Stanford Tech Report CTSR 2011-03

Digital Video Stabilization and Rolling Shutter Correction using Gyroscopes

David Jacobs
Stanford University

Alexandre Karpenko
Stanford University

(a) (b)

Jongmin Baek
Stanford University

Marc Levoy
Stanford University

time (s)

© (d)

Figure 1: (a) Videos captured with a cell-phone camera tend to be shaky due to the device’s size and weight. (b) The rolling shutter used
by sensors in these cameras also produces warping in the output frames (we have exagerrated the effect for illustrative purposes). (c¢) We
use gyroscopes to measure the camera’s rotations during video capture. (d) We use the measured camera motion to stabilize the video and to

rectify the rolling shutter. (Golden Gate photo courtesy of Salim Virji.)

Abstract

In this paper we present a robust, real-time video stabilization
and rolling shutter correction technique based on commodity gy-
roscopes. First, we develop a unified algorithm for modeling cam-
era motion and rolling shutter warping. We then present a novel
framework for automatically calibrating the gyroscope and camera
outputs from a single video capture. This calibration allows us to
use only gyroscope data to effectively correct rolling shutter warp-
ing and to stabilize the video. Using our algorithm, we show results
for videos featuring large moving foreground objects, parallax, and
low-illumination. We also compare our method with commercial
image-based stabilization algorithms. We find that our solution is
more robust and computationally inexpensive. Finally, we imple-
ment our algorithm directly on a mobile phone. We demonstrate
that by using the phone’s inbuilt gyroscope and GPU, we can re-
move camera shake and rolling shutter artifacts in real-time.

CR Categories: [.4.3 [Computing Methodologies]: Image
Processing and Computer Vision—Enhancement; 1.4.1 [Comput-
ing Methodologies]: Image Processing and Computer Vision—
Digitization and Image Capture

Keywords: video stabilization, rolling shutter correction, gyro-
scopes, mobile devices

1 Introduction

Digital still cameras capable of capturing video have become
widespread in recent years. While the resolution and image qual-
ity of these consumer devices has improved up to the point where

they rival DSLRs in some settings, their video quality is still signif-
icantly worse than that of film cameras. The reason for this gap in
quality is twofold. First, compared to film cameras, cell phones are
significantly lighter. As a result, hand-held video capture on such
devices exhibits a greater amount of camera shake. Second, most
cell-phone cameras have sensors that make use of a rolling shut-
ter (RS). In an RS camera, each image row is exposed at a slightly
different time; which, combined with undampened camera motion,
results in a nauseating “wobble” in the output video.

In the following sections we present our technique for improving
the video quality of RS cameras. Specifically, we employ inex-
pensive microelectromechanical (MEMS) gyroscopes to measure
camera rotations. We use these measurements to perform video
stabilization (inter-frame motion compensation) and rolling shutter
correction (intra-frame motion compensation). To our knowledge,
we are the first to present a gyroscope-based solution for digital
video stabilization and rolling shutter correction. Our approach is
both computationally inexpensive and robust. This makes it partic-
ularly suitable for real-time implementations on mobile platforms.

Our technique is based on a unified model of a rotating camera and
a rolling shutter. We show how this model can be used to compute
a warp that simultaneously performs rolling shutter correction and
video stabilization. We also develop an optimization framework
that automatically calibrates the gyroscope and camera. This al-
lows us to recover unknown parameters such as gyroscope drift and
delay, as well as the camera’s focal length and rolling shutter speed
from a single video and gyro capture. As a result any combination
of gyroscope and camera hardware can be calibrated without the
need for a specialized laboratory setup.

Finally, we demonstrate the practicality of our approach by imple-
menting real-time video stabilization and rolling shutter correction
on Apple’s iPhone 4.

1.1 Related Work

Video stabilization is a family of techniques used to reduce high-
frequency frame-to-frame jitter produced by video camera shake.
In professional cameras, mechanical image stabilization (MIS) sys-

Stanford Tech Report CTSR 2011-03

tems are commonly used. For example, in the SteadiCam system
the operator wears a harness that separates the camera’s motion
from the operator’s body motion. Other MIS systems stabilize the
optics of the camera rather than the camera body itself. These sys-
tems work by moving the lens or sensor to compensate for small
pitch and yaw motions. These techniques work in real time and do
not require computation on the camera. However, they are not suit-
able for mobile devices and inexpensive cameras, because of their
price and size.

