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a Young Tableau?
Alexander Yong

Young tableaux are ubiquitous combinatorial ob-

jects making important and inspiring appearances
in representation theory, geometry, and algebra.

They naturally arise in the study of symmetric

functions, representation theory of the symmetric

and complex general linear groups, and Schu-

bert calculus of Grassmannians. Discovering and
interpreting enumerative formulas for Young

tableaux (and their generalizations) is a core theme

ofalgebraic combinatorics.

Let λ = (λ1 ≥ λ2 ≥ . . . ≥ λk ≥ 0) be a partition

of size |λ| = λ1 + . . .+ λk, identified with its Young

diagram: a left-justified shape ofk rows of boxes of
lengthλ1, . . . , λk. Forexample,λ = (4,2,1) isdrawn

. A (Young) filling of λ assigns a positive

integer to each box of λ, e.g., 2 1 1 4
6 2
4

. A filling is

semistandard if the entries weakly increase along

rows and strictly increase along columns. A semi-

standard filling is standard if it is a bijective assign-

ment of {1,2 . . . , |λ|}. So 1 2 2 4
2 3
4

is a semistan-

dard Young tableau while 1 3 4 6
2 7
5

is a standard

Young tableau, bothofshapeλ.
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We focus on the enumeration and generating

series of Young tableaux. Frame-Robinson-Thrall’s

elegant (and nontrivial) hook-length formula

states that the number of standard Young tableaux

of shape λ is f λ :=
|λ|!∏
b hb

, where the product in the

denominator is over all boxes b of λ and hb is the

hook-length of b, i.e., the number of boxes directly

to the right or below b (including b itself). Thus,

f (4,2,1) =
7!

6 · 4 · 2 · 1 · 3 · 1 · 1
= 35.

A similar hook-content formula counts the

number of semistandard Young tableaux, but we

now consider instead their generating series: fix λ

and a bound N on the size of the entries in each

semistandard tableau T . Let xT =
∏N
i=1 x

#i’s in T
i .

The Schur polynomial is the generating series

sλ(x1, . . . , xN) :=
∑

semistandard T xT . For exam-

ple, when N = 3 and λ = (2,1) there are eight

semistandardYoung tableaux:

1 1
2

, 1 2
2

, 1 3
2

, 1 2
3

, 1 1
3

, 1 3
3

, 2 2
3

, 2 3
3

.

The corresponding Schur polynomial, with terms
in the same order, is s(2,1)(x1, x2, x3) = x2

1x2 +

x1x
2
2+ x1x2x3+ x1x2x3+ x

2
1x3 + x1x

2
3 + x

2
2x3+ x2x

2
3.

In general, these are symmetric polynomials, i.e.,

sλ(x1, . . . , xN) = sλ(xσ(N), . . . , xσ(N)) for all σ in the

symmetric group SN (the proof is a “clever trick”

knownas the Bender-Knuth involution).

Both the irreducible complex representations of

Sn and the irreducible degree n polynomial repre-

sentations of the general linear group GLN(C) are

indexed by partitions λ with |λ| = n. The associ-

ated irreducible Sn-representation has dimension

equal to f λ, while the irreducibleGLN(C) represen-

tation has character sλ(x1, . . . , xN). These facts can
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be proved with an explicit construction of the re-
spective representations having a basis indexed by
the appropriate tableaux.

In algebraic geometry, the Schubert varieties,
in the complex Grassmannian manifold Gr(k,Cn)
of k-planes in Cn, are indexed by partitions λ con-
tained inside ak×(n−k) rectangle. Here, the Schur
polynomial sλ(x1, . . . , xk) represents the class of
the Schubert variety under a natural presentation
of the cohomologyringH⋆(Gr(k,Cn)).

