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1 Introduction and Goals

These notes are intended to give computer graphics programmers
and artists an introduction to methods of simulating, animating,
and rendering ocean water environments. CG water has become a
common tool in visual effects work at all levels of computer graph-
ics, from print media to feature films. Several commercial products
are now available for nearly any computer platform and work envi-
ronment, in addition to proprietary tools held by a few companies,
which generate high quality geometry and images. In order for an
artist to exploit the tools to maximum benefit, it is important that he
or she become familiar with concepts, terminology, a little oceanog-
raphy, and the present state of the art.

As demonstrated by the pioneering efforts in the filmsWater-
world andTitanic, as well as several other films made since about
1995, images of cg water can be generated with a high degree of
realism. However, this level of realism is limited to relatively calm,
nice ocean conditions. Conditions with large amounts of spray,
breaking waves, foam, splashing, and wakes are approaching the
same realistic look.

Broadly, the reader should come away from this material with
(1) an understanding of some algorithms that generate/animate wa-
ter surface height fields suitable for modeling waves as big as storm
surges and as small as tiny capillaries; (2) an understanding of the
basic optical processes of reflection and refraction from a water sur-
face; (3) an introduction to the color filtering behavior of ocean wa-
ter; (4) an introduction to complex lighting effects known as caus-
tics and godrays, produced when sunlight passes through the rough
surface into the water volume underneath; and (5) some rules of
thumb for which choices make nice looking images and what are
the tradeoffs of quality versus computational resources. Some ex-
ample shaders are provided, and example renderings demonstrate
the content of the discussion.

Before diving into it, I first want to be more concrete about what
aspect of the ocean environment we cover (or not cover) in these
notes. Figure 1 is a rendering of an oceanscape produced from mod-
els of water, air, and clouds. Light from the clouds is reflected from
the surface. On the extreme left, sun glitter is also present. The
generally bluish color of the water is due to the reflection of blue
skylight, and to light coming out of the water after scattering from
the volume. Although these notes do not tackle the modeling and
rendering of clouds and air, there is a discussion of how skylight
from the clouds and air is reflected from, or refracted through, the
water surface. These notes will tell you how to make a height-field
displacement-mapped surface for the ocean waves with the detail
and quality shown in the figure. The notes also discuss several ef-
fects of the underwater environment and how to model/render them.
The primary four effects are sunbeams (also called godrays), caus-
tics on underwater surfaces, blurring by the scattering of light, and
color filtering.

There are also many other complex and interesting aspects of the
ocean environment that will not be covered. These include break-
ing waves, spray, foam, wakes around objects in the water, splashes
from bodies that impact the surface, and global illumination of the
entire ocean-atmosphere environment. There is substantial research
underway on these topics, and so it is possible that future versions
of this or other lecture notes will include them. I have included a
brief section on advanced modifications to the basic wave height al-
gorithm that produce choppy waves. The modification could feasi-
bly lead to a complete description of the surface portion of breaking
waves, and possibly serve to drive the spray and foam dynamics as
well.

There is, of course, a substantial body of literature on ocean sur-
face simulation and animation, both in computer graphics circles
and in oceanography. One of the first descriptions of water waves
in computer graphics was by Fournier and Reeves[8] , who modeled

Figure 1: Rendered image of an oceanscape.

a shoreline with waves coming up on it using a water surface model
calledGerstner waves. In that same issue, Darwin Peachey[9] pre-
sented a variation on this approach using basis shapes other than
sinusoids.

In the oceanographic literature, ocean optics became an inten-
sive topic of research in the 1940s. S.Q. Duntley published[13] in
1963 papers containing optical data of relevance to computer graph-
ics. Work continues today. The field of optical oceanography has
grown into a mature quantitative science with subdisciplines and
many different applications. One excellent review of the state of
the science was written by Curtis Mobley[14].

In these lectures the approach we take to creating surface waves
is close to the one outlined by Masten, Watterberg, and Mareda[7],
although the technique had been in use for many years prior to
their paper in the optical oceanography community. This approach
synthesizes a patch of ocean waves from a Fast Fourier Transform
(FFT) prescription, with user-controllable size and resolution, and
which can be tiled seamlessly over a larger domain. The patch con-
tains many octaves of sinusoidal waves that all add up at each point
to produce the synthesized height. The mixture of sinusoidal am-
plitudes and phases however, comes from statistical, emperically-
based models of the ocean. What makes these sinusoids look like
waves and not just a bunch of sine waves is the large collection of
sinusoids that are used, the relative amplitudes of the sinusoids, and
their animation using the dispersion relation. We examine the im-
pact of the number of sinusoids and resolution on the quality of the
rendered image.

In the next section we begin the discussion of the ocean environ-
ment with a broad introduction to the global illumination problem.
The radiosity equations for this environment look much like those
of any other radiosity problem, although the volumetric character of
some of the environmental components complicate a general imple-
mentation considerably. However, we simplify the issues by ignor-
ing some interactions and replacing others with models generated
by remote sensing data.

Practical methods are presented in section 3 for creating realiza-
tions of ocean surfaces. We present two methods, one based on a
simple model of water structure and movement, and one based on
summing up large numbers of sine waves with amplitudes that are
related to each other based on experimental evidence. This sec-
ond method carries out the sum using the technique of Fast Fourier
Transformation (fft), and has been used effectively in projects for
commercials, television, and motion pictures.

After the discussion of the structure and animation of the water
surface, we focus on the optical properties of water relevant to the
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graphics problem. First, we discuss the interaction at the air-water
interface: reflection and refraction. This leaves us with a simple
but effective Renderman-style shader suitable for rendering water
surfaces in BMRT, for example. Next, the optical characteristics of
the underwater environment are explored.

2 Radiosity of the Ocean Environment

The ocean environment, for our purposes, consists of only four
components: The water surface, the air, the sun, and the water be-
low the surface. In this section we trace the flow of light through the
environment, both mathematically and schematically, from the light
source to the camera. In general, the radiosity equations here are as
coupled as any other radiosity problem. To a reasonable degree,
however, the coupling can be truncated and the simplified radiosity
problem has a relatively fast solution .

The light seen by a camera is dependent on the flow of light en-
ergy from the source(s) (i.e. the sun and sky) to the surface and
into the camera. In addition to specular reflection of direct sunlight
and skylight from the surface, some fraction of the incident light
is transmitted through the surface. Ultimately, some fraction of the
transmitted light is scattered by the water volume back up into the
air. Some of the light that is reflected or refracted at the surface
may strike the surface a second time, producing more reflection and
refraction events. Under some viewing conditions, multiple reflec-
tions and refractions can have a noticeable impact on images. For
our part however, we will ignore more than one reflection or refrac-
tion from the surface at a time. This not only makes the algorithms
and computation easier and faster, but also is reasonably accurate
most of the time.

