition a [D′ :P ] corresponds to the local solution D′ `βa
P , where β is the path of D’s local solution. We say that `α is a sublocation of
`β when β is a prefix of α. In the following, drchams are multisets of solutions
labeled with paths α that are all distinct, prefix-closed, and uniquely identified



The Join Calculus: a Language for Distributed Mobile Programming 61

by their rightmost location name, if any. These conditions ensure that solutions
ordered by the sublocation relation form a tree.

The new structural rule Str-Loc relates the two representations of loca-
tions. From left to right, the rule takes a sublocation definition and creates a
running location that initially contains a single definition D and a single running
process P . From right to left, Str-loc has a “freezing” effect on location a and
all its sublocations. The rule has a side condition that requires that there is no
solution of the form `ψaφ in the implicit chemical context for any ψ, φ in L∗; in
contrast, the definition D may contain sublocations. The side condition guaran-
tees that D syntactically captures the whole subtree of sublocations in location a
when the rule applies. Note that the rule Str-def and its side condition also
apply to defined location names. This guarantees that newly-defined locations
are given fresh names, and also that locations that are folded back into defining
processes do not leave any running sublocation behind.

In well-formed drchams, we have required that all reaction rules defining
a given channel name belong to a single local solution, and that all local solu-
tions have distinct paths. With the addition of frozen locations in solution, we
also require that locations in solution all have distinct location names that do
not appear in the path of any local solution. We constrain the syntax of defini-
tions accordingly: in a well-formed definition, for all conjunctions D ∧ D′, we
require that dv(D) ∩ dv(D′) contain only port names that are not defined in
a sublocation of D or D′. For instance, the definitions a [> :0] ∧ a [> :0] and
a [x〈〉 . P ∧ b [x〈〉 . Q :0] :0] are ruled out.

As an example of nested locations, we describe a series of structural rear-
rangements that enable some actual reduction steps. We assume that a does not
occur in Pc or Q.

` def c
[
x〈u〉 . Q ∧ a [Da :Pa] : Pc

]
in y〈c, x〉|x〈a〉

Str-Def


 c
[
x〈u〉 . Q ∧ a [Da :Pa] : Pc

]
` y〈c, x〉|x〈a〉

Str-Loc


 x〈u〉 . Q ∧ a [Da :Pa] `c Pc ` y〈c, x〉|x〈a〉
Str-Def,Par


 x〈u〉 . Q, a [Da :Pa] `c Pc ` y〈c, x〉, x〈a〉
Str-loc


 Da `ca Pa x〈u〉 . Q `c Pc ` y〈c, x〉, x〈a〉
Comm→ Da `ca Pa x〈u〉 . Q `c Pc, x〈a〉 ` y〈c, x〉
React→ Da `ca Pa x〈u〉 . Q `c Pc, Q{a/u} ` y〈c, x〉

 ` def c

[
x〈u〉 . Q : Pc|def a [Da :Pa] in Q{a/u}

]
in y〈c, x〉

Now that the bookkeeping of the location tree is handled as a special case of
structural rearrangement, we can express migration as the relocation of a branch
in the location tree. We extend distributed chemical semantics with a second
reduction rule that operates on two chemical solutions (rule Go). Informally,
location b moves from its current position βb in the tree to a new position αab
just under the location name a passed to the migration request. The target
solution `αa is identified by its name a. Once b arrives, the guarded process P is



62 Applied Semantics Summer School, Draft 7/01

triggered. The side condition forces the preliminary application of rule Str-Loc
to fold any sublocation of a, and thus guarantees that the branch moves as a
whole.

5.3 Attaching some meaning to locations

In the machine above, the locality structure is mostly descriptive: the distributed
semantics keeps track of locality information, but the location of a particular pro-
cess or definition does not affect the result of the computation, at least for the
observables studied in Section 2. Formally, we can erase any locality informa-
tion and relate the simple semantics to the distributed semantics. (Some care is
required to rule out migration attempts towards one’s own sublocation, which
may delay or block some processes.)

To conclude, we briefly present two refined models where locality has an
impact on the computation and can be partially observed.

Partial failure and failure-detection Our calculus can be extended with
a simple “fail-stop” model of failure, where the crash of a physical site causes
the permanent failure of its processes and definitions. In the extended model, a
location can halt with all its sublocations. The failure of a location can also be
asynchronously detected at any other running location, allowing programmable
error recovery.

