
ASAP: Automatic Smoothing for Attention Prioritization in
Streaming Time Series Visualization

Kexin Rong, Peter Bailis
Stanford InfoLab

ABSTRACT
Time series visualization of streaming telemetry (i.e., charting of
key metrics such as server load over time) is increasingly prevalent
in recent application deployments. Existing systems simply plot the
raw data streams as they arrive, potentially obscuring large-scale
deviations due to local variance and noise. We propose an alter-
native: to better prioritize attention in time series exploration and
monitoring visualizations, smooth the time series as much as possi-
ble to remove noise while still retaining large-scale structure. We
develop a new technique for automatically smoothing streaming
time series that adaptively optimizes this trade-off between noise
reduction (i.e., variance) and outlier retention (i.e., kurtosis). We
introduce metrics to quantitatively assess the quality of the choice
of smoothing parameter and provide an efficient streaming analytics
operator, ASAP, that optimizes these metrics by combining tech-
niques from stream processing, user interface design, and signal
processing via a novel autocorrelation-based pruning strategy and
pixel-aware preaggregation. We demonstrate that ASAP is able to
improve users’ accuracy in identifying significant deviations in time
series by up to 38.4% while reducing response times by up to 44.3%.
Moreover, ASAP delivers these results several orders of magnitude
faster than alternative optimization strategies.

1. INTRODUCTION
Data volumes continue to rise, fueled in large part by an increasing

number of automated sources, including sensors, processes, and de-
vices. For example, each of LinkedIn, Twitter, and Facebook reports
that their production infrastructure generates over 12M events per
second [16,49,62]. As a result, the past several years have seen an ex-
plosion in the development of data platforms for managing, storing,
and querying large-scale data streams of time-stamped data—i.e.,
time series—from on-premises databases including InfluxDB [6],
Ganglia [3], Graphite [5], OpenTSDB [9], Prometheus [10], and
Facebook Gorilla [49], to cloud services including DataDog [2],
New Relic [8], AWS CloudWatch [1], Google Stackdriver [4], and
Microsoft Azure Monitor [7]. These database engines provide ap-
plication writers, site operations, and “DevOps” engineers a means
of performing monitoring, health checks, alerting, and analysis of
unusual events such as failures [19, 30].

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
XXX YYY
Copyright 2017 VLDB Endowment 2150-8097/17/03.

2

0

2

zs
co

re

Unsmoothed

NYC Taxi Passengers

2

0

2

zs
co

re

ASAP (this paper)

10/01 10/08 10/15 10/22 10/29 11/05 11/12 11/19 11/26 12/03 12/10
time

2

0

2

zs
co

re
Oversmoothed

Figure 1: Normalized number of NYC taxi passengers over 10
weeks.1From top to bottom, the three plots show the hourly average
(unsmoothed), the weekly average (smoothed) and the monthly
average (oversmoothed) of the same time series. The arrows point to
the week of Thanksgiving (11/27), when the number of passengers
dips. This phenomenon is most prominent in the smoothed plot
produced by ASAP, the subject of this paper.

Today, these engines have automated and optimized common
tasks in the storage and processing of large-scale time series; how-
ever, they are surprisingly less well optimized for the visualization
of time series. That is, in conversations with engineers using time
series data and databases in cloud services, social networking, indus-
trial manufacturing, electrical utilities, and mobile applications, we
learned that many production time series visualizations (i.e., “dash-
boards”) simply display raw data streams as they arrive. Engineers
reported this display of raw data can be a poor match for production
scenarios involving data exploration and debugging. That is, as data
arrives in increasing volumes, even small-scale variations in data
values can obscure overall trends and behavior.

For example, an electrical utility employs two staff to perform
24-hour monitoring of generators via time series visualization. It
is critical that these staff quickly identify any systematic shifts,
even those that are “sub-threshold” with respect to a critical alarm.
Unfortunately, these sub-threshold events are easily obscured due to
short-term fluctuations in the raw signal.

The resulting challenge in time series visualization at scale is
presenting the appropriate plot that prioritizes the users’ attention
by highlighting significant deviations. To illustrate this challenge

1Here and later in this paper, the plots show z-scores [38] instead of raw val-
ues. When comparing across plots, z-scores provide a means of normalizing
the visual field across plots while highlighting large-scale trends.

ar
X

iv
:1

70
3.

00
98

3v
1

 [
cs

.D
B

]
 2

 M
ar

 2
01

7

using non-proprietary data, consider the time series depicted in Fig-
ure 1. The top plot shows raw data: an hourly average of the number
of NYC taxi passengers over 75 days in 2014 [39]. Daily fluctua-
tions dominate the visual field, obscuring a significant long-term
deviation: the number of taxi passengers experienced a sustained
dip during the week of Thanksgiving. Ideally, we would smooth
the local fluctuations to highlight this deviation (Figure 1, middle).
However, if we smooth too aggressively, we may hide this trend
entirely (Figure 1, bottom).

Our answer to this challenge is to smooth time series visualiza-
tions as much as possible while preserving large-scale deviations.
This leads to two key questions. First, how can we quantitatively
assess the quality of a given visualization in prioritizing users’ atten-
tion towards significant deviations? Second, how can we use such
a quantitative metric to produce a high-quality plot quickly and at
large scale? In this paper, we address both questions through a new
time series visualization operator, called ASAP (Automatic Smooth-
ing for Attention Prioritization), which quantifiably improves end-
user accuracy and speed in identifying significant deviations in time
series, and is highly optimized to execute at scale.2

To address the first question of quantitative metrics for priori-
tizing attention, we combine two statistics. First, we measure the
smoothness of a time series visualization using the variance of first
differences [20], or the difference between consecutive points in the
series. By applying moving averages of increasing sizes, we can
increasingly smooth the plot. However, as we have illustrated in
Figure 1, it is possible to oversmooth and obscure the trend entirely.
Second, to prevent oversmoothing, we introduce a constraint based
on preserving the kurtosis [24]—a measure of the “outlyingness” of
a distribution—of the raw time series, thus preserving its structure.
This kurtosis measure can also be used to determine when not to
smooth (e.g., when the plot contains a few well-defined outlying
regions). ASAP combines these metrics to capture both our goals of
smoothness and preservation of systematic deviation. We demon-
strate the utility of this novel combination via two user studies (total
270 users): compared to displaying raw data, smoothing visual-
izations in accordance with these metrics improves users’ ability
to identify temporal deviations in time series by up to 38.4% and
decreases the response time by up to 44.3%.

Given these metrics, we develop ASAP, the first streaming ana-
lytics operator that automatically smooths time series to highlight
large-scale deviations. The ASAP operator ingests a time series
data stream and outputs a stream of visualizations that maximizes
smoothness while preserving kurtosis. That is, given a duration of
time to visualize (e.g., the past 30 minutes of a time series), ASAP
automatically selects and applies smoothing parameters on users’
behalf, obviating the need for extensive parameter tuning.

There are three major challenges in enabling this automated,
efficient smoothing. First, our target workloads exhibit extreme data
volumes—up to millions of events per second, requiring ASAP to
be scalable. As we demonstrate, an exhaustive search over even
1M points can require over an hour to render a single plot. Second,
to support interactive visualization, ASAP must be able to refresh
quickly, updating visualizations promptly as new data arrives. We
target sub-second response time. Third, appropriate smoothing
parameters may change over time: a high-quality parameter choice
for one time period may oversmooth or undersmooth in another.
Thus, ASAP must adapt its smoothing parameters in response to
changes in the data stream.

To address these challenges, ASAP combines techniques from
stream processing, user interface design, and signal processing.

2Demo and code available at http://futuredata.stanford.edu/ASAP/

First, to scale to large volumes, ASAP pushes constraints regarding
the target end-user display into its search procedure. ASAP exploits
the fact that its results are designed to be displayed in a fixed number
of pixels (e.g., maximum 1334 pixels at a time on the iPhone 7) and
uses the target resolution as a natural lower bound—there is often
little benefit in searching for parameter settings that would result in
a resolution greater than the target display size. ASAP accordingly
pre-aggregates data, thus reducing the input space and improving
rendering time. Second, ASAP further prunes the search space by
performing binary search for aperiodic data, and by searching only
for time windows capturing periodicity (i.e., time lag with high
autocorrelation) for periodic data; we demonstrate both analytically
and empirically that this search strategy leads to smooth aggregated
series. Third, to enable high-volume processing while quickly re-
sponding to changes in the data stream, ASAP avoids recomputing
smoothing parameters upon the arrival of each new data point. In-
stead, ASAP re-renders plots on human-observable timescales by
leveraging techniques from partial view materialization.

In total, ASAP achieves its goals of efficient, parameter-free
smoothing by treating visualization not as a post-processing step in
the user interface but as a critical consideration in stream processing.
As we demonstrate empirically, this co-design yields quality results,
quickly and without manual tuning. We have implemented ASAP
as a time series explanation operator in the MacroBase fast data
engine [18], and as a Javascript library. ASAP demonstrates order-
of-magnitude improvements in runtime over alternative strategies
while retaining high-quality smoothing for visualizations that users
empirically prefer.

In summary, we make the following contributions:
• ASAP, the first stream processing operator for automatically

smoothing time series to reduce local variance while high-
lighting large-scale deviations in visualization.
• Three optimizations for improving ASAP’s execution speed

that leverage i.) end-device resolution in pre-aggregation, ii.)
autocorrelation to exploit periodicity, iii.) and partial materi-
alization for streaming updates.
• A quantitative evaluation demonstrating ASAP’s ability to

improve user accuracy and response time and deliver order-
of-magnitude performance improvements during search com-
pared to alternatives.

The remainder of this paper proceeds as follows. Section 2 pro-
vides additional background regarding our target use cases and
surveys related work. Section 3 formally introduces ASAP’s prob-
lem definition and quantitative target metrics. Section 4 presents
ASAP’s search strategy and optimizations, as well as how to per-
form streaming execution. Section 5 evaluate ASAP’s visualization
quality through two user studies, and its performance on a range of
synthetic and real-world time series. Finally, Section 6 concludes.

2. ARCHITECTURE AND GOALS
ASAP provides analysts and system operators with an effective

and efficient streaming operator for highlighting large-scale devi-
ations in time series visualizations. In this section, we describe
ASAP’s architecture and goals, and discuss related work.