At any point in the environment above the surface, including at
the camera, the total light intensity (radiance) coming from any di-
rection has three contributions:

LABOVE = rLS + rLA + tULU , (1)

with the following definitions of the terms:

r is the Fresnel reflectivity for reflection from a spot on the surface
of the ocean to the camera.

tU is the transmission coefficient for the lightLU coming up from
the ocean volume, refracted at the surface into the camera.

LS is the amount of light coming directly from the sun, through
the atmosphere, to the spot on the ocean surface where it is
reflected by the surface to the camera.

LA is the (diffuse) atmospheric skylight

LU is the light just below the surface that is transmitted through
the surface into the air.

Equation 1 has intentionally been written in a shorthand way that
hides the dependences on position in space and the direction the
light is traveling.

While equation 1 appears to have a relatively simple structure,
the termsLS , LA, andLU can in principle have complex depen-
dencies on each other, as well on the reflectivity and transmissivity.
There is a large body of research literature investigating these de-
pendencies in detail [15], but we will not at this point pursue these
quantitative methods. But we can elaborate further on the coupling
while continuing with the same shorthand notation. The direct light
from the sunLS is

LS = LTOA exp{−τ} , (2)

whereLTOA is the intensity of the direct sunlight at the top of the
atmosphere, andτ is the “optical thickness” of the atmosphere for

the direction of the sunlight and the point on the earth. Both the
diffuse atmospheric skylightLA and the upwelling lightLU can be
written as the sum of two terms:

LA = L0
A(LS) + L1

A(LU ) (3)

LU = L0
U (LS) + L1

U (LA) (4)

These equations reveal the potential complexity of the problem.
While bothLA andLU depend on the direct sunlight, they also
depend on each other. For example, the total amount of light pene-
trating into the ocean comes from the direct sunlight and from the
atmospheric sunlight. Some of the light coming into the ocean is
scattered by particulates and molecules in the ocean, back up into
the atmosphere. Some of that upwelling light in turn is scattered in
the atmosphere and becomes a part of the skylight shining on the
surface, and on and on. This is a classic problem in radiosity. It
is not particularly special for this case, as opposed to other radios-
ity problems, except perhaps for the fact that the upwelling light
is difficult to compute because it comes from volumetric multiple
scattering.

Our approach, for the purposes of these notes, to solving this
radiosity problem is straightforward: take the skylight to depend
only on the light from the sun, since the upwelling contribution
represents a “tertiary” dependence on the sunlight; and completely
replace the equation forLU with an empirical formula, based on
scientific observations of the oceans, that depends only on the di-
rect sunlight and a few other parameters that dictate water type and
clarity.

Under the water surface, the radiosity equation has the schematic
form

LBELOW = tLD + tLI + LSS + LM , (5)

with the meaning

t is the Fresnel transmissivity for transmission through the water
surface at each point and angle on the surface.

LD The “direct” light from the sun that penetrates into the water.

LI The “indirect” light from the atmosphere that penetrates into
the water.

LSS The single-scattered light, from both the sun and the atmo-
sphere, that is scattered once in the water volume before ar-
riving at any point.

LM The multiply-scattered light. This is the single-scattered light
that undergoes more scattering events in the volume.

Just as for the above water case, these terms are all related to each
other is relative complex ways. For example, the single scattered
light depends on the direct and indirect light:

LSS = P (tLI) + P (tLD) (6)

with the quantityP being a linear functional operator of its argu-
ment, containing information about the single scattering event and
the attenuation of the scattered light as it passes from the scatter
point to the camera. Similarly, the multiply-scattered light is de-
pendent on the single scattered:

LM = G(tLI) +G(tLD) . (7)

The functional schematic quantitiesP andG are related, since mul-
tiple scattering is just a series of single scatters. Formally, the two
have an operator dependence that has the form

G ∼ P ⊗ P ⊗
{

1 + P +
1

2!
P ⊗ P +

1

3!
P ⊗ P ⊗ P + . . .

}
∼ P ⊗ P ⊗ exp(P ) . (8)
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Figure 2: Illustration of multiple reflections and transmission
through the air-water interface.

At this point, the schematic representation may have outlived its
usefullness because of the complex (and not here defined) meaning
of the convolution-like operator⊗, and because the expression for
G in terms ofP has created an even more schematic view in terms
of an exponentiatedP . So for now we will leave the schematic
representation, and journey on with more concrete quantities the
rest of the way through.

The formal schematic discussion put forward here does have a
mathematically and physically precise counterpart. The field of
study in Radiative Transfer has been applied for some time to wa-
ter optics, by a large number researchers. The references cited are
excellent reading for further information.

As mentioned, there is one additional radiosity scenario that can
be important to ocean rendering under certain circumstances, but
which we will not consider. The situation is illustrated in figure 2.
Following the trail of the arrows, which track the direction light
is travelling, we see that sometimes light coming to the surface
(from above or below), can reflect and/or transmit through the sur-
face more than once. The conditions which produce this behavior
in significant amounts are: the wave heights must be fairly high,
and the direction of viewing the waves, or the direction of the light
source must be nearly grazing the surface. The higher the waves
are, the less grazing the light source or camera need to be. This
phenonmenon has been examined experimentally and in computer
simulations. It is reasonably well understood, and we will ignore it
from this point on.

3 Practical Ocean Wave Algorithms

In this section we focus on algorithms and practical steps to build-
ing height fields for ocean waves. Although we will be occupied
mostly by a method based on Fast Fourier Transforms (FFTs), we
begin by introducing a simpler description called Gerstner Waves.
This is a good starting point for several reasons: the mathematics is
relatively light compared to FFTs, several important oceanographic
concepts can be introduced, and they give us a chance to discuss
wave animation. After this discussion of Gerstner waves, we go
after the more complex FFT method, which produces wave height
fields that are more realistic. These waves, called “linear waves” or
“gravity waves” are a fairly realistic representation of typical waves
on the ocean when the weather is not too stormy. Linear waves are
certainly not the whole story, and so we discuss also some meth-
ods by which oceanographers expand the description to “nonlinear
waves”, waves passing over a shallow bottom, and very tiny waves
about one millimeter across called capillary waves.

In the course of this discussion, we will see how quantities like
windspeed, surface tension, and gravitational acceleration come

-4

-3

-2

-1

0

1

2

3

4

-5 0 5 10 15 20 25

W
av

e A
mp

litu
de

�

Position

kA = 0.7
kA = 1.33

Figure 3: Profiles of two single-mode Gerstner waves, with differ-
ent relative amplitudes and wavelengths.

into the practical implementation of the algorithms.