We supplement the syntax of distributed processes with constructs for failure
and asynchronous failure detection:

P,Q,R ::= processes
. . . (as in Figure 8)

|| halt local failure
|| fail a;P remote failure detection

We also put an optional “has failed” marker Ω in front of every location name
in paths, and add a side condition “the path does not contain Ω” in front of
every chemical reduction rule (that is, a failed location and its sub-locations
cannot migrate, communicate, or perform local steps). In addition, we provide
two chemical rules for the new constructs:

Halt `αa halt → `αΩa

Detect `αa ‖ `βb fail a;P → `αa ‖ `βb P

with side conditions: in Halt, a does not occur in any other path and the
marker Ω does not occur in α; in Go, the marker Ω occurs in α but not in β.

Inasmuch as the only reported failures are permanent location failures, the
programming model remains relatively simple4. For instance, the single delivery
4 In addition, timeouts are pragmatically useful, but they are trivially modeled in

an asynchronous setting—they are ordinary non-deterministic reduction steps—and
they do not provide any negative guarantee.



The Join Calculus: a Language for Distributed Mobile Programming 63

of every message is guaranteed unless the sender fails, and thus the program-
mer can consider larger units of failure. Besides, failure-detection provides useful
negative information: once a location failure is detected, no other location may
interact with it, hence its task may be taken over by another location without in-
terfering with the failed location. The model of failure is only partially supported
in JoCaml (some failures may never be reported).

Authentication and Secrecy Interpreting locations as security boundaries,
or “principals”, we have also developed a model of authentication for a variant
of the join calculus [4]. In this variants, we consider only a flat and static parallel
composition of locations.

As in the distributed join calculus, every name “belongs” to the single loca-
tion that defines it, hence only that location can receive messages sent on that
name, while other locations cannot even detect those messages. In addition, ev-
ery message carries a mandatory first parameter that contains a location name,
meant to be the name of the sending location, and used by the receiver to au-
thenticate the sender. These properties are both enforced by a modified Comm
rule:

Secure-Comm `a x〈c, ỹ〉 ‖ Dx `b → `a ‖ Dx `b x〈a, ỹ〉

where x is (uniquely) defined in Dx. Remark that the first parameter c is over-
written with the correct sender identity a, much as in Modula 3’s secure network
objects [42].

These secrecy and authenticity properties provide a strong, abstract ba-
sis for reasoning on the security of distributed programs, but their semantics
depends on global chemical conditions that are not necessarily met in practi-
cal implementations—when communicating with an untrusted remote machine,
there is no way to check that it is running a correct implementation. This deli-
cate implementation is actually the main issue in [4], where we show that those
strong properties can be faithfully implemented using standard cryptographic
primitives, with much weaker assumptions on the network. This result is ex-
pressed in terms of bisimilarity equivalences.

Acknowledgements

These lecture notes are partly derived from previous works in collaboration
with Mart́ın Abadi, Sylvain Conchon, Cosimo Laneve, Fabrice Le Fessant, Jean-
Jacques Lévy, Luc Maranget, Didier Rémy, and Alan Schmitt.

References

1. M. Abadi, C. Fournet, and G. Gonthier. Secure implementation of channel abstrac-
tions. Manuscript, on the Web at http://research.microsoft.com/~fournet;
subsumes [2] and [3].

http://research.microsoft.com/~fournet


64 Applied Semantics Summer School, Draft 7/01

2. M. Abadi, C. Fournet, and G. Gonthier. Secure implementation of channel ab-
stractions. In Proceedings of LICS ’98, pages 105–116. IEEE, June 1998.

3. M. Abadi, C. Fournet, and G. Gonthier. Secure communications processing for
distributed languages. In Proceedings of the 1999 IEEE Symposium on Security
and Privacy, pages 74–88, May 1999.

4. M. Abadi, C. Fournet, and G. Gonthier. Authentication primitives and their com-
pilation. In Proceedings of POPL’00, pages 302–315. ACM, Jan. 2000.

5. G. Agha, I. Mason, S. Smith, and C. L. Talcott. A foundation for actor computa-
tion. Journal of Functional Programming, 7(1):1–72, Jan. 1997.

6. R. M. Amadio, I. Castellani, and D. Sangiorgi. On bisimulations for the asyn-
chronous π-calculus. Theoretical Computer Science, 195(2):291–324, 1998.

7. G. Berry and G. Boudol. The chemical abstract machine. Theoretical Computer
Science, 96:217–248, 1992.

8. M. Boreale and D. Sangiorgi. Some congruence properties for π-calculus bisimilar-
ities. Theoretical Computer Science, 198(1–2):159–176, 1998.