As a result, a number of digital stabilization systems have been de-
veloped that stabilize videos post-capture. Digital video stabiliza-
tion typically employs feature trackers to recover image-plane (2D)
motion [Matsushita et al. 2006; Battiato et al. 2007] or to extract
the underlying (3D) camera motion [Buehler et al. 2001; Bhat et al.
2007; Liu et al. 2009]. A low-pass filter is applied to the recov-
ered motion, and a new video is generated by synthesizing frames
along this smoothed path. However, feature trackers are sensitive to
noise (such as fast moving foreground objects) and require distinc-
tive features for tracking. As a result, digital stabilization based on
feature tracking often breaks down—especially in adverse lighting
conditions and excessive foreground motion. In addition, extracting
and matching visual cues across frames is computationally expen-
sive, and that expense grows with the resolution of the video. This
becomes prohibitively costly for some algorithms if the goal is to
perform video stabilization in real time. Consequently, such ap-
proaches are rarely employed in current digital cameras. Instead,
manufacturers opt for more robust (and expensive) mechanical sta-
bilization solutions for high-end DSLRs.

Rolling shutter correction is a related family of techniques for re-
moving image warping produced by intra-frame camera motion.
High-end cameras use CCD sensors, which have a global shut-
ter (GS). In a GS camera (including many DSLRs) all pixels on
the CCD sensor are read out and reset simultaneously. There-
fore all pixels collect light during the same time interval. Conse-
quently, camera motion during the exposure results in some amount
of image blur on these devices. In contrast, low-end cameras typ-
ically make use of CMOS sensors. In particular, these sensors
employ a rolling shutter, where image rows are read out and re-
set sequentially. The advantage of this approach is that it requires
less circuitry compared to CCD sensors. This makes CMOS sen-
sors cheaper to manufacture [El Gamal and Eltoukhy 2005]. For
that reason, CMOS sensors are frequently used in cell phones, mu-
sic players, and some low-end camcorders [Forssén and Ringaby
2010]. The sequential readout, however, means that each row is
exposed during a slightly different time window. As a result, cam-
era motion during row readout will produce a warped image. Fast
moving objects will also appear distorted.

Image readout in an RS camera is typically in the millisecond range.
Therefore, RS distortions are primarily caused by high-frequency
camera motions. MIS systems could, therefore, be used to stabilize
the camera. While this approach removes rolling shutter warping,
in practice the price range and size of MIS systems make it not suit-
able for RS cameras. For that reason, a number of digital rolling
shutter rectification techniques have been developed. Ait-Aider et
al. [2007] develop a technique for correcting RS artifacts in a single
image. Our approach also works for single images, but unlike Ait-
Aider et al.’s method, it does not require user input. However, in this
paper we restrict our analysis to videos. A number of techniques
have been proposed for rectifying RS in a sequence of frames [Cho
and Hong 2007; Liang et al. 2008; Forssén and Ringaby 2010].
Forssén and Ringaby [2010] use feature tracking to estimate the
camera motion from the video. Once the camera motion is known
during an RS exposure, it can be used to rectify the frame. Since
this approach relies on feature trackers, it has the same disadvan-
tages previously discussed in the case of video stabilization.

Our approach foregoes the use of feature trackers or MIS systems.
Instead, we employ inexpensive MEMS gyroscopes to measure
camera motion directly. Inertial measurement units (IMUs) have
been successfully used for image de-blurring [Joshi et al. 2010] and
for aiding a KLT feature tracker [Hwangbo et al. 2009]. They are
also frequently used for localization and mechanical stabilization in
robotics [Kurazume and Hirose 2000].

Measuring camera motion using gyroscopes allows us to perform
digital video stabilization and RS rectification with high computa-
tional efficiency. This approach is robust even under poor light-
ing or substantial foreground motion, because we do not use the
video’s content for motion estimation. While our method requires
an additional hardware component, many current camera-enabled
mobile phones—such as the iPhone 4—are already equipped with
such a device. Furthermore, compared to MIS systems, MEMS gy-
roscopes are inexpensive, versatile and less bulky (see fig. 8). We
believe that our approach strikes a good balance between compu-
tational efficiency, robustness, size and price range for the large
market of compact consumer cameras and cell phone cameras.

2 Video Stabilization and Rolling Shutter
Correction

Video stabilization typically proceeds in three stages: camera mo-
tion estimation, motion smoothing, and image warping. Rolling
shutter rectification proceeds in the same way; except the actual
camera motion is used for the warping computation rather than
the smoothed motion. As we will later show, both video stabiliza-
tion and rolling shutter correction can be performed in one warping
computation under a unified framework. We develop this frame-
work in the following subsections.

