Chapter 9

Sheaves




180 Chapter 9. Sheaves

ata has, in most settings, ceased to be a scarce resource; the problem of how

to get data has been eclipsed by how to manage its abundance and variety.

Topology possesses several tools relevant to the aggregation and fusion of

local data. Among the most powerful and flexible of these is the theory of sheaves, a
structure for the collation of data parameterized by a space.

0.1 Cellular sheaves

A fiber bundle associates to sufficiently small open sets U in the base space B a
product U x F with a fiber F. Very often, these fibers are vector spaces, modules,
or groups, whose algebraic structure is respected by the ensuing topology of the total
space E. Though useful and common, bundles (and even fibrations) are too restrictive
to handle the general phenomenon of merging different forms of algebraic data over
a base space.

Consider the following simple example. A robot lo-
comotes through a system of narrow hallways. Using an
omnidirectional laser scanner, it records real-valued sensor
data — distance to the wall, say — along hallway directions.
In the interior of a hallway, this directional data has rank
two: forwards and backwards. At a branch point, where
hallways meet, the number of feasible directions jumps in-
stantaneously (in the conceptual limit where the hallways
form a planar graph). The rank of data in the robot's
sensorium changes. This idealized setting attaches to each
point of a planar graph a real vector space whose dimension
equals the number of directions along which one can move from that point. One can
then imagine more complex sensors that store feature-detection, bearings, or other
data in algebraic structures that can vary from place-to-place. Furthermore, it is pos-
sible to correlate data locally — as the robot moves along a hallway, there is consistent
notion of ahead and behind. This amalgamation of algebraic data along a space is at
the heart of the notion of a sheaf.

Though sheaf theory is a remarkably intricate language, the following treatment
is, in keeping with the spirit of this text, elementary, emphasizing cellular sheaves; these
possess computational and intuitive advantages reminiscent of cellular homology.

Fix X a regular cell complex with < denoting the face relation: o<1 iff o C T.
As a model for data over X, consider the setting of abelian groups and homomorphisms
(or, if preferred, vector spaces and linear transformations). A cellular sheaf over X,
F, is generated by an assignment to each cell ¢ of X an abelian group F(c) and to
each face o<t of T a restriction’ map — a homomorphism F(c<7): F(c) — F(7)
such that faces of faces satisfy the composition rule:

pLodT = F(pdT) =F(0odT) 0 F(pdo). (9.1)

lYes, it seems backwards to call this a restriction. The terminology comes from the topological
perspective of §9.6, of which the cellular case acts as a nerve.
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The trivial face 7T by default induces the identity isomorphism F(7<7) = Id. This
simple definition of a sheaf as a representation of the face structure belies a powerful
depth, one that is appreciated only later.

One says that the sheaf is generated by its values on

individual cells of X: this data F(7) over a cell T is also

A called the group of local sections of F over 7: one writes

J A\ s € F(1) for a local section over 7. Though the sheaf is

/\ generated by local sections, there is more to a sheaf than

A A its generating data, just as there is more to a vector space

4 LA \ X than its basis. The restriction maps of a sheaf encode
@Q- I Q@ how local sections are continued into more global objects

— sections defined over larger subsets of X. The value of
the sheaf J on all of X is defined to be collections of local
sections that continue according to the restriction maps on faces:

F(X) = {(sr)rex 1 5o = F(p<0)(s,) ¥p Lo} € [[F(r). (9.2)

That is, F(X) consists of all choices of local data
over cells which are compatible with respect to restriction
maps: the global sections. In general, one thinks of F as
a data structure that assigns to any subset A C X the cor-
responding group F(A) of sections over A, where Equation
(9.2) is modified to use the smallest collection of cells in X
containing A and consistency is enforced on all faces within
this A-containing subcomplex. In the case of a single point
x € X, one speaks of the stalk of F at x, F,. In the present
setting, this is simply &, = F(o), for ¢ the unique cell in
whose interior x lies.

9.2 Examples of cellular sheaves

The simplest example of a cellular sheaf is the constant sheaf Gx on X, which assigns
the group G to each cell of X and the identity homomorphism to each face relation.

The data remain constant over X: every point has
| stalk G and the global sections match local sections,
= Gx(X) 2 G. The antipodal example to this is the
| skyscraper sheaf G, that assigns the group G to the
cell o and zero to all other cells. In this case, all the
| | restriction maps are the zero map (except the identity
= o<o). The stalks vanish except on the cell ¢. This
sheaf has no nonzero global sections if dim ¢ > 0, but

for a vertex v, G,(X) =2 G.

Note that the restriction maps are a crucial component of a sheaf. Given a pair
of sheaves over X, F and G, one defines the sum F & G to be the sheaf on X whose
data on o is F(o) © G(o) and whose restriction maps are likewise direct sums of the
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form F(o<d7) @& G(o<7). Note that summing up skyscraper sheaves over every cell of
X is not the same as the constant sheaf,

@GO’#GXy

geX

even though all the stalks agree: the restriction maps of this city full of skyscrapers are
all zero. The value of the sum-of-skyscrapers sheaf on all of X is &,G — an anarchic
assignment of any G-element to each vertex v of X agrees, via the restriction maps,
to the null on higher-dimensional cells. On the other hand, Gx(X) = G, since all of
the identity restriction maps force a perfect consensus among cells.

Nontrivial restriction maps lead to interesting situ-
ations vis-a-vis local versus global. Consider the case of
a sheaf F whose stalks are all Z. The restriction maps
F(o<dT) must therefore be homomorphisms Z — Z;
i.e., multiplication by some constant. Note that these
constants cannot be arbitrary, since by definition, com-
position must hold, meaning that the multiplication con-
stants must factor according to the restriction maps.
Then, assuming that none of these constants equals
zero, and that the base complex X is connected, then
there are always nonzero global sections —in fact, a Z's
worth. However, it is not the case that local sections
can always be patched together to give a global section.

Example 9.1 (Recurrence equations) ©
Consider the simple linear recurrence u,.1 = A,u,, where u, € R¥is a vector of states
and A, is a k-by-k real matrix. These discrete-time analogues of nonautonomous
linear ODE systems are important in everything from population models to audio
filtering. Such a system can be thought of in terms of sheaves over the time-line R
with the cell structure on R (or R™) having 7Z (or N) as vertices. Let F be the sheaf
that assigns to each cell the vector space R¥. One can encode the dynamics of the
recurrence relation as follows. Let F({n}<I(n, n+ 1)) be the update map v — A,u
and let F({n+ 1}<(n, n+ 1)) be the identity. Then global sections u of F correspond
precisely to solutions to the recurrence equation, since u restricted to {n+ 1} must
equal A, times u restricted to {n} in order to be a consistent section. To be a sheaf
taking values in R-vector spaces, the dynamics have to be linear, so that the space of
solutions is a linear subspace. ©

Example 9.2 (Local cohomology) ©
An excellent example for building intuition is to be found in local cohomology. Fix X a
cell complex and consider the cellular sheaf F that assigns to the cell o the (singular)
k™ local cohomology H*(X, X—7), where 7 is the closure of o in X and the particular
coefficient ring is left to taste. If o7, then the inclusion ¢: (X, X—7) < (X, X—0)
induces on H* the homomorphism F(o<T), via

F(oQT) = H(1): HY(X, X=7) = HK(X, X-T).
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The stalk of this sheaf encodes local H”. For example, on an n-dimensional
manifold, this process yields a constant sheaf (of dimension one), called the orienta-
tion sheaf, cf. Example 4.18. The manifold is orientable if and only if the orientation
sheaf has a global section. For a finite graph, the local H* sheaf has stalk dimension
equal to 1 on edges and equal to deg(v) — 1 on each vertex v. The restriction maps
are projections for vertices of degree greater than two. ©

Example 9.3 (Fiber homology) ©

Consider a cellularmap f: X — Y between cell complexes. There is an induced cellular
sheaf on Y that encodes f. Given o a simplex of Y/, define the fiber homology sheaf
F(o) = Hi(f 7). For o<dT, one has @ C T and likewise with the f-inverse image
in X; hence the restriction map F(o<7) comes from the induced map H,(f~17) —
Hi(f17). For example, if h: X — R is a (cellular) height function, then the fiber
homology sheaf on R records the homology of the level sets of h as stalks over vertices
of R. ©

Example 9.4 (Logic gates) ©)

Consider a simple XOR gate, with two binary inputs and one binary output given by
exclusive conjunction. Topologize this gate as a directed Y-graph Y. Let F be the
sheaf taking values in [F» vector spaces over Y with stalk dimension one everywhere
except at the central vertex, where it equals two.