3.1 Gerstner Waves

Gerstner waves were first found as an approximate solution to the
fluid dynamic equations almost 200 years ago. There first appli-
cation in computer graphics seems to be the work by Fournier and
Reeves in 1986 (cited previously). The physical model is to de-
scribe the surface in terms of the motion of individual points on the
surface. To a good approximation, points on the surface of the water
go through a circular motion as a wave passes by. If a point on the
undisturbed surface is labelledx0 = (x0, z0) and the undisturbed
height isy0 = 0, then as a single wave with amplitudeA passes by,
the point on the surface is displaced at time t to

x = x0 − (k/k)A sin(k · x0 − ωt) (9)

y = A cos(k · x0 − ωt) . (10)

In these expressions, the vectork, called the wavevector, is a
horizontal vector that points in the direction of travel of the wave,
and has magnitudek related to the length of the wave (λ) by

k = 2π/λ (11)

The frequencyw is related to the wavevector, as discussed later.
Figure 3 shows two example wave profiles, each with a different

value of the dimensionless amplitude kA. For valueskA < 1, the
wave is periodic and shows a steepening at the tops of the waves as
kA approaches 1. ForkA > 1, a loop forms at the tops of the wave,
and the “insides of the wave surface are outside”, not a particularly
desirable or realistic effect.

As presented so far, Gerstner waves are rather limited because
they are a single sine wave horizontally and vertically. However,
this can be generalized to a more complex profile by summing a
set of sine waves. One picks a set of wavevectorski, amplitudes
Ai, frequenciesωi, and phasesφi, for i = 1, . . . , N , to get the
expressions

x = x0 −
N∑
i=1

(ki/ki)Ai sin(ki · x0 − ωit+ φi) (12)
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Figure 4: Profile of a 3-mode Gerstner wave.

y =

N∑
i=1

Ai cos(ki · x0 − ωit+ φi) . (13)

Figure 4 shows an example with three waves in the set. Interest-
ing and complex shapes can be obtained in this way.

3.2 Animating Waves: The Dispersion Relation

The animated behavior of Gerstner waves is determined by the set
of frequenciesωi chosen for each component. For water waves,
there is a well-known relationship between these frequencies and
the magnitude of their corresponding wavevectors,ki. In deep wa-
ter, where the bottom may be ignored, that relationship is

ω2(k) = gk . (14)

The parameterg is the gravitational constant, nominally
9.8m/sec2. This dispersion relationship holds for Gerstner waves,
and also for the FFT-based waves introduced next.

There are several conditions in which the dispersion relationship
is modified. When the bottom is relatively shallow compared to
the length of the waves, the bottom has a retarding affect on the
waves. For a bottom at a depthD below the mean water level, the
dispersion relation is

ω2(k) = gk tanh(kD) (15)

Notice that if the bottom is very deep, the behavior of thetanh
function reduces this dispersion relation to the previous one.

A second situation which modifies the dispersion relation is sur-
face tension. Very small waves, with a wavelength of about 1 cm or
less, have an additional term:

ω2(k) = gk(1 + k2L2) , (16)

and the parameterL has units of length. Its magnitude is the scale
for the surface tension to have effect.

Using these dispersion relationships, it is very difficult to create
a sequence of frames of water surface which for a continuous loop.
In order to have the sequence repeat after a certain amount of time
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T for example, it is necessary that all frequencies be multiples of
the basic frequence

ω0 ≡
2π

T
. (17)

However, when the wavevectorsk are distributed on a regular lat-
tice, itis impossible to arrange the dispersion-generated frequencies
to also be on a uniform lattce with spacingω0.

The solution to that is to not use the dispersion frequences, but
instead a set that is close to them. For a given wavenumberk, we
use the frequency

ω̄(k) =

[[
ω(k)

ω0

]]
ω0 , (18)

where[[a]] means take the integer part of the value ofa, andω(k) is
any dispersion relationship of interest. The frequenciesω̄(k) are a
quantizationof the dispersion surface, and the animation of the wa-
ter surface loops after a timeT because the quantized frequencies
are all integer multiples ofω0. Figure 5 plots the original disper-
sion curve, along with quantized dispersion curves for two choices
of the repeat timeT .

3.3 Statistical Wave Models and the Fourier Trans-
form

Oceanographic literature tends to downplay Gerstner waves as a re-
alistic model of the ocean. Instead, statistical models are used, in
combination with experimental observations. In the statistical mod-
els, the wave height is considered a random variable of horizontal
position and time,h(x, t).

Statistical models are also based on the ability to decompose
the wave height field as a sum of sine and cosine waves. The
value of this decomposition is that the amplitudes of the waves
have nice mathematical and statistical properties, making it sim-
pler to build models. Computationally, the decomposition uses Fast
Fourier Transforms (ffts), which are a rapid method of evaluating
the sums.
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The fft-based representation of a wave height field expresses the
wave heighth(x, t) at the horizontal positionx = (x, z) as the sum
of sinusoids with complex, time-dependent amplitudes:

h(x, t) =
∑

k

h̃(k, t) exp (ik · x) (19)

wheret is the time andk is a two-dimensional vector with com-
ponentsk = (kx, kz), kx = 2πn/Lx, kz = 2πm/Lz, and
n and m are integers with bounds−N/2 ≤ n < N/2 and
−M/2 ≤ m < M/2. The fft process generates the height field
at discrete pointsx = (nLx/N,mLz/M). The value at other
points can also be obtained by switching to adiscretefourier trans-
form, but under many circumstances this is unnecessary and is not
applied here. The height amplitude Fourier components,h̃(k, t),
determine the structure of the surface. The remainder of this sub-
section is concerned with generating random sets of amplitudes in
a way that is consistent with oceanographic phenomenology.

For computer graphics purposes, the slope vector of the wave-
height field is also needed in order to find the surface normal, angles
of incidence, and other aspects of optical modeling as well. One
way to compute the slope is though a finite difference between fft
grid points, separated horizontally by some 2D vector∆x. While
a finite difference is efficient in terms of memory requirements, it
can be a poor approximation to the slope of waves with small wave-
length. An exact computation of the slope vector can be obtained
by using more ffts:

ε(x, t) = ∇h(x, t) =
∑

k

ik h̃(k, t) exp (ik · x) . (20)

In terms of this fft representation, the finite difference approach
would replace the termik with terms proportional to

exp (ik ·∆x)− 1 (21)

which, for small wavelength waves, does not well approximate the
gradient of the wave height. Whenever possible, slope computation
via the fft in equation 20 is the prefered method.

The fft representation produces waves on a patch with horizontal
dimensionsLx×Lz, outside of which the surface is perfectly peri-
odic. In practical applications, patch sizes vary from 10 meters to 2
kilometers on a side, with the number of discrete sample points as
high as 2048 in each direction (i.e. grids that are2048 × 2048, or
over 4 million waves). The patch can be tiled seamlessly as desired
over an area. The consequence of such a tiled extension, however, is
that an artificial periodicity in the wave field is present. As long as
the patch size is large compared to the field of view, this periodicity
is unnoticeable. Also, if the camera is near the surface so that the
effective horizon is one or two patch lengths away, the periodicity
will not be noticeable in the look-direction, but it may be apparent
as repeated structures across the field of view.