We begin by introducing a model for an RS camera and its mo-
tion. This model is based on the work presented by Forssén and
Ringaby [2010]. Forssén and Ringaby use this RS camera model
in conjunction with a feature tracker to rectify rolling shutter in
videos. The reliance on feature trackers, however, makes their sys-
tem susceptible to the same issues as tracker-based video stabiliza-
tion algorithms. We extend their model to a unified framework that
can perform both rolling shutter correction and video stabilization
in one step. We also develop an optimization procedure that allows
us to automatically recover all the unknowns in our model from a
single input video and gyroscope recording.

Camera motion in our system is modeled in terms of rotations only.
We ignore translations because they are difficult to measure accu-
rately using IMUs. Also, accelerometer data must be integrated
twice to obtain translations. In contrast, gyroscopes measure the
rate of rotation. Therefore, gyro data needs to be integrated only
once to obtain the camera’s orientation. As a result, translation
measurements are significantly less accurate than orientation mea-
surements [Joshi et al. 2010]. Even if we could measure trans-
lations accurately, this is not sufficient since objects at different
depths move by different amounts. Therefore, we would have to
rely on stereo or feature-based structure from motion (SfM) algo-
rithms to obtain depth information. Warping frames in order to
remove translations is non-trivial due to parallax and occlusions.
These approaches are not robust and are currently too computation-
ally expensive to run in real time on a mobile platform.

Forssén and Ringaby [2010] have attempted to model camera trans-
lations in their system; but found the results to perform worse than
a model that takes only rotations into account. They hypothesize
that their optimizer falls into a local minimum while attempting to
reconstruct translations from the feature tracker. Their algorithm
also assumes that the camera is imaging a purely planar scene (i.e.,

Stanford Tech Report CTSR 2011-03

(0,0,) C

f

Figure 2: Pinhole camera model. A ray from the camera center
c to a point in the scene X will intersect the image plane at x.
Therefore the projection of the world onto the image plane depends
on the camera’s center c, the focal length f, and the location of the
camera’s axis (0z, 0y) in the image plane.

constant depth). Therefore, translation reconstruction sometimes
fails due to unmodeled parallax in the video.

To avoid these problems we do not incorporate translations into our
model. Fortunately, camera shake and rolling shutter warping oc-
cur primarily from rotations. This is the case because translations
attenuate quickly with increasing depth, and objects are typically
sufficiently far away from the lens that translational camera jitter
does not produce noticeable motion in the image. This conclusion
is supported by our stabilization results.

2.1 Camera Model

Our rotational rolling shutter camera model is based on the pinhole
camera model. In a pinhole camera the relationship between image
point x in homogeneous coordinates and the corresponding point
X in 3D world coordinates (fig. 2) may be specified by:

x =KX, and X =)K 'x M)

Here, A is an unknown scaling factor and K is the intrinsic camera
matrix, which we assume has an inverse of the following form:

10
K'=(0 1 —0o,],)
0 0

where, (0g, 0y) is the origin of the camera axis in the image plane
and f is the focal length. The camera’s focal length is an unknown
that we need to recover. We assume that the camera has square pix-
els by setting the upper diagonal entries to 1. However, it is straight-
forward to extend this model to take into account non-square pixels
or other optical distortions.

2.2 Camera Motion

We set the world origin to be the camera origin. The camera motion
can then be described in terms of its orientation R(¢) at time ¢.
Thus, for any scene point X, the corresponding image point x at
time ¢ is given by:

x = KR(t)X. 3)

The rotation matrices R(t) € SO(3) are computed by compound-
ing the changes in camera angle Af(t). We use SLERP (Spherical
Linear intERPolation) of quaternions [Shoemake 1985] in order to
interpolate the camera orientation smoothly and to avoid gimbal
lock.! Af(t) is obtained directly from gyroscope measured rates of

'In practice, the change in angle between gyroscope samples is suffi-
ciently small that Euler angles work as well as rotation quaternions.

Figure 3: High-frequency camera rotations while the shutter is
rolling from top to bottom cause the output image to appear
warped.

rotation w(t):

AO(t) = (w(t + ta) + wa) * At.)

Here wq is the gyroscope drift and t4 is the delay between the
gryoscope and frame sample timestamps. These parameters are ad-
ditional unknowns in our model that we also need to recover.