The restriction maps from the central vertex to the
three edges are as follows. On the two input edges, the
restriction map is projection to the first and second fac-
tors, respectively. The restriction map to the output edge
is addition: +: F% — 5. This instantiates an exclusive-
OR gate — the global sections correspond precisely to the
truth table of inputs and outputs. A similar approach does
not work for an AND gate, since the operation F% — >
encoded by AND is no longer a homomorphism; neither is the involutive NOT, nor
OR, nor NOR, nor NAND. See [159, 254] for other approaches to sheaf circuitry. ®
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9.3 Cellular sheaf cohomology

Sheaves are interpretable as an algebraic data structure over a space (cell complex,
for the moment). Equally illustrative is the interpretation as a coefficient system for
cohomology. A sheaf permits local coefficients that can change from cell-to-cell: F(o)
is the coefficient group over the cell o and the restriction maps F(o<7) encode the
switching required to glue together local cochains into global cocycles.

The definition of cellular sheaf cohomology is straightforward and similar to that
of ordinary cellular cohomology. Given F over a compact cell complex X, let C"(X; F)
be the product of F(o) over all n-cells o: note that this aligns with the definition of
cellular cohomology C (X; G) in the case of the constant sheaf Gx. These cochains

cell

are connected by coboundary maps defined as follows:

o— J[ % I[ -5 [ 7)) -5 (9.3)

dim 0=0 dim o=1 dim o0=2

where, by analogy with (4.6), the coboundary map is given as

d(o) :=> [o: 7] F(a<7). (9.4)

odT

Note that d: C"(X;JF) — C"L(X;T), since [o: 7] = 0 unless o is a codimension-1
face of 7. This gives a cochain complex: in the computation of d?, the incidence num-
bers factor from the restriction maps, and the computation from cellular co/homology
suffices to yield 0. The resulting cellular sheaf cohomology is denoted H*(X;J).
The cohomology of the constant sheaf Gx on X is, clearly, H2,,(X; G). A skyscraper
sheaf G, over a cell o has a (perfect) cochain complex with d = 0. As such, the
cohomology is isomorphic to the cochain complex: H*(X;G,) vanishes except for
grading dim o, at which the cohomology has rank equal to one.

One particularly useful set of interpretations for sheaf cohomology uses the ter-
minology of local and global sections. Recall from Example 6.8 the interpretation of
ordinary H° as connected components of a space; replacing the space with a sheaf
over the space yields the following.

Lemma 9.5. Sheaf cohomology in grading zero classifies

global sections: J N
.
HY(X; ) = F(X). (9.5) t\~~7 <-> U
\ [~
. . . k‘u \ ~'\ C
It may seem puzzling to the beginner that F(X) is de- -

termined completely by the data on the vertices and edges C_ > 0"\
of X. Is the data on the higher-dimensional cells ignored? L\~ J

No: the compatibility of data on higher-dimensional cells is 4

built into the definition of a sheaf. In this, it is analogous
to a planar tiling by square tiles with colored edges. Consider the plane as a cubical
complex. One places square tiles at the vertices and demands that incident tiles have
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compatible edges. The global solutions (legal tilings of the plane) are classified com-
pletely by vertex and edge data: there are no additional constraints where the four
corners of the tiles meet (on the 2-cells of the complex).

Example 9.6 (Matrix equations) ©

The elements of linear algebra recur throughout topol-

ogy, including sheaf cohomology. Consider the following sheaf

‘. F over the closed interval with two vertices, a and b, and

O ommm==01 one edge e. The stalks are given as F(a) = R™, F(b) = 0,

Qo and F(e) = R”. The restriction maps are F(ble) = 0 and

F(ade) = A, where A'is a linear transformation. Then, by def-

inition, the sheaf cohomology is H® 2 ker A and H' = coker A.

Cellular sheaf cohomology taking values in vector spaces is really a characteriza-

tion of solutions to complex networks of linear equations. If one modifies F(b) = R”

with F(b<le) = B another linear transformation, then the cochain complex takes the
form

0— R™x R? 2B go 0

where d = [A|—B] : R — R". The zero™ sheaf cohomology H° is precisely the
set of solutions to the equation Ax = By, for x € R and y € R”. These are the
global sections over the closed edge. The first sheaf cohomology measures the degree
to which Ax — By does not span R". As before, all higher sheaf cohomology groups
vanish. ©

As sheaves provide a means of doing cohomology, one anticipates that the meth-
ods of Chapters 5 ff. generalize as well. This is relatively straightforward, viewing a
sheaf as a generalized coefficient system. By analogy with Lemma 5.5, consider a
short exact sequence of sheaves over X,
J

0 F_' g H 0,

where exactness is enforced cell-by-cell (or stalk-by-stalk). This leads to a connecting
homomorphism and long exact sequence on sheaf cohomology:
n—1 . 6 n . H() n . HO) n .
— H"™ (X, H) — H'(X; F) = HY(X;G) = H'(X;H) — . (9.6)
For example, consider a sheaf F on X and a closed subcomplex A C X. Let
Fa be the restriction of F to A (so that stalks are zero off of A and all restriction
maps F(o<T) are set to zero unless o, 7 C A), and let Fx_4 be the complementary

restriction of F to X—A (so that it vanishes on A). Then the following sequence of
cellular sheaves on X is exact:

|

O—)f:FX_A i F 37,4 0.

Here, j is a projection map that sends stalks of X—A to zero; i is the inclusion of
F restricted to X—A, the kernel of j. Equation (9.6) yields an analogue of the long
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exact sequence of F over the pair (X, A):

e HYAF) s H X A F) Y ) P Ay ——
Here, a convenient notation is adopted: H*(A; JF) := H*(X;Fa) and H*(X, A F) :=
H*(X;Fx_a). This relative sheaf cohomology is significant. The reader may take the
following as an exercise in definitions and the long exact sequence:

Corollary 9.7. For A a subcomplex of X, H°(X, A; F) classifies global sections of F
on X which vanish on A.

This interpretation is in keeping with the notion of cohomology as an obstruction
to solving certain problems of extension and restriction.

9.4 Flow sheaves and obstructions

Even the simple setting of a cellular sheaf over a network (a 1-d cell complex) has
interesting applications. Consider a flow network, as per Example 6.5, in which a
directed acyclic network X from a source node s to a target node t has an assignment
of capacity constraints, cap(e) € N for each edge e € E(X). A flow ¢: E(X) =+ N
assigns to edges a flow rate 0 < ¢(e) < cap(e) in a conservative manner — at each
node v € V(X),

D w(e) = o) =0, (9.7)
e—v v—e'
where e — v denotes an input edge and v — €' denotes an
output edge at v. The flow value, val(¢), equals the net flow
out of s (or equivalently into t).

