The Packing of Spheres

What is the densest way to arrange identical spheres in space’

There has been much progress on the problem, particularly in 24

dimensions, and the results can be applied to digital signaling

manufacturer of ball bearings is
A asked to deliver as many balls,
all the same size, to a foreign
port as he can ship on a day’s notice.
Although the ball bearings are ready,
only one ship is available, and the ship-
per explains to the manufacturer that
the draft of the ship would be too deep
for the local channel if the balls were to
fill more than three-fourths of the vol-
ume of the hold. The manufacturer is
unperturbed. “Your ship is safe,” he
replies. “Let the hold be filled to the
hatches.” Should the shipper believe
his client?

The solution to this problem depends
on finding out how densely a large num-
ber of identical spheres can be packed
together in space. If, instead of ball
bearings, the ship’s hold were to be
packed with cubes all the same size, the
answer would be easy. Since the cubes
would fit together with no wasted space
in between, the hold could be essential-
ly filled with cubes (ignoring the small
spaces that might be left around the
walls and ceiling) and the manufactur-
er’s assurances would clearly be wrong.
Balls, however, cannot be packed with-
out wasting space. If in spite of arrang-
ing the ball bearings as densely as pos-
sible the wasted space still exceeds a
fourth of the volume of the hold, the
shipper can safely fill the hold with balls
and proceed out of the channel.

A few minutes spent experimenting
with oranges or billiard balls is enough
to mislead many people into thinking
the problem is trivial. Arrange three
spheres on a flat surface so that their
centers form an equilateral triangle;
continue adding spheres on the surface
so that each new sphere touches at least
two spheres’ already in place. Build a
second layer of spheres by placing each
new sphere in the “deep hole,” or de-
pression, left at the center of any trian-
gular group of spheres in the first layer.
The finished second layer is identical
with the first layer, although it is shifted
in the horizontal plane. If more layers
are added in the same way, the packing
of spheres that results is called the
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face-centered-cubic packing, which is
familiar to chemists and crystallogra-
phers; it fills just over 74 percent of the
volume of the space. As far as anyone
knows, it is the densest packing that can
be achieved.

I am sorry to report, however, that
this density has never been mathemati-
cally proved to be maximal. The least
upper bound on the density obtained so
far was found in 1958 by C. A. Rogers
of the University of Birmingham, who
proved that no packing of spheres can
have a density greater than about .7796.
The result is not particularly helpful to
anyone looking for a more efficient way
to pack ball bearings. Rogers' proof of-
fers no construction of any sphere pack-

FACE-CENTERED-CUBIC packing of
spheres, often seen in fruit stands or in piles
of cannonballs at war memorials, is thought
to be the densest packing of spheres in three-
dimensional space. In spite of centuries of ef-
fort, however, a proof of its maximal density
has never been given. Each sphere in the pack-
ing “kisses,” or touches, 12 other spheres; a
proof that this number is maximal was not
given until 1874, If the center of one sphere
is fixed, the set of all possible rotations and
reflections that permute the 12 surrounding
spheres is called the symmetry group of the
packing. The symmetry group of the face-
centered-cubic packing has 48 elements; they
can best be understood if the center of each
sphere is thought of as the vertex of the poly-
hedron at the right, which is called a cuboc-
tahedron. Any one of the six square faces of
the cuboctahedron can become the front face
by an appropriate rotation of the figure about
the green or the blue axis (A-F). Each set of
four spheres that form a square face (say the
fourth face) can then assume one of four con-
figurations if the entire figure is rotated about
the red axis (D/-D4). Finally, each config-
uration (say the third one) can be reflected
about a vertical plane to give a new configura-
tion (D3a, D3b). The total number of ele-
ments in the symmetry group is therefore 6 <
4 X 2, or 48. An analogous symmetry group,
which describes the rotations and reflections
of a dense packing of spheres in 24-dimen-
sional space discovered by John Leech at the
University of Glasgow, has been important
in the mathematical theory of finite groups.

ing that comes close to his bound, and
in the paper announcing the proof he_
remarked that “many mathematicians
believe, and all physicists know,” the
correct answer is about 74 percent. In
the quarter century since Rogers made
the remark his assessment stands un-
changed; the sphere-packing problem,
so simple to state and so difficult to
solve, remains one of the basic unre-
solved problems in mathematics.

Dcnscly arranged configurations of
hard spheres have been studied for
many years in part because of their
broad implications for an understanding
of the behavior of solids and liquids. For
example, the molecular properties of
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many crystalline materials can be de-
scribed, at least to a first approximation,
as the effects of various forces on a huge
assembly of closely packed spheres.
Equally important is the application of
the sphere-packing model to the proper-
ties of powders and porous materials.

Although experimental studies of
sphere packings are important for an
understanding of certain physical sys-
tems, there are also compelling reasons
to carry out mathematical studies of
ideally dense packings. For example,
the fact that no sphere packing has
been proved to be maximally dense sug-
gests the mathematical understanding of
ordinary, three-dimensional Euclidean
space is far from complete. Moreover,
for the mathematician the concept of a
sphere and the problem of packing
spheres can be generalized to include
mathematical objects called n-dimen-
sional spheres, whose algebraic form
closely resembles the algebraic descrip-
tion of the sphere in ordinary space. The
study of sphere packings in n dimen-
sions has been recognized for some time
as being mathematically equivalent to
the design of a finite set of digitally en-
coded messages that do not waste power
or cause confusion in transmission. Fur-
thermore, in recent vears the search for
optimal sphere packings in spaces of 24
or more dimensions has led to major
discoveries in the branch of mathemat-
ics called group theory.