2.1 ASAP Architecture
ASAP is a dataflow operator for time series. Given an input time

series (i.e., set of temporally ordered data points) and target interval
for visualization (e.g., the last twelve hours of data), ASAP returns
a transformed, smoothed time series (e.g., also of twelve hours, but
with a smoothing function applied). In the streaming setting, as
new data points arrive, ASAP continuously smooths each fixed-size

http://futuredata.stanford.edu/ASAP/

05/15 05/16 05/17 05/18 05/19 05/20 05/21 05/22 05/23 05/24
Time

2

0

2

4

6

8

zs
co

re

ASAP

2

0

2

4

6

8

zs
co

re

Original

CPU Utilization

Figure 2: Average server CPU usage across a given cluster over
ten days [39], shown in a 10 minute average and an hourly average.
The continued increase in CPU usage starting from May 20th is
obscured by frequent fluctuations in the original time series.

time interval, producing a sequence of smoothed time series. Thus,
ASAP acts as a transformation on fixed-size sliding windows and
over a single time series. When ASAP users change the range of
time series to visualize (e.g., zoom-in, zoom-out, scrolling), ASAP
re-renders the smoothed output in accordance with the new range.
Optionally, for efficiency, ASAP allows users to specify a target
display resolution (in pixels) and a desired refresh rate (in seconds).

ASAP can run either server-side or client-side. For resource-
constrained clients, or for servers with a large number of visualiza-
tion consumers, ASAP can execute on the server, sending clients
the smoothed stream; this is the execution mode that MacroBase
adopts, and MacroBase’s ASAP implementation is portable to ex-
isting stream processing engines. For lower data volumes and easy
integration with web-based front-ends, ASAP can also execute on
the client; we provide a JavaScript library for doing so.

ASAP acts as a building block in time series visualization. It
can ingest and process raw data from time series databases such
as InfluxDB, as well as from visualization clients such as plotting
libraries and frontends. For example, when building a monitoring
dashboard, a DevOps engineer could employ ASAP and plot the
smoothed results in his metrics console, or, alternatively, overlay
the smoothed plot on top of the original time series. ASAP can
also post-process outputs of time series analyses including motif
discovery, anomaly detection, and clustering [36,37,42,64]: given a
single time series as output from each of these analyses, ASAP can
smooth it before presenting to an end-user.

To further illustrate ASAP’s potential uses in prioritizing attention
in time series, we introduce two additional use cases:

Datacenter Monitoring. An on-call datacenter operator is paged at
4AM due to an Amazon CloudWatch alarm on a sudden increase in
CPU utilization on her Amazon Web Service cloud instances. After
reading the alert message, she accesses her cluster telemetry plots
that include CPU usage over the past ten days on her smartphone
to obtain a basic understanding of the situation. However, the
smartphone’s display resolution is too small to display all 4000
readings; as a result, the lines are closely stacked together in the plot,
making CPU usage appear stable before the alert (Figure 2, top).3

Unable to obtain useful insights from the plot, the operator must
rise from bed and begin checking server logs directly to diagnose
the issue. If she were to instead apply ASAP, the continued rise in
CPU usage from May 20th would no longer be hidden by noise.

3This plot is inspired by an actual use case we encountered in production
time series from a large cloud operator; high frequency fluctuations in the
plot made it appear that a server was behaving very differently, when in fact,
its overall (smoothed) behavior was similar to others in the cluster. We do
not include the original data here to preserve data privacy.

1750 1800 1850 1900 1950
Time

2

0

2

zs
co

re

ASAP

2

0

2

zs
co

re

Original

Average Temperature in England

Figure 3: Temperature in England from 1723 to 1970, shown in 2-
month average and 23-year average [32]. Fluctuations in the original
time series obscure the overall the trend unless smoothed.

Historical Analysis. A researcher interested in climate change
examines a data set of monthly temperature in England measured
over 200 years. When she initially plots the data to capture the
long-term trends, the plots span over five screen heights.4 Instead of
having to scroll to compare temperature in the 1700s with the 1930s,
she decides to plot the data herself to fit the entire time series onto
one screen. Now, in the re-plotted data (Figure 3, top), seasonal
fluctuations each year obscure the overall trend. Instead, if she
were to use ASAP instead, she would see a clear trend of rising
temperature in the 1900s (Figure 3, bottom).

We provide additional examples of raw time series and their
automatically smoothed counterparts in Appendix E.

2.2 Related Work
ASAP is the first streaming analytics operator for automatically

smoothing time series to reduce local variance while highlighting
large-scale deviations for visualization. Its design draws upon work
from several domains including stream processing, data visualiza-
tion, and signal processing.

Time Series Visualization. Data visualization management sys-
tems that automate and recommend visualizations to users have
recently become a topic of active interest in the database and human-
computer interaction community [63]. Recent systems including
SeeDB [48], Voyager [61], and ZenVisage [53] focus on recom-
mending visualizations for large-scale data sets, particularly for
exploratory analysis of relational data [45]. In this paper, we focus
on the visualization of deviations within time series.

Within the time series literature, which spans dimensionality re-
duction [35], information retrieval [29], and data mining [12,27,44],
visualization plays an important role in analyzing and understanding
time series data [26]. There are a number of existing approaches
to time series visualization [13]. Perhaps most closely related is
M4 [33], which downsamples the original time series while pre-
serving the shape—a perception-aware procedure [25]. Like M4,
ASAP aggregates the time series, but ASAP’s objective function is
to smooth rather than preserve the original shape. In fact, ASAP can
work with M4 to both capture the shape and highlight systematic
deviations of the original signal efficiently.

Signal Processing. Noise reduction is a classic and extremely well-
studied problem in signal processing. Common reduction techniques
include the wavelet transform [23], convolution with smoothing
filters [21, 51], and non-linear filters [17, 57, 58]. In this work, we

4This is not a theoretical example; in fact, the site from which we obtained
this data [32] plots the time series in a six-page PDF. This presentation mode
captures fine-grained structure but makes it difficult to determine long-term
trends at a glance, as in Figure 3.

Figure 4: Three time series that appear visually distinct yet all have
mean of zero and standard deviation of one. This example illustrates
that standard summary statistics such as mean and standard deviation
might fail to capture the visual “smoothness” of time series.

study a specific type of linear smoothing filter—moving average—
and the problem of its automatic parameter selection. Despite its
simplicity, moving average is an effective time domain filter that
is optimal at reducing random noise while retaining a sharp step
response (i.e., rapid rise in the data) [11].

While there are many studies on parameter selection mechanisms
for various smoothing functions [46], the objective of most of the
above selection criteria is to preserve the original signal (i.e., mini-
mize variants of root mean squared error between the original and
the processed signal). In contrast, ASAP’s quality metric is designed
to highlight trends and large deviations, leading to a different opti-
mization strategy. In the biomedical field, researchers have explored
ideas of selecting a moving average window size that highlights
significantly deviating region of DNA sequences [55]. ASAP adopts
a similar measure for quality—namely, the existence of non-random
deviations in the time series—but is empirically much more efficient
than the exhaustive approach described in the study.

Stream Processing. To enable efficient execution, ASAP is archi-
tected as a streaming operator and adapts techniques from stream
processing systems. As such, ASAP is compatible with and draws
inspiration from the wide array of existing systems literature on
architectures for combining signal processing and stream processing
functionality [28, 34].

Specifically, aggregation over sliding windows has been widely
recognized as a core operator over data streams. Sliding window
semantics and efficient incremental maintenance techniques have
been well-studied in the literature [15, 56]. ASAP adopts the slid-
ing window aggregation model. However, instead of leaving users
to select a window manually, in the parlance of machine learning,
ASAP performs hyperparameter tuning [41] to automatically se-
lect a window that quantitatively delivers high-quality smoothed
plots. We are unaware of any existing system—in production or
in the literature—that performs this hyperparameter selection for
smoothing time series plots. Thus, the primary challenge we address
in this paper is efficiently and effectively performing this tuning
via visualization-specific optimizations that leverage target display
resolution, the periodicity of the signal, and on-demand updates
informed by the limits of human perception.

3. PROBLEM DEFINITION
In this section, we introduce two key metrics from the statistics

literature that ASAP uses to assess the quality of smoothing. We
subsequently cast ASAP as an optimization problem.

3.1 Roughness Measure
As we have discussed, noise and/or frequent fluctuations can

distract users from identifying large-scale trends in time series visu-
alizations. Therefore, to prioritize user attention, we wish to smooth
as much as possible while preserving systematic deviations in time
series visualizations. We develop metrics to quantitatively measure
the degree of smoothing in a given visualization of a time series.

Unfortunately, standard summary statistics such as mean and
standard deviation alone may not suffice to capture the salient visual
aspects of time series “roughness.” For example, consider the three
time series in Figure 4: a jagged line (series A), a slightly bent line
(series B), and a straight line (series C). These time series appear
different, yet all have a mean of zero and standard deviation of one.
The reason why series C looks “smoother” than series A and series
B is that it has a constant slope. Put another way, the differences
between consecutive points in series C have smaller variation than
consecutive points in series A and B.

To formalize this intuition, we turn to the statistics literature. We
define the roughness (i.e., inverse “smoothness,” to be minimized)
of a time series as the standard deviation of the differences between
consecutive points in the series. The smaller the variation of the
differences, the smoother the time series. Formally, given time
series X = {x1,x2, ...,xN}, xi ∈ R, we adopt the concept of the first
difference series from statistics [20] as:

∆X = {∆x1,∆x2, ...} s.t. ∆xi = xi+1− xi, i ∈ {1,2, ...,N−1}
Subsequently, we can define the roughness of time series X as:

roughness(X) = σ(∆X)

where σ(X) is the standard deviation of X .
This use of variance of differences is closely related to the concept

of a variogram [22], a commonly-used measure in spatial statistics
(especially geostatistics) that characterizes the spatial continuity (or
surface roughness) of a given dataset.

By this definition, the roughness of the three time series in Fig-
ure 4 are 2.04, 0.4, and 0, respectively. Note that a time series will
have roughness value of 0 if and only if the corresponding plot is
a straight line (like series C). Specifically, a roughness value of 0
implies the differences between neighboring points are identical and
therefore the plot corresponding to the series will have a constant
slope, resulting in a straight line.

3.2 Preservation Measure
Per the above observation, if we simply minimize roughness, we

will produce plots that approximate straight lines. In some cases,
this is desirable; if the overall trend is a straight line, then removing
noise may result in a straight line. However, as our examples in
Section 2 demonstrate, many meaningful trends are not accurately
represented by straight lines. As a result, we need a measure of
“trend preservation” that captures how well we are preserving large-
scale structure within the time series.