It is possible to interpret flows in terms of the cohomology
of a flow sheaf, following the ideas of Hiraoka (with additional
input from Robinson). Fix a capacity-respecting flow ¢ on X and
choose a consistent routing protocol at each vertex. Namely,
for each vertex v, choose a binary matrix W, that encodes which portions of the
incoming flow are sent to which portions of the outgoing flow at v,

v, PR — @) R,

e—v v—e'

where (W,);; = 1 means that the j™ unit of incoming flow is sent to the /*" unit of
outgoing flow; conservation is imposed by insisting that W, is a permutation matrix
padded with extra zero rows/columns. For purposes of building the appropriate cellular
sheaf, subdivide X to X as follows:

1. Each edge of X is split in two with an additional vertex in the middle.
2. Each such vertex v added has trivial routing: W, = Id.
3. There is a single feedback edge from t to s with sufficiently large capacity.
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Let F be the sheaf on X taking values in R-vector spaces whose stalk on each
edge e is F(e) = RP€) At a vertex v, the stalk is F(v) = RPY) where cap(v) is
defined to be the sum of cap(e’) for all incoming edges ¢’ — v. The sheaf restriction
maps enforce conservation:

F(v<e): P RN — ReP(E)

e'—=v

where for e — v, the map F(v<e) is projection to the R -factor in F(v), and for
v — e, the map F(v<e) is projection of the image of W, to the R<Pe)_factor. This
flow sheaf satisfies a type of Poincaré duality:

Lemma 9.8. For a flow-sheaf F as above, HO(X;F) =

< ’ HY(X; F) and dim H°(X; F) equals the net flow value val(p).
N ‘ Y 4 Proof. The simplest proof of this duality is by counting:
CO(X; F) = CH(X;TF), since each vertex has stalk isomor-

® phic to the sums of stalks of incoming edges, and this enu-
meration exhausts all cells of X. Passing to cohomology,
the isomorphism comes from exactness (i.e., Lemma 1.10):
dim ker d = dim coker d. By Lemma 9.5, dim H°(X; )
equals the number of global sections of F; by conservation,

each such section counts a unit of flow that circulates from
source to target. O

For a fixed flow ¢ on X there is a way to view the max-flow-min-cut theorem of
Example 6.5 in the language of the long exact sequence of a pair in sheaf cohomology.
Let C C E(X) be a collection of edges in X, thought of as a putative cut-set. Since
C is not a subcomplex of X, consider instead C C X, the corresponding subcomplex
of refined midpoint vertices of C in X. The long exact sequence of the pair (X, C) in
F-cohomology yields:

Consider the zero™ cohomology H°(C: F) of C. By definition, this cohomology has
dimension equal to the net capacity of the edge set C:

dim H°(C; 9) = anp(e) =:val(C).

ecC

By Lemma 9.8, the terms H'(X;F) = H°(X;F) each have dimension val(p) the
flow value. What connects these is the long exact sequence. By Corollary 9.7, the
relative cohomology HO()~<, C) measures how much of the flow does not pass through
C. Thus, by definition, if C is a cut, then H°(X, C) = 0, and one can say that this
relative cohomology is the obstruction to being a cut. For C a cut, this relative H°
vanishes, and H(/) above is injective by exactness, meaning that for any flow and cut,
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val(p) < val(C): the flow value is bounded by cut values — the weak form of the
max-flow min-cut theorem [146].

The crucial term in the long exact sequence is the connecting homomorphism §.
Assuming C a cut, then, by exactness, H%(X) 2 ker § and H*(X) 2 coker 6. There
is a splitting HY(X, C; F) = HY(X; F) & im 6. If a nonzero class is in the image of &,
then it corresponds to a local section of C that does not come from any global flow on
X. Otherwise, it corresponds to a class in H! — a flow, by Lemma 9.8. Summarizing
this discussion:

. dim HO(X; F) = val(p) is the flow value;

. dim HY(C; F) = val(C) is the cut value;

. HY%(X, C; %) is the obstruction to being a cut; and
4. ¢ is the obstruction to val(¢) = val(C).

w N =

When 0 # 0, the cut is not minimal or the flow is not maximal. When the two
obstructions, § and H°(X,C;F) both vanish, then the given flow and cut satisfy
dim H°(X; F) = dim H°(C; ), or, maxflow-equals-mincut.

This construction of flow sheaves may seem an over-complicated restatement
of conservation: net inputs equals net outputs. By adapting sheaves and cohomology
to this elementary setting, one may properly generalize.

9.5 Information flows and network coding

The following is an application to network coding [146] — a branch of network infor-
mation flow problems in which algebraic coding can be performed. This is motivated
by communications: when sending data over a network, the data is split into packets
that are individually routed from source to target(s) and then re-integrated. Packets
of data are sent over edges at a particular bit rate, and packets are routed and/or
coded at nodes to be broadcast along other edges.

Fix a communications network modeled as a finite directed acyclic graph X from
a fixed source (or sender) node s to multiple target (or receiver) nodes t; in X. The
data sent by s lies in a vector space over F, a fixed finite field of g elements. Data
is transmitted along edges of X and acted upon at nodes via linear transformations
and rebroadcast, respecting directedness of X. The fundamental problems of network
coding concern data throughput at the targets t;, given constraints on X, on g, on
codings, and on bit-rate capacities of edges.

Example 9.9 (Butterfly network) ©

The classical butterfly network demonstrates that network coding can improve trans-
mission rates [127, 196]. In this network, there is a single source s and two targets
t1, to. Each edge has unit capacity (only one packet in F, can be sent per unit time).
The goal is to send two packets of data, a, b € F, from the source to both targets as
quickly as possible, assuming each edge can carry one bit of data per unit time. If the
nodes act as routers — data are redirected along edges unchanged — then it requires
at least five units of time to transmit a and b to both targets, since one central node
must switch from transmitting a to b. If, however, the central node receives both a
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and b and transmits a + b, then, in four time steps, t; receives a and a+ b and t»
receives b and a+ b. From this, the original signals can be decoded algebraically at
the targets. ©

The general situation is similar. Fix X a directed net-
work with source s and multiple targets t; as above. The
network data consists of vectors over a sufficiently large
finite field F = F,. Each edge e in X has a capacity
cap(e) € N, representing the bit-rate transmission capac-
ity of e. The network coding is given in terms of F-linear
transformations at the nodes of X. To each node v € X is
associated a local coding map ,

v, @FR© — () Fer),

e—v v—e'

that maps the vector space of data entering v to the vector

space of data exiting v. For example, routing protocols are the (zero-padded) permu-
tation matrices of §9.4. The central node v of the butterfly network of Example 9.9
has W, = [1]1] to encode via addition of signals. The decoding of messages received
at t; is given by a decoding edge from t; — s with corresponding decoding map Wy,
that disentangles coded messages at the targets. Let X be the network obtained from
X by subdividing each edge (with inherited capacities and routings as in §9.4) and
adding the decoding edges.

The following construction is due to Hiraoka and parallels his flow sheaf con-
struction from §9.4. Given the local coding maps {W,}, build a network coding
sheaf F on X as follows. On each edge e, F(e) = FP(e), At a vertex v, the stalk
is F(v) = FPv) where cap(v) = Y., cap(e'). For e — v, the map F(v<e) is
projection to the FeP(e)_factor in F(v). For v — e, the map F(v<e) is projection
of the image of W, to the F<eP(e)_factor. The following results are straightforward
generalizations of those of §9.4:

Theorem 9.10 ([146]). With a network coding sheaf 5 for single-source-multi-target
networks with decoding edges as above, H*(X; &) has the following interpretations:

1. The net information flow rate equals dim H°(X; F).

2. The net information flow rate which persists it a subnetwork A becomes inoper-
ative equals dim HO(X, A; F).

3. The obstruction to extending an information flow on a subnetwork A to all of X
respecting the coding and capacity constraints is §: H*(X, A; F) — HY(X; F).
If 6 = 0, all information flows on A are extendable to X.

9.6 From cellular to topological

Recall from Chapters 4-6 that it is relatively easy to define, visualize, and compute
cellular co/homology, whereas it is of limited use in proving theorems such as homotopy
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invariance; the more powerful methods implicate the less-computable less-intuitive
singular theory. A similar dichotomy exists in sheaf theory: all the standard texts
[47, 95, 183] present definitions in the setting where the base space is a topological
space with no fixed cell structure. Instead of stalks changing from cell-to-cell, they
can change from point-to-point.

As an interpolative step, consider a space X outfitted

7 - - with a locally finite cover U by open sets {Uy}. A sheaf F
on X subordinate to the cover U is, precisely, a cellular sheaf

/ L= on the nerve N(U) of the cover. That is, there is an assign-
= ment to each cover element U, of an abelian group F(U,),
7 and for every non-empty intersection of cover elements,

e.g., Uapy := UoNUgNU,, there is the corresponding data

QVG’Q F(Uapy)- In addition, there are restriction homomorphisms

© according to the pattern of intersections in U. For exam-

ple, if Uy NUp # @, then F(UyQUap): F(Us) = F(Uqp).
Note that these restriction homomorphisms are indeed in-
duced by restrictions of the cover elements, and the direction of the homomorphism is
in the direction of the restriction. In the language of this chapter, one thinks of J as
an assignment of data to U and the restriction maps as encoding how data changes
when one narrows the field of view.

