
The aim of this short preliminary chapter is to introduce a few of the most com-

mon geometric concepts and constructions in algebraic topology. The exposition is

somewhat informal, with no theorems or proofs until the last couple pages, and it

should be read in this informal spirit, skipping bits here and there. In fact, this whole

chapter could be skipped now, to be referred back to later for basic definitions.

To avoid overusing the word ‘continuous’ we adopt the convention that maps be-

tween spaces are always assumed to be continuous unless otherwise stated.

Homotopy and Homotopy Type

One of the main ideas of algebraic topology is to consider two spaces to be equiv-

alent if they have ‘the same shape’ in a sense that is much broader than homeo-

morphism. To take an everyday example, the letters of the alphabet can be writ-

ten either as unions of finitely many

straight and curved line segments, or

in thickened forms that are compact

regions in the plane bounded by one

or more simple closed curves. In each

case the thin letter is a subspace of

the thick letter, and we can continuously shrink the thick letter to the thin one. A nice

way to do this is to decompose a thick letter, call it X , into line segments connecting

each point on the outer boundary of X to a unique point of the thin subletter X , as

indicated in the figure. Then we can shrink X to X by sliding each point of X−X into

X along the line segment that contains it. Points that are already in X do not move.

We can think of this shrinking process as taking place during a time interval

0 ≤ t ≤ 1, and then it defines a family of functions ft : X→X parametrized by t ∈ I =

[0,1] , where ft(x) is the point to which a given point x ∈ X has moved at time t .

Naturally we would like ft(x) to depend continuously on both t and x , and this will
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be true if we have each x ∈ X − X move along its line segment at constant speed so

as to reach its image point in X at time t = 1, while points x ∈ X are stationary, as

remarked earlier.

Examples of this sort lead to the following general definition. A deformation

retraction of a space X onto a subspace A is a family of maps ft :X→X , t ∈ I , such

that f0 = 11 (the identity map), f1(X) = A , and ft ||A = 11 for all t . The family ft

should be continuous in the sense that the associated map X×I→X , (x, t)֏ft(x) ,

is continuous.

It is easy to produce many more examples similar to the letter examples, with the

deformation retraction ft obtained by sliding along line segments. The figure on the

left below shows such a deformation retraction of a Möbius band onto its core circle.

The three figures on the right show deformation retractions in which a disk with two

smaller open subdisks removed shrinks to three different subspaces.

In all these examples the structure that gives rise to the deformation retraction can

be described by means of the following definition. For a map f :X→Y , the mapping

cylinder Mf is the quotient space of the disjoint union (X×I)∐Y obtained by iden-

tifying each (x,1) ∈ X×I

with f(x) ∈ Y . In the let-

ter examples, the space X

is the outer boundary of the

thick letter, Y is the thin

letter, and f :X→Y sends

the outer endpoint of each line segment to its inner endpoint. A similar description

applies to the other examples. Then it is a general fact that a mapping cylinder Mf

deformation retracts to the subspace Y by sliding each point (x, t) along the segment

{x}×I ⊂ Mf to the endpoint f(x) ∈ Y . Continuity of this deformation retraction is

evident in the specific examples above, and for a general f :X→Y it can be verified

using Proposition A.17 in the Appendix concerning the interplay between quotient

spaces and product spaces.

Not all deformation retractions arise in this simple way from mapping cylinders.

For example, the thick X deformation retracts to the thin X , which in turn deformation

retracts to the point of intersection of its two crossbars. The net result is a deforma-

tion retraction of X onto a point, during which certain pairs of points follow paths that

merge before reaching their final destination. Later in this section we will describe a

considerably more complicated example, the so-called ‘house with two rooms’.
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A deformation retraction ft :X→X is a special case of the general notion of a

homotopy, which is simply any family of maps ft :X→Y , t ∈ I , such that the asso-

ciated map F :X×I→Y given by F(x, t) = ft(x) is continuous. One says that two

maps f0, f1 :X→Y are homotopic if there exists a homotopy ft connecting them,

and one writes f0 ≃ f1 .

In these terms, a deformation retraction of X onto a subspace A is a homotopy

from the identity map of X to a retraction of X onto A , a map r :X→X such that

r(X) = A and r ||A = 11. One could equally well regard a retraction as a map X→A
restricting to the identity on the subspace A ⊂ X . From a more formal viewpoint a

retraction is a map r :X→X with r 2
= r , since this equation says exactly that r is the

identity on its image. Retractions are the topological analogs of projection operators

in other parts of mathematics.

Not all retractions come from deformation retractions. For example, a space X

always retracts onto any point x0 ∈ X via the constant map sending all of X to x0 ,

but a space that deformation retracts onto a point must be path-connected since a

deformation retraction of X to x0 gives a path joining each x ∈ X to x0 . It is less

trivial to show that there are path-connected spaces that do not deformation retract

onto a point. One would expect this to be the case for the letters ‘with holes’, A , B ,

D , O , P , Q , R . In Chapter 1 we will develop techniques to prove this.

A homotopy ft :X→X that gives a deformation retraction of X onto a subspace

A has the property that ft ||A = 11 for all t . In general, a homotopy ft :X→Y whose

restriction to a subspace A ⊂ X is independent of t is called a homotopy relative

to A , or more concisely, a homotopy rel A . Thus, a deformation retraction of X onto

A is a homotopy rel A from the identity map of X to a retraction of X onto A .