Schur polynomials form a vector space basis
(say, overQ) of the ring of symmetric polynomials
in the variables x1, . . . , xN . Since a product of sym-
metric polynomials is symmetric, we can expand
the result in terms of Schur polynomials. In particu-
lar, define the Littlewood-Richardson coefficients
Cνλ,µ by

(1)

sλ(x1, . . . , xN) · sµ(x1, . . . , xN) =∑
ν

Cνλ,µ sν(x1, . . . , xN).

In fact, Cνλ,µ ∈ Z≥0! These numbers count tensor

product multiplicities of irreducible representa-
tions ofGLN(C). Alternatively, they count Schubert
calculus intersection numbers for a triple of Schu-
bert varieties in a Grassmannian. However, neither
of these descriptions of Cνλ,µ is really a means to

calculate the number.
The Littlewood-Richardson rule combinatori-

ally manifests the positivity of the Cνλ,µ . Numerous

versions of this rule exist, exhibiting different fea-
tures of the numbers. Here is a standard version:
take the Young diagramofν and remove the Young
diagram of λ, where the latter is top left justified
in the former (if λ is not contained inside ν, then
declare Cνλ,µ = 0); this skew-shape is denoted ν/λ.

Then Cνλ,µ counts the number of semistandard

fillings T of shape ν/λ such that (a) as the entries
are read along rows from right to left, and from
top to bottom, at every point, the number of i’s
appearing always is weakly less than the number
of i − 1’s, for i ≥ 2; and (b) the total number of i′s

appearing is µi. Thus C
(3,2,1)
(2,1),(2,1) = 2 is witnessed

by

1
1

2

and 1
2

1

.

Extending the GLN(C) story, a generalized
Littlewood-Richardson rule exists for all com-
plex semisimple Lie groups, where Littelmann
paths generalize Young tableaux. In contrast, the
situation is much less satisfactory in the Schu-
bert calculus context, although in recent work
with Hugh Thomas, we made progress for the
(co)minusculegeneralizationofGrassmannians.

No discussion of Young tableaux is complete
without the Schensted correspondence. This
associates each σ ∈ Sn bijectively with pairs
of standard Young tableaux (T , U) of the same

shape λ, where |λ| = n. This can be used to prove
the Littlewood-Richardson rule but is noteworthy
in its own right in geometry and representation
theory.

Given a permutation (in one-line notation), e.g.,
σ = 21453 ∈ S5, at each step i we add a box into

some row of the current insertion tableau T̃ : ini-
tially insertσ(i) into the first row of T̃ . If no entries
y of that row are larger than σ(i), place σ(i) in a
new box at the end of the row and place a new box
containing i at the same place in the current record-

ing tableau Ũ . Otherwise, let σ(i) replace the left-
most y > σ(i) and insert y into the second row,
and so on. This eventually results in two tableaux
of the same shape; Schensted outputs (T , U) after
nsteps. Inourexample, the stepsare

(∅,∅), ( 2 , 1 ),

(
1
2
, 1

2

)
,

(
1 4
2

, 1 3
2

)
,

(
1 4 5
2

, 1 3 4
2

)
,

(
1 3 5
2 4

, 1 3 4
2 5

)
= (T , U).

It is straightforward to prove well-definedness and
bijectivity of this procedure. Also, T and U encode
interesting information about σ . For example, it
is easy to show that λ1 equals the length of the
longest increasing subsequence in σ (see e.g. work
of Baik-Deift-Johansson for connections to random
matrix theory). A sample harder fact is that if σ
corresponds to (T , U) then σ−1 corresponds to
(U, T).

An excellent source for more on the combi-
natorics of Young tableaux is [Sta99], whereas
applications to geometry and representation theo-
ry are developed in [Ful97]. For a survey containing
examples of Young tableaux for other Lie groups,
see [Sag90]. Active research on the topic of Young
tableaux continues. For example, recently in col-
laboration with Allen Knutson and Ezra Miller, we
found a simplicial ball of semistandard tableaux,
together with applications to Hilbert series formu-
lae ofdeterminantal ideals.
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