There are two other problems, closely
related to the sphere-packing problem,
that are important in geometry. One is
known as the “kissing number” prob-

ONE DIMENSION

lem: How many spheres can be arranged
around a central sphere in such a way
that all the surrounding spheres just
“Kiss,” or touch, the central sphere? The
Kissing-number problem in three dimen-
sions was the subject of a famous dis-
pute in 1694 between Isaac Newton and
the Scottish astronomer David Grego-
ry. Newton maintained the kissing num-
ber is 12, and for the face-centered-cu-
bic packing of spheres described above
the Kissing number is indeed 12 [see il-
lustration on preceding page). Grego-
ry probably argued that an additional
sphere could be squeezed in, although
he was not able to prove it.

ccording to H. S. M. Coxeter of the
University of Toronto, Gregory
may have imagined that the 12 outer
spheres could be rolled around the cen-
tral sphere in such a way that all the gaps
could be concentrated in one direction,
thereby leaving room for 13 surround-
ing spheres. Actually it can readily be
shown that the solid angle, measured
from the center of the central sphere,
that is subtended by one of the sur-
rounding spheres is less than 1/13 of the
total solid angle. The total volume of the
space around the central sphere is there-
fore sufficient to accommodate the vol-
ume of 13 surrounding spheres. Inevita-
bly, however, part of the total solid an-
gle at the central sphere is subtended by
the gaps that arise when the surrounding
spheres arc packed together. It was not
until 1874 that the question of the
kissing number was settled; R. Hoppe
showed Newton was right.
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“SPHERE” PACKINGS can be carried out in one and two dimensions as well as in three. In
one dimension the spheres are line segments of unit length, centered at integer points. The
spheres cover 100 percent of the line and cach sphere Kisses two others. This packing is ob-
viously as dense as possible: it is called Z'. In the plane the spheres are circles and there are
three packings of interest. In the Z? packing the spheres are centered at every point in the
plane whose coordinates are integers; in the D, packing the spheres are centered at alternating
points of the Z? packing, in checkerboard fashion. If the coordinate axes of the Z? packing are
rescaled and rotated 45 degrees, the result is the D, packing, Hence the two packings are equiv-
alent. Their density is the same as the part of the area of one square that is covered by circles or
parts of circles (shading in color); it is 7 /4, or about .7854 (left). The densest packing of cir-
cles in two dimensions is the hexagonal lattice packing L. Parts of circles cover 71/3/6 of
cach equilateral triangle; the density of the packing is therefore equal to about .9069 (righr).
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The second important problem relat-
ed to sphere packing is called the cover-
ing problem: What is the least dense ar-
rangement of identical spheres with the
property that any point is inside or on
the boundary of at least one sphere? Un-
like the first packing problem, in which
the spheres cannot overlap, the solution
to the covering problem inevitably calls
for overlapping spheres. One way to
cover an entire volume with spheres is to
inflate all the spheres in a sphere pack-
ing until they encompass all the deep
holes in the original packing. In general,
however, inflating the spheres in the
densest nonoverlapping configuration
does not lead to the best solution of the
covering problem. In three dimensions,
for example, it is believed the best cov-
ering is given by spheres arranged at the
vertexes of what is known as a body-
centered-cubic lattice. If nonoverlap-
ping spheres are centered at these points,
however, the packing that results is not
as dense as other known sphere pack-
ings, such as the face-centered-cubic
packing. Moreover, the conjecture that
body-centered-cubic packings solve the
covering problem has not been proved.

What makes it so hard to solve the
sphere-packing problem in three dimen-
sions? Consider the face-centered-cubic
packing again. Since the problem states
only that the density of the packing must
be maximized, the number of spheres in
the packing must be regarded as unlim-
ited. If, say, a million spheres are re-
moved, the packing density will remain
effectively unchanged; in other words,
the change in density can be made as
small as one wants by increasing the
number of spheres in the packing as a
whole. For each sphere removed from
the face-centered-cubic packing, how-
cver, a distinct packing is created. Thus
a proof that the face-centered-cubic
packing is optimal (as many people be-
lieve it is) is at the same time a proof that
an infinite number of distinct packings
are optimal as well.

There is another way to appreciate
the complexities of the sphere-packing
problem in ordinary space. In three di-
mensions at most four spheres can touch
one another at a time. (This property
must be clearly distinguished from the
configuration required by the Kissing-
number problem. In that problem only
one central sphere must be touched by
surrounding spheres; the surrounding
spheres need not touch one another.)
When four spheres are mutually in con-
tact, their centers form the vertexes of a
regular tetrahedron, or triangular pyra-
mid. Since the four spheres cannot move
closer together, the densest configura-
tion of four spheres possible in space is
the tetrahedral configuration.

Suppose new spheres are added to a
tetrahedral configuration one at a time
so as to form a new tetrahedral configu-
ration whenever possible. If this proce-




LAMINATED LATTICE PACKING Ls
BOTTOM LAYER

CONSTRUCTION of the laminated lattice packing L, which is
equivalent to the face-centered-cubic packing D3, is done by fitting
together layers of spheres whose centers are arranged according to
the hexagonal lattice packing L. If the spheres are packed so that

dure could be continued indefinitely, the
resulting arrangement of spheres would
have the greatest packing density possi-
ble, since every tetrahedral configura-
tion would be packed as densely as pos-
sible. Rogers’ upper bound for the
densest sphere packing possible is based
on precisely this argument; a straight-
forward computation in spherical trigo-
nometry shows that about .7796 of the
volume of a tetrahedron is filled by the
four nonoverlapping spheres that can be
centered at its vertexes. (The exact result
is V2 [3 arccos (1/3) — m].) Unfortu-
nately, however, tetrahedrons do not fit
perfectly together to fill space. The strat-

~egy of packing spheres into tetrahedral

arrangements whenever possible, which
might be called a greedy algorithm,
eventually forces a bad move. At a cer-
tain stage in the procedure the growing
configuration of spheres presents a sur-
face that cannot accrete more spheres
without wasting interior space. Hence
although the greedy algorithm gener-
ates an optimal sphere packing over the

7~ short range of, say, a few spherical di-

"~

ameters, it turns out that the algorithm
gives rise to a packing that is less dense
on a global scale than the face-centered-
cubic packing.