The cohomology of a sheaf subordinate to a cover is often called the Cech
cohomology, H*(U;JF) := H*(N(U); F), of the sheaf. This has a natural parallel
with the Cech co/homology of Chapter 4, and is stable under refinement of covers.
The progression from sheaves on cellular complexes to topological spaces is clear in
principle: one takes a /imit of finer and finer covers. Since one can glue together local
sections on cover elements, then, assuming a limit is possible, one anticipates the
ability to assign data in the form of a group of local sections to any open subset of a
topological space X. It would be confusing/redundant to call this a singular sheaf or
even a topological sheaf. Perhaps sheaf over a topology would be the most descriptive
term.

This discussion motivates the following definition. A presheaf, P, on a space
X, is an assignment to each open set U C X of an abelian group P(U) of local
data (or sections) along with restriction homomorphisms P(UV): P(U) — P(V) for
every V C U. These restriction homomorphisms must satisfy composition and identity
relations: P(UKU) = Id and

Wcvcu = 2PUIW)=PVIW)oP(ULV),

cf. Equation (9.1). It is easy to confuse the directions of the inclusions in switching
from celllular sheaves to sheaves on a topology. The reader will rightly suspect that a
presheaf is not quite a sheaf. There are a number of subtleties associated with passing
from a presheaf over a topological space to a sheaf. As a first example, note that
stalks — pointwise data assignments — require a limiting process. For x € X and {U;}
a nested sequence of open neighborhoods converging to x (that is, any neighborhood
of x contains all U; for i sufficiently large), one has a sequence of groups of sections
and restriction homomorphisms
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oo —PUiz) — P(U) — P(Uiyr) — - (9.8)

The stalk of P at x, P, is the group of equivalence classes of
sequences (s;); with siy; = P(U;U,+1)(s;) for all i; and where two
such sequences are equivalent if they eventually agree: [(s;)] = [(s})]
if and only if s; = s/ for all / large. One shows that P, is a group and
is independent of the system of neighborhoods chosen to limit to x.
Examples of presheaves and their stalks include the following:

1. Skyscrapers: Fix a point p € X and consider the presheaf that sends an open
set U to O unless p € U, for which it sends U to G, with all restriction homo-
morphisms being either Id or 0 depending on the presence of p; this presheaf
has stalk O everywhere except for G at p.

2. Constant functions: The presheaf that assigns to open sets U the group of con-
stant functions U — G is a presheaf with all restrictions being literal restrictions
and all stalks isomorphic to G.

3. Smooth functions: The presheaf that assigns to open sets U of an n-manfiold
M the group C¥(U;R) of k-times-differentiable real-valued functions (for 0 <
k < oc) is a presheaf whose restriction homomorphisms are again restrictions;
however, the stalks are the germs® of functions R” — R.

4. Local homology: The presheaf that assigns to open sets U C X the local
k™ homology Hx(X, X—U) has restriction homomorphisms induced via functo-
riality: for V C U, the induced homomorphism Hi (X, X—=U) = Hy(X, X-V)
behaves appropriately. The stalk of this presheaf at p € X is the local homology
Hk (X, X—p), which can vary greatly from point-to-point.

5. Orientations: For an n-manifold M, the (homology) orientation presheaf O
assigns to U open the local homology H,(M, M—U;Z). When this is a constant
sheaf, the manifold is orientable (cf. Examples 4.18 and 9.2).

6. Fibers: Given h: X = Y, the k™ cohomology fiber presheaf over Y assigns to
U C Y the cohomology H¥(h1(U)) of the inverse image. This presheaf can
vary dramatically with change in U. For a sufficiently tame h, the stalk at y € Y
is equal to HK(h~1(y)).

A sheaf is a presheaf that respects gluings as well as restrictions. In the cellular
setting, this is accomplished by fiat as per Equation (9.2). In the topological setting,
gluing, as with stalks, requires a limiting process. The definition is this: a presheaf &
is a sheaf if and only if for any open U and U = {U;} a finite open cover of U, and for
any local sections s; € F(U;), which agree on all pairwise overlaps U;; = U; N U; via
restriction maps, there exists a unique global section sy € F(U) which restricts to s;
on each U;. Note the double criterion of existence and uniqueness of global sections
from local. This gluing axiom can be succinctly summarized as follows — for each
such cover of U = U;U;, the following sequence is exact:

0 — F(U) T L F(U) T, F(Uy) - (9.9)

2Such germs are generalizations of Taylor series consisting of equivalence classes of functions that
locally agree.
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Here, the map d is the coboundary map for cellular sheaf cohomology on the nerve
N(U), cf. Equation (9.4): the U; correspond to vertices, the Uj; to edges, and an
orientation is chosen to determine the correct + sign. Exactness means that F(U) =
ker d. Thus, a good way to remember the gluing axiom is in terms of cohomology:
to be a sheaf, F(U) must agree with the cellular sheaf cohomology HO(N(U); F) for
any finite open cover U of U.

Every example of a presheaf in the list above is a sheaf except one. The canonical
example of a non-sheaf presheaf is that of constant functions. This violates the
existence property of gluing as follows. Given a disjoint union U = U; U U, and
the cover U = {Uy, U>}, any constant functions on U; and Us trivially agree on the
(empty) overlap. However, these local sections do not extend to a global section — a
constant function on U — if the values on U; and U, differ. In contrast, the presheaf
of locally constant functions is a sheaf: the constant sheaf. Bounded real-valued
maps are also examples of presheaves that are not sheaves, since maps that are locally
bounded may not be globally bounded: locally bounded maps do form a sheaf.

The definition of cohomology H*(X; J) for a sheaf over a topological space X
is more implicit than in the cellular setting. One approach takes U an open cover
of X and computes the Cech cohomology H*(U;JF) of the sheaf subordinated to
the cover. This clearly works for H° by dint of the gluing axiom, above. One can
show that for sufficiently fine covers over sufficiently well-behaved sheaves, the higher
cohomology stabilizes as well, and the limit is well-defined. The details of this and
parallel constructions for sheaf cohomology can be found in [157, 183]. Suffice to
say that most of the forms of cohomology seen in this text are expressible as a sheaf
cohomology — either cellular or topological.

Example 9.11 (Differential equations) ®

Many sheaves on manifolds can be generated by partial differential equations. Consider
for example the sheaf of holomorphic functions on C that assigns to U C C open the
functions f: U — C satisfying 0f/0Z = 0, where /07 is the linear first-order partial
differential operator which, when written out in real/imaginary components yields the
more familiar Cauchy-Riemann PDEs. The condition of being holomorphic is local in
nature, and the restriction of a holomorphic function is clearly holomorphic. Crucially,
extension of holomorphic functions that agree on overlaps — analytic continuation
— also holds, guaranteeing that holomorphic functions form a sheaf. Much of the
impetus for sheaf cohomology came from problems of analytic continuation, viewed
as producing global sections of this sheaf. Sheaf cohomology provides obstructions
to analytic continuation, not just on C, but on complex manifolds locally modelled on
C".

Other systems of PDEs arise in calculus on manifolds. The sheaf that associates
to open sets U of a manifold M the p-forms QP(U) is well-defined — restriction and
extension of forms is sensible. These p-forms are linear objects that satisfy the partial
differential equations d®> = 0. The resulting sheaf cohomology is identical to the de
Rham cohomology 4= H*(M) of §6.9. ©
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9.7 Operations on sheaves

After working with enough examples of sheaves, certain common features resolve into
canonical constructions. These steps are the beginnings of sheaf theory as opposed to
working with sheaves one-at-a-time. This theory —a means of working with data over
spaces in a platform-independent manner — quickly demands the development of tools
and language beyond the scope of this chapter. A few basic definitions and examples
will have to suffice until the next chapter brings that language to bear in §10.9.