2.3 Rolling Shutter Compensation

We now introduce the notion of a rolling shutter into our camera
model. Recall that in an RS camera each image row is exposed at a
slightly different time. Camera rotations during this exposure will,
therefore, determine the warping of the image.? For example, if the
camera sways from side to side while the shutter is rolling, then the
output image will be warped as shown in fig. 3. The time at which
point x was imaged in frame ¢ depends on how far down the frame
it is. More formally, we can say that x was imaged at time ¢(%, y):

t(i,y) =t; +ts *xy/h, where x = (z,v, 1)T, 5)

where y is the image row corresponding to point x, h is the total
number of rows in the frame, and ¢; is the timestamp of the i-th
frame. The ¢s term states that the farther down we are in a frame,
the longer it took for the rolling shutter to get to that row. Hence,
ts is the time it takes to read out a full frame going row by row
from top to bottom. Note that a negative ¢, value would indicate a
rolling shutter that goes from bottom to top. We will show how to
automatically recover the sign and value of ¢ in section 3.

2.4 Image Warping

We now derive the relationship between image points in a pair of
frames for two different camera orientations (see fig. 4). For a scene
point X the projected points x; and x; in the image plane of two
frames ¢ and j are given by:

x; = KR(t(i,y))X . and x; = KR((j,y,))X. (6)

If we rearrange these equations and substitute for X, we get a map-
ping of all points in frame ¢ to all points in frame j:

x; = KR(t(j, ;) R (1(i,y:) K .)

2Translational camersa jitter during rolling shutter exposure does not sig-
nificantly impact image warping, because objects are typically far away
from the lens.

Stanford Tech Report CTSR 2011-03

x0

@

<

Q@c-==mamaana

Figure 4: Top view of two camera orientations and their corre-
sponding image planes i and j. An image of scene point X appears
in the two frames where the ray (red) intersects their camera plane.

So far we have considered the relationship between two frames of
the same video. We can relax this restriction by mapping frames
from one camera that rotates according to R(t) to another camera
that rotates according to R’(¢). Note that we assume both camera
centers are at the origin. We can now define the warping matrix W
that maps points from one camera to the other:

W(t1,t2) = KR/ (t1)RT (t2)K . ®)

Notice that eq. 7 can now be expressed more compactly as:

x; = W(t(j,y;),t(,y:))x; , where R’ =R.)

Also note that W depends on both image rows ¥; and y; of image
points x; and x; respectively. This warping matrix can be used
match points in frame ¢ to corresponding points in frame j, while
taking the effects of the rolling shutter into account in both frames.

Given this formulation of a warping matrix, the algorithm for
rolling shutter correction and video stabilization becomes simple.
We create a synthetic camera that has a smooth motion and a global
shutter. This camera’s motion is computed by applying a Gaus-
sian low-pass filter to the input camera’s motion, which results in a
new set of rotations R’. We set the rolling shutter duration ¢ for
the synthetic camera to 0 (i.e., a global shutter). We then compute
W (t;,t(i,y:)) at each image row y; of the current frame ¢, and ap-
ply the warp to that row. Notice that the first term of W now only
depends on the frame time ¢;. This operation maps all input frames
onto our synthetic camera; and as a result, simultaneously removes
rolling shutter warping and video shake.

In practice, we do not compute W (¢, t(i, y;)) for each image row
y;. Instead, we subdivide the input image (fig. 5a) and compute
the warp at each vertical subdivision (fig. 5¢c and 5d). In essence,
we create a warped mesh from the input image that is a piecewise
linear approximation of the non-linear warp. We find that ten sub-
divisions are typically sufficient to remove any visible RS artifacts.
Forssén and Ringaby [2010] refer to this sampling approach as in-
verse interpolation. They also propose two additional interpolation
techniques, which they show empirically to perform better on a syn-
thetic video dataset. However, we use inverse interpolation because
it is easy to implement an efficient version on the GPU using vertex
shaders. The GPU’s fragment shader takes care of resampling the
mesh-warped image using bilinear interpolation. We find that RS
warping in actual videos is typically not strong enough to produce
aliasing artifacts due to bilinear inverse interpolation. As a result,
inverse interpolation works well in practice.