To quantify how well we are preserving large deviations in the
original time series, we adopt the metric of distribution kurtosis from
statistics [24]. Kurtosis measures the “tailedness” of the probability
distribution of a real-valued random variable, or how much mass
is near the tails of the distribution. More formally, given a random
variable X with mean µ and standard deviation σ , kurtosis is defined
as the fourth standardized moment:

Kurt[X] =
E[(X−µ)4]

E[(X−µ)2]2

Higher kurtosis means that more of the variance is contributed by
rare and extreme deviations, instead of more frequent and modestly
sized deviations [60]. For reference, the kurtosis for univariate
normal distribution is 3. Distributions with kurtosis less than 3, such
as the uniform distribution, produce fewer and less extreme outliers
compared to normal distributions. Distributions with kurtosis larger
than 3, such as the Laplace distribution, have heavier tails compared
to normal distributions. Figure 5 illustrates two time series sampled
from the normal and Laplace distribution discussed above. Despite
having the same mean and variance, the kurtosis measure captures

8 6 4 2 0 2 4 6 8
Value

Laplace PDF

8 6 4 2 0 2 4 6 8
Value

0.0

0.1

0.2

0.3

0.4

0.5

Fr
e
q
u
e
n
cy

Normal PDF

0 50 100 150 200 250 300
Time

Laplace

0 50 100 150 200 250 300
Time

8

4

0

4

8
V

a
lu

e
Normal

Figure 5: The plot shows two time series and histograms of the
underlying distribution (Normal distribution on the left, Laplace
distribution on the right) that the corresponding time series was
sampled from. Despite having the same mean (0) and variance (2),
one series includes a few large deviations, while the other includes
a large number of moderate deviations. The difference in tendency
to produce outliers is captured by kurtosis: normal distribution has
kurtosis of 3, while the Laplace distribution has kurtosis of 6.

the two series’ difference in tendency to produce outliers.
To prevent oversmoothing large-scale deviations in the original

time series, we compare kurtosis of the time series before and af-
ter applying the smoothing function. Informally, if the kurtosis of
the smoothed series no less than that of the original series, then
the proportion of values that significantly deviate in the smoothed
series is no less than the proportion in the original series. In other
words, preserving kurtosis is equivalent to preserving the tails of the
distribution, or preserving parts of the distribution that are far from
mean.5 If smoothing is effective, then the smoothing will “concen-
trate” the values around regions of large deviation (i.e., significant
shifts from the mean) and therefore highlight these deviations.

If the original time series only contains a few extreme outliers,
the smoothing is likely to only average out the deviations, which we
also account for in our parameter selection procedure. For example,
consider the following time series with all but one point in the range
[−1,1] and a single outlying point that has a value of 10:

This outlier may be the most important piece of information that
users would like to highlight in the time series, so applying a simple
moving average only decreases the extent of this deviation (i.e., the
kurtosis of the smoothed time series decreases). In this case, the
kurtosis preservation constraint ensures we leave the original time
series unsmoothed.

3.3 Smoothing Function
Given our roughness measure and preservation measure, we wish

to smooth our time series as much as possible (i.e., minimizing
roughness) while preserving deviation (i.e., preserving kurtosis).
To perform the actual smoothing, we need a smoothing function to
transform the time series.

In this paper, we focus on simple moving average (SMA) as a
smoothing function. Three primary reasons motivate this choice.
First, SMA is well studied in the stream processing literature, with

5Thus, in this paper, we use kurtosis preservation as a constraint on window
size. However, our results generalize to any constraint that is monotonic in
window size under sliding-window moving average.

several existing techniques for efficient execution and incremental
maintenance [40]. We adopt these techniques, while using rough-
ness and preservation metrics as a means of automatically tuning its
parameters for visual effect. Second, SMA is also well studied in the
signal processing community. Statistically, the moving average is
optimal for recovering the underlying trend of the time series when
the fluctuations about the trend are normally distributed [11]. This is
perhaps surprising given SMA’s relatively light computational foot-
print and conceptual simplicity compared to alternatives. Third, we
experimented with several alternatives including the exponentially
weighted moving average, short-time Fourier transform [54], and
the Savitzky-Golay filter [51]; SMA had fewer parameters to tune
and proved more effective at smoothing per our target metrics.

Given input w∈N, SMA averages every sequential set of w points
in the original time series X to produce one point in the smoothed
series Y . We can express SMA as:

SMA(X ,w) = {y1, ...yN−w} s.t. yi =
1
w

w−1

∑
j=0

xi+ j

In the sliding window model, the window specification also in-
cludes a slide size parameter. That is, while the window size de-
termines the number of elements in each window, the slide size
determines the distance between two neighboring windows. In time
series visualization, slide size determines the sampling frequency
of the original time series and, therefore, the number of distinct,
discrete data points in the plot. As a result, increasing slide size
removes detail from users, which, when coupled with smoothing,
conflicts with our goal of providing users with more (useful) context
and information. In addition, a sampled series may be a biased
representation of the original signal.6 Thus, in this work, we focus
on tuning window size for a fixed slide size.

3.4 Smoothing Problem Statement
Given our roughness and preservation measures and smoothing

function, we present the smoothing problem statement as follows:

PROBLEM. Given time series X = {x1,x2, ...,xN}, let Y = {y1,y2, ...,
yN−W } be the smoothed series of X obtained by applying a simple
moving average with window size w (i.e. yi =

1
w ∑

w−1
j=0 xi+ j). Find

window size ŵ where:

ŵ = argmin
w

σ(∆(Y)) s.t. Kurt[Y]≥ Kurt[X]

That is, we wish to reduce roughness in a given time series as much
as possible by applying a sliding window average function to the
data while preserving kurtosis.

4. ASAP
In this section, we describe ASAP’s core search strategy and

optimizations for solving the problem of window length selection.
We first focus on smoothing a single, fixed-length time series, start-
ing with a walkthrough of a strawman solution (Section 4.1). We
then analyze the problem dynamics under a simple, IID distribution
(Section 4.2) and, using the insights from this analysis, we develop
a pruning optimization based on autocorrelation (Section 4.3). We
further introduce a pixel-aware optimization that greatly reduces the
search space via preaggregation (Section 4.4). Finally, we discuss
the streaming setting (Section 4.5).

6As we have discussed, related work has considered the problem of non-
uniform sampling for minimizing reconstruction display error in time series
plots [33]. Here, we are interested in minimizing roughness instead.

4.1 Strawman Solution
As a strawman solution, we could exhaustively search all possible

window lengths and return the window length that gives the smallest
roughness measure while satisfying the kurtosis constraint. For
each candidate window length, we will need to smooth the series
and evaluate the variance and kurtosis. Each of these operations
requires linear time (O(N)) to evaluate. However, there are also
many candidates to evaluate. For a time series of size N, we may
need to evaluate up to N possible window lengths for a total running
time of O(N2). In the regime where N is even modestly large, this
computation can be prohibitively expensive.

We could improve the runtime of this exhaustive search by per-
forming grid search via a sequence of larger step sizes or by perform-
ing a binary search. However, as we will demonstrate momentarily,
roughness is not guaranteed to be monotonic in window length and
therefore the above search strategies may deliver poor quality results.
Thus, in the remainder of this section, we describe an alternative
search strategy that is able to retain the quality of exhaustive search
while achieving meaningful speedups by optimizing for the desired
pixel density and quickly pruning unpromising candidates.

4.2 Basic IID Analysis
To leverage properties of the roughness metric to speed ASAP’s

search, we first consider how window length affects the roughness
and kurtosis of the smoothed series.

To begin to understand this relationship, assume that the original
time series X : {x1,x2, ...,xN} consists of samples drawn identically
independently distributed (IID) from some distribution with mean
µ and standard deviation σ . After applying a moving average of
window length w, we obtain the smoothed series:

Y = SMA(X ,w), yi =
1
w

w−1

∑
j=0

xi+ j, i ∈ {1,2, ...,N−w}

We can write the forward difference series as ∆Y = {∆y1,∆y2, ...},

∆yi = yi+1− yi =
1
w

w−1

∑
j=0

(xi+ j+1− xi+ j) =
1
w
(xi+w− xi)

For convenience, we denote the first N−w points of X as X f =
{x1,x2, ...,xN−w} and the last N−w points of X as Xl = {xw+1,
xw+2, ...,xN}. Then ∆Y = 1

w (Xl−X f), and roughness of the smoothed
series Y can be written as:

roughness(Y) = σ(∆Y) =
1
w

σ(Xl −X f)

=
1
w

√
var(X f)+var(Xl)−2cov(Xl ,X f)

(1)

Since each xi is drawn IID from the same distribution, we have that:

var(X f) = var(Xl) = σ
2, cov(X f ,Xl) = 0

Substituting in Equation 1 we obtain:

roughness(Y) =

√
2σ

w
(2)

This analysis demonstrates that for IID data, roughness linearly
decreases with increased window length. Furthermore, the kurtosis
of random variable S, defined as the sum of independent random
variables R1,R2, ...,Rn, is [47]

Kurt[S]−3 =
1

(∑n
j=1 σ2

j)
2

n

∑
i=1

σ
4
i (Kurt[Ri]−3)

where σi is the standard deviation of random variable Ri. In our
case, Y is the sum of w IID random variables X . Therefore, the

above equation simplifies to

Kurt[Y]−3 =
Kurt[X]−3

w
(3)

Thus, for distributions with initial kurtosis less than 3, kurtosis
monotonically increases with window length and for those with
initial kurtosis larger than 3, kurtosis monotonically decreases.

In summary, these results indicate that for IID data, we can simply
search for the largest window length that satisfies kurtosis constraint
via binary search. Specifically, given a range of candidate win-
dow lengths, ASAP applies SMA with window length that is in the
middle of the range. If the resulting smoothed series violates the
kurtosis constraint, ASAP searches the smaller half of the range;
ASAP searches the large half otherwise. This binary search routine
is justified because the roughness of the smoothed series monotoni-
cally decreases with window length (Equation 2), and the kurtosis
of the smoothed series monotonically decreases with window length
or achieves its minimum at window length equals one (Equation 3).

However, many time series do not exhibit IID behavior and in-
stead exhibit temporal correlations, which breaks the IID assump-
tion. This complicates the problem of window search; we present a
solution in the next subsection.

4.3 Optimization: Autocorrelation Pruning
We have just shown that, for IID data, binary search is accurate,

yet many time series are not IID; instead, they are often periodic or
exhibit other temporal correlations. For example, many servers and
automated processes have regular workloads and exhibit periodic
behavior across hourly, daily, or longer intervals.

To measure temporal correlations within a time series, we adopt
the concept of autocorrelation, or the similarity of a signal with
itself as a function of the time lag between two points [52]. For-
mally, given a process X whose mean µ and variance σ2 are time
independent (i.e., is a weakly stationary process), denote Xt as the
value produced by a given run of the process at time t. The lag τ

autocorrelation function (ACF) on X is defined as

ACF(X ,τ) =
cov(Xt ,Xt+τ)

σ2 =
E[(Xt −µ)(Xt+τ −µ)]

σ2

The value of the autocorrelation function ranges from [-1, 1], with
1 indicating perfect correlation, 0 indicating the lack of correlation
and -1 indicating anti-correlation.