Morphisms: A sheaf morphism 7: ¥ — F' between two sheaves on X is a transfor-
mation between local sections that respects restrictions. That is, for each cell T (or
open set U) there is a homomorphism n: F(1) — F'(7) (resp. n: F(U) — F(U))
and for each o7 (resp. U D V) the sheaf restriction maps commute with n:

:Tf(f) Fodn), ?(\'r) ?(\U) T, 3*1\/) (9.10)
F(0) g T(0) F(U) 55 TV

Sheaf morphisms are ways of transforming or evolving data over the same base space.
Other sheaf operations answer the question of how to translate data on one space
over to data on another by way of a mapping of base spaces.

Direct image: Assume amap h: X — Y of spaces or a cellular map on cell complexes.
For Fx a sheaf over X, the direct image of h is the sheaf h,Fx on Y that pushes
data from X to Y by pulling back space via h™1. In the topological setting, this
means h,JFx(U) = Fx(h 1(U)), for U C Y open. In the cellular setting, this means
h.Fx(c) = Fx(h™*(o)) for o a cell of Y. For h injective, one visualizes the direct
image as embedding the data over X into Y; for h surjective, one might think of the
direct image sheaf as being the data on X, folded atop Y.

Inverse image: For h: X — Y as before, one can pull back a sheaf from Y to
X. The inverse image of a sheaf Fy on Y is the sheaf on X defined neatly in the
cellular setting by h*Fy (o) = Fy(h(c)) for ¢ a cell of X. For h cellular, this is
well-defined. The difficulty arises in the topological setting. One wants to define
h*Fy(U) = Fy(h(U)) for U C X open; however, h(U) may not be open. Therefore,
one takes a limit. Let V; be a system of nested open sets in X with NV, = h(U).
Then the restriction maps give a sequence of abelian groups Fy (Vi) — Fy(Viy1). In
the same manner that stalks over a point were defined in terms of equivalence classes
of sequences of group elements, the larger subset m has as its inverse image the
limit” h*Fy (U) = lim; o Fy (V}) consisting of equivalence classes of sequences of
elements in Fy (V).

In the case of direct and inverse images, one shows that the definitions lead
to obvious restriction maps and the resulting presheaves are in fact sheaves. At
first, these operations serve to increase the precision of language in defining and
characterizing sheaves. Only later is it clear that these operations are at the heart of
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sheaf theory.

Example 9.12 (Compact cohomology, redux) ©

Recall from §9.3 that for A a subcomplex of X, the computation of cellular sheaf
cohomology of A proceeds by ‘“restricting” the sheaf F to A, yielding F 4, then com-
puting H*(X; Fa). This ad hoc definition can now be specified and improved. Let
t: A = X be the inclusion. Then one defines the cohomology of ¥ on A to be
H*(A; .*F). This not only has the benefit of providing a sheaf on A, it easily extends
to the setting where A is not a subcomplex of X. Given any collection of (open)
cells A C X, the sheaf cohomology with compact supports on A is defined to be
He (A F) = H*(X; tl* ).

The notation H? denotes, as in §6.4, compact supports. The need for this
distinction is easily discerned with, say, a constant sheaf. If F = Gy is a constant sheaf,
then the cohomology H2(A;F) is isomorphic to the singular compactly supported
cohomology H2(A; G) of A as a topological space, so that for an open n-simplex ¢ in
X, H2(o; Gx) vanishes except in grading n. Of course, if Ais a closed subcomplex of
X, then H2(A; F) = H* (A F). ©

One strategy in sheaf theory is to manipulate data structures over spaces by
pushing or pulling sheaves in a way that the impact on sheaf cohomology is controlled.
In certain instances, simple general conditions guarantee such control.

Theorem 9.13 (Vietoris Mapping Theorem). Assume F a sheafon X and h: X —
Y a proper map with fibers satisfying H"(h~*(y); F) = 0 for all n > 0. Then h induces
an isomorphism on sheaf cohomology: H*(X;F) = H*(Y; h.F).

In particular, if the fibers of h are all zero-dimensional, then the acyclicity hy-
pothesis of the theorem is always satisfied. The theorem holds for cellular sheaves
also with obvious modifications.

Example 9.14 (Flow sheaves, redux) ®

The flow sheaves of §9.4 can be represented as pushforwards of simple component
sheaves of two types. To model a single unit of flow that circulates over a network
(with feedback edge), consider first S, a circle, subdivided into a directed graph (with
a single cycle), and let Fs = R be the constant sheaf on S. Next, let / = [0, 1] be
an interval, subdivided into a directed linear graph with (potentially many) edges, and
let ) = Rg,1) denote the constant sheaf on / that is set to R everywhere except zero
at the left endpoint. With a bit of insight, one sees that every flow sheaf is precisely
the pushforward of some finite number of copies of Fs and F,; over a disjoint union
of circles and intervals, with the projection map p gluing together subintervals in an
orientation-preserving manner.

This clarifies the computation of flow sheaf cohomology. By Poincaré duality,
Fs has cohomology H° = H! =~ R. It is clear that H*(/;J,) = 0, since there are
no global sections and the coboundary map d is surjective. The projection map p
has discrete fibers; hence, by Theorem 9.13, flow sheaves have H° = H! and the
dimension of this cohomology is precisely the flow value: cf. Lemma 9.8. ©
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Example 9.15 (Euler characteristic, redux) ©

There are other operations that apply to sheaves. Following the perspective that
a sheaf is an algebraic enhancement of a topological space, one repeats standard
topological constructs. Among the most primal is that of the Euler characteristic.
For a cellular sheaf & on a cell complex X taking values in vector spaces, one defines
the Euler characteristic in the obvious way:

[ee]
X(F) 1= (=19 ?dim F(o) = Y (~1)"dim H"(X; ). (9.11)

o n=0
How does the sheaf-theoretic Euler characteristic relate to the familiar x of previous
chapters? Recall that the combinatorial definition of Euler characteristic used in the
o-minimal setting of Chapter 3 is not the homological definition of Corollary 5.18 in
general: the homological formula holds only for compact spaces, on which x is, like
homology, a homotopy invariant. The combinatorial x has an interpretation in terms

of compactly-supported cohomology. For A a locally-compact definable space,

X(A) = (—1)"dim H2(A). (9.12)
n=0
This can be interpreted at the level of sheaves. For A a definable set represented as
a subcollection v: A — X of open cells in a definable triangulation of X, the Euler
characteristic of A can be expressed as the Euler characteristic of the constant sheaf
RA on A:

X(A) = X(ARa) = X(X; 0" Rx) = Y _(~1)"dim H2(A; Ra). (9.13)
n=0

©

9.8 Sampling and reconstruction

Sheaf morphisms play a role in Robinson’s recent sheaf-theoretic reinterpretation of
the Nyquist-Shannon sampling theorem [255]. The classical result in sampling theory
says the following. Consider a signal f: R — R whose values are known only on some
periodic sampling, say f(n) for n € Z. Under what conditions can f be reconstructed
from the samples? A little Fourier analysis yields the classical result: if f is bandlimited
— that is, the Fourier transform f: R — C of f has compact support on the interval
—1,1] — then reconstruction of f(t) from f(Z) is (constructively) possible. This
is useful in knowing, e.g., how to encode and transmit human voice for maximum
clarity over the telephone/internet; how to filter signals for transmission; and how to
compress images and video. The Nyquist rate — that one must sample at a frequency
at least twice the signal bandwidth — is iconic in signal processing, and all manner of
attempts to generalize it abound in the literature on signal and image processing.
This venerable barrier to reconstruction has a modern topological interpretation
[255]. Let X be a cell complex and & a cellular sheaf on X taking values in abelian
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groups. One considers the global sections, F(X), to be the signals: in this section,
the desiderata. Sampling will be interpreted not necessarily as a restriction to a
subcomplex, but rather as a potentially more complex sheaf morphism, supported
on a subcomplex. Define a sampling of F on a (closed) subcomplex X, C X to
be a surjective sheaf morphism §: & — F; from F to a sampling sheaf F, on X,
supported on Xg. Surjectivity means that on each cell of Xq, 8 is surjective onto that
stalk. Such a sampling induces an ambiguity sheaf, A = ker § = ker (F — Fp),
on X; the restriction maps of A are inherited from F. Because of surjectivity of 8
and the definition of A as a kernel, one has the short exact sequence of sheaves on

X0 A-TFS Fo — 0. This generates as per Equation (9.6) the long exact
sequence
0 —— HO(X: A) —— HO(X: ) — & 10(Xo: F) —5s HL(X A) —— - -

One has the following immediate interpretation. The given sampling is a global sec-
tion of F5. The desired signal is a corresponding global section of . The ability to
reconstruct the original signal from the sample is equivalent to having H(8) invertible.
By exactness, one observes the following: (1) H(8) is injective iff H°(X;A) = 0; (2)
H(8) is surjective iff § = 0. Otherwise said, H°(X;A) is the obstruction to sam-
pling reconstruction, whereas the connecting homomorphism ¢ indicates the degree
of redundancy in the sampling.