Some prior work in rolling shutter correction makes use of global
image warps—such as the global affine model [Liang et al. 2008]

(a) (b)

///// [/ LSS L)
e]

(V] (d)

Figure 5: (a) Warped image captured by an RS camera. (b) A
global linear transformation of the image, such as the shear shown
here, cannot fully rectify the warp. (c) We use a piecewise linear ap-
proximation of non-linear warping. (d) We find that 10 subdivisions
are sufficient to eliminate visual artifacts.

and the global shift model [Chun et al. 2008]. These models assume
that camera rotation is more or less constant during rolling shutter
exposure. If this is not the case, then a linear approximation will fail
to rectify the rolling shutter (fig. 5b). We evaluate the performance
of a linear approximation on actual video footage in section 4.

3 Camera and Gyroscope Calibration

We now present our framework for recovering the unknown cam-
era and gyroscope parameters. This calibration step is necessary to
enable us to compute W directly from the gyroscope data. The un-
known parameters in our model are: the focal length of the camera
f, the duration of the rolling shutter ¢, the delay between the gy-
roscope and frame sample timestamps ¢4, and the gyroscope drift
wd.

Note that some of these parameters, such as the camera’s focal
length, might be specified by the manufacturer. It is alternatively
possible to measure these parameters experimentally. For example,
Forssén and Ringaby [2010] use a quickly flashing display to mea-
sure the rolling shutter duration ¢s. However, these techniques tend
to be imprecise and error prone; and they are also too tedious to be
carried out by regular users. The duration of the rolling shutter is
typically in the millisecond range. As a result, a small misalignment
in tq or ts would cause rolling shutter rectification to fail.

Our approach is to estimate these parameters from a single video
and gyroscope capture. The user is asked to record a video and
gyroscope trace where they stand still and shake the camera while
pointing at a building. A short clip of about ten seconds in duration
is generally sufficient to estimate all the unknowns. Note that this
only needs to be done once for each camera and gyroscope arrange-
ment.

In our approach, we find matching points in consecutive video

Stanford Tech Report CTSR 2011-03

e D

fL T

il
It 1

Figure 6: Point correspondences in consecutive frames. We use
SIFT to find potential matches. We then apply RANSAC to discard
outliers that do not match the estimated homography.

frames using SIFT [Lowe 2004], and we use RANSAC [Fischler
and Bolles 1981] to discard outliers. The result is a set of point cor-
respondences x; and x; for all neighboring frames in the captured
video (fig. 6). Given this ground truth, one can formulate calibra-
tion as an optimization problem, where we want to minimize the
mean-squared re-projection error of all point correspondences:

T =Y lx; = W, y5), 10, ya))xa . (10)
(i,5)

Note that this is a non-linear optimization problem. A number of
non-linear optimizers could be used to minimize our objective func-
tion. However, we have found coordinate descent by direct objec-
tive function evaluation to converge quickly. Each time we take a
step where the objective function J does not decrease, we reverse
the step direction and decrease the step size of the corresponding
parameter. The algorithm terminates as soon as the step size for
all parameters drops below a desired threshold (i.e., when we have
achieved a target precision). Our Matlab/C++ implementation typ-
ically converges in under 2 seconds for a calibration video of about
10 seconds in duration.

We initialize our optimization algorithm by setting the focal length
to be such that the camera has a field of view of 45°. We set all
other parameters to 0. We find that with these initial conditions, the
optimizer converges to the correct solution for our dataset. More
generally, we can avoid falling into a local minimum (e.g., when the
delay between the gyro and frame timestamps is large) by restarting
our coordinate descent algorithm for a range of plausible parame-
ters, and selecting the best solution. The average re-projection error
for correctly recovered parameters is typically around 1 pixel.

An additional unknown in our model is the relative orientation of
the gyroscope to the camera. For example, rotations about the
gyro’s y-axis could correspond to rotations about the camera’s x-
axis. To discover the gyroscope orientation we permute its 3 ro-

2000
1000

~1000
2000

rate of translation (pixels/s)

3000

rate of translation (pixels/s)

5
time (s)

Figure 7: Signals x (red) and f * wy(t + tq) (blue). Top: Before
calibration the amplitude of the signals does not match, because
our initial guess for f is too low. In addition, the signals are shifted
since we initialize tq to 0. Bottom: After calibration the signals are
well aligned because we have recovered accurate focal length and
gyroscope delay.

tation axes and run our optimizer for each permutation. The per-
mutation that minimizes the objective best corresponds to the cam-
era’s axis ordering. We found re-projection error to be significantly
larger for incorrect permutations. Therefore, this approach works
well in practice.

In our discussion we have assumed that the camera has a vertical
rolling shutter. The RS model could be easily modified to work for
image columns instead of rows. Finding the minimum re-projection
error for both cases would tell us whether the camera has a horizon-
tal or vertical rolling shutter.