In order to make further progress on
the three sphere-packing problems
mathematicians have found it conve-
nient to supplement geometric intuition
with an analytic representation of the
spheres in terms of their rectangular co-

MIDDLE LAYER

TOP LAYER

ordinates. It is well known that any point
in the plane can be specified by two co-
ordinates, a horizontal coordinate x and
a vertical coordinate y; the point is gen-
crally written as the ordered pair (x,»).
For example, the point (3,4) refers to the
point in the plane three units to the right
of the origin along the x axis and four
units above the origin along the y axis.

The distance between, say, the point
(3,4) in the planc and any other point
(x,p) can be calculated from the Pythag-
orean relation among the sides of a right
triangle: The square of the distance be-
tween the two points is equal to the
square of the distance between them
along the x axis, (x— 3)2, plus the
square of the distance between them
along the y axis, (y — 4)2. Since a circle is
by definition the set of all points in
the planc cquidistant from a central
point (a.b), any point (x,y) on the cir-
cumference must satisfy the equation
(x — a)2+ (y — b)2= R2, where R is the
radius of the circle. If the radius of
the circle is equal to 1 and the center
i1s at the origin (0,0), the equation is
much simpler: all points (x,y) on the
circumference must satisfy the equa-
tion x2 + y2 = 1,

Similarly, any point in three-dimen-
sional space is specified by three coordi-
nates, x, y and z; more suggestively, the
point can be written (x,,x2,x3). The
surface of a sphere of radius 1 centered
at the origin 1s made up of all the points
(x1,x2,x3) such that x;2 + x92 + x32 = 1.
the equation arises, much as it does

the spheres in the third hexagonal layer are directly above the spheres
in the first layer, the packing is called the hexagonal close packing.
The hexagonal close packing is just as dense as L 3, but the centers of
the spheres in the packing do not satisfy the definition of a lattice,

in two dimensions, from the geometric
definition of a sphere and from two ap-
plications of the Pythagorean relation.

In more than three dimensions geo-
metric intuition is of little value and one
must begin to think exclusively in terms
of coordinates. For example, a “point™
in four-dimensional space is a mathe-
matical object that requires four distinct
numbers in order to be specified un-
ambiguously; such a point is written
(x1,x2,x3,x4). If a person’s height, weight,
age and income are sufficient to unam-
biguously pick out the name of that per-
son from a list, the four quantities can
be regarded as specifying a point in a
four-dimensional space.

A four-dimensional sphere is defined
by analogy with the definitions for the
circle and the sphere in two and three
dimensions. All the points (x;,x2,Xx3,X4)
on the “surface” of the sphere are found
at some distance R from a central point
(a,azaszays). The sum of the squares
of the distance along each independ-
ent coordinate axis between any point
(x,,x2,x3,x4) on the sphere and the cen-
tral point (a,,asasas) must always be
equal to R2

There has been a great deal of non-
sense written in science fiction and else-
where about the mysteries of the fourth
dimension. In mathematical discussions
one must not assume, as the physicist
does, that the fourth dimension rep-
resents time. Furthermore, one must
avoid the temptation to reify the some-
what metaphorical terms ‘*‘surface,”
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TWO DIMENSIONS

(0,0)

. THREE DIMENSIONS

POINT IN TWO DIMENSIONS is specified by assigning a value to two coordinates, say x
and y. A circle of radius 1 around the origin (0,0) is the set of all points (x,y) that satisfy the
equation x? + y? = 1 (left). In three dimensions three coordinates, say x;, xy and xs, are needed
to specify a point. The surface of a sphere of radius 1 around the origin (0,0,0) is the set of all
points (xy,x.x3) that satisfy the equation x* + x52 + x3? = 1. In n dimensions a point is speci-
fied by n coordinates, x;,xy,...,x,. The surface of an n-dimensional sphere of radius 1 cen-
tered on the origin (0,0,. .. ,0)is theset of points (x;, xy,...,x )suchthatx? + xo? + ... +x, 2= L.

“point,” “sphere™ and so on, which are
applied to mathematical objects whose
algebraic properties are otherwisc per-
fectly straightforward. The terms are
justified because the objects they refer
to are constructed by analogy with the
algebraic properties of ordinary circles
and spheres; it must not be supposed,
however, that the objects represent real
geometric objects in some universe wid-
er than our own. To repeat, in math-
ematics four-dimensional space con-
sists of points with four coordinates in-
stead of three (and the same holds for
any number of dimensions).

Once the concept of a sphere is under-
stood as a relation among coordi-
nates, there are several problems, seem-
ingly unrelated to sphere packing, that
can be reduced to onc of the three
sphere-packing problems. The principal
applications of high-dimensional sphere
packing are to problems in digital com-
munications, particularly in the con-
struction of signals for use on a noisy
channel and in the design of analogue-
to-digital converters. It must be admit-
ted, however, that most discussions of
these applications have been theoret-
ical; only quite recently have sphere
packings been used to design practical
systems. As communications systems
become more sophisticated further ap-
plications can be expected.

In digital communications one of the
major aims of the designer is to con-
struct a list of distinct coded symbols, or
code words, that can be transmitted with
maximum reliability and minimum
power. Each code word might be repre-
sented as, say, an eight-digit symbol,
each digit of which can take on one of
five distinct values: 0, 1/2, 1, —1/2 or
— 1. At first it would seem that the sys-
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tem would provide for 58, or 390,625,
different code words, but the difference
between many pairs of these code words
is so small that such a system would be
highly subject to random errors in trans-
mission or to electrical interference. For
example, the difference between the
code word (1,1,1,1,1,1,1,1) and the code
word (1,1,1,1,1,1,1,1/2) is far too small.
If both code words were in use, it is like-
ly they would often be confused. Anoth-
cr way to put the same point is that if
the difference between two code words
were as small as the difference between
(LLLLLLLL and (1,1,1,1,1,1,1,1/2),
a very large amount of power would
be needed to guarantee that these two
code words could be distinguished in
the presence of background noise.
There is a general mathematical re-
lation between the distinguishability
of code words and the power needed to
transmit them reliably. The relation was
first formulated in 1948 by Claude E.
Shannon, then of the Bell Telephone
Laboratories, in his paper 4 Mathemati-
cal Theory of Communication. As my dis-
tinguished colleague David Slepian has
said, “probably no single work in this
century has more profoundly altered
man’s understanding of communica-
tion™ than Shannon’s paper. What Shan-
non showed is that given some fixed,
finitec amount of power there always
exists a system of code words that can
be transmitted essentially without error.
The only qualification is that the ratc at
which the code words are transmitted
cannot exceed a critical threshold called
the capacity of the transmission chan-
nel. Unfortunately Shannon’s theorem
is nonconstructive; it proves that such
systems for encoding a signal exist, but
it gives no hint of how they might be
designed. Although many signaling sys-

tems have been constructed, schemes
that perform as well as Shannon’s theo-
rem promises have still not been found.