Oceanographic research has demonstrated that equation 19 is a
reasonable representation of naturally occurring wind-waves in the
open ocean. Statistical analysis of a number of wave-buoy, photo-
graphic, and radar measurements of the ocean surface demonstrates
that the wave height amplitudesh̃(k, t) are nearly statistically sta-
tionary, independent, gaussian fluctuations with a spatial spectrum
denoted by

Ph(k) =
〈∣∣h̃∗(k, t)∣∣2〉 (22)

for data-estimated ensemble averages denoted by the brackets〈 〉.
There are several analytical semi-empirical models for the wave

spectrumPh(k). A useful model for wind-driven waves larger than
capillary waves in a fully developed sea is thePhillips spectrum

Ph(k) = A
exp
(
−1/(kL)2

)
k4

|k̂ · ŵ|2 , (23)

whereL = V 2/g is the largest possible waves arising from a con-
tinuous wind of speedV , g is the gravitational constant, and̂w is
the direction of the wind.A is a numeric constant. The cosine factor
|k̂·ŵ|2 in the Phillips spectrum eliminates waves that move perpen-
dicular to the wind direction. This model, while relatively simple,
has poor convergence properties at high values of the wavenumber
|k|. A simple fix is to suppress waves smaller that a small length
`� L, and modify the Phillips spectrum by the multiplicative fac-
tor

exp
(
−k2`2

)
. (24)

Of course, you are free to “roll your own” spectrum to try out
various effects.

3.4 Building a Random Ocean Wave Height Field

Realizations of water wave height fields are created from the prin-
ciples elaborated up to this point: gaussian random numbers with
spatial spectra of a prescribed form. This is most efficiently accom-
plished directly in the fourier domain. The fourier amplitudes of a
wave height field can be produced as

h̃0(k) =
1√
2

(ξr + iξi)
√
Ph(k) , (25)

whereξr andξi are ordinary independent draws from a gaussian
random number generator, with mean 0 and standard deviation 1.
Gaussian distributed random numbers tend to follow the experi-
mental data on ocean waves, but of course other random number
distributions could be used. For example, log-normal distributions
could be used to produce height fields that are vary “intermittent”,
i.e. the waves are very high or nearly flat, with relatively little in
between.

Given a dispersion relationω(k), the Fourier amplitudes of the
wave field realization at timet are

h̃(k, t) = h̃0(k) exp {iω(k)t}
+ h̃∗0(−k) exp {−iω(k)t} (26)

This form preserves the complex conjugation propertyh̃∗(k, t) =

h̃(−k, t) by propagating waves “to the left” and “to the right”. In
addition to being simple to implement, this expression is also effi-
cient for computingh(x, t), since it relies on ffts, and because the
wave field at any chosen time can be computed without computing
the field at any other time.

In practice, how big does the Fourier grid need to be? What
range of scales is reasonable to choose? If you want to generate
wave heights faster, what do you do? Lets take a look at these
questions.

How big should the Fourier grid be?The values ofN andM
can be between 16 and 2048, in powers of two. For many
situations, values in the range 128 to 512 are sufficient. For
extremely detailed surfaces, 1024 and 2048 can be used. For
example, the wave fields used in the motion picturesWater-
world andTitanic were 2048×2048 in size, with the spacing
between grid points at about 3 cm. Above a value of 2048, one
should be careful because the limits of numerical accuracy for
floating point calculations can become noticeable.

What range of scales is reasonable to choose?The answer to this
question comes down to choosing values forLx, Lz, M , and
N . The smallest facet in either direction isdx ≡ Lx/M or
dz ≡ Lz/N . Generally,dx and dz need never go below
2 cm or so. Below this scale, the amount of wave action is
small compared to the rest of the waves. Also, the physics
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Figure 6: A surface wave height realization, displayed in greyscale.

of wave behavior below 2 cm begins to take on a very differ-
ent character, involving surface tension and “nonlinear” pro-
cesses. From the form of the spectrum, waves with a wave-
length larger thanV 2/g are suppressed. So make sure thatdx
anddz are smaller thanV 2/g by a substantial amount (10 -
1000) or most of the interesting waves will be lost. The secret
to realistic looking waves (e.g. figure 9 (a) compared to figure
9 (c)) is to haveM andN as large as reasonable.

How do you generate wave height fields in the fastest time?The
time consuming part of the computation is the fast fourier
transform. Running on a 180 MHz PowerPC 603e proces-
sor (under LinuxPPC r4), a 1024x1024 fft takes less than a
minute. However, faster times are achieved by settingM and
N to smaller powers of 2.

3.5 Examples: Height Fields and Renderings

We now turn to some examples of waves created using the fft ap-
proach discussed above. We will show waves in two formats: as
greyscale images in which the grey level is proportional to wave
height; and renderings of oceanscapes using several different ren-
dering packages to illustrate what is possible.

In the first set of examples, the grid size is set toM = N = 512,
with Lx = Lz = 1000 meters. The wind speed is a gale force at
V = 31 meters/second, moving in the x-direction. The small-wave
cutoff of ` = 1 meter was also used. Figure 6 is a greyscale rep-
resentation of the wave height: brighter means higher and darker
means lower height. Although produced by the fft algorithms de-
scribed here, figure 6 is not obviously a water height field. It may
help to examine figure 7, which is a greyscale depiction of the x-
component of the slope. This looks more like water waves that
figure 6. What is going on?

Figures 6 and 7 demonstrate a consequence of water surface op-
tics, discussed in the next section: the visible qualities of the sur-
face structure tend to be strongly influenced by the slope of the
waves. We will discuss this in quantitative detail, but for now we
willl summarize it by saying that the reflectivity of the water is a

Figure 7: The x-component of the slope for the wave height real-
ization in figure 6.

strong function of the slope of the waves, as well as the directions
of the light(s) and camera.

To illustrate a simple effect of customizing the spectrum model,
figure 8 is the greyscale display of a height field identical to figure
6, with the exception that the directional factor|k̂ · ŵ|2 in equation
23 has been changed to|k̂ ·ŵ|6. The surface is clearly more aligned
with the direction of the wind.

The next example of a height field uses a relatively simple shader
in BMRT, the Renderman-compliant raytracer. The shader is shown
in the next section. Figure 9 shows three renderings of water sur-
faces, varying the size of the grid numbersM andN and making
the facet sizesdx anddz proportional to1/M and1/N . So as we
go from the top image to the bottom, the facet sizes become smaller,
and we see the effect of increasing amount of detail in the render-
ings. Clearly, more wave detail helps to build a realistic-looking
surface.