For the example of the classi-
cal Nyquist-Shannon theorem: X =
R, with the cell structure induced by /\,\/ //‘\\

Xo = Z:; F is the constant sheaf of

continuous C-valued functions sup- \_
ported on a fixed interval [—B, B];
Fo = Cx, is the constant C-sheaf
over Xp; and the sampling morphism 8: F — J; is the inverse Fourier transform
S(n, f) = f_BB f(&)e 2™ d¢. One thinks of X as the frequency domain, with a sec-
tion of F not as the original signal f(x), but as its Fourier transform £(£). Then, the
sampling morphism, being the inverse Fourier transform, yields the values of f(n) for
n € Z — these are the samples of the original signal f(x).

In this instantiation, the ambiguity sheaf, A = ker 8, has stalk over n € Z equal
to the subgroup of all band-limited functions whose nt" Fourier coefficient vanishes.
The global sections of A, elements of H°(X;A), therefore consist of bandlimited
functions 7: [-B, B] — C for which [*_f(£)e 2"t d¢ = 0 for all n. Basic Fourier
theory says that for B < % all the Fourier coefficients of £ vanish, as must . Thus,
HO(X;A) = 0 and signal reconstruction is possible. When B < % 0 # 0, meaning
that oversampling has occurred: the B = % case is sharp.




9.9. Euler integration, redux 197

This is simply a reinterpretation of Nyquist-Shannon into sheaf-theoretic terms,
and neither replaces nor improves the harmonic-analysis proof; as well, using the con-
stant sheaf on R does not reveal what the long-exact sequence on sheaf cohomology
is really capable of. However, the benefits of this more general interpretation are
worth noting: the result holds for other kinds of samplings which are not amenable to
harmonic analysis, as well as to other base spaces than Euclidean R"” [255].

Example 9.16 (Cut samples; Flow signals) ©)
If X is taken to be the subdivision of a directed network X as in §9.4 and F a network
flow sheaf, then a valid sampling morphism is 8: F — F, where F is the restriction
of F to an edge-cut C, suitably subdivided so that C is a closed subcomplex of X. In
this case, H*(X;Jz) = H*(C;F). The ambiguity sheaf in this case is ker 8, which
yields the relative cohomology H*(X;A) = H*(X,C;F). One recovers the results
from §9.4: HO(X, C; ) classifies the obstruction to signal reconstruction (is C a
cut?) and the redundancy of the sampling (is the cut minimal?) is measured by §.
The expressiveness of sheaf-theoretic language allows one to think of both the Max-
Flow-Min-Cut and the Nyquist-Shannon theorems as expressions of the same principle,
wherein the cut is a sampling of the flow sheaf signal. ©

9.9 Euler integration, redux

The Euler integration of Chapter 3, though simple enough to define combinatorially,
has its origins in sheaf theory, through independent work of Kashiwara [190] and
MacPherson [215] in the 1970s. The interpretation as a calculus was envisaged and
promoted by Schapira [269] and Viro [297] independently years later. The subject was
independently rediscovered as combinatorics [262, 268] in a more limited form. The
sheaf-theoretic version has impacted algebraic geometry [172] and motivic integration
[67, 92] independent of its newfound utility in signal/data processing.

Euler calculus is built on a basis of constructible sheaves — these differ slightly
from the cellular sheaves introduced thus far in that cellular sheaves begin with a fixed
cell structure, but constructible sheaves do not fix the cell structure in advance, but
use tameness to imply a cell structure. For simplicity, fix an o-minimal structure as in
§3.5 and let X be a definable space. A constructible sheaf on X is a cellular sheaf
for some definable triangulation of X.

The idea behind the Euler integral is that one converts a constructible function
h: X — 7 into a sheaf F, whose Euler characteristic is the integral of h with respect
to dx. This procedure is simple in the case where h: X — N. On each simplex ¢ in
a tame triangulation of X, define ¥, to be the R-vector space of dimension h(c). All
the restriction maps vanish. Put simply, &, is a sum of skyscraper sheaves over the
simplices that converts h-values to dimensions. Then, by construction,

X(Fh) = x (@Rh“)) =Y (~1)*™h(o) = /X hdx.

The only difficulty is in how to adapt the definition to integrands h: X — 7 that
can take on both positive and negative values. This is accomplished by switching from
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individual sheaves J), to complexes of sheaves J} of the form
Fr=—0—09F —F —0—--

where FF the sum of skyscraper sheaves for the restriction of h to {h > 0} and F
the sum of skyscraper sheaves for the restriction of —h to {h < 0}. The grading in
the sequence above is chosen so that

X(F2) = x(TF) - x(F7) = /X hdx.

The sheaf-theoretic perspective provides motivation for some of the otherwise
esoteric-seeming results of Chapter 3. The Fubini-type result (Theorem 3.11) is noth-
ing more than the commutativity of x-on-sheaves with the direct image operation.
Likewise, the Fourier-Sato transform, Fg, of Example 3.18, is a particular instance of
the general Fourier-Sato transform of sheaves [191] in the setting of constructible
functions. The student who progresses in sheaf theory may find it helpful to trans-
late as much of the general machinery as possible into specific examples from Euler
calculus.

0.10 Cosheaves

Sheaf theory is built for conomology; one suspects that the homological counterpart
should be and be by no means unimportant. This dual is called a cosheaf and has its
own set of emerging applications.

A cosheaf is a data structure over a space that en-

codes extension rather than restriction. For a cell complex

PaS X, a cosheaf F assigns to each cell ¢ an abelian group

F(o) and to face pairs o<IT an extension map — a homo-

/\ morphism F(o<t) which sends F(1) — F(c) and com-

N X poses properly: for pdodT, the extension maps satisfy
/N F(o<r) = F(p<L0) 0 F(o<T).

@< i by One imagines extending data from cells to faces. Note

how this flips directions in the definition of a sheaf. Con-

tinuing the pattern of appending the co- prefix to connote
this contravariance, one calls the data F(c) over a cell the costalk. From this basis
of costalks, one assembles the full cosheaf structure on X. In analogy with Equation
(9.2), one defines:

F(X) = PFn) / ~ 1 sy~ F(p<0)(ss). (9.14)

This is much harder to parse than the global-sections intuition of a sheaf over X:
the cosheaf over X is an equivalence class of data assignments to cells of X, where
the equivalence is up to compatible extensions that fall from higher-dimensional to
lower-dimensional cells.
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As a simple example, consider the skyscraper cosheaf G, that assigns an abelian
group G to a cell ¢ and 0 to all other cells. The value of this cosheaf over all of X
is zero unless o has no cofaces (i.e., it is locally top-dimensional), in which case the
global sections are F(X) = G. Recall: global nonzero sections of a skyscraper sheaf
exist only if the cell is minimal in the face poset (a vertex); for a skyscraper cosheaf,
this is turned upside down and only maxima in the face poset contribute globally.

Example 9.17 (Sensing and inference) ©

The duality between sheaves and cosheaves is expressed in applications to sensing.
Consider the problem of integrating sensor data into an inference. Assume that for,
say, a finite collection of sensors x; € Q, each returns some sensed attributes S(x;) C 8
about a fixed object z € O. The set of nodes defines a simplex X (of dimension |Q|—1)
that will act as a base space. Consider the sheaf on X taking values in vector spaces
defined as follows. To each vertex x; is assigned the vector space whose basis is the
finite set S(x;) of attributes: for example, the target is grey and large; the target has a
long nose. The restriction maps act as inclusions to vector spaces obtained by taking
the unions over the vertices of the associated simplex. The global sections F(X) give
the full sensorium. Sensing yields a sheaf.