9. E. Brinksma, A. Rensink, and W. Vogler. Fair testing. In I. Lee and S. A. Smolka,
editors, 6th International Conference on Concurrency Theory (CONCUR’95), vol-
ume 962 of LNCS, pages 313–327. Springer-Verlag, 1995.

10. E. Brinksma, A. Rensink, and W. Vogler. Applications of fair testing. In
R. Gotzhein and J. Bredereke, editors, Formal Description Techniques IX: Theory,
Applications and Tools, volume IX. Chapman and Hall, 1996.

11. L. Cardelli and A. Gordon. Mobile ambients. In Proceedings of FoSSaCS’98,
volume 1378 of LNCS, pages 140–155. Springer-Verlag, 1998.

12. S. Conchon and F. Le Fessant. Jocaml: Mobile agents for objective-caml. In
ASA/MA’99, pages 22–29. IEEE Computer Society, Oct. 1999.

13. C. Fournet. The Join-Calculus: a Calculus for Distributed Mobile Programming.
PhD thesis, Ecole Polytechnique, Palaiseau, Nov. 1998. INRIA TU-0556. Also
available from http://research.microsoft.com/~fournet.

14. C. Fournet and G. Gonthier. The reflexive chemical abstract machine and the
join-calculus. In Proceedings of POPL’96, pages 372–385. ACM, Jan. 1996.

15. C. Fournet and G. Gonthier. A hierarchy of equivalences for asynchronous calculi
(extended abstract). In K. Larsen, S. Skyum, and G. Winskel, editors, Proceedings
of the 25th International Colloquium on Automata, Languages and Programming
(ICALP ’98), volume 1443 of LNCS, pages 844–855, Aalborg, Denmark, July 1998.
Springer-Verlag.

16. C. Fournet and C. Laneve. Bisimulations in the join-calculus. To appear in TCS,
available from http://research.microsoft.com/~fournet, Oct. 2000.

17. C. Fournet, J.-J. Lévy, and A. Schmitt. An asynchronous, distributed implementa-
tion of mobile ambients. In J. van Leeuwen, O. Watanabe, M. Hagiya, P. Mosses,
and T. Ito, editors, Proceedings of IFIP TCS 2000, volume 1872 of LNCS, Sendai,
Japan, 17–19 Aug. 2000. IFIP TC1, Springer-Verlag. An extended report is avail-
able from http://research.microsoft.com/~fournet.

18. C. Fournet and L. Maranget. The join-calculus language (version 1.03 beta).
Source distribution and documentation available from http://join.inria.fr/,
June 1997.

19. R. Glabbeek. The linear time—branching time spectrum II; the semantics of se-
quential systems with silent moves (extended abstract). In E. Best, editor, 4th
International Conference on Concurrency Theory (CONCUR’93), volume 715 of
LNCS, pages 66–81. Springer-Verlag, 1993. Also Manuscript, preliminary version
available at ftp://Boole.stanford.edu/pub/spectrum.ps.gz.

http://research.microsoft.com/~fournet
http://research.microsoft.com/~fournet
http://research.microsoft.com/~fournet
http://join.inria.fr/
ftp://Boole.stanford.edu/pub/spectrum.ps.gz


The Join Calculus: a Language for Distributed Mobile Programming 65

20. M. Hennessy and J. Riely. A typed language for distributed mobile processes. In
Proceedings of POPL ’98, pages 378–390. ACM, Jan. 1998.

21. K. Honda and M. Tokoro. On asynchronous communication semantics. In P. Weg-
ner, M. Tokoro, and O. Nierstrasz, editors, Proceedings of the ECOOP’91 Work-
shop on Object-Based Concurrent Computing, volume 612 of LNCS, pages 21–51.
Springer-Verlag, 1992.

22. K. Honda and N. Yoshida. Combinatory representation of mobile processes. In
Proceedings of POPL ’94, pages 348–360, 1994.

23. K. Honda and N. Yoshida. On reduction-based process semantics. Theoretical
Computer Science, 152(2):437–486, 1995.

24. E. Jul. Migration of light-weight processes in emerald. IEEE Operating Sys. Tech-
nical Committee Newsletter, Special Issue on Process Migration, 3(1):20, 1989.

25. E. Jul, H. Levy, N. Hutchinson, and A. Black. Fine-grained mobility in the emer-
ald system. In Proceedings of the 11th ACM Symposium on Operating Systems
Principles, pages 62–74, November 1987.