Onc way to design a signaling system
that comes close to meeting the
standards of Shannon’s theorem is to
represent each signal as a point in n-di-
mensional space. For example, consider
any sequence of eight numbers in the
signaling system described above. Phys
ically each of the numbers corresponds
to a voltage level on a transmission line,
and so each code word can be plotted
on a two-dimensional graph as a series
of eight distinct pulses whose height
is specified for each of eight intervals
along the time axis. Mathematically,
however, a single point in eight-dimen-
sional space can represent the same in-
formation: let the first number in cacl
sequence be the value of the first coordi-
nate of the point, the second number be
the value of the second coordinate and
so on. Since a point in eight dimensions
is determined by fixing the values of all
eight coordinates, every code word in
the system can be represented as a dis-
tinct point in eight-dimensional space.
When the code words are represent-
cd as points, two important features of
a system of code words can be given a
geometric interpretation. First, remem-
ber that the code words must be reli-
ably distinguishable from one another.
In cight-dimensional space this suggests
that the points representing the possi-
ble code words must be separated by a
certain minimum “‘distance.” How well
does the Pythagorean distance between
two points in eight dimensions meas-
ure the distinguishability between two
code words? In order to determine the
Pythagorean distance the difference be-
tween the two values of each coordinate
of the two points must be squared. Small
differences between coordinate values
(that is, differences less than 1) are there-
by reduced, whereas large differences
(that is, differences greater than 1) are

magnified. Because a small difference in

the voltage levels between two signals is
much more likely to lead to confusion
between code words than a large differ-
ence, the Pythagorean distance is a rea-
sonable measure of distinguishability.

For example, consider the two code
words(1,1,1,1,1,1,1,1)and (1/2,1/2,1/2,
1/2,1/2,1/2,1/2,1/2). The square of the
distance between the two points is the
sum of eight squares, each of the form
(1 — 1/2)2, and so the distance between
them is V2. According to the Pythago-
rean measure of distance, the two code
words (1,1,1,1,1,1,1,1) and (0,0,1,1,1,1,
1,1), which differ only in the first two
coordinates, are also V2 units apart,
and so they are just as easy to distin-
guish as (1,1,1,1,1,1,1,1) and (1/2,1/2,
1/2,1/2,1/2,1/2,1/2,1/2).

A second important feature of any
system of code words is that the power
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needed to transmit them must be mini-
mized. It follows from the elementary
definitions of power and voltage that
power is directly proportional to the
square of voltage; for a simple circuit
the power is the square of the voltage
divided by the resistance in the circuit.
The total power necessary to transmit
an eight-digit code word is consecquently

~~the sum of the squares of all eight digits

-

aat make up the code word. This sum is

the square of the distance between the
point representing the code word in
cight-dimensional space and the origin
(0,0,0,0,0,0,0,0).

Thc design of a signaling system that
is reliable and makes efficient use of
power can therefore be reduced to the

— geometric problem of placing points in-

ide a region of space while constraining
them not to be too close together. If the
points must be at least a distance of, say,
V2 apart, the problem is equivalent to
the problem of finding the densest pack-
ing of spheres whose radius is half that
distance, vV2/2. A closely related prob-
lem is to find a set of code words that all
have the same energy. This problem is
equivalent to the problem of placing as
many points as possible on the sur-
face of an n-dimensional sphere while
constraining them not to be too close
together. That problem is in turn a
generalized version of the Kissing-num-
ber problem.

It turns out that in a space of eight
dimensions there is an extremely dense
packing called the Eg packing; it was dis-
covered in the last third of the 19th cen-

DESIGN OF A CODE for the efficient trans-
mission of information is closely related to the
sphere-packing problem. The code is to be a
finite set of signals called code words that are
easily distinguished from one another and do
not waste electric power. If each code word
is a sequence of, say, three discrete voltage
levels, each sequence can be represented as a
point in three-dimensional space: the first co-
“ordinate of the point is the numerical value
of the first voltage level, the second coordinate
is the value of the second voltage level and so
on (A-D). The transmission power required
for each voltage pulse is proportional to the
square of the voltage, and so the total power
needed to transmit one code word is the sum
of the squares of the three discrete voltages
associated with the code word. The sum is
equal to the square of the distance from the
origin to the point in three-dimensional space

7™ that represents the code word, Thus the prob-

lem of minimizing transmission power is equiv-
alent to the problem of placing all the points
that represent code words as close to the ori-
gin as possible. On the other hand, the need to
distinguish code words from one another can
be treated as the requirement that the points
in space representing the code words not be
closer together than some minimum distance
d. Meeting the two requirements simultane-
ously is geometrically equivalent to packing
hard, nonoverlapping spheres of radius d/2
around the origin as densely as possible (E).

tury by the Russian mathematicians Al-
exander N. Korkin and E. 1. Zolotarefl
and by the English lawyer and amateur
mathematician Thorold Gosset. The
centers of the spheres in the £ packing
are all the points whose coordinates are
equal to whole numbers or to whole
numbers plus a half. The sum of the

coordinates for each point must be
an even number. There are 240 such
points whose distance is V2 from the
origin: 112 points of the from
(+1,41,0,0,0,0,0,0), where the two 1's
and any combination of signs can ap-
pcar in any positions, and 128 points
of the form (+1/2,+1/2,+1/2,1+1/2,

A XJ (1v1|1)
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! f >
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+1/2,+£1/2,+1/2,+1/2), where the
number of minus signs is even.