As a final example, figure 10 is an image rendered in the com-
mercial package RenderWorld by Arete Entertainment. This ren-
dering includes the effect of an atmosphere, and water volume scat-
tered light. These are discussed in the next section. But clearly,
wave height fields generated from random numbers using an fft pre-
scription can produce some nice images.

3.6 Experimental Evidence

This subsection is a diversion away from the main graphics thrust
of these notes. It is an account of a relatively simple remote sensing
experiment that demonstrates that the algorithms discussed in this
section are grounded (wetted ?) in reality. Figure 11 is a frame
from a video segment showing water coming into the beach near
Zuma Beach, California. The video camera was located on hill
overlooking the beach, in 1986. In 1993, the region of video frames
indicated in the figure was digitized, to produce a time series of
frames containing just water surface.

The analysis of the image data has a statistical character. Recall
that the Fourier Transform method of creating surface simulations
arises from statistical arguments about the averaged structure of the
surface. Recall also that, to some degree, the grayscale display of
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Figure 8: Wave height realization with increased directional depen-
dence.

the slope field is reminiscent of an overhead view of a water sur-
face. Our data analysis here attempts to use these assumptions to
compute statistical quantities of the images, that should be related
to the wave statistical properties.

From the multiple frames, a three dimensional Power Spectral
Density (PSD) was created. The PSD is computed from the images
by a two step processes (1) Fourier Transform the images in space
and time to create the quantity

h̃(k, ω) =

∫
d2x dt h(x, t) exp {−ik · x + iωt} , (27)

and (2) form the estimated PSD by smoothing the absolute square
of h̃. In mathematical notation, this is

PSD(k, ω) =
∣∣h̃(k, ω)

∣∣2 (28)

There is a good reason for creating the 3D PSD as defined here.
If the waves animate in time as prescribed in equation 26, that is,
with the dispersion relationshipω = ω(k), then the PSD will have
a large value in the regions wherek andω satisfy that dispersion
relationship, and a smaller value anywhere else.

Figure 12 shows a plot of the dispersion relationship in equation
14. There are two branches, for+

√
gk and−

√
gk. If the waves

in the image data are animating with that dispersion relation, then
the PSD will show most of its strength along these two branches,
although the actual magnitude of the PSD should vary from point
to point. Figure 13 shows the actual 3D PSD from the image data.
There are two clear branches along the dispersion relationship we
have discussed, with no apparent modification by shallow water af-
fects. There is also a third branch that is approximately a straight
line lying between the first two. Examination of the video shows
that this branch comes from a surfactant layer floating on the water
in part of the video frame, and moving with a constant speed. Ex-
cluding the surface layer, this data clearly demonstrates the validity
of the dispersion relationship, and demonstrates the usefulness of
the statistical, Fourier Transform oriented model of ocean waves.

Figure 9: Rendering of waves with (top) a fairly low number of
waves (facet size = 10 cm), with little detail; (middle) a reasonably
good number of waves (facet size = 5 cm); (bottom) a high number
of waves with the most detail (facet size = 2.5 cm).

Figure 10: An image of a wave height field rendered in a commer-
cial package with a model atmosphere and sophisticated shading.
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Figure 11: Site at which video data was collected in 1986, near
Zuma Beach, California.
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Figure 12: The theoretical dispersion relationship for deep water
gravity waves.

Figure 13: Slice from a 3D Power Spectral Density grayscale plot,
from processed video data.

3.7 Choppy Waves

We turn briefly in this section to the subject of creating choppy
looking waves. The waves produced by the fft methods presented
up to this point have rounded peaks and troughs that give them the
appearance of fair-weather conditions. Even in fairly good weather,
and particularly in a good wind or storm, the waves are sharply
peaked at their tops, and flattened at the bottoms. The extent of this
chopping of the wave profile depends on the environmental condi-
tions, the wavelengths and heights of the waves. Waves that are
sufficiently high (e.g. with a slope greater than about 1/6) eventu-
ally break at the top, generating a new set of physical phenonema
in foam, splash, bubbles, and spray.

The starting point for this method is the fundamental fluid dy-
namic equations of motion for the surface. These equations are ex-
pressed in terms of two dynamical fields: the surface elevation and
the velocity potential on the surface, and derive from the Navier-
Stokes description of the fluid throughout the volume of the water
and air, including both above and below the interface. Creamer
et al[12] set out to apply a mathematical approach called the ”Lie
Transform technique” to generate a sequence of ”canonical trans-
formations” of the elevation and velocity potential. The benefit of
this complex mathematical procedure is to convert the elevation and
velocity potential into new dynamical fields that have a simpler
dynamics. The transformed case is in fact just the simple ocean
height field we have been discussing, including evolution with the
same dispersion relation we have been using in this paper. Start-
ing from there, the inverse Lie Transform in principle converts our
phenomenological solution into a dynamically more accurate one.
However, the Lie Transform is difficult to manipulate in 3 dimen-
sions, while in two dimensions exact results have been obtained.
Based on those exact results in two dimensions, an extrapolation
for the form of the 3D solution has been proposed: a horizontal dis-
placement of the waves, with the displacement locally varying with
the waves.

In the fft representation, the 2D displacement vector field is com-
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Figure 14: A comparison of a wave height profile with and without
the displacement. The dashed curve is the wave height produced by
the fft representation. The solid curve is the height field displaced
using equation 29.

puted using the Fourier amplitudes of the height field, as

D(x, t) =
∑

k

−ik
k
h̃(k, t) exp (ik · x) (29)

Using this vector field, the horizontal position of a grid point of
the surface is nowx + λD(x, t), with heighth(x) as before. The
parameterλ is not part of the original conjecture, but is a conve-
nient method of scaling the importance of the displacement vector.
This conjectured solution does not alter the wave heights directly,
but instead warps the horizontal positions of the surface points in
a way that depends on the spatial structure of the height field. The
particular form of this warping however, actually sharpens peaks in
the height field and broadens valleys, which is the kind of nonlin-
ear behavior that should make the fft representation more realistic.
Figure 14 shows a profile of the wave height along one direction
in a simulated surface. This clearly shows that the “displacement
conjecture” can dramatically alter the surface.

The displacment form of the this solution is similar to the algo-
rithm for building Gerstner waves [8] discussed in section 3. In
that case however, the displacement behavior, applied to sinusoid
shapes, was the principle method of characterizing the water sur-
face structure, and here it is a modifier to an already useful wave
height representation.

Figure 15 illustrates how these choppy waves behave as they
evolve. The tops of waves form a sharp cusp, which rounds out
and disappears shortly afterward.