26. C. Laneve. May and must testing in the join-calculus. Technical Report UBLCS
96-04, University of Bologna, Mar. 1996. Revised: May 1996.

27. F. Le Fessant. The JoCAML system prototype (beta). Software and documentation
available from http://pauillac.inria.fr/jocaml, 1998.

28. F. Le Fessant and L. Maranget. Compiling join-patterns. In U. Nestmann and
B. C. Pierce, editors, HLCL ’98: High-Level Concurrent Languages, volume 16(3)
of Electronic Notes in Theoretical Computer Science, Nice, France, Sept. 1998.
Elsevier Science Publishers. To appear.

29. X. Leroy and al. The Objective CAML system 3.01. Software and documentation
available from http://caml.inria.fr.

30. R. Milner. Communication and Concurrency. Prentice Hall, New York, 1989.
31. R. Milner. Communication and Mobile Systems: the π-Calculus. Cambridge Uni-

versity Press, Cambridge, 1999.
32. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, parts I and

II. Information and Computation, 100:1–40 and 41–77, Sept. 1992.
33. R. Milner and D. Sangiorgi. Barbed bisimulation. In W. Kuich, editor, Proceedings

of ICALP’92, volume 623 of LNCS, pages 685–695. Springer-Verlag, 1992.
34. V. Natarajan and R. Cleaveland. Divergence and fair testing. In Proceedings of

ICALP ’95, volume 944 of LNCS. Springer-Verlag, 1995.
35. U. Nestmann and B. C. Pierce. Decoding choice encodings. In U. Montanari and

V. Sassone, editors, 7th International Conference on Concurrency Theory (CON-
CUR’96), volume 1119 of LNCS, pages 179–194. Springer-Verlag, Aug. 1996. Re-
vised full version as report ERCIM-10/97-R051, 1997.

36. J. Parrow and P. Sjödin. Multiway synchronization verified with coupled simula-
tion. In R. Cleaveland, editor, Third International Conference on Concurrency
Theory (CONCUR’92), volume 630 of LNCS, pages 518–533. Springer-Verlag,
1992.

37. J. Parrow and P. Sjödin. The complete axiomatization of cs-congruence. In P. En-
jalbert, E. W. Mayr, and K. W. Wagner, editors, Proceedings of STACS’94, volume
775 of LNCS, pages 557–568. Springer-Verlag, 1994.

38. D. Sangiorgi. Expressing Mobility in Process Algebras: First-Order and Higher-
Order Paradigms. Ph.D. thesis, University of Edinburgh, May 1993.

39. D. Sangiorgi. On the bisimulation proof method. Revised version of Technical
Report ECS–LFCS–94–299, University of Edinburgh, 1994. An extended abstract
appears in Proc. of MFCS’95, LNCS 969, 1994.

http://pauillac.inria.fr/jocaml
http://caml.inria.fr


66 Applied Semantics Summer School, Draft 7/01

40. D. Sangiorgi and R. Milner. The problem of “weak bisimulation up to”. In W. R.
Cleaveland, editor, Proceedings of CONCUR’92, volume 630 of LNCS, pages 32–46.
Springer-Verlag, 1992.

41. D. Sangiorgi and D. Walker. The Pi-calculus: a Theory of Mobile Processes. Cam-
bridge University Press, July 2001. ISBN 0521781779.

42. L. van Doorn, M. Abadi, M. Burrows, and E. Wobber. Secure network objects. In
Proceedings of the 1996 IEEE Symposium on Security and Privacy, pages 211–221,
May 1996.


	The Join Calculus:  a Language for Distributed Mobile Programming
	The core join calculus
	Concurrent functional programming
	Synchronization by pattern-matching
	The asynchronous core
	Operational semantics
	The reflexive chemical abstract machine

	Basic equivalences
	May testing equivalence
	Trace observation
	Simulation and coinduction
	Bisimilarity equivalence
	Bisimulation proof techniques

	A hierarchy of equivalences
	Too many equivalences?
	Fair testing
	Coupled Simulations
	Two notions of congruence
	Summary: a hierarchy of equivalences

	Labeled semantics
	Open syntax and chemistry
	Observational equivalences on open terms
	Labeled bisimulation
	Asynchronous bisimulation
	The discriminating power of name comparison

	Distribution and mobility
	Distributed mobile programming
	Computing with locations
	Attaching some meaning to locations