4.3.1 Autocorrelation and Roughness
As hinted above, we can take advantage of the periodicity in the

original time series to prune the search space. Specifically, given
the original time series X : {x1,x2, ...,xN}, and the smoothed series
Y : {y1,y2, ...,yN−w} obtained by applying a moving average of
window length w, we show that:

roughness(Y) =

√
2σ

w

√
1− N

N−w
ACF(X ,w) (4)

given X is a weakly stationary process. We provide a full derivation
of Equation 4 in Appendix B.1. Intuitively, this equation implies
that both window length and autocorrelation have an important role
to play in minimizing roughness. Consider a time series recording
the number of taxi trips taken over 30-minute intervals. Due to the
regularity of commuting routine, this time series exhibits autocorre-
lation across week-long periods (e.g., a typical Monday is likely to
be much more similar to another Monday than a typical Saturday).
Furthermore, a rolling weekly average of the number of trips should,
in expectation, have a smaller variance than rolling 6-day averages:
for example, if people are more likely to take taxis during weekdays
than during weekends, then the average from Monday to Saturday

should be larger than the average from Tuesday to Sunday. There-
fore, window lengths that align with periods of high autocorrelation
also make the resulting series smoother.

We experimentally validate this analytic relationship on real world
data (Appendix B.1) and use this relationship to aggressively prune
the space of windows to search (Section 4.3.3).

4.3.2 Autocorrelation and Kurtosis
In addition to investigating the impact of temporal correlation on

roughness, we also wish to understand how it affects our kurtosis
constraint. We start with an example that illustrates the case when
choosing window lengths that align with periods of the time series
leads to higher kurtosis.

Suppose our time series (sparkline on the left) is a sine wave
with 640 data points. Each complete sine wave is 32 data points
long, and in the region from 320th to 336th data point, the peak of
the sine wave is taller than usual. In this case, applying a moving
average with window lengths that are not multiples of the period
will result in a similarly shaped time series with smaller amplitude.
In contrast, when applying a window that are multiples of the period,
the smoothed series (sparkline on the right) is zero everywhere
except around the region where the peak is higher. The smoothed
series in the latter case has higher kurtosis because it only contains
one large deviation from the mean.

This example illustrates that applying moving average with win-
dow lengths aligning with the period of the time series can “remove”
periodic fluctuations from the visualization, and therefore highlight
deviations from period to period. The kurtosis of the smoothed
series is also larger at these window lengths. In ASAP, this means
that if applying a candidate window that aligns with the period of
the time series does not result in a smoothed series satisfying the
kurtosis constraint, it is less likely that a candidate window off the
periodicity boundary would do.

4.3.3 Pruning Strategies
Following the above observations, ASAP adopts the following

two pruning strategies. The corresponding pseudocode for the search
is listed in Algorithm 1.

Autocorrelation peaks. To quickly filter out suboptimal window
lengths, we search for windows that correspond to periods of high
autocorrelation. Specifically, we only check autocorrelation peaks,
which are local maximums in the autocorrelation function and corre-
spond to periods in the time series. For periodic datasets, these peaks
are usually much higher than neighboring points, meaning that the
corresponding roughness of the smoothed time series is much lower.
This is justified by Equation 4 — all else equal, roughness decreases
with the increase of autocorrelation.

Naı̈vely computing autocorrelation via brute force requires O(n2)
time; this approach is unlikely to deliver speedups over the naı̈ve
exhaustive search for finding window length. However, we can
improve the runtime of autocorrelation, to O(n log(n)) time, using
two Fast Fourier Transforms (FFT) [50]. In addition to providing
asymptotic speedups, this approach also allows us to make use of
optimized FFT routines designed for signal processing, in the form
of mature software libraries and increasingly common hardware
implementations (e.g., DSP accelerators).

Large to small. Since roughness decreases with window length
(Equation 4, roughness is proportional to 1

w), ASAP searches from
larger to smaller window lengths. When two windows w1,w2(w1 <
w2) have identical autocorrelation, the larger window will always

Algorithm 1 Search for periodic data
Variables:
X : time series; candidates: array of candidate window lengths
opt: set of states < roughness, LB, window, largestFeasible >
ac f [w]: autocorrelation for w
maxACF : maximum autocorrelation peak

function UPDATELB(LB, w) . Update lower bound
return MAX(LB, w

√
1−maxACF
1−ac f [w])

function ISROUGHER(opt, w) . Compare roughness

return
√

1−ac f [w]
w >

√
1−ac f [opt.window]

opt.window

function SEARCHPERIODIC(X, candidates, opt)
N = candidates.length
for i ∈ {N, N-1, ..., 1} do . Large to small

w = candidates[i]
if w < opt.LB then . Lower bound pruning

break
if ISROUGHER(opt, w) then . Roughness pruning

continue
Y = SMA(X, w)
if ROUGHNESS(Y) < opt.roughness and

KURT(Y) ≥ KURT(X) then . Kurtosis constraint
opt.window = w
opt.roughness = ROUGHNESS(Y)
opt.LB = UPDATELB(opt.LB, w)
opt.largestFeasible = MAX(opt.largestFeasible, i)

return opt

have lower roughness under SMA. However, when they have differ-
ent autocorrelations a1,a2, the smaller window w1 will only provide

lower roughness if w1 > w2

√
1−a1
1−a2

. Moreover, since we are only
considering autocorrelation peaks as candidate windows, a1 is no
larger than the largest autocorrelation peak in the time series, which
we refer to as maxACF . Therefore, the smallest window w1 that is
able to produce smoother series than w2 must satisfy

w1 > w2

√
1−a1

1−a2
> w2

√
1−maxACF

1−a2
(5)

If we find a feasible smoothing window relatively early in the
search, we can use Equation 5 to prune out smaller windows that
will not produce a smoother series (UPDATELB in Algorithm 1).
Similarly, once we have a feasible window, we can also prune
search candidates whose roughness estimate (via Equation 4) is
larger than the current best (ISROUGHER in Algorithm 1). The
lower bound pruning cuts the search space from below, and the
roughness estimate cuts the search space from above, eliminating
search candidates larger than the lower bound.

Algorithm 2 Batch ASAP
function FINDWINDOW(X, opt)

candidates = GETACFPEAKS(X)
opt = SEARCHPERIODIC(X, candidates, opt)
head = MAX(opt.LB, candidates[opt.largestFeasible] + 1)
tail = MIN(maxWindow, candidates[opt.largestFeasible + 1])
opt = BINARYSEARCH(X, head, tail, opt)
return opt.window

Device Resolution Reduction on 1M pts
38mm Apple Watch 272 x 340 3676x
Samsung Galaxy S7 1440 x 2560 694x
13” MacBook Pro 2304 x 1440 434x
Dell 34 Curved Monitor 3440 x 1440 291x
27” iMac Retina 5120 x 2880 195x

Table 1: Popular devices and data reduction achieved using pixel-
aware preaggregation for 1M points.

4.4 Optimization: Pixel-Aware Preaggregation
In addition to leveraging statistical properties of the data, we

can also leverage perceptual properties of the target devices. That
is, ASAP’s smoothed time series are designed to be displayed on
devices such as computer monitors, smartphones, and tablet screens
for human consumption. Each of these target media has a limited
resolution; as Table 1 illustrates, even high-end displays such as the
2016 Apple iMac 5K are limited in horizontal resolution to 5120
pixels, while displays such as the 2016 Apple Watch contain as few
as 272 pixels. These pixel densities place restrictions on the amount
of information that can be displayed in a plot.

ASAP is able to leverage these limited pixel densities to im-
prove search time. Specifically, ASAP avoids searching for window
lengths that would result in more points than pixels supported by
the target device. For example, a datacenter server may report CPU
utilization metrics every second (604,800 points per week). If an
operator wants to view a plot of weekly CPU usage on her 2016
Retina MacBook Pro, she will only be able to see a maximum of
2304 distinct pixels as supported by the display resolution. If ASAP
smooths using a window smaller than 262 seconds (i.e., 604,800

2304), the
resulting plot will contain more points than pixels on the operator’s
screen (i.e., to display all information in the original time series, the
slide size must be no larger than window length). As a result, this
point-to-pixel ratio places a lower bound on the window length that
ASAP should search. In addition, the point-to-pixel ratio is also a
useful proxy for the granularity of information content contained
in a given pixel. While one could search for window lengths that
correspond to sub-pixel boundaries, in practice, we have found that
searching for windows that are integer multiples of the point-to-
pixel ratio suffices to capture the majority of useful information in
a plot. We provide an analysis in Appendix B.2, and empirically
demonstrate these phenomena in Section 5.2.2.

Combined, these observations yield a powerful optimization for
ASAP’s search strategy. Given a target display resolution (or desired
number of points for a plot), ASAP pushes this information into its
search strategy by only searching windows that are integer multiples
of point-to-pixel ratio. To implement this efficiently, ASAP preag-
gregates the data points according to groups of size corresponding
to the point-to-pixel ratio, then proceeds to search over these preag-
gregated points. With this preaggregation, ASAP’s performance
is not dependent on the number of data points in the original time
series but instead depends on the target resolution of the end device.
As a result, in Section 5, we evaluate ASAP’s performance over
different target resolutions and demonstrate scalability to millions
of incoming data points per second.

4.5 Streaming ASAP
ASAP is designed to process streams of time series and update

plots as new data arrives. In this section, we describe how ASAP
efficiently operates over data streams by combining techniques from
traditional stream processing with constraints on human perception.

Basic Operations. As new data points arrive, ASAP must update
its smoothing parameters to accommodate changes in the trends,
such as periodicity. As in Section 4.4, in the streaming setting,

we can preaggregate data as it arrives according to the point-to-
pixel ratio. However, as data transits the duration of time ASAP is
configured to smooth (e.g., the last 30 minutes of readings), ASAP
must remove outdated points from the window. To manage this
intermediate state, ASAP adapts standard techniques from streaming
processing that sub-aggregate input streams for performance gain.
That is, sliding window aggregates such as SMA can be computed
more efficiently by sub-aggregating the incoming data into disjoint
segments (i.e., panes) that are sizes of greatest common divisor of
window and slide size [40]. We can perform similar pixel-aware
preaggregations for data streams using panes.

ASAP maintains a linked list of all subaggregations in the window
and, when prompted, re-executes the search routine from the previ-
ous section. Instead of recomputing the smoothing window from
scratch, ASAP records the result of the previous rendering request
and uses it as a “seed” for the new search. Specifically, since streams
often exhibit similar behavior over time, the previous smoothing
parameter could possibly apply to the current request. In this case,
we start the new search with a known feasible window length, which
enables the roughness estimation pruning procedure (ISROUGHER
in Algorithm 1) to potentially rule out candidates automatically.