The E; packing could become the ba-
sis of a practical and efficient signaling
scheme. If the scheme were to include
exactly 240 code words, the 240 points
in the E; packing that are equidistant
from the origin could be chosen as the
code words. In most practical systems,
however, the number of distinct code
words needed is some integral power of
2. For example, in medium-distance tel-
ephony the digital transmission system
known as pulse-code modulation is
now in wide service. The voltage of the
voice signal is measured every 1/8,000
second, and the measured samples are
quantized, or replaced, by one of 28,
or 256, levels. Each quantized voltage
level is then expressed as an eight-digit
binary number; such binary numbers
make up what is called the source code.

It has been known since the work of
Harry Nyquist of Bell Laboratories in
the 1920's that the voice signal can be
reconstructed from the sample values
alone. The voice signal can be thought
of as a quantity, such as air pressure or
voltage, that varies continuously with
time. Early in the 19th century Jean
Baptiste Joseph Fourier proved that
the graph of any such quantity can be
approximated to any desired degree
of accuracy by superposing sine and
cosine curves of appropriate amplitude
and frequency. The sine and cosine
curves (which, for an arbitrary curve,

may be infinite in number) are called
the Fourier components of the curve
on the graph.

Suppose the graph of a quantity can
be exactly generated by superposing a
finite number of Fourier components
whose frequencies are no higher than
some [requency W cycles per second.
Then what Nyquist showed is that the
graph can also be perfectly reconstruct-
ed solely from the values it takes every
1/2 W second. For example, a voice sig-
nal that has no frequency components
higher than 4,000 cycles per second can
be perfectly reconstructed from samples
of the signal taken every 1/8,000 sec-
ond. It is therefore enough to sample the
voice signal and transmit only the sam-
ple values, which are represented by the
code words in the source code, instead
of transmitting the entire voice signal.
If the sample values weré transmitted
without being rounded off, Nyquist's
theorem shows that an entirec second
of speech signal, which corresponds to
8,000 sample values, can be represent-
ed as a single point in a space of 8,000 di-
mensions. This shows the power of
mathematics.

For efficient transmission the source-
code numbers that represent the
sample values must be further encoded
by another code, called a channel code;
it is the channel code that pertains to the
sphere-packing problem. An excellent
way to derive a channel code from the

QUANTIZING DATA from a continuously variable source is closely related to the problem
of covering space with the least dense arrangement of overlapping spheres. For example, in
order to quantize data in two dimensions the input data are paired and each pair is treated as
the coordinates of a point in the plane. Each data point, such as the point A, is then rounded off
to a quantizing point, such as the point B, that lies in the same preselected region of the plane
as the data point. The problem is to choose the quantizing points and the partition of the plane
in a way that minimizes the average quantizing error. If the data points are uniformly distribut-
ed and the quantizing points are chosen as the centers of squares, the average erroris 1/12, A
better way of quantizing can be derived from the best covering of the plane by circles. That
covering is generated from the hexagonal packing of circles (black circles) by increasing the
radius of each circle by just enough to include every point in the plane inside or on the circum-
ference of at least one circle (colored circles). The radius R of the covering circles is the dis-
tance from the center of a circle to the nearest “deep hole” in the packing. If the deep holes
are connected by the appropriate straight lines, the plane is partitioned into regular hexagons;
for uniformly distributed data points the average quantizing error for quantizing points that
are centered on regular hexagons is 51/3/108, or about .0802, which is slightly less than 1/12.
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Ejg sphere packing is to encode each pair
of successive eight-digit binary numbers
in the source code. Each 16-digit binary
number that results is then assigned to
the center point of one of 216, or 65,536,
spheres in the E; packing. A good chan-
nel code can then be constructed by
choosing the 65,536 center points that
lic closest to the origin. At the receiving
end of the telephone line the code words
that correspond to the coordinates ou
cach center point are converted back
into the binary numbers of the source
code, and the voice signal is reconstruct-
ed from the binary numbers.

There is a second major application
of sphere packing in digital commu-
nications that I shall describe briefly.
Remember that in deriving the binary
numbers in the source code from the
voice signal of the telephone it is neces-
sary to quantize the precise intensity of
the signal to one of 256 levels. The real
world is full of awkward numbers such
as.7913 ..., but the world of computers
and digital systems must ultimately deal
only with round numbers such as 0 and
1. Any device that rounds off a continu-
ously variable quantity to some set of
discrete values is called an analogue-to-
digital converter, or quantizer.

Quantization can be carried out in
two or more dimensions as well as along
a single coordinate axis. Imagine that
the plane is divided into regions, not
necessarily congruent, and imagine that
within each region one point has been
marked. Any such array of points and
regions can function as a two-dimen-
sional quantizer; the input to the quan-
tizer is a pair of real numbers that speci-
fy some arbitrary point, and the output
is the preselected quantizing point that
lies in the same region of the plane as
the arbitrary point. Thus any point in the
plane is rounded off to one of the quan-
tizing points. The process compresses
input data; a single indexing number for
the quantizing point can be transmitted
in place of the precise coordinate values
of the data point.

Quantizing introduces errors, and so
one tries to choose the quantizing points
in such a way as to minimize the average
error. For example, if the input to the
quantizer is uniformly distributed, or
in other words if every input value is
equally probable, it is straightforward
to calculate the average error for a num-
ber of quantizing schemes. If a single
coordinate axis is divided into equal
segments of unit length and the quantiz-
ing points are centered on cach segment,
the average error is 1/12, or about
0833. The same data can be quantized
in two dimensions: the data points are
paired, and each pair is considered a
point in the plane. If the plane is then
divided into squares and the quantizing
points are centered on each square, the
average error is still 1/12. On the other
hand, if the plane is divided into regular
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hexagons having the same areca as the
squares, and if each quantizing point is
at the center of a hexagon, the average
quantization error can be reduced to
5v/3/108, or about .0802.