Dually, there is a cosheaf defined in terms of what the
sensors allow one to conclude. Consider the assignment of
a vector space f;”(x,-) to each vertex x; € Q whose basis is
all objects in O consistent with S(x;): rhinoceros, elephant,
whale; anteater, elephant. The extension maps are projec-
tions to the subspace defined by a subbasis generated by
intersection: elephant. The global sections of this cosheaf
§"(X) return constraint satisfactions consistent with sens-
ing. Inference is a cosheaf. One suspects this cartoonish
example can be greatly generalized. ©

As foreshadowed, cosheaves are built for homology. The obvious cellular cosheaf
chain complex is given as,

5 P Fo S P T P Fo)—o (9.15)
dim o=2 dim o=1 dim ¢=0
where the boundary map is:
o(r)=> [o: 715 (o<r). (9.16)

odT

Notice that @ decreases the grading by one and that 8% = 0, as a boundary operator
must. The resulting cosheaf homology, H,(X; ) gives a collation and classification
of homological features in the data structure 7.

If Gx is the constant cosheaf on X, then the cosheaf homology agrees with
the cellular homology with G coefficients. For a skyscraper cosheaf F, the cosheaf
homology vanishes unless ¢ is a maximal cell in the face poset (a cell of locally top
dimension), in which case H*(X;%,) = G in grading dim ¢. This duality between



200 Chapter 9. Sheaves

dimensions and sheaf cohomology / cosheaf homology on skyscrapers is reminiscent
of the delicacies of duality between homology and compactly supported cohomology
from Chapter 6.

Example 9.18 (Precosheaves) ®

In the topological setting, a precosheaf assigns data to open sets U C X and for a
subset VV C U the extension map F(U<V) acts as F(V) — F(U) with the correspond-
ing composition in the case of W C V C U. To be a cosheaf, a precosheaf must
behave well under limits of covers: The analogue of Equation (9.9) for cosheaves is
the dual condition, that

F(UUy)

D, FUy) 2 B F Uk F(U) —0. (9.17)

is exact for any finite open cover U = {U;} of U. In other words, F(U) agrees with the
cellular cosheaf homology Ho(N(U); F) for any cover U. In practice, this agreement
cannot be assumed and can be challenging to confirm.

Many of the examples of sheaves over a topology come from functions: con-
tinuous functions, smooth functions, vector fields, differential forms, etc. The dual
cosheaf notions are generated (taking a hint from Poincaré duality) by restricting to
functions of compact support. For example, let M be a manifold. Then the precosheaf
on M of compactly supported continuous functions F(U) = C.(U, R) with the exten-
sion map from V to U D V being extension-by-zero is a cosheaf. Likewise, the sheaf
of differential p-forms 27 on M is complemented by the cosheaf of p-currents €2, (see

§6.11). ®

Example 9.19 (Homology fiber cosheaves) ®

One simple example of a cosheaf comes from a map f: X — Y where Y is a locally
connected space. The precosheaf that assigns to U C Y the homology Hy(f 1(U))
is in fact a cosheaf on Y, with extension arising from the induced homomorphism on
H,. The cellular case is analogous (cf. Example 9.3). ©

0.11 Beézier curves and splines

The problem of patching together local data over a cell complex is commonly encoun-
tered by architects and designers working with polyhedral representations of objects.
The subject is classical, as exemplified by the simple problem of how to specify a
polynomial planar curve v between two endpoints with global control over the degree
and local control at the endpoints. This is precisely the context in which a Bézier
curve is appropriate.

For example, a planar Bézier curve is specified by the locations of the two end-
points, along with additional control points, each of which may be interpreted as a
handle (or tangent vector at the endpoint) specifying derivative data of the resulting
curve at each endpoint. The reader who has used any modern drawing software will
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have a visceral understanding of the control that these handles give over the resulting
smooth curve. Most programs use a cubic Bézier curve in the plane — the image of
a cubic polynomial p(t) for 0 < t < 1. In these programs, the specification of the
endpoints and the endpoint handles (tangent vectors) completely determines the curve
uniquely.

This can be viewed from the perspective of a
cosheaf § over the closed interval / = [0,1]. The
costalk over the interior (0,1) is the space of all / ©

cubic polynomials from [0, 1] — R2, which is iso-
morphic to R* @ R* (one cubic polynomial for each
of the x and y coordinates). If one sets the costalks
at the endpoints 0, 1 to be R?, the physical loca-
tions of the endpoints, then the obvious extension
maps to the endpoints are nothing more than evaluation at 0 and 1 respectively. The
corresponding cosheaf chain complex is:

©

i 30— R*OR*—2 S R2 R2—— 0.

Here, the boundary operator & computes how far the cubic polynomial (edge costalk)
‘misses’ the specified endpoints (vertex costalks). It is clear that Ho(8) = 0, since 8
is surjective. It is also clear that the space of global solutions is H1(8) = R2 & R2,
meaning that there are four degrees of freedom available for a cubic planar Bézier curve
with fixed endpoints: these degrees of freedom are captured precisely by the pair of
handles, each of which is specified by a (planar) tangent vector. Note the interesting
duality: the global solutions with boundary condition are characterized by the top-
dimensional homology of the cosheaf, instead of the zero-dimensional cohomology of
a sheaf.

In practice, a compound curve drawn in any vector
graphics software is a spline obtained by patching together
segments of Bézier curves, usually cubic. Such curves are
specified by handles at each endpoint of each segment. For
a C* (differentiable) curve, one aligns the directions of the
handles at segment endpoints; corners can also be specified,
yielding a C° curve. This finite-dimensional representation
of complex systems of curves is of foundational importance:
all modern font systems® are based on such splines.

A cosheaf for a polynomial Bézier surface over a polyg-
onal 2-cell with constraints on boundary points would be
more challenging to write out, but would have meaningful
homology in degree two. Patched together, such higher-
dimensional polynomial splines are crucial in architecture and design, contributing im-
mensely to both aesthetic and technical aspects of what can be built. This prompts
the study and classification of splines with various constraints.

The following is a classification of simpler, R-valued splines over simplicial man-
ifolds, based on independent work of Billera [36] and Yuzvinsky [304] reinterpreted in

3True type fonts use quadratic Bézier splines; Postscript and Metafont use cubic Bézier splines.
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the context of cellular cosheaves. Given X C R” a simplicial complex realized with
convex simplices, consider P,, the ring of R-valued polynomials in n variables which
have degree < m. By S/ denote the (vector) space of degree < m R-valued splines
on X which are of global smoothness class C”, for fixed m > r > 0. For example, a
dome over a triangulated disc might be specified as an element of S} if it were built
of quartic surface patches which must meet preserving first derivatives.

The following cosheaf captures the spline constraints. Let an denote the cellular
cosheaf on X whose costalk on a simplex ¢ is the quotient

8;.(0) = Py /(PmN1"(0))

where ["(o) is the subspace of polynomials in n variables which vanish on o (and
thus on the affine space spanned by this convex simplex) but which have complemen-
tary degree at least r + 1. The extension map is given as follows: for o7, then
I"(1) < I"(0) and there is a natural map on the quotient. This satisfies the cosheaf
composition law and thus yields a well-defined cosheaf homology.

Theorem 9.20 ([36]). /f X as above is an n-dimensional simplicial manifold-with-
boundary, then S[, = H,(X—0X;8")).

Note that S(l) is precisely the setting of continuous piecewise-linear functions. In
this case, it can be shown that dim S? = |V|, the number of vertices of X. One can
imagine the use of a long exact sequence to characterize constraints, the use of Euler
characteristic to bound dimensions, and the use of exact sequences of cosheaves to
decompose S’ : all this and more appear (implicitly) in [36].