Finally, in order to provide a better sense of the results achieved
by calibration, we present a visualization of video and gyroscope
signals before and after calibration. If we assume that rotations be-
tween consecutive frames are small, then translations in the image
can be approximately computed from rotations as follows:
e % = (&,9)"
x(t) ~ f*w(t + tq), where { & = (g, wa)T

an

Here, we have also assumed no effects due to rolling shutter (i.e.,
ts = 0), and we ignore rotations about the z-axis (i.e., w,). We
let % be the average rate of translation along x and y for all point
correspondences in consecutive frames. If our optimizer converged
to the correct focal length f and gyro delay ¢4, then the two sig-
nals should align. Fig. 7 plots the first dimension of signals x and
f *&(t + tq) before and after alignment. Note how accurately the
gyroscope data matches the image motions. This surprising preci-
sion of MEMS gyroscopes is what enables our method to perform
well on the video stabilization and rolling shutter correction tasks.

4 Results

In this section we present dataset and results for video stabilization
and rolling shutter correction. We also compare our approach with
a number of feature tracker based algorithms.

4.1 Video and Gyroscope Dataset

We use an iPhone 4 to capture video and gyroscope data. The plat-
form has a MEMS gyroscope (see fig. 8), which we run at a (maxi-
mum) frequency of 100Hz. Furthermore, the phone has an RS cam-
era capable of capturing 720p video at 30 frames per second (fps).
The frame-rate is variable; and typically adjusts in low-illumination
settings to 24fps. We record the frame timestamps as well as the

Stanford Tech Report CTSR 2011-03

Figure 8: The iPhone 4’s MEMS gyroscope (outlined in red).
(Photo courtesy of iFixit.com.)

timestamped gyroscope data, which are saved along with the cap-
tured video.

Our aim was to obtain a wide range of typical videos captured by
non-professionals. We have recorded videos where the camera is
moving and videos where the camera is mostly stationary. Videos
in our dataset also contain varying amounts of moving foreground
objects and illumination conditions. We also record a calibration
video, which we use to recover the iPhone’s camera and gyroscope
parameters. Except for the calibration video, the video shake in
our videos was never deliberate—it is simply a consequence of the
device being very light.

4.2 Evaluation

We ask the reader to refer to the accompanying videos in order to
obtain a better sense of our results. We have included four hand-
held video sequences from our test dataset: the first sequence con-
tains a walking motion, the second features a strong lens flare, the
third contains cars moving in the foreground and the fourth se-
quence was captured at night. In addition we provide the calibra-
tion video used to recover camera and gyroscope parameters. For
the walking sequence we also include two additional videos. The
first shows the wobble that occurs when RS compensation is turned
off. The second shows RS correction results, in which warping is
approximated with a global homography.

[Note to reviewers: the videos included in our submission are a
subset of our test dataset, which will be made available online to
accompany the published paper. It was impossible to provide a link
to the full dataset without compromising anonymity.]

‘We compare our stabilization and RS correction results with image-
based video stabilization solutions. We use iMovie’11l and De-
shaker to stabilize our videos. Both applications offer rolling shut-
ter correction. We find that iMovie’11 and Deshaker produce sub-
par results for most videos in our dataset. Frame popping and jitter
from failed RS compensation can be seen in each of the four videos.
In contrast, our method performs well regardless of video content.

Although our model does not compensate for translations, high-
frequency translational jitter is not visible in our output videos.
This supports our original conclusion that camera shake and rolling
shutter warping occurs primarily due to rotations. A low-frequency
translational up and down motion can be seen in the stabilized walk-
ing sequence that corresponds to the steps taken by the camera’s
user.

One of our experimental results is the observation that if one accu-

rately stabilizes a video but does not correct for rolling shutter, and
the original video contains high-frequency camera rotations, then
the stabilized video will look poor. In effect, correcting accurately
for one artifact makes the remaining artifact more evident and egre-
gious. To support this observation, our dataset includes an exam-
ple where we have disabled rolling shutter rectification. We also
find that a linear approximation for RS warping is not sufficient to
completely remove RS artifacts in more pronounced cases (e.g., at
each step in the walking motion). We have included a video where
rolling shutter warping is rectified with a global homography. In
this video, artifacts due to warping non-linearities are still clearly
visible. As a result, our algorithm performs better than linear RS
approximations such as Liang et al. [2008] and Chun et al. [2008].