Optimization: On-demand updates. A naı̈ve strategy for updat-
ing ASAP’s output is to update the plot upon arrival of each point.
This is inefficient. For example, consider a data stream with volume
of one million points per second. Refreshing the plot for every data
point requires updating the plot every 0.001 milliseconds. However,
since humans can only perceive changes on the order of 60 events
per second [31], this update rate is unnecessary. With pixel-aware
preaggregation, we would refresh for each aggregated data point
instead, the rate of which may still be higher than necessary. To
visualize 10 minutes of data on a 27-inch iMac for example, pixel-
aware preaggregation provides us aggregates data points that are
12ms apart (83Hz). As a result, we designed ASAP to only refresh
at (configurable) timescales that are perceptible to humans. In our
example above, a 1Hz update speed results in a 83× reduction in
number of calls to the ASAP search routine; this reduction means
we will either use less processing power and/or be able to process
data at higher volumes. In Section 5.2.2, we empirically investigate
the relationship between total runtime and refresh rate.

Putting it all together. Algorithm 3 shows the full streaming
ASAP algorithm. We aggregate the incoming data points according
to the point-to-pixel ratio, and maintain a linked list of the aggre-
gates. After collecting a refresh interval time worth of aggregates,
ASAP updates data points in the current visualization, and recalcu-
lates the autocorrelation (UPDATEACF). ASAP then checks whether
the window length from the last rendering request is still feasible
(CHECKLASTWINDOW). If so, ASAP uses this previous window
length to quickly improve the lower bound for the new search.

5. EXPERIMENTAL EVALUATION
In this section, we experimentally evaluate the quality and ef-

ficiency of ASAP’s results via two user studies and a series of
performance benchmarks. Our goal is to demonstrate that:
• ASAP’s visualizations improve both accuracy and response

time (Section 5.1).

• ASAP identifies high quality window sizes quickly (Sec-
tion 5.2.1).

• ASAP’s optimizations—autocorrelation, pixel-aware aggrega-
tion and on-demand update—provide complementary speedups
up to seven order-of-magnitude over baseline (Section 5.2.2).

Algorithm 3 Stream ASAP
Variables:
X: preaggregated time series; interval: refresh interval

function CHECKLASTWINDOW(X, opt)
Y = SMA(X, opt.window)
if KURT(Y) ≥ KURT(X) then

update roughness and LB for opt
else

re-initialize opt
return opt

function UPDATEWINDOW(X, interval)
while True do

collect new data points until interval
subaggregate new data points, and update X
UPDATEACF(X)
opt = CHECKLASTWINDOW(X, opt)
FINDWINDOW(X, opt)

5.1 User Studies
We first empirically evaluate the effectiveness of ASAP’s visual-

izations via two user studies. We demonstrate that ASAP visualiza-
tions lead to faster and more accurate identifications of anomalies.

Visualization Techniques for Comparison. In each study, we
compare ASAP’s visualizations to a series of alternative visualiza-
tions: i) the original data (i.e., similar to M4 [33]), ii) visualiza-
tions generated by piecewise aggregate approximation (PAA) [35]
(PAA100 reduces the number of points in the time series to 100;
PAA800 reduces the number to 800), and iii) an “oversmoothed”
plot generated by applying an SMA on the original time series with
a window size of a quarter of the number of points.

Datasets. We select five publicly-available datasets—Taxi, Power,
Sine, EEG, Temp (described in Table 2)—because each has known
ground truth anomalies. We use this ground truth as a means of
assessing visualization quality; specifically, we use this ground truth
to determine whether users are able to identify anomalous behaviors
in the visualization and to assess their preferences.

We present all time series plots and the accompanying text descrip-
tions for the user study as well as a case study of ASAP smoothing
real world datasets in the Appendix.

5.1.1 User Study: Anomaly Identification
To assess how different smoothing algorithms affect users’ ability

to identify anomalies in time series visualization, we ran a large-
scale user study on Amazon Mechanical Turk, in accordance with
Stanford University IRB guidelines.

In this study, we presented users with textual descriptions of each
dataset and anomaly and asked them to select which of five equally-
sized regions in a given time series visualization the described
anomaly occurred. We presented a single, randomly chosen vi-
sualization for each dataset, and users performed this anomaly iden-
tification on five separate datasets. For each question, we recorded
user’s accuracy as well as page submission time.

Figure 6 depicts the accuracy and response time from 250 users.
For reference, 143 self-reported as intermediate or expert users of
Excel, 107 self-reported as intermediate or expert users of databases,
and 101 self-reported seeing time series at least once per month.
When shown ASAP’s visualizations, users were more likely to cor-
rectly identify the anomalous region and to do so more quickly.
Specifically, users were 23.9% more likely to select the correct
anomalous region when presented with ASAP’s visualizations in-

0

20

40

60

80

100

A
cc

u
ra

cy
 (

%
)

Original ASAP Oversmooth PAA100 PAA800

Taxi Power Sine EEG Temp
0

5

10

15

20

25

30

35

40

T
im

e
 (

se
c)

Figure 6: Accuracy of identifying anomalous region and page
submission time for each dataset and visualization, with error bars
indicating standard error of samples. On average, ASAP improves
accuracy by 48.3% while reducing response time by 26.3% faster
compare to other visualizations.

stead of the original time series, and they did so 31.5% more quickly.
Compared to all other methods, on average, users were 54.6% (max:
84.1%) more likely to select the correct region with ASAP, with a
27.0% (max: 31.5%) decrease in response time. ASAP led to most
accurate results for all datasets except for dataset Temp, in which the
oversmooth strategy was able to better highlight (by 14.6%) a large
increasing temperature trend over several decades, corresponding to
the rise of global warming. However, for this dataset, ASAP results
in 38.4% more accurate identification than the raw data. Overall,
ASAP consistently produces high-quality plots, while the quality of
alternative visualization methods varies widely across datasets.

5.1.2 User Study: Visual Preferences
In addition to the above user study, which was based on a large

crowdsourced sample, we performed a targeted user study with 20
graduate students in Computer Science (also in accordance with
Stanford IRB guidelines). We retained the same datasets from the
previous study, presented users with textual descriptions of each
dataset and anomaly, and asked them to select the visualization
that best illustrates the anomaly. That is, due to smaller sample
size, in contrast with the previous study, we presented a set of
four visualizations (anonymized and randomly permuted) and asked
users to select the visualization that best highlights the described
anomaly. We presented with four anonymized options: original,
ASAP, PAA100, and oversmooth.

Figure 7 presents results from this study. Across all five datasets,
users preferred ASAP’s visualizations as a means of visualizing
anomalies in 66% of the trials (random: 25%). Specifically, for
datasets Taxi (Figure D.2, Appendix), EEG (Figure D.3, Appendix),
and Power (Figure D.5, Appendix), over 75% of users preferred
ASAP’s presentation of the time series. For these datasets, smooth-
ing helps remove the high-frequency fluctuations in the original
dataset and therefore highlights the known anomalies. For dataset
Sine (Figure D.4, Appendix), a simulated noisy sine wave with a
small region where the period is halved, 60% users chose ASAP,
followed by 30% choosing PAA100. In follow-up interviews, some
users expressed uncertainty about this particular plot: while the
ASAP plot clearly highlights the anomaly, the PAA100 plot more

Taxi Power Sine EEG Temp
0

20

40

60

80

100

%
 U

se
rs

90

5
5

5

80

5
10

5

60

5

30

25

75

25

70

5

Original ASAP Oversmooth PAA100

Figure 7: User’s preferred visualization for each dataset.

closely resembles the description of the original signal. As in the
anomaly identification study, in the Temp dataset, 70% of users
chose the oversmoothed plot, and 25% chose ASAP. No user pre-
ferred the original temperature plot, further confirming that proper
smoothing is necessary.

In summary, these results illustrate the utility of ASAP’s target
metrics in producing high-quality time series visualizations that
highlight anomalous behavior.

5.2 Performance Analysis
While the above user studies illustrate the utility of ASAP’s visu-

alizations, it is critical that ASAP is able to render them quickly and
over changing streams. To assess ASAP’s end-to-end performance
as well as the impact of each of its optimizations, we performed a
series of performance benchmarks.

Implementation and Experimental Setup. We implemented an
ASAP prototype as an explanation operator for processing output
data streams in the MacroBase streaming analytics engine [18].
We report results from evaluating the prototype on a server with
four Intel Xeon E5-4657L 2.4GHz CPUs containing 12 cores per
CPU and 1TB of RAM (although we use considerably less RAM
in processing). We exclude data loading time from our results
but report all other computation time. We report results from the
average of three or more trials per experiment. We use a set of 11
of datasets of varying sizes collected from a variety of application
domains; Table 2 provides detailed descriptions of each dataset, and
we include the original and smoothed plots from the experiments in
Appendix E.

5.2.1 End-to-End Performance
To demonstrate ASAP’s ability to find high-quality window sizes

quickly, we evaluate ASAP’s window quality and search time com-
pared to alternative search strategies. We compare to exhaustive
search, grid search of varying step size (2, 10), and binary search.

First, as Table 2 illustrates, with a target resolution of 1200 pixels,
ASAP is able to find the same smoothing parameter as the exhaus-
tive search for all datasets. For one dataset (Twitter AAPL), both
exhaustive search and ASAP leave the visualization unsmoothed;
this time series (Figure E.1, Appendix) is smooth except for a few
unusual peaks, so further smoothing would have averaged out the
peaks. Overall, exhaustive search checks an average of 113.64
candidates per dataset, while ASAP produces the same results by
checking only 8.64 candidates.

Second, we evaluate differences in wall-clock speed and achieved
smoothness. All algorithms run on preaggregated data, so the
throughput difference is only caused by the difference in search
strategies; we further investigate the impact of pixel-aware preag-
gregation in Section 5.2.2. Figure 8 shows that ASAP is able to
achieve up to 60× faster search time than exhaustive search, with
near-identical roughness ratio. ASAP’s runtime performance scales
comparably to binary search, although it lags by up to 50% due

1000 2000 3000 4000 5000
Resolution

0

20

40

60

80

100

120

A
v
e
ra

g
e
 S

p
e
e
d
-u

p

1000 2000 3000 4000 5000
Resolution

0

1

2

3

4

5

6

7

8

A
v
e
ra

g
e
 R

o
u
g
h
n
e
ss

 R
a
ti

o

Grid2 Grid10 Binary ASAP

Figure 8: Throughput and quality of ASAP, grid search with dif-
ferent step sizes, and binary search running on time series preag-
gregated according to varying target resolutions. Here we report an
average from 7 datasets with more than 5000 points in Table 2, and
use throughput and roughness of exhaustive search as the baseline
for both plots. ASAP exhibits similar speed up trends with binary
search, while retaining quality close to the exhaustive search. While
the autocorrelation calculation in ASAP causes up to 50% lag in
performance comparing to binary search, binary search is up to 7.5×
rougher than ASAP.

to its autocorrelation calculation; however, while ASAP produces
high-quality smoothed visualizations, binary search is up to 7.5×
rougher than ASAP. Grid search with step size two delivers similar-
quality results as ASAP but fails to scale, while grid search with step
size ten delivers the worst overall results. In summary, end-to-end,
ASAP provides significant speedups over exhaustive search while
retaining its quality of visualization.