0.12 Barcodes, redux

The full story of cosheaves and their applications has yet to be written. This chapter
closes with an example from Curry [77] related to topological data analysis. Re-
call the setting of §5.13-5.15, in which a linear sequence of homologies and induced
homorphisms forms, via indecomposables, infographics of parameterized homologies:
barcodes. For example, consider the zigzag sequence of the form

Xi XiUXip1 —— Xigg —— -+

Passing to k™" homology H in field-IF coefficients gives a sequence of F-vector spaces
with alternating linear transformations. This k" homology of the sequence is precisely
a cosheaf over a base space R, discretized by Z C R. Costalks over edges, Hy(X;; F),
are mapped to costalks over vertices, Hg(X; U X;_1;F) and Hx(X; U X;41:F). There
are no higher-dimensional cells, and so composition is trivially satisfied.

It is not necessary to begin with alternating zigzag sequences. For example,
the monotone sequences of §5.13 can be recast as a cosheaf over R by interweaving
backward-pointing identity maps, as done with recurrence relations in Example 9.1.
By such means, one can recast the theory of barcodes into the language of cosheaves.
A homology barcode is a cosheaf over R.
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Homology cosheaves with field coefficients are classified completely by the Struc-
ture Theorem 5.21 into cosheaf interval indecomposables which are the constant
cosheaves with costalk F over some interval. Note, however, that because of the
decomposition of R into vertices and edges, these indecomposable intervals can have
endpoints corresponding either to vertices or edges of the cell structure on R. There
are exactly four different types of bars that can arise as cosheaf interval indecompos-
ables: a closed interval, an open interval, or (left/right) half-open intervals. Since
cosheaves form coefficients for homology, one can sensibly speak of the homology of
a cosheaf interval indecomposable. Over a base space of R, the only homology that
can be nonvanishing is Hy and H;. It is a simple exercise to compute:

Lemma 9.21 ([77]). Cosheaf interval indecomposables and their homologies are:

interval type Hq H,
closed bar || T=@ —— @ | Ho(R; ) =T | H(R; ) =0
open bar F=0-——0 | H(R;5) =20 | Hi(R;F) =T

left-open bar || F=0 —— @ | Ho(R;F) =0 | Hi(R; ) =0
right-open bar || ¥ = @ —— O | Ho(R;F) =0 | Hi(R;F) =0

This is neither frivolous nor inconsequen-
tial, as evidenced in the following cosheaf inter-
pretation of level-set persistence. Let h: X — R
be a cellular map from a compact cell complex X
to the reals, outfitted with a cell structure whose
vertex set {v;} includes critical values of h. Let
B be the k™ homology fiber cosheaf of h with
coefficients in a field F. Specifically, given the
vertices vop < v; < --- < vy C R, define the k"
homology cosheaf B, as the cosheaf of h-level-
set preimage homologies whose extension maps
are induced on homology by inclusions as in the
following diagram:

e — Hk(V,;l <h< V,') — Hk(V,;l <h< V,'+1) <— Hk(V,‘<h< V,'+1) —_— .

The following theorem blends homology, persistence, cosheaves, and Morse theory
into a compact package:
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Theorem 9.22 ([77], cf. [78]). For h: X — R and B, as above, the homology of X
in IF-coefficients can be computed in terms of the homology of R with coefficients in
the homology cosheaf: for any n,

Ho(X:F) 2 Ho(R; B,) @ Hi(R; Boy).

As a simple example, consider the canonical Morse function h: S — R on a
compact genus-2 surface with one minimum, four saddle critical points, and one max-
imum. The corresponding critical values induce a cell structure on R and the nonzero
homology cosheaves are Bo and B1. These have interval decompositions as follows:
@0 has one closed bar and two open bars; B, has one open bar and two closed bars.
Theorem 9.22 allows one to read off He(S; IF) trivially by counting these intervals. For
example, dim H; (S; F) equals the number of closed intervals in B, plus the number of
open intervals in By. The reader will note that this graphical language also expresses
Poincaré duality as a neatly visceral symmetry on the level of cosheaf barcodes.

Notes

1. Sheaf theory has had an enormous impact within mathematics, in algebraic geometry,
number theory, complex analysis, logic, and more. The agricultural terminology that
suffuses this subject is entwined with France and the fascinating history of sheaves.

2. This chapter pretends to survey sheaf theory; in reality, the subject is so broad and
deep as to evade compression. Experts in sheaf theory will find this chapter ridiculously
elementary. This, however, is how mathematics transitions from pure to applied: slowly
and through simple examples. It is the author’s hope that the themes of elementary
homological algebra, persistence, and sheaves will make their way via applications into
the undergraduate linear algebra curriculum, where they belong.

3. The perspective of using cellular sheaves is unorthodox, but hopefully edifying. Cellular
sheaves and cosheaves have developed in fits and starts. Their first explicit instantiation
(so far as the author can tell) was by Fulton, Goresky, MacPherson, and McCrory in
their famous 1977-78 seminar. Relevant references include the theses of Shepard [276],
Vybornov [298] and Curry [77].

4. Sheaves, like simplicial complexes, are defined abstractly but have a geometric realiza-
tion. To any sheaf JF is associated an étale space: a topological space (also denoted
F) and a projection w: F — X that, like a covering space, is a local homeomorphism
with discrete fibers. Sections of the sheaf are precisely sections to the map . This
perspective can be useful; however, as the topology on the étale space is almost always
non-Hausdorff, it is very unenlightening from the point of view of visualizing sheaves
and their cohomology.

5. Sheaves taking values in vector spaces or abelian groups are convenient for doing
cohomology; if one is willing to give up a simply-defined H* for k > 0, then it is
possible to work with sheaves taking values in sets, spaces, or other categories (see
§10.9). Such non-abelian data types are certainly natural and useful, though not
covered in this chapter.

6. Most of the examples of this chapter are intentionally elementary, with networks as
base spaces. Even so, it is a harbinger that such simple sheaves have clean applications.
A number of applications of sheaves to data have recently emerged, using networks as
a base space [146, 150, 201, 254, 255, 256].
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10.

11.

12.

13.

14.

Several applications of sheaves have been suggested in the computer science literature:
see, e.¢., [159] and subsequents. Structural aspects seem to have displaced applica-
tions as the focus of this line of inquiry. This author believes that sheaf cohomology
is the missing ingredient to make sheaf theory applied as opposed to applicable.

The full statement and proof of the Lefschetz formula of Goresky-MacPherson in §7.7
uses sheaf theory extensively.

. The treatment of flow sheaves in §9.4 does not provide an independent proof of the

classical Max-Flow/Min-Cut theorem, since the interpretations of the relative sheaf
cohomology as obstructions subtly entail the theorem, and a careful proof of the in-
terpretation and computation of obstructions would re-prove the result. There is a
wholly sheaf-theoretic proof of the max-flow min-cut theorem by Krishnan [201]: see
Example 10.25.

Constructible functions on a definable X are locally defined, and thus form a sheaf
CFx. Euler integration, the Fubini Theorem, and more follow directly from canonical
sheaf operations [270].

The use of cosheaves in splines is not in the literature, but it is an obvious reformulation
of existing work. The initial work of Billera [36] presented a chain complex by fiat and
argued that the homology was meaningful. Yuzvinsky [304] reformulated the problem
as a sheaf over the dual poset to a certain hperplane arrangement associated to the
cell complex. Schenck and collaborators [223, 271] applied methods from spectral
sequences and more classical commutative algebra to push the theory further. This
subject blends softly into algebraic geometry; the treatment in this text is intended to
emphasize topological aspects of the problem.

The reformulation of persistent homology and barcodes in terms of cosheaves is from
the thesis of Curry [77]. Robinson [256] likewise recently interpreted persistent coho-
mology as a sheaf over R. Theorem 9.22 can be derived from earlier works [57, 52]
without using cosheaves: both of these, and the dual sheaf-theoretic version [78] are
consequences of the Leray spectral sequence.

It is to be hoped that the language of sheaves and cosheaves provides the key to
understanding and computing multi-dimensional persistence by means of generalized
barcodes. This ambitious project will likely require nontrivial contributions from both
sheaf theory and representation theory.

It is not an exaggeration to say that in sheaf theory, individual sheaves are of secondary
importance. The real power in sheaf theory comes from dextrous use of complexes of
sheaves and sheaf morphisms. This text has too little room to demonstrate this fully,
as well as to unfold the rest of the six canonical operations of which direct and inverse
image are two.