Apart from scenes where feature tracking fails, 2D stabilization al-
gorithms also conflate translations that occur due to parallax with
translations that occur due to the camera’s rotation. This degrades
the accuracy of the recovered 2D camera motion in the presence
of parallax. As a result, frame popping and jitter can be seen in
many videos produced by iMovie and Deshaker. In addition, high-
frequency camera motions are difficult to reconstruct in the pres-
ence of noise. Therefore, rolling shutter correction is a difficult
task for feature-based algorithms. Our approach, on the other hand,
is effective at correcting RS artifacts because gyroscopes measure
the camera’s rotation with high frequency and high accuracy.

Deshaker and iMovie are 2D stabilization solutions that reconstruct
2D motion in the image plane. Our method is also a 2D stabilization
algorithm, because we do not measure the camera’s translation. In
contrast, 3D stabilization algorithms recover the camera’s full 3D
motion. However, they rely on structure from motion (SfM) tech-
niques that are currently more brittle than 2D tracking. For exam-
ple, Liu et al. [2009] use Voodoo to reconstruct 3D camera motion
and a feature point cloud. They use this reconstruction to perform
3D video stabilization using content preserving warps. However,
we find that Voodoo fails to correctly recover the 3D structure and
camera motion in many of the videos in our dataset (e.g., the video
captured at night).

We have found motion blur in low-illumination videos (e.g., the
night sequence) to significantly degrade the quality of our stabiliza-
tion results. While our algorithm performs better than feature-based
stabilization on the night sequence, motion blur from the original
shaky camera video is clearly visible in the stabilized output. How-
ever, removing this artifact is out of the scope of this paper.

Finally, our method can be easily used for RS correction in single
high-resolution photographs since our algorithm already works for
individual video frames. Ait-Aider et al. [2007] looked at rectifying
RS post-capture in single images. However, unlike their approach
we do not require any user input. We leave a more detailed analysis
of this application for future work.

4.3 Realtime Implementation

To demonstrate the low computational expense of our approach,
we have implemented our method to run in real time on the iPhone
4. Using our algorithm and the built-in gyroscope, we are able to
display a stabilized and rolling shutter corrected viewfinder directly
on the iPhone’s screen. Our implementation runs at 30 fps (i.e., the
camera’s maximum frame rate).

We receive frames from the camera and copy them to the GPU,
where we perform the warping computation using vertex shaders
and a subdivided textured mesh (as described in section 2.4). Mov-
ing frames to the GPU is the bottleneck in this approach; however,
we found this to be substantially faster than performing warping
computations on the CPU, even though the latter avoids extra frame

Stanford Tech Report CTSR 2011-03

copies.

In order to prevent a large delay in the viewfinder, we use a trun-
cated causal low-pass filter for computing smooth output rotations.
Compared to the Gaussian filter used in the previous sections, this
causal filter attenuates camera shake but does not completely elim-
inate it. However, RS correction is unaffected by this filter change,
because it is computed from the unsmoothed rotations during the
frame’s exposure period.

For video recording, frames can be held back for a longer period
of time before they need to be passed off to the video encoder. As
a result, a better low-pass filter can be used than in the case of a
viewfinder, which must display imagery with low latency. We leave
the implementation of such a recording pipeline for future work.

5 Conclusion

In this paper, we have presented an algorithm that employs gyro-
scopes for digital video stabilization and rolling shutter correction.
We have developed an optimization framework that can calibrate
the camera and gyroscope data from a single input video. In addi-
tion, we have demonstrated that MEMS gyroscopes are sufficiently
accurate to successfully stabilize video and to correct for rolling
shutter warping. We have compared our approach to video stabi-
lization based on feature tracking. We have found that our approach
is more efficient and more robust in a diverse set of videos.

The main limitation of our method is that it is restricted to rotations
only. While this makes our approach robust and computationally
efficient, 3D video stabilization can produce better results when a
specific camera translation is desired. For example, Forssén and
Ringaby’s [2010] present a 3D video stabilization algorithm that
can synthesize a dolly shot (i.e., camera motion along a straight
line) from hand-held video. Future work could investigate combin-
ing IMUs and feature trackers in order to improve the accuracy and
robustness of the reconstructed camera motion.

Another limitation of frame warping is that it produces areas for
which there is no image data. We crop video frames in order to hide
these empty areas. This operation reduces the field of view of the
camera and also discards video data around frame boundaries. Fu-
ture work could investigate using inpainting algorithms [Matsushita
et al. 2006] to perform full-frame stabilization.