R:markably, it turns out that a corre-
sponding improvement can always
be made even if the data points are not

~ “»venly distributed. In a 1963 doctoral

sdssertation at Stanford University, P. L.
Zador showed that it is always possible
to reduce the average error by quantiz-
ing in a space of higher dimensions. It is
more efficient to wait until several data
points have been collected and then
quantize them all at the same time by
regarding them as a point in n-dimen-
sional space than it is to quantize them

~one at a time along a single axis. In

juantizing it pays to procrastinate.
Unfortunately Zador’s result, like
Shannon’s theorem, is nonconstructive.
The problem of finding good multidi-
mensional quantizers even for uniform-
ly distributed data is still unsolved.
There are several sphere packings, how-
ever, that appear to give rise to excellent
quantizing schemes. Consider the pack-
ing of spheres in two dimensions, that is,
the packing of circles. It has been known
since 1940 that circles can be packed at
maximum density if they are arranged
so that cach circle is surrounded by six
others [see illustration on opposite page).
Imagine now that each circle in the
packing is bounded by a thin, flexible
membrane and that the interior of the
circle is inflated. As the circles get big-
ger the membranes press against one
another to fill the remaining space in
the plane; if the inflation is uniform
throughout the plane, each circle will
expand to form a regular hexagon. As |
have mentioned, basing the guantiza-
tion of uniformly distributed data on
hexagonal regions leads to the mini-
mum average error. A similar expansion
of the eight-dimensional spheres in the
Es packing also leads to low quantiza-

~—tion error, which 1s even smaller than

the error in two dimensions. The general
problem of quantization, which requires
that space be broken up, or covered, by a
discrete partition, is closely related to
the problem of finding the best covering
of space by spheres.

The search for dense sphere packings
in multidimensional spaces i1s greatly
simplified by focusing attention on cer-

7~ tain kinds of packings called lattice

-

packings that have a highly regular
configuration. Consider the hexagonal
packing of circles I have just described:
notice that the centers of any two adja-
cent surrounding circles and the center
of the circle in the middle form an equi-
lateral triangle. In order to calculate the
density of the packing it is sufficient to
determine the proportion of each trian-
gle that is covered by circles or parts of
circles. Because the triangles tessellate,

or completely fill, the plane and because
the configuration of circles within a tri-
angle is always the same, the circle den-
sity in one triangle is equal to the density
of the packing throughout the plane. By
applying elementary geometry one can
show the density is cqual to = v/ 3/6, or
approximately .9069.

The foregoing calculation would not
have been possible if no repeating unit
that fills the plane could have been
found. It is nonetheless easy (o imagine
that there exist highly irregular sphere
packings that have no repeating units.
Such packings are much harder to study
than those that repeat: not only is the
density of an irregular packing difficult
or impossible to determine but also even
the coordinates of all the center points
may not be specifiable. The definition of
a lattice packing guarantees that these
disadvantages can be avoided. A sphere
packing is said to be a lattice packing
if whenever there are two spheres, one

that has its center at the point
(uy,u9,...,u,) and the other at the point
(vy,vs,...,v,), there are also spheres in

the packing with centers at all points
of the form (au, + bv,aus + bvs,...,
au, + bv,), where a and b are any
whole numbers. The center coordinates
of the latter spheres arce said to be gen-
erated from the center coordinates of
the first two spheres.

The simplest lattice packing is the cu-
bic lattice packing, in which the center
coordinates of each sphere in the pack-
ing are integers; the cubic lattice in an
arbitrary number of dimensions » is des-
ignated Z#. The one-dimensional *“‘cu-
bic” lattice Z1 is made up of discrete line
segments, each of unit length, that are
centered at the integer points on the line.
The *“spheres,” or line segments, cover
100 percent of the line, and each sphere
touches two others; hence Z! solves the
sphere-packing problem and the Kissing-
number problem in one dimension.

n two dimensions, however, the

square lattice Z2 i1s not the densest
packing. Its packing density is o/4, or
about .7854, far less than the density of
the hexagonal packing of circles [see il-
lustration on page 118). In a like manner
the sphere-packing density of the cubic
lattice Z3 is relatively low: it is /6, or
about .5236. A much denser family of
lattice packings can be generated from
cubic lattices if the spheres are centered
atalternate points of the lattice in check-
crboard fashion. To construct the new
family of lattices color the points of a
cubic lattice alternately red and black
and make the centers of the spheres
coincide with the black points. Equiv-
alently, the centers of the new pack-
ing are the points with integer coordi-
nates that add up to an even number.
In an arbitrary number of dimensions n
this packing is designated D,. In Ds,
for example, the origin (0,0,0) and the

point (1,1,0) are legal centers of spheres,
but the point (1,0,0) is not because
1+ 0+ 0isan odd number.

The sequence of lattice packings Dj,
D,, D5 and so on is of considerable im-
portance for the sphere-packing prob-
lem. The packing D is the face-cen-
tered-cubic lattice. A model constructed
of Ping-Pong balls shows that one re-
peating unit cell of the lattice is a cube
two units on a side having a sphere at its
center; the radius of each sphere is V2/
2. The density of the packing can be cal-
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LAMINATED lattice packings of spheres in
n dimensions are built up by packing together
layers of a suitable laminated lattice packing
in the nextsmaller dimension # — 1. For exam-
ple, the two-dimensional hexagonal packing
L can be built up by stacking rows of circles
whose centers are arranged according to the
Z1 packing. Similarly, layers of spheres, each
layer arranged according to the hexagonal lat-
tice packing, can be stacked to yield the lattice
packing L, the densest packing known in
three dimensions. John Horton Conway of the
University of Cambridge and the author have
continued the construction and found all the
laminated lattices in dimensions up to 25. The
laminated lattices in dimensions 1 to 10 and
in dimensions 14 to 24 are unique; there are
two laminated lattices in dimension 11, three
cach in dimensions 12 and 13, 23 in dimen-
sion 25 and at least 75,000 in dimension 26.
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culated by finding the fraction of the
volume of the cube that is filled by
spheres; it is equal to V27 /6, or about
.7405. Although it is possible that dens-
er sphere packings exist in three dimen-
sions, Carl Friedrich Gauss proved in
1831 that D4 is the densest three-dimen-
sional lattice packing. It is also known
that Dy and D; are the densest lattice
packings in four and five dimensions.