5.2.2 Impact of Optimizations
In this section, we further evaluate the contribution of each of

ASAP’s optimizations—autocorrelation pruning, pixel-aware preag-
gregation, on-demand update—individually and combined.

Pixel-aware preaggregation. We first perform a microbenchmark
on the impact of pixel-aware preaggregation (Section 4.4) on both
throughput and quality. Figure 9 shows the throughput and quality
of ASAP and exhaustive search with and without pixel-aware preag-
gregation under varying target resolutions. With pixel-aware pre-
aggregation, ASAP achieves roughness within 20% of exhaustive
search over the raw series and sometimes outperforms exhaustive
search because the initial pixel-aware preaggregation results in lower
initial kurtosis. The preaggregation strategy enables a five and a 2.5
order-of-magnitude speedups over exhaustive search (Exhaustive)
and ASAP on raw data (ASAPno-agg), respectively. In summary,
pixel-aware preaggregation has a modest impact on result quality
and massive impact on computational efficiency (i.e., sub-second
versus hours to process 1M points). Should users desire exact result
quality, they can still choose to disable pixel-aware preaggregation
while retaining speedups from other optimizations. We provide an
analysis and additional throughput results in Appendix B.2.

On-demand update. To investigate the impact of the update
interval in the streaming setting (Section 4.5), we vary ASAP’s
refresh rate and report throughput under each setting. The log-log
plot (Figure 10) shows a linear relationship between the refresh
interval and throughput. This is expected because updating the plot
twice as often means that it would take twice as long to process the
same number of points. For fast-moving streams, this strategy can
save substantial computational resources.

Factor Analysis. In addition to analyzing the impact of individual
optimizations, we also investigate how ASAP’s three main optimiza-
tions combine. Figure 11 depicts a factor analysis, where we enable

Dataset Description # points Duration Exhaustive Search ASAP
gas sensor [43] Recording of a chemical sensor ex-

posed to a gas mixture
4,208,261 12 hours window size: 26

candidates: 115
window size: 26
candidates: 7

EEG [36] Excerpt of electrocardiogram 45,000 180 sec window size: 22
candidates: 119

window size: 22
candidates: 21

Power [36] Power consumption for a Dutch
research facility in 1997

35,040 35040 sec window size: 16
candidates: 115

window size: 16
candidates: 23

traffic data [14] Vehicle traffic observed between
two points for 4 months

32,075 4 months window size: 84
candidates: 120

window size: 84
candidates: 6

machine temp [39] Temperature of an internal compo-
nent of an industrial machine

22,695 70 days window size: 44
candidates: 125

window size: 44
candidates: 7

Twitter AAPL [39] A collection of Twitter mentions
of Apple

15,902 2 months window size: 1
candidates: 120

window size: 1
candidates: 7

ramp traffic [43] Car count on a freeway ramp in
Los Angeles

8,640 1 month window size: 96
candidates: 117

window size: 96
candidates: 5

sim daily [39] Simulated two week data with one
abnormal day

4,033 2 weeks window size: 72
candidates: 100

window size: 72
candidates: 5

Taxi [39] Number of NYC taxi passengers
in 30 min bucket

3,600 75 days window size: 112
candidates: 120

window size: 112
candidates: 4

Temp [32] Monthly temperature in England
from 1723 to 1970

2,976 248 years window size: 112
candidates: 120

window size: 112
candidates: 4

Sine [37] Noisy sine wave with an anomaly
that is half the usual period

800 800 sec window size: 64
candidates: 79

window size: 64
candidates: 6

Table 2: Dataset descriptions and batch results from ASAP and exhaustive search. All results are generated for target resolution 1200 pixels.
For all datasets, ASAP is able find the same smoothing parameter as exhaustive search while searching over 13× fewer candidates on average.

1000 2000 3000 4000 5000
Resolution

10-1

100

101

102

103

104

105

A
v
e
ra

g
e
 S

p
e
e
d
-u

p

1000 2000 3000 4000 5000
Resolution

0.6

0.8

1.0

1.2

1.4

A
v
e
ra

g
e
 R

o
u
g
h
n
e
ss

 R
a
ti

o

Exhaustive ASAPno-agg Grid1 ASAP

Figure 9: Throughput and quality of ASAP and exhaustive search
on preaggregated time series over the baseline (exhaustive search
over the original time series), under varying target resolutions, taken
over three runs on six datasets. ASAP on aggregated time series is
up to 4 orders of magnitude faster, while retaining roughness within
1.2 times of the baseline.

100 101 102 103

Refresh Interval (# points)

102

103

104

105

T
h
ro

u
g
h
p
u
t

(#
p
ts

/s
e
c)

traffic_data machine_temp linear

Figure 10: Throughput of streaming ASAP on two datasets, with
varying refresh interval (measured in number of points) for target
resolution 2000 pixels in log-log scale. The plot shows a linear
relation between throughput and refresh interval, as expected.

each optimization in turn cumulatively. Pixel-aware aggregation
provides between two and four orders of magnitude improvement
depending on the target resolution. Autocorrelation gives an addi-
tional two orders of magnitude. Finally, on demand update with a
daily refresh interval (updating for every 288 points in the original
series versus updating for each preaggregated point) provides an-

Baseline + Pixel + AC + Lazy
10-3

10-2

10-1

100

101

102

103

104

105

106

T
h
ro

u
g
h
p
u
t

(#
p
ts

/s
e
c)

0.01 0.01

141

3.6

4.0K

271

113K

20.4K

ASAP no Lazy no pixel no AC

113K

20.4K

614

65.8

879 834

4.2K

274

2000px 5000px

Figure 11: Factor analysis on machine temp dataset under two
display settings. Adding optimizations one at a time shows that
each optimization contributes positively to final throughput, and
together, the three optimizations enable seven orders of magnitude
speedup over the baseline. In addition, removing each optimization
decreases the throughput by two to three orders of magnitude

other two order-of-magnitude speedups. These results demonstrate
that ASAP’s optimizations are additive, and that end-to-end, opti-
mized streaming ASAP is approximately seven orders of magnitude
faster than the baseline.

To illustrate that no one ASAP optimization is responsible for
all speedups, we also report results from a lesion study, where we
remove each optimization from ASAP while keeping the others en-
abled (Figure 11, right). Removing on-demand update, pixel-aware
aggregation, and autocorrelation-enabled pruning each decreases
the throughput by approximately two to three orders of magnitude,
in line with results from the previous experiment. Without pixel-
aware preaggregation, the algorithm makes no distinction between
higher and lower resolution setting, so the results for both resolu-
tions are near-identical similar throughput for both resolutions. In
contrast, removing the other two optimizations degrades the perfor-
mance for the higher resolution setting more. Thus, each of ASAP’s
optimizations is necessary to achieve maximum performance.

6. CONCLUSIONS
In this paper, we introduced ASAP, a new streaming opera-

tor that automatically smooths time series to reduce noise and
prioritizes user’s attention to systematic deviations in visualiza-
tions. We demonstrated that ASAP’s target metrics—roughness
and kurtosis—produce visualizations that enable users to better
and faster identify deviations in time series. We also demonstrated
that three optimizations—autocorrelation-based search, pixel-aware
preaggregation and on-demand update—provide multiple order-of-
magnitude speedups over alternatives without compromising quality.
Looking forward, we are interested in adapting the metrics to ad-
ditional time series visualization tasks, such as using the kurtosis
measure to query “interesting” or unusual time windows in a given
time series.

7. ACKNOWLEDGMENTS
We thank the many members of the Stanford InfoLab for pro-

viding feedback on this work. This research was supported in part
by Toyota Research Institute, Intel, the Army High Performance
Computing Research Center, RWE AG, Visa, Keysight Technolo-
gies, Facebook, VMWare, and Philips Lighting. As ASAP and
MacroBase are both open source and publicly available, there is no
correspondence—either direct or implied—between the use cases
described in this work and the above institutions that supported this
research.

8. REFERENCES
[1] Amazon CloudWatch. https://aws.amazon.com/cloudwatch/.
[2] Datadog. https://www.datadoghq.com/.
[3] Ganglia Monitoring System. http://ganglia.info/.
[4] Google Stackdriver. https://cloud.google.com/stackdriver/.
[5] Graphite. https://graphiteapp.org/.
[6] InfluxDB. https://docs.influxdata.com/influxdb/.
[7] Microsoft Azure Monitor. https:

//docs.microsoft.com/azure/monitoring-and-diagnostics.
[8] New Relic. https://newrelic.com/.
[9] OpenTSDB. http://opentsdb.net/.

[10] Prometheus. https://prometheus.io/.
[11] CHAPTER 15 - moving average filters. In S. W. Smith, editor, Digital

Signal Processing. 2003.
[12] R. Agrawal, K.-I. Lin, et al. Fast similarity search in the presence of

noise, scaling, and translation in time-series databases. In VLDB, 1995.
[13] W. Aigner, S. Miksch, H. Schumann, and C. Tominski. Visualization

of time-oriented data. Springer, 2011.
[14] M. I. Ali, F. Gao, and A. Mileo. Citybench: A configurable benchmark

to evaluate rsp engines using smart city datasets. In ISWC, 2015.
[15] A. Arasu and J. Widom. Resource sharing in continuous

sliding-window aggregates. In VLDB, 2004.
[16] A. Asta. Observability at Twitter: technical overview, part i, 2016.

https://blog.twitter.com/2016/
observability-at-twitter-technical-overview-part-i.

[17] V. Aurich and J. Weule. Non-Linear Gaussian Filters Performing Edge
Preserving Diffusion. Springer, 1995.

[18] P. Bailis, E. Gan, S. Madden, D. Narayanan, K. Rong, and S. Suri.
MacroBase: Prioritizing attention in fast data. In SIGMOD, 2017.

[19] B. Beyer, C. Jones, et al., editors. Site Reliability Engineering: How
Google Runs Production Systems. O’Reilly, 2016.