One ”problem” with this method of generating choppy waves
can be seen in figure 14. Near the tops of some of the waves, the
surface actally passes through itself and inverts, so that the outward
normal to the surface points inward. This is because the amplitudes
of the wave components can be large enough to create large dis-
placements that overlap. This is easily defeated simply by reducing
the magnitude of the scaling factorλ. For the purposes of computer
graphics, this might actually be a useful effect to signal the pro-
duction of spray, foam and/or breaking waves. We will not discuss
here how to carry out such an extension, except to note that in order
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Figure 15: A time sequence of profiles of a wave surface. From top
to bottom, the time between profiles is 0.5 seconds.

to use this region of overlap, a simple and quick test is needed for
deciding that the effect is taking place. Fortunately, there is such a
simple test in the form of the Jacobian of the transformation from
x to x + λD(x, t). The Jacobian is a measure of the uniqueness of
the transformation. When the displacement is zero, the Jacobian is
1. When there is displacement, the Jacobian has the form

J(x) = JxxJyy − JxyJyx , (30)

with individual terms

Jxx(x) = 1 + λ
∂Dx(x)

∂x

Jyy(x) = 1 + λ
∂Dy(x)

∂y

Jyx(x) = λ
∂Dy(x)

∂x

Jxy(x) = λ
∂Dx(x)

∂y
= Jyx

andD = (Dx, Dy). The Jacobian signals the presence of the over-
lapping wave bacause its value is less than zero in the overlap re-
gion. For example, figure 16 plots a profile of a basic wave without
displacement, the wave with displacement, and the value ofJ for
the choppy wave (labeled ”Folding Map”). The ”folds” or overlaps
in the choppy surface are clearly visible, and align with the regions
in whichJ < 0. With this information, it should be relatively easy
to extract the overlapping region and use it for other purposes if
desired.

But there is more that can be learned from these folded waves
from a closer examination of this folding criterion. The Jacobian
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Figure 16: Wave height profile with and without the displacement.
Also plotted is the Jacobian map for choppy wave profile.

derives from a2 × 2 matrix which measures the local uniqueness
of the choppy wave mapx→ x + λD. This matrix can in general
be written in terms of eigenvectors and eigenvalues as:

Jab = J−ê
−
a ê
−
b + J+ê

+
a ê

+
b , (a, b = x, y) (31)

whereJ− andJ+ are the two eigenvalues of the matrix, ordered
so thatJ− ≤ J+. The corresponding orthonormal eigenvectors are
ê− andê+ respectively. From this expression, the Jacobian is just
J = J−J+.

The criterion for folding thatJ < 0 means thatJ− < 0 and
J+ > 0. So the minimum eigenvalue is the actual signal of the on-
set of folding. Further, the eigenvectorê− points in the horizontal
direction in which the folding is taking place. So, the prescrip-
tion now is to watch the minimum eigenvalue for when it becomes
negative, and the alignment of the folded wave is parallel to the
minimum eigenvector.

We can illustrate this phenomenon with an example. Figures 17
and 18 show two images of an ocean surface, one without choppy
waves, and the other with the choppy waves strongly applied. These
two surfaces are identical except for the choppy wave algorithm.
Figure 19 shows the wave profiles of both surfaces along a slice
through the surfaces. Finally, the profile of the choppy wave is
plotted together with the value of the minimum eigenvalue in figure
20, showing the clear connection between folding and the negative
value ofJ−.

Incidentally, computing the eigenvalues and eigenvectors of this
matrix is fast because they have analytic expressions as

J± =
1

2
(Jxx + Jyy)± 1

2

{
(Jxx − Jyy)2 + 4J2

xy

}1/2
(32)

for the eigenvalues and

ê± =
(1, q±)√
1 + q2

±
(33)

with

q± =
J± − Jxx
Jxy

(34)

for the eigenvectors.

Figure 17: Simulated wave surface without the choppy algorithm
applied. Rendered in BMRT with a generic plastic shader.
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Figure 18: Same wave surface with strong chop applied. Rendered
in BMRT with a generic plastic shader.
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Figure 19: Profiles of the two surfaces, showing the effect of the
choppy mapping.

-2

-1

0

1

2

0 5 10 15 20

He
igh

t

Position

Water Surface Profiles

Choppy Surface
Minimum E-Value

Figure 20: Plot of the choppy surface profile and the minimum
eigenvalue. The locations of folds of the surface are clearly the
same as where the eigenvalue is negative.
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4 Surface Wave Optics

The optical behavior of the ocean surface is fairly well understood,
at least for the kinds of quiescent wave structure that we consider
in these notes. Fundamentally, the ocean surface is a near perfect
specular reflector, with well-understand relectivity and transmis-
sity functions. In this section these properties are summarized, and
combined into a simple shader for Renderman. There are circum-
stances when the surface does not appear to be a specular reflector.
In particular, direct sunlight reflected from waves at a large distance
from the camera appear to be spread out and made diffuse. This
is due to the collection of waves that are smaller than the camera
can resolve at large distances. The mechanism is somewhat similar
to the underlying microscopic reflection mechnanisms in solid sur-
faces that lead to the Torrance-Sparrow model of BRDFs. Although
the study of glitter patterns in the ocean was pioneered by Cox and
Munk many years ago, the first models of this BRDF behavior that
I am aware of were developed in the early 1980’s. At the end of this
section, we introduce the concepts and conditions, state the results,
and ignore the in-between analysis and derivation.

Throughout these notes, and particularly in this section, we ig-
nore one optical phenomenon completely: polarization. Polariza-
tion effects can be strong at a boundary interface like a water sur-
face. However, since most of computer graphics under considera-
tion ignores polarization, we will continue in that long tradition. Of
course, interested readers can find literature on polarization effects
at the air-water interface.

4.1 Specular Reflection and Transmission

Rays of light incident from above or below at the air-water interface
are split into two components: a transmitted ray continuing through
the interface at a refracted angle, and a reflected ray. The intensity
of each of these two rays is diminished by reflectivity and trans-
missivity coefficients. Here we discussed the directions of the two
outgoing rays. In the next subsection the coefficients are discussed.

4.1.1 Reflection

As is well known, in a perfect specular reflection the reflected ray
and the incident ray have the same angle with respect to the surface
normal. This is true for all specular reflections (ignoring roughen-
ing effects), regardless of the material. We build here a compact
expression for the outgoing reflected ray. First, we need to build up
some notation and geometric quantities.

The three-dimensional points on the ocean surface can be la-
belled by the horizontal positionx and the waveheighth(x, t) as

r(x, t) = x + ŷh(x, t) , (35)

whereŷ is the unit vector pointing straight up. At the pointr, the
normal to the surface is computed directly from the surface slope
ε(x, t) ≡ ∇h(x, t) as

n̂S(x, t) =
ŷ − ε(x, t)√
1 + ε2(x, t)

(36)

For a ray intersecting the surface atr from directionn̂i, the direc-
tion of the reflected ray can depend only on the incident direction
and the surface normal. Also, as mentioned before, the angle be-
tween the surface normal and the reflected ray must be the same
as the angle between incident ray and the surface normal. You can
verify for yourself that the reflected direction̂nr is

n̂r(x, t) = n̂i − 2n̂S(x, t) (n̂S(x, t) · n̂i) . (37)

Note that this expression is valid for incident ray directions on either
side of the surface.