Above five dimensions, however, D,
is not the densest lattice packing, and by
the time one reaches Dg there are huge
gaps between the spheres. The gaps are
so large that it is possible to slide an-
other copy of Dy into the holes with-
out overlapping the spheres; the result
turns out to be the Ej; lattice. In 1934
H. F. Blichfeldt of Stanford Universi-
ty proved that Ej is the densest lattice
packing in eight dimensions, and he
showed that certain cross sections of Es
called Eg and E; are the densest lattice
packings in six and seven dimensions. In
these dimensions no denser packings,
which would necessarily be nonlattice
packings, have been found since.

In 1965 John Leech, then at the Uni-
versity of Glasgow, constructed a re-
markable sphere packing in 24-dimen-
sional space; his construction is outlined
in the illustration below. The study of
the Leech lattice, as the packing is usu-
ally called, has led to a deeper under-
standing of the properties of other high-
er-dimensional lattices and to impor-
tant results in the theory of groups.
The lattice is almost certainly the dens-
est sphere packing possible in 24 di-
mensions. C. A. Rogers, arguing as he

did for sphere packing in three dimen-
sions, gave bounds for the maximum
density of packings in any n-dimension-
al space; his bound for any 24-dimen-
sional sphere packing is only slightly
greater than the density of the Leech
lattice. Each sphere in the lattice touch-
es 196,560 others, and in 1979 A. M.
Odlyzko of Bell Laboratories and I
proved that this number solves the Kiss-
ing-number problem in 24 dimensions.
The same method of proof also solved
the Kissing-number problem in eight di-
mensions; there the answer i1s 240, the
number of spheres that touch one sphere
in the Ej lattice. These two results were
found independently by V. I. Leven-
shtein of the L. V. Keldysh Institute of
Applied Mathematics in Moscow. Inci-
dentally, the problem remains unsolved
in all other dimensions except one, two
and three (where the answers are re-
spectively two, six and 12).

The Leech lattice has been indispens-
able to group theorists for the construc-
tion of certain finite simple groups.
These groups are the building blocks of
all groups having a finite number of ¢l-
ements; their classification, which has
just been completed, has preoccupied
many mathematicians for more than 50
years. The simple groups play much the
same role in group theory that the prime
numbers play in number theory and the
chemical elements play in chemistry.
Several important simple groups have
now been constructed by considering
the set of all the rigid rotations and re-
flections of the Leech lattice that leave
the central sphere fixed and permute the
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CONSTRUCTION OF THE LEECH LATTICE, the densest known packing of spheres in 24-
dimensional space, is based on the 24-digit binary sequences shown. The set of all possible
sums of the 12 binary sequences, where the addition is carried out modulo 2, is made up of 22,
or 4,096, binary sequences called code words. (In addition modulo 2 the sum of 1 and 1 is equal
to 0; the digit ordinarily carried in binary arithmetic is ignored.) The 2'? code words make up
an efficient code for transmitting information that was devised by Marcel J. E. Golay at the
U.S. Army Signal Corps Enginecering Laboratories in 1949. The centers of the spheres in the
Leech lattice all have the form 2C + 4X or ] + 2C + 4Y, where Cis a code word of the Golay code,
{ is the point (1,1,...,1) in 24 dimensions and X and Y range over all points in 24 dimensions
whose coordinates are all integers. The sum of the coordinates of each point X’ must be even
and the sum of the coordinates of each point ¥ must be odd. Each sphere has radius 212, and
the spheres closest to the origin have centers such as (14,14,0,0,...,0), (12,72,12,72,

+2,+ 2,: 2,*2,0,0,00 . '0) alld (-": 3’."- 1,1. 1,. "oy
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+1). Each sphere touches 196,560 others,

surrounding spheres. This set of opera-
tions is called the symmetry group of the
packing; the analogous symmetry group
of the face-centered-cubic packing in
three dimensions is shown in the illus-
tration on pages 116 and 117.

The symmetry group of the Leech lat-
tice was found in 1968 by John Hor-
ton Conway of the University of Cam-
bridge. Its order, or the number of
elements in the group, is immense, al
though not particularly large in the
context of group theory: it is
222 X 39X 54 X 72X 11 X 13 X 23, or
8,315,553,613,086,720,000. From this
group, which is not a simple group, Con-
way constructed three previously un-
known simple groups whose order in
each case exactly divides the order of

the symmetry group of the Leech lattice. -

In 1981 the Leech lattice enabled Rob

ert L. Griess, Jr., of the University of"

Michigan to construct one of the last
finite simple groups to be found. It is
rather larger than Conway’s groups and
has been nicknamed the monster: the
number of elements in the group is
246 X 320 X 59 X 76 X 112 X 133 X 17
X 19 X 23 X29 X31 X441 X47 X

X 71, or 808,017,424,794,512,875,886,-
459,904,961,710,757,005,754,368,000,-
000,000. Griess’s construction is not
at all straightforward, however, and
one of the fascinations of the Leech lat-
tice is that one feels there should be a
more direct connection between it and
the monster simple group.

he Leech lattice is such a dense pack-

ing that its influence is felt in all low-
er dimensions. It is not surprising that a
slice of a good packing gives a good
packing in a space of one lower dimen-
sion; for example, one slice through
D3 exposes a surface of hexagonally
packed spheres. Suitable cross sections
of the Leech lattice, however, give rise
to the densest known packings in all di-
mensions less than 24 except 10, 11 and
13. For example, one eight-dimensional
slice through the Leech lattice exposes
the Ejg lattice.

Since dense packings can be built
from the Leech lattice, so to speak, from
the top down, it is tempting to ask how
the Leech lattice might be built from the
bottom up, that is, from dense packings
in lower dimensions. It turns out its con-
struction can be done in a particular-
ly simple way. Begin with the densest
packing possible in one dimension, Z1.
At the center of each one-dimensional
sphere in Z! construct a two-dimension-
al sphere whose radius is 1/2. Now con-
struct another layer of two-dimensional
spheres identical with the first layer and
fit it into the holes in the first layer as
tightly as possible. If an infinite number
of layers are packed together in this
way, the resulting two-dimensional lat-
tice is the dense, hexagonal packing;
because of this construction it can be
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called the laminated packing in two di-
mensions, abbreviated L.