[20] C. Chatfield. The Analysis of Time Series: An Introduction, Sixth
Edition. 2016.

[21] J. Chen, J. Benesty, et al. New insights into the noise reduction wiener
filter. TASLP, 2006.

[22] N. Cressie. Statistics for spatial data. 1993.
[23] I. Daubechies. The wavelet transform, time-frequency localization and

signal analysis. IEEE Transactions on Information Theory, 1990.

[24] L. T. DeCarlo. On the meaning and use of kurtosis. Psychological
methods, 2(3):292, 1997.

[25] A. N. Eugene Wu. Towards perception-aware interactive data
visualization systems. In DSIA, 2015.

[26] M. C. Ferreira de Oliveira and H. Levkowitz. From visual data
exploration to visual data mining: A survey. TVCG, 2003.

[27] T.-c. Fu. A review on time series data mining. Engineering
Applications of Artificial Intelligence, 24(1):164–181, 2011.

[28] L. Girod, K. Jamieson, et al. Wavescope: a signal-oriented data stream
management system. In SenSys, 2006.

[29] H. Hochheiser and B. Shneiderman. Dynamic query tools for time
series data sets: timebox widgets for interactive exploration.
Information Visualization, 2004.

[30] M. Httermann. DevOps for developers. Apress, 2012.
[31] V. Hulusić, G. Czanner, et al. Investigation of the beat rate effect on

frame rate for animated content. In SCCG, 2009.
[32] R. Hyndman. Time series data library. Accessedccessed 12-Sep-2016.
[33] U. Jugel, Z. Jerzak, and other. M4: A visualization-oriented time

series data aggregation. In VLDB, 2014.
[34] Y. Katsis, Y. Freund, and Y. Papakonstantinou. Combining databases

and signal processing in plato. In CIDR, 2015.
[35] E. Keogh, K. Chakrabarti, et al. Dimensionality reduction for fast

similarity search in large time series databases. KAIS, 2001.
[36] E. Keogh, J. Lin, and A. Fu. HOT SAX: Efficiently finding the most

unusual time series subsequence. In ICDM, 2005.
[37] E. Keogh, S. Lonardi, and B. Y.-c. Chiu. Finding surprising patterns in

a time series database in linear time and space. In KDD, 2002.
[38] E. Kreyszig. Advanced Engineering Mathematics. Wiley, NY, fourth

edition, 1979.
[39] A. Lavin and S. Ahmad. Evaluating Real-time Anomaly Detection

Algorithms - the Numenta Anomaly Benchmark. arXiv 1510.03336,
2015.

[40] J. Li et al. No pane, no gain: Efficient evaluation of sliding-window
aggregates over data streams. SIGMOD Rec., 2005.

[41] L. Li, K. Jamieson, et al. Hyperband: A novel bandit-based approach
to hyperparameter optimization. arXiv:1603.06560, 2016.

[42] T. W. Liao. Clustering of time series data: a survey. Pattern
Recognition, 2005.

[43] M. Lichman. UCI machine learning repository, 2013. Accessed
19-Aug-2016.

[44] J. Lin, E. Keogh, S. Lonardi, J. P. Lankford, and D. M. Nystrom.
Visually mining and monitoring massive time series. In KDD, 2004.

[45] J. Mackinlay, P. Hanrahan, and C. Stolte. Show me: Automatic
presentation for visual analysis. TVCG, 2007.

[46] J. S. Marron. Automatic smoothing parameter selection: A survey.
Empirical Economics, 13(3):187–208, 1988.

[47] M. Nikulin. Excess coefficient. Accessed 01-Oct-2016.
[48] A. Parameswaran, N. Polyzotis, and H. Garcia-Molina. SeeDB:

Visualizing database queries efficiently. In VLDB, 2013.
[49] T. Pelkonen et al. Gorilla: A fast, scalable, in-memory time series

database. In VLDB, 2015.
[50] W. H. Press, S. A. Teukolsky, et al. Numerical Recipes in C (2nd Ed.):

The Art of Scientific Computing. 1992.
[51] A. Savitzky and M. J. E. Golay. Smoothing and differentiation of data

by simplified least squares procedures. Analytical Chemistry, 1964.
[52] R. H. Shumway and D. S. Stoffer. Time Series Analysis and Its

Applications. Springer, 2005.
[53] T. Siddiqui, A. Kim, J. Lee, K. Karahalios, and A. Parameswaran.

zenvisage: Effortless visual data exploration. In VLDB, 2017.
[54] J. O. Smith. Spectral Audio Signal Processing. 2011.
[55] F. Tajima. Determination of window size for analyzing dna sequences.

Journal of Molecular Evolution, 1991.
[56] K. Tangwongsan, M. Hirzel, S. Schneider, and K.-L. Wu. General

incremental sliding-window aggregation. In VLDB, 2015.
[57] C. Tomasi and R. Manduchi. Bilateral filtering for gray and color

images. In ICCV, 1998.
[58] Z. Wang and D. Zhang. Progressive switching median filter for the

removal of impulse noise from highly corrupted images.
IEEETCASAD, 1999.

[59] S. Weart. The carbon dioxide greenhouse effect.

https://aws.amazon.com/cloudwatch/
https://www.datadoghq.com/
http://ganglia.info/
https://cloud.google.com/stackdriver/
https://graphiteapp.org/
https://docs.influxdata.com/influxdb/
https://docs.microsoft.com/azure/monitoring-and-diagnostics
https://docs.microsoft.com/azure/monitoring-and-diagnostics
https://newrelic.com/
http://opentsdb.net/
https://prometheus.io/
https://blog.twitter.com/2016/observability-at-twitter-technical-overview-part-i
https://blog.twitter.com/2016/observability-at-twitter-technical-overview-part-i

[60] P. H. Westfall. Kurtosis as Peakedness, 1905–2014. RIP. The
American Statistician, 2014.

[61] K. Wongsuphasawat, D. Moritz, et al. Voyager: Exploratory analysis
via faceted browsing of visualization recommendations. TVCG, 2016.

[62] A. Woodie. Kafka tops 1 trillion messages per day at LinkedIn.
Datanami, September 2015. http://www.datanami.com/2015/09/
02/kafka-tops-1-trillion-messages-per-day-at-linkedin/.

[63] E. Wu, L. Battle, and S. R. Madden. The case for data visualization
management systems: vision paper. In VLDB, 2014.

[64] Y. Zhu and D. Shasha. Efficient elastic burst detection in data streams.
In KDD, 2003.

APPENDIX
A. CASE STUDY

In this section, we walk through a concrete example of ASAP
smoothing a real world dataset. The Temp dataset contains 2976
data points, which correspond to monthly average temperatures in
Central England measured from 1723 to 1970 (Figure 3, page 3). In
this example, the target resolution is set to 1500 pixels.

First, ASAP aggregates the original time series using a 2 month
(248 years / 1500) window via pixel-aware preaggregation. The
resulting time series, shown in the top plot in Figure 3, is dominated
by yearly fluctuations. Not surprisingly, the kurtosis for this time
series is around 1.68, close to that of the uniform distribution.

Next, we compute the autocorrelation for this aggregated series.
The autocorrelation plot peaks roughly at multiples of 6, which
corresponds to the yearly period in the original time series. From
here, ASAP starts the periodic search from the largest autocorrela-
tion peak (window size = 146) within the maximum window limit
(150). The window size of 146 produces a smoothed series with a
kurtosis of 2.82, which satisfies our constraint. ASAP records the
roughness of this smoothed series, and updates the lower bound on
window size to 99 via Equation 5. At the next candidate window
(window size = 140), this lower bound is improved to 104 since the
corresponding autocorrelation peak is higher. From here, ASAP
searches 5 more peaks until exhausting the search space. Finally,
ASAP performs binary searches from the largest autocorrelation
peak (146) to the maximum window size. In total, ASAP evaluates
10 candidate window sizes, while exhaustive search needs to check
all 150 candidates before coming to the same conclusion that the
minimum roughness is achieved at window size 140. The resulting
time series is shown in the bottom plot of Figure 3. The aggregated
series shows a clear rising trend after the 1880s, which corresponds
to the start of global warming [59].

B. ADDITIONAL EVALUATIONS

B.1 Roughness Estimate
We first provide a full derivation for Equation 4. Given the

original time series X : {x1,x2, ...,xN} (a weakly stationary process),
and the smoothed series Y : {y1,y2, ...,yN−w} obtained by applying
a moving average of window size w, we want to show that:

roughness(Y) =

√
2σ

w

√
1− N

N−w
ACF(X ,w)

Note that in Equation 1, when the IID assumption does not hold,
cov(X f ,Xl) 6= 0. The covariance of discrete two random variables
X ,Y each with a set of N equal-probability values is defined as:

cov(X ,Y) =
1
N

N

∑
i=1

(xi−E(X))(yi−E(Y))

And for a discrete process, given N equi-spaced observations of the
process x1,x2, ...,xN , an estimate of the autocorrelation function at

0 20 40 60 80 100 120 140

Window Size
10-2

10-1

100

101

R
o
u
g
h
n
e
ss

0 20 40 60 80 100 120 140
Window Size

0.5

1.0

1.5

R
o
u
g
h
n
e
ss

 E
st

im
a
te

 E
rr

o
r

(%
)

Figure B.1: True roughness and percent error of roughness esti-
mation (Equation 4) over window sizes for dataset Temp. Here,
estimate errors are with 1.2% of the true value across all window
sizes.

lag k can be obtained by:

ACF(X ,w) =
∑

N−w
i=1 (xi− x̄)(xi+w− x̄)

∑
N
i=1(xi− x̄)2

Therefore, we can rewrite the autocorrelation function as:

ACF(X ,w)=
(N−w)cov(X f ,Xl)

Nσ2 , or cov(X f ,Xl)=
Nσ2

N−w
ACF(X ,w)

Substituting cov(X f ,Xl) into (1), we obtain:

roughness(Y) =
1
w

√
σ2 +σ2−2

Nσ2

N−w
ACF(X ,w)

=

√
2σ

w

√
1− N

N−w
ACF(X ,w)

In addition, we empirically evaluate the accuracy of our roughness
estimation (Equation 4) on the Temp dataset, and report the relative
error in percent (Figure B.1). For this time series, the roughness of
the aggregated series drops sharply at window sizes around multiples
of 6, which correspond to the autocorrelation peaks. Furthermore,
estimated roughness (via Equation 4) is within 1.2% of the true
value across all window sizes.