4.1.2 Transmission

Unfortunately, the direction of the transmitted ray is not expressed
as simply as for the reflected ray. In this case we have two guid-
ing principles: the transmitted direction is dependent only on the
surface normal and incident directions, and Snell’s Law relating the
sines of the angles of the incident and transmitted angles to the in-
dices of refraction of the two materials.

Suppose the incident ray is coming from one of the two media
with index of refractionni (for air, n = 1, for water,n = 4/3
approximately), and the transmitted ray is in the medium with index
of refractionnr. For the incident ray at angleθi to the normal,

sin θi =
√

1− (n̂i · n̂S)2 = |n̂i × n̂S | (38)

the transmitted ray will be at an angleθt with

sin θt = |n̂t × n̂S | . (39)

Snell’s Law states that these two angles are related by

ni sin θi = nt sin θt . (40)

We now have all the pieces needed to derive the direction of trans-
mission. The direction vector can only be a linear combination of
n̂i andn̂S . It must satisfy Snell’s Law, and it must be a unit vector
(by definition). This is adequate to obtain the expression

n̂t(x, t) =
ni
nt

n̂i + Γ(x, t) n̂S(x, t) (41)

with the functionΓ defined as

Γ(x, t) ≡ ni
nt

n̂i · n̂S(x, t)

±
{

1−
(
ni
nt

)2

|n̂i × n̂S(x, t)|2
}1/2

. (42)

The plus sign is used inΓ whenn̂i · n̂S < 0, and the minus sign is
used when̂ni · n̂S > 0 .

4.2 Fresnel Reflectivity and Transmissivity

Accompanying the process of reflection and transmission through
the interface is a pair of coefficients that describe their efficiency.
The reflectivityR and transmissivityT are related by the constraint
that no light is lost at the interface. This leads to the relationship

R+ T = 1 . (43)

The derivation of the expressions forR andT is based on the elec-
tromagnetic theory of dielectrics. We will not carry out the deriva-
tions, but merely write down the solution

R(n̂i, n̂r) =
1

2

{
sin2(θt − θi)
sin2(θt + θi)

+
tan2(θt − θi)
tan2(θt + θi)

}
(44)

Figure 21 is a plot of the reflectivity for rays of light traveling down
onto a water surface as a function of the angle of incidence to the
surface. The plot extends from a grazing angle of 0 degrees to per-
pendicular incidence at 90 degrees. As should be clear, variation of
the reflectivity across an image is an important source of the “tex-
ture” or feel of water. Notice that reflectivity is a function of the
angle of incidence relative to the wave normal, which in turn is di-
rectly related to the slope of the surface. So we can expect that a
strong contributor to the texture of water surface is the pattern of
slope, while variation of the wave height serves primarily as a wave
hiding mechanism. This is the quantitative explanation of why the
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Figure 21: Reflectivity for light coming from the air down to the
water surface, as a function of the angle of incidence of the light.

surface slope more closely resembles rendered water than the wave
height does, as we saw in the previous section when discussing fig-
ure 7.

When the incident ray comes from below the water surface, there
are important differences in the reflectivity and transmissivity. Fig-
ure 22 shows the reflectivity as a function of incidence angle again,
but this time for incident light from below. In this case, the re-
flectivity reaches unity at a fairly large angle, near 41 degrees. At
incidence angles below that, the reflectivity is one and so there is no
transmission of light through the interface. This phenomenon isto-
tal internal reflection, and can be seen just by swimming around in
a pool. The angle at which total internal reflection begins is called
Brewster’s angle, and is given by, from Snell’s Law,

sin θBi =
nt
ni

= 0.75 (45)

or θBi = 48.6 deg. In our plots, this angle is90− θBi = 41.1 deg.

4.3 Building a Shader for Renderman

From the discussion so far, one of the most important features a ren-
dering must emulate is the textures of the surface due to the strong
slope-dependence of reflectivity and transmissivity. In this section
we construct a simple Renderman-compliant shader using just these
features. Readers who have experience with shaders will know how
to extend this one immediately.

The shader exploits that fact that the Renderman interface al-
ready provides a built-in Fresnel quantity calculator, which pro-
videsR, T , n̂r, andn̂t using the surface normal, incident direction
vector, and index of refraction. The shader for the air-to-water case
is as follows:

surface watercolorshader(
color upwelling = color(0, 0.2, 0.3);
color sky = color(0.69,0.84,1);
color air = color(0.1,0.1,0.1);
float nSnell = 1.34;
float Kdiffuse = 0.91;
string envmap = "";
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Figure 22: Reflectivity for light coming from below the water sur-
face, as a function of the angle of incidence of the light.

)
{

float reflectivity;
vector nI = normalize(I);
vector nN = normalize(Ng);
float costhetai = abs(nI . nN);
float thetai = acos(costhetai);
float sinthetat = sin(thetai)/nSnell;
float thetat = asin(sinthetat);
if(thetai == 0.0)
{

reflectivity = (nSnell - 1)/(nSnell + 1);
reflectivity = reflectivity * reflectivity;

}
else
{

float fs = sin(thetat - thetai)
/ sin(thetat + thetai);

float ts = tan(thetat - thetai)
/ tan(thetat + thetai);

reflectivity = 0.5 * ( fs*fs + ts*ts );
}
vector dPE = P-E;
float dist = length(dPE) * Kdiffuse;
dist = exp(-dist);

if(envmap != "")
{

sky = color environment(envmap, nN);
}
Ci = dist * ( reflectivity * sky

+ (1-reflectivity) * upwelling )
+ (1-dist)* air;

}

There are two contributions to the color: light coming downward
onto the surface with the default color of the sky, and light coming
upward from the depths with a default color. This second term will
be discussed in the next section. It is important for incidence angles
that are high in the sky, because the reflectivity is low and transmis-
sivity is high.



4 SURFACE WAVE OPTICS 3-15

Figure 23: Simulated water surface with a generic plastic surface
shader. Rendered with BMRT.

Figure 24: Simulated water surface with a realistic surface shader.
Rendered with BMRT.
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This shader was used to render the image in figure 24 using the
BMRT raytrace renderer. For reference, the exact same image has
been rendered in 23 with a generic plastic shader. Note that the
realistic water shader tends to highlight the tops of the the waves,
where the angle of incidence is nearly 90 degrees grazing and the
reflectivity is high, while the sides of the waves are dark, where
angle of incidence is nearly 0 that the reflectivity is low.