I have already suggested how one
goes to three dimensions: a ball of radius
1/2 is emplaced at the center of each
circle in Ly, and identical layers of balls
are fitted into the holes of the first layer
in such a way as to form a lattice. Since
this packing is equivalent to Dj, the lam-
‘nating procedure gives the best-known
packing in three dimensions as well as
in two. If the procedure 1s continued in
higher dimensions, one dimension at a
time, the resulting lattice packings are
extremely dense. It has been known for a
long time that L and L; are equivalent
to D, and Ds, and that Lg, Ly and Lg are
equivalent respectively to Eg E; and
Es. Hence the laminated lattices are
the densest lattice packings possible in
up to eight dimensions.

Recently Conway and I continued the
laminating process a bit further: we
found all the laminated lattices in up to
25 dimensions and examples of them for
cach dimension up to 48. It turns out
that although there is a unique laminat-
ed lattice in every dimension up to 10,
there are two distinct ways to stack lay-
ers of the L, lattice. The two 11-dimen-
sional lattices have the same density but
different Kissing numbers. There are
three 12-dimensional and three 13-di-
mensional laminated lattices but only
one such lattice for each dimension
from 14 through 24. The laminated lat-
tice L, is the Leech lattice. It is only in
spaces having 11, 12 and 13 dimensions
where cross sections of the Leech lat-
tice are known that have a higher densi-
ty than the laminated lattices in those
dimensions.

The laminated lattices are built, layer
on layer, by fitting each new layer as
snugly as possible into the deep holes of
the preceding one. Hence the investiga-
tion of laminated lattices is closely relat-
ed to the covering problem: enlarge ev-
ery sphere in any packing just enough to
encompass the deep holes, and by defini-
tion the packing must cover the space. In
1966 Leech conjectured that if each of
the spheres in the Leech lattice is en-
larged by a factor of V2, the spheres
would cover all the points in the space;
such a covering might well be the best-
possible covering of 24-dimensional
space. Leech’s conjecture, however, was
quite difficult to prove, primarily be-
cause of the complexity of the deep
holes in the Leech lattice.

In the two-dimensional lattice L, it is
clear there is only one kind of deep hole;
the maximum distance from any point
in the lattice is always a point bounded
by three circles, and so there is nothing
to distinguish one deep hole from any
other. In the Leech lattice, however,
Conway, Richard A. Parker and I classi-
fied 23 distinct kinds of deep hole before
we were able to prove Leech’s conjec-
ture. Not surprisingly there turn out to
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DIMENSION

DENSEST KNOWN PACKINGS of spheres in spaces of up to 48 dimensions are plotted ac-
cording to a method suggested by John Leech; the “normalized” density of the packing depends
on the dimension in which the packing is done. Its definition is based on the fact that the den-
sity of the 24-dimensional Leech lattice, divided by the volume of a 24-dimensional sphere of
unit radius, is equal to 1. (The volume of an n-dimensional sphere of radius 1 is equal to 7»'#/

(1 X2%X3X ... Xn/2)if nis even, or to 2(27)'r

W2/(1 X3 XS5 X ... X n)if nis odd.) That

quotient in an arbitrary space of dimension # is called the center density D. The normalized
density shown on the graph is equal to Log:D + n(24 — n)/96; for laminated lattice packings the
graph is symmetrical about the normalized density of the Leech lattice. The graph shows that
L3 Ls and Ly are quite close to the least upper bound known for the density of any sphere
packing. The laminated lattice packings are the densest known packings in all dimensions up
to 32 except dimensions 10 to 13. There is an alternative sequence of lattices called the K, se-
quence, which starts at L; and rejoins the laminated sequence at L5 The K, packings are
denser than the L, packings in dimensions 11, 12 and 13. The P, packings are also lattice
packings, but the densest known packings in 10, 11 and 13 dimensions are nonlattice pack-
ings; all these packings are constructed from codes for the digital transmission of information.

be 23 distinct ways to stack copies of the
Leech lattice together in 25-dimensional
space: there are 23 different 25-dimen-
sional laminated lattices. In 26 dimen-
sions the laminated lattices number at
least 75,000.

In dimensions higher than 25 much less
is known. Hermann Minkowski dem-
onstrated in 1905 that there are lattice
packings in any dimension n» whose den-
sity is greater than 2 = His argument,
like others I have mentioned, is noncon-
structive. In low dimensions the esti-
mate is rather crude: when » is equal to
24, for example, it states merely that
there exist packings whose density ex-
ceeds about 6 X 10-%, whereas the
Leech lattice is known to be more than
32,000 times denser. In the other direc-
tion Blichfeldt showed in 1914 that for
arbitrarily large numbers » the density
cannot exceed about 257 In spite of
much effort there was essentially no
improvement on this bound until the
1970's. G. A. Kabatiansky, Levenshtein

and V. M. Sidel'nikov in Moscow then
showed that the density in very high di-
mensions n cannot exceed about 2 ~ 5995,

E. S. Barnes of the University of Ade-
laide, A. Bos of N. V. Philips’ Gloeilam-
penfabrieken in Eindhoven, the Nether-
lands, Conway, Leech and I have con-
structed a number of explicit packings
in high dimensions, but none of them is
as dense as Minkowski's theorem prom-
ises. Recently Barnes and I constructed
lattice packings from the Leech lattice
in dimensions up to 100,000. The densi-
ty of these packings is roughly 2 1257,
which at first glance scems almost as
dense as the bound in Minkowski's theo-
rem. Indeed, in dimension 65,536 our
packings are about 1040.00 times denser
than any lattice packing previously
known. Unfortunately the exponential
form of the bound can obscure the fact
that we still fall rather short of the
promised goal. The theorem guarantees
there remain packings to be discovered
that are 10499 times denser than the
ones we have found.
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