B.2 Pixel-aware Preaggregation
We first provide an analysis for the pixel-aware preaggregation

strategy. Given a time series of length N sampled from uniform
distribution and a target resolution of t pixels, we have a point-to-
pixel ratio of pa =

N
t . Let wopt be the window size that minimizes

the roughness on the original time series. Note that searching on
preaggregated data is equivalent to only selecting window sizes
that are multiples of pa. Since roughness decreases and kurto-
sis increases with window size, the optimal window size over the
preaggregated data is wa = bwopt

pa
c, or wa pa ≤ wopt < (wa + 1)pa.

Therefore, wopt
wa pa

<
(wa+1)pa

wa pa
= wa+1

wa
. Recall roughness scales pro-

portionally with 1
w (Equation 2), so preaggregation incurs a penalty

of no more than wa+1
wa

in roughness. Intuitively, as optimal window
size increases, quality of preaggregation increases and in the limit,
recovers the same solution as the search over the original data. We
have a similar analysis for periodic data (roughness varies with
1
w

√
1−ACF(w)). Let the autocorrelation corresponding to wopt

be ACFopt , and let the maximum change in autocorrelation along a
window of size pa be ACF∆. Specifically, while wopt may be able to
pick an autocorrelation peak (i.e., a window size with high autocor-
relation), searching on preaggregated data may only come within pa
of the peak. By examining the maximum rise of the autocorrelation
function over a period of length pa, we can bound the impact of

roughness as above by wa+1
wa

√
1−ACFopt+ACF∆

1−ACFopt
. This implies that the

http://www.datanami.com/2015/09/02/kafka-tops-1-trillion-messages-per-day-at-linkedin/
http://www.datanami.com/2015/09/02/kafka-tops-1-trillion-messages-per-day-at-linkedin/

Exhaustive ASAPno-agg Grid1 ASAP
100

101

102

103

104

105

106

107

T
h
ro

u
g
h
p
u
t

(#
p
ts

/s
e
c)

57
26

18K
5K

233K 336K

5.9M 4.7M

machine_temp traffic_data

Figure B.2: Throughput of exhaustive search and ASAP on two
datasets (machine temp, traffic data), without and with pixel-aware
preaggregation for a target resolution of 1200 pixels. ASAP on
preaggreaged data is up to 5 order of magnitude faster than exhaus-
tive search on raw data (Exhaustive).

Name Description
Exhaustive Exhaustive search on raw time series
ASAPno-agg ASAP on raw time series
Grid1 Exhaustive search on preaggregated data
Grid2 Exhaustive search with step size 2 on preaggregated data
Grid10 Exhaustive search with step size 10 on preaggregated data
Binary Binary search on preaggregated data
ASAP ASAP on preaggregated data

Table 3: Algorithms used in Section 5.2

impact of preaggregation on periodic data depends on the sharpness
of the autocorrelation function, which is in turn dataset-dependent.
Our empirical results confirm that both of these effects are limited
on real-world datasets.

We also provide additional performance evaluations for pixel-
aware preaggregation. Figure B.2 shows the throughput of running
exhaustive search and ASAP on two similar sized datasets (ma-
chine temp and traffic data), before and after applying the pixel-
aware preaggregation. With a target resolution of 1200 pixels, ASAP
on aggregated series is up to 5 order of magnitude faster compared
to an exhaustive search on the original time series.

C. SAMPLE VISUALIZATIONS
In this section, we present a sample of visualizations generated

by commonly used monitoring systems, applications and plotting
libraries for the Temp dataset.

D. USER STUDY MATERIALS
In this section, we present all time series plots and the accom-

panied text descriptions for the anomaly identification study (Sec-

0

2

4

6

8

10

12

14

16

18

20

17
23
-0
1

17
25
-0
6

17
27
-1
1

17
30
-0
4

17
32
-0
9

17
35
-0
2

17
37
-0
7

17
39
-1
2

17
42
-0
5

17
44
-1
0

17
47
-0
3

17
49
-0
8

17
52
-0
1

17
54
-0
6

17
56
-1
1

17
59
-0
4

17
61
-0
9

17
64
-0
2

17
66
-0
7

17
68
-1
2

17
71
-0
5

17
73
-1
0

17
76
-0
3

17
78
-0
8

17
81
-0
1

17
83
-0
6

17
85
-1
1

17
88
-0
4

17
90
-0
9

17
93
-0
2

17
95
-0
7

17
97
-1
2

18
00
-0
5

18
02
-1
0

18
05
-0
3

18
07
-0
8

18
10
-0
1

18
12
-0
6

18
14
-1
1

18
17
-0
4

18
19
-0
9

18
22
-0
2

18
24
-0
7

18
26
-1
2

18
29
-0
5

18
31
-1
0

18
34
-0
3

18
36
-0
8

18
39
-0
1

18
41
-0
6

18
43
-1
1

18
46
-0
4

18
48
-0
9

18
51
-0
2

18
53
-0
7

18
55
-1
2

18
58
-0
5

18
60
-1
0

18
63
-0
3

18
65
-0
8

18
68
-0
1

18
70
-0
6

18
72
-1
1

18
75
-0
4

18
77
-0
9

18
80
-0
2

18
82
-0
7

18
84
-1
2

18
87
-0
5

18
89
-1
0

18
92
-0
3

18
94
-0
8

18
97
-0
1

18
99
-0
6

19
01
-1
1

19
04
-0
4

19
06
-0
9

19
09
-0
2

19
11
-0
7

19
13
-1
2

19
16
-0
5

19
18
-1
0

19
21
-0
3

19
23
-0
8

19
26
-0
1

19
28
-0
6

19
30
-1
1

19
33
-0
4

19
35
-0
9

19
38
-0
2

19
40
-0
7

19
42
-1
2

19
45
-0
5

19
47
-1
0

19
50
-0
3

19
52
-0
8

19
55
-0
1

19
57
-0
6

19
59
-1
1

19
62
-0
4

19
64
-0
9

19
67
-0
2

19
69
-0
7

Monthly	temperature	in	England

(a) Excel (b) Prometheus

(c) Tableau (d) Grafana

Figure C.1: Sample visualizations for the Temp dataset using var-
ious existing time series visualization tools; none automatically
smoothes out the noise

Origin

ASAP

Oversmooth

PAA100

50 100 150 200
Years

PAA800

Figure D.1: User study plot for dataset Temp. We gave users the
following description: “The following plot depicts the temperature
recorded in England in a 250-year period. The 1880s marked the
end of a protracted period of cooling called the Little Ice Age, and
the overall temperature started to increase afterwards. Which region
of the following plot do you think this warming trend happened?”

Origin

ASAP

Oversmooth

PAA100

10 20 30 40 50 60
Days

PAA800

Figure D.2: User study plot for dataset Taxi. We gave users the
following description: “The following plot depicts the volume of
taxicab trips in New York City in a 2 month period in 2014. The
volume of taxicab trips dropped sustainedly during the week of
November 24th (due to Thanksgiving). Which region of the follow-
ing plot do you think this sustained drop in volume happened?”

tion 5.1.1). The visual preference study (Section 5.1.2) uses a similar
set of plots and text descriptions.

E. RAW AND SMOOTHED PLOTS
In this section, we present the remaining plots of raw and (ASAP-

)smoothed time series for datasets in Table 2.

Origin

ASAP

Oversmooth

PAA100

220 240 260 280 300 320 340 360
Sec

PAA800

Figure D.3: User study plot for dataset EEG. We gave users the
following description: “The following plot depicts 22,500 readings
measuring a patient’s brainwaves (EEG activity). The EEG segment
shown below contains an abnormal pattern (corresponding to a
premature ventricular contraction). Which region of the following
plot do you think this abnormal pattern occurred?”

Origin

ASAP

Oversmooth

PAA100

100 200 300 400 500 600 700
Sec

PAA800

Figure D.4: User study plot for dataset Sine. We gave users the
following description: “The following plot depicts 800 readings
from a time varying signal. At some point, the signal experienced
an unusual deviation from its regular behavior. Which region of the
following plot do you think this deviation happened?”

Origin

ASAP

Oversmooth

PAA100

5000 10000 15000 20000 25000 30000
Time

PAA800

Figure D.5: User study plot for dataset Power. We gave users the
following description: “The following plot depicts one year of power
demand at a Dutch research facility. The power demand temporarily
dips during the Ascension Thursday holiday. Which region of the
following plot do you think this dip in power demand occurred?”

03/01/15 03/08/15 03/15/15 03/22/15 03/29/15 04/05/15 04/12/15
Time

2000

4000

6000

#
 m

e
n
ti

o
n
s

Twitter Mentions of Apple

Figure E.1: Time series plot for the Twitter AAPL data set. This
plot is left unsmoothed by both exhaustive search and ASAP due to
its high initial kurtosis.

2

0

2

zs
co

re

Original

04/02 04/04 04/06 04/08 04/10 04/12 04/14
Time

2

0

2

zs
co

re

ASAP

(a) sim daily

2

0

2

zs
co

re

Original

5000 10000 15000 20000 25000 30000 35000
Time

2

0

2

zs
co

re

ASAP

(b) gas sensor

2

0

2

zs
co

re

Original

04/14 04/17 04/20 04/23 04/26 04/29 05/02 05/05 05/08
Time

2

0

2

zs
co

re

ASAP

(c) ramp traffic

4

2

0

2

zs
co

re

Original

12/07 12/14 12/21 12/28 01/04 01/11 01/18 01/25 02/01 02/08
Time

4

2

0

2

zs
co

re

ASAP

(d) machine temp

2

0

2

zs
co

re

Original

02/18 03/04 03/18 04/01 04/15 04/29 05/13
Time

2

0

2

zs
co

re

ASAP

(e) traffic data

Figure E.2: Original and ASAP-smoothed plots

	1 Introduction
	2 Architecture and Goals
	2.1 ASAP Architecture
	2.2 Related Work
	3 Problem Definition
	3.1 Roughness Measure
	3.2 Preservation Measure
	3.3 Smoothing Function
	3.4 Smoothing Problem Statement

	4 ASAP
	4.1 Strawman Solution
	4.2 Basic IID Analysis
	4.3 Optimization: Autocorrelation Pruning
	4.3.1 Autocorrelation and Roughness
	4.3.2 Autocorrelation and Kurtosis
	4.3.3 Pruning Strategies

	4.4 Optimization: Pixel-Aware Preaggregation
	4.5 Streaming ASAP

	5 Experimental Evaluation
	5.1 User Studies
	5.1.1 User Study: Anomaly Identification
	5.1.2 User Study: Visual Preferences

	5.2 Performance Analysis
	5.2.1 End-to-End Performance
	5.2.2 Impact of Optimizations

	6 Conclusions
	7 Acknowledgments
	8 References
	A Case Study
	B Additional Evaluations
	B.1 Roughness Estimate
	B.2 Pixel-aware Preaggregation
	C Sample Visualizations
	D User Study Materials
	E Raw and Smoothed Plots