Lastly, we do not currently remove motion blur. This degrades the
quality of stabilized low-illumination videos in our dataset. Joshi et
al. [2010] have presented an effective IMU aided image deblurring
algorithm. Their approach fits in well with our method since both
algorithms rely on gyroscopes. Alternatively, future work could
explore the use of alternating consecutive frame exposures for in-
verting motion blur in videos [Agrawal et al. 2009].

References

AGRAWAL, A., XU, Y., AND RASKAR, R. 2009. Invertible motion
blur in video. ACM Trans. Graph. 28 (July), 95:1-95:8.

AIT-AIDER, O., BARTOLI, A., AND ANDREFF, N. 2007. Kine-
matics from lines in a single rolling shutter image. In Computer
Vision and Pattern Recognition, 2007. CVPR ’07. IEEE Confer-
ence on, 1-6.

BATTIATO, S., GALLO, G., PUGLISI, G., AND SCELLATO, S.
2007. SIFT features tracking for video stabilization. Image Anal-
ysis and Processing, International Conference on 0, 825-830.

BHAT, P., ZITNICK, C. L., SNAVELY, N., AGARWALA, A.,
AGRAWALA, M., CURLESS, B., COHEN, M., AND KANG,

S. B. 2007. Using photographs to enhance videos of a static
scene. In Rendering Techniques 2007 (Proceedings Eurograph-
ics Symposium on Rendering), J. Kautz and S. Pattanaik, Eds.,
Eurographics, 327-338.

BUEHLER, C., BOSSE, M., AND MCMILLAN, L. 2001. Non-
metric image-based rendering for video stabilization. Computer
Vision and Pattern Recognition, IEEE Computer Society Confer-
ence on 2, 609.

CHO, W., AND HONG, K.-S. 2007. Affine motion based CMOS
distortion analysis and cmos digital image stabilization. Con-
sumer Electronics, IEEE Transactions on 53, 3, 833 —841.

CHUN, J.-B., JUNG, H., AND KYUNG, C.-M. 2008. Suppressing
rolling-shutter distortion of cmos image sensors by motion vec-
tor detection. Consumer Electronics, IEEE Transactions on 54,
4, 1479 —-1487.

EL GAMAL, A., AND ELTOUKHY, H. 2005. Cmos image sensors.
Circuits and Devices Magazine, IEEE 21, 3, 6 — 20.

FISCHLER, M. A., AND BOLLES, R. C. 1981. Random sam-
ple consensus: a paradigm for model fitting with applications to

image analysis and automated cartography. Commun. ACM 24
(June), 381-395.

FORSSEN, P.-E., AND RINGABY, E. 2010. Rectifying rolling
shutter video from hand-held devices. In CVPR, 507-514.

HWANGBO, M., KiM, J.-S., AND KANADE, T. 2009. Inertial-
aided klt feature tracking for a moving camera. In Intelligent
Robots and Systems, 2009. IROS 2009. IEEE/RSJ International
Conference on, 1909 —1916.

JosHI, N., KANG, S. B., ZITNICK, C. L., AND SZELISKI, R.
2010. Image deblurring using inertial measurement sensors.
ACM Trans. Graph. 29 (July), 30:1-30:9.

KURAZUME, R., AND HIROSE, S. 2000. Development of image
stabilization system for remote operation of walking robots. In
Robotics and Automation, 2000. Proceedings. ICRA ’00. IEEE
International Conference on.

LIANG, C.-K., CHANG, L.-W., AND CHEN, H. 2008. Analysis
and compensation of rolling shutter effect. Image Processing,
IEEE Transactions on 17, 8, 1323 —1330.

Liu, F., GLEICHER, M., JIN, H., AND AGARWALA, A. 2009.
Content-preserving warps for 3d video stabilization. ACM Trans.
Graph. 28 (July), 44:1-44:9.

LowE, D. G. 2004. Distinctive image features from scale-invariant
keypoints. Int. J. Comput. Vision 60 (November), 91-110.

MATSUSHITA, Y., OFEK, E., GE, W., TANG, X., AND SHUM, H.-
Y. 2006. Full-frame video stabilization with motion inpainting.
IEEE Transactions on Pattern Analysis and Machine Intelligence
28, 1150-1163.

SHOEMAKE, K. 1985. Animating rotation with quaternion curves.
SIGGRAPH Comput. Graph. 19 (July), 245-254.