5 Water Volume Effects

The previous section was devoted to a discussion of the optical be-
havior of the surface of the ocean. In this section we focus on the
optical behavior of the water volume below the surface. We begin
with a discussion of the major optical effects the water volume has
on light, followed by an introduction to color models researchers
have built to try to connect the ocean color on any given day to un-
derlying biological and physical processes. These models are built
upon many years of in-situ measures off of ships and peers. Fi-
nally, we discuss two important effects, caustics and sunbeams, that
sometimes are hard to grasp, and which produce beautiful images
when properly simulated.

5.1 Scattering, Transmission, and Reflection by
the Water Volume

In the open ocean, light is both scattering and absorbed by the vol-
ume of the water. The sources for these events are of three types:
water molecules, living and dead organic matter, and non-organic
matter. In most oceans around the world, away from the shore lines,
absorption is a fairly even mixture of water molecules and organic
matter. Scattering is dominated by organic matter however.

To simulate the processes of volumetric absorption and scatter-
ing, there are five quantities that are of interest: absorption coef-
ficient, scattering coefficient, extinction coefficient, diffuse extinc-
tion coefficient, and bulk reflectivity. All of these coefficients have
units of inverse length, and represent the exponential rate of atten-
uation of light with distance through the medium. The absorption
coefficienta is the rate of absorption of light with distance, the
scattering coefficientb is the rate of scattering with length, the ex-
tinction coefficientc is the sum of the two previous onesc = a+ b,
and the diffuse extinction coefficientK describes the rate of loss
of intensity of light with distance after taking into account both ab-
sorption and scattering processes. The connection betweenK and
the other parameters is not completely understood, in part because
there are a variety of ways to defineK in terms of operational mea-
surements. Different ways change the details of the dependence.
However, there is a condition called theasymptoticlimit at very
deep depths in the water, at which all operational definitions ofK
converge to a single value. This asymptotic value ofK has been
modeled in a variety of ways. There is a mathematically precise
result that the ratioK/c depends only onb/c, the single scatter
albedo, and some details of the angular distribution of individual
scattering distributions. Figure 25 is an example of a model of
K/c for reasonable water conditions. Models have been gener-
ated for the color dependence ofK, most notably by Jerlov. In
1990, Austin and Petzold performed a revised analysis of spectral
models, including new data, to produce refined models ofK as a
function of color. For typical visible light conditions in the ocean,
K ranges in value from 0.03/meter to 0.1/meter. It is generally true
thata < K < c.

One way to interpret these quantities for a simulation of water
volume effects is as follows:

1. A ray of sunlight enters the water with intensityI (after los-
ing some intensity to Fresnel transmission). Along a path un-
derwater of a lengths, the intensity at the end of the path is
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Figure 25: Dependence of the Diffuse Extinction Coefficient on the
Single Scatter Albedo, normalized to the extinction.

I exp(−cs), i.e. the ray of direct sunlight is attenuated as fast
a possible.

2. Along the path through the water, a fraction of the ray is scat-
tered into a distribution of directions. The strength of the scat-
tering per unit length of the ray isb, so the intensity is propor-
tional tobI exp(−cs).

3. The light that is scattered out of the ray goes through poten-
tially many more scattering events. It would be nearly im-
possible to track all of them. However, the sum whole out-
come of this process is to attenuate the ray along the path from
the original path to the camera asbI exp(−cs) exp(−Ksc),
wheresc is the distance from the scatter point in the ocean to
the camera.

A fifth quantity of interest for simulation is the bulk reflectivity
of the water volume. This is a quantity that is intended to allow
us to ignore the details of what is going on, treat the volume as a
Lambertian reflector, and compute a value for bulk reflectivity. That
number is sensitive to many factors, including wave surface condi-
tions, sun angle, water optical properties, and details of the angular
spread. Nevertheless, values of reflectivity around 0.04 seem to
agree well with data.

5.2 The Underwater POV: Refracted Skylight,
Caustics, and Sunbeams

Now that we have underwater optical properties at hand, we can
look at two important phenomena in the ocean: caustics and sun-
beams.

5.2.1 Caustics

Caustics, in this context, are a light pattern that is formed on sur-
faces underwater. Because the water surface is not flat, groups of
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Figure 26: Rendering of a caustic pattern at a shallow depth (5
meters) below the surface.

light rays incident on the surface are either focussed or defocussed.
As a result, a point on a fictitious plane some depth below the ocean
surface receives direct sunlight from several different positions on
the surface. The intensity of light varies due to the depth, orig-
inal contrast, and other factors. For now, lets write the intensity
of the pattern asI = Ref I0, with I0 as the light intensity just
above the water surface. The quantityRef is the scaling factor that
varies with position on the fictitious plane due to focussing and de-
focussing of waves, and is called acaustic pattern. Figure 26 shows
an example of the caustic patternRef . Notice that the caustic pat-
tern exhibits filaments and ring-like structure. At a very deep depth,
the caustic pattern is even more striking, as shown in figure 27.

One of the important properties of underwater light that produce
caustic patterns is conservation of flux. This is actually a simple
idea: suppose a small area on the ocean surface has sunlight passing
through it into the water, with intensityI at the surface. As we
map that area to greater depths, the amount of area within it grows
or shrinks, but most likely grows depending on whether the area
is focussed or defocussed. The intensity at any depth within the
water is proportional to inverse of the area of the projected region.
Another way of saying this is that if a bundle of light rays diverges,
their intensities are reduced to keep the product of intensity time
area fixed.

Simulated caustic patterns can actually be compared (roughly)
with real-world data. In a series of papers published throughout the
1970’s, 1980’s, and into the 1990’s, Dera and others collected high-
speed time series of light intensity[17]. As part of this data collec-
tion and analysis project, the data was used to generate a probability
distribution function (PDF) for the light intensity. Figure 28 shows
two PDFs taken from one of Dera’s papers. The two PDF’s were
collected for different surface roughness conditions: rougher wa-
ter tended to suppress more of the high magnitude fluctuations in
intensity.

Figure 29 shows the pdf at two depths from a simulation of the
ocean surface. These two sets do not match Dera’s measurements
because of many factors, but most importantly because we have
not simulated the environmental conditions and instrumentation in
Dera’s experiments. Nevertheless, the similarity of figure 29 with

Figure 27: Rendering of a caustic pattern at great depth (100 me-
ters) below the surface.

Figure 28: PDF’s as measured by Dera in reference [17].

Dera’s data is an encouraging point of information for the realism
of the simulation.

5.2.2 Godrays

Underwater sunbeams, also called godrays, have a very similar ori-
gin to caustics. Direct sunlight passes into the water volume, fo-
cussed and defocussed at different points across the surface. As the
rays of light pass down through the volume, some of the light is
scattered in other directions, and a fraction arrives at the camera.
The accumulated pattern of scattered light apparent to the camera
are the godrays. So, while caustics are the pattern of direct sun-
light that penetrates down to the floor of a water volume, sunbeams
are scattered light coming from those shafts of direct sunlight in
the water volume. Figure 30 demonstrates sunbeams as seen by a
camera looking up at it.
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