If a space X deformation retracts onto a subspace A via ft :X→X , then if

r :X→A denotes the resulting retraction and i :A→X the inclusion, we have ri = 11

and ir ≃ 11, the latter homotopy being given by ft . Generalizing this situation, a

map f :X→Y is called a homotopy equivalence if there is a map g :Y→X such that

fg ≃ 11 and gf ≃ 11. The spaces X and Y are said to be homotopy equivalent or to

have the same homotopy type. The notation is X ≃ Y . It is an easy exercise to check

that this is an equivalence relation, in contrast with the nonsymmetric notion of de-

formation retraction. For example, the three graphs are all homotopy

equivalent since they are deformation retracts of the same space, as we saw earlier,

but none of the three is a deformation retract of any other.

It is true in general that two spaces X and Y are homotopy equivalent if and only

if there exists a third space Z containing both X and Y as deformation retracts. For

the less trivial implication one can in fact take Z to be the mapping cylinder Mf of

any homotopy equivalence f :X→Y . We observed previously that Mf deformation

retracts to Y , so what needs to be proved is that Mf also deformation retracts to its

other end X if f is a homotopy equivalence. This is shown in Corollary 0.21.
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A space having the homotopy type of a point is called contractible. This amounts

to requiring that the identity map of the space be nullhomotopic, that is, homotopic

to a constant map. In general, this is slightly weaker than saying the space deforma-

tion retracts to a point; see the exercises at the end of the chapter for an example

distinguishing these two notions.

Let us describe now an example of a 2 dimensional subspace of R3 , known as the

house with two rooms, which is contractible but not in any obvious way. To build this

= ∪ ∪

space, start with a box divided into two chambers by a horizontal rectangle, where by a

‘rectangle’ we mean not just the four edges of a rectangle but also its interior. Access to

the two chambers from outside the box is provided by two vertical tunnels. The upper

tunnel is made by punching out a square from the top of the box and another square

directly below it from the middle horizontal rectangle, then inserting four vertical

rectangles, the walls of the tunnel. This tunnel allows entry to the lower chamber

from outside the box. The lower tunnel is formed in similar fashion, providing entry

to the upper chamber. Finally, two vertical rectangles are inserted to form ‘support

walls’ for the two tunnels. The resulting space X thus consists of three horizontal

pieces homeomorphic to annuli plus all the vertical rectangles that form the walls of

the two chambers.

To see that X is contractible, consider a closed ε neighborhood N(X) of X .

This clearly deformation retracts onto X if ε is sufficiently small. In fact, N(X)

is the mapping cylinder of a map from the boundary surface of N(X) to X . Less

obvious is the fact that N(X) is homeomorphic to D3 , the unit ball in R
3 . To see

this, imagine forming N(X) from a ball of clay by pushing a finger into the ball to

create the upper tunnel, then gradually hollowing out the lower chamber, and similarly

pushing a finger in to create the lower tunnel and hollowing out the upper chamber.

Mathematically, this process gives a family of embeddings ht :D3→R
3 starting with

the usual inclusion D3
֓R

3 and ending with a homeomorphism onto N(X) .

Thus we have X ≃ N(X) = D3
≃ point , so X is contractible since homotopy

equivalence is an equivalence relation. In fact, X deformation retracts to a point. For

if ft is a deformation retraction of the ball N(X) to a point x0 ∈ X and if r :N(X)→X
is a retraction, for example the end result of a deformation retraction of N(X) to X ,

then the restriction of the composition rft to X is a deformation retraction of X to

x0 . However, it is quite a challenging exercise to see exactly what this deformation

retraction looks like.
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Cell Complexes

A familiar way of constructing the torus S1
×S1 is by identifying opposite sides

of a square. More generally, an orientable surface Mg of genus g can be constructed

from a polygon with 4g sides

by identifying pairs of edges,

as shown in the figure in the

first three cases g = 1,2,3.

The 4g edges of the polygon

become a union of 2g circles

in the surface, all intersect-

ing in a single point. The in-

terior of the polygon can be

thought of as an open disk,

or a 2 cell, attached to the

union of the 2g circles. One

can also regard the union of

the circles as being obtained

from their common point of

intersection, by attaching 2g

open arcs, or 1 cells. Thus

the surface can be built up in stages: Start with a point, attach 1 cells to this point,

then attach a 2 cell.

A natural generalization of this is to construct a space by the following procedure:

(1) Start with a discrete set X0 , whose points are regarded as 0 cells.

(2) Inductively, form the n skeleton Xn from Xn−1 by attaching n cells enα via maps

ϕα :Sn−1→Xn−1 . This means that Xn is the quotient space of the disjoint union

Xn−1
∐
αD

n
α of Xn−1 with a collection of n disks Dnα under the identifications

x ∼ ϕα(x) for x ∈ ∂Dnα . Thus as a set, Xn = Xn−1
∐
αe
n
α where each enα is an

open n disk.

(3) One can either stop this inductive process at a finite stage, setting X = Xn for

some n < ∞ , or one can continue indefinitely, setting X =
⋃
nX

n . In the latter

case X is given the weak topology: A set A ⊂ X is open (or closed) iff A∩ Xn is

open (or closed) in Xn for each n .

A space X constructed in this way is called a cell complex or CW complex. The

explanation of the letters ‘CW’ is given in the Appendix, where a number of basic

topological properties of cell complexes are proved. The reader who wonders about

various point-set topological questions lurking in the background of the following

discussion should consult the Appendix for details.
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If X = Xn for some n , then X is said to be finite-dimensional, and the smallest

such n is the dimension of X , the maximum dimension of cells of X .

Example 0.1. A 1 dimensional cell complex X = X1 is what is called a graph in

algebraic topology. It consists of vertices (the 0 cells) to which edges (the 1 cells) are

attached. The two ends of an edge can be attached to the same vertex.

Example 0.2. The house with two rooms, pictured earlier, has a visually obvious

2 dimensional cell complex structure. The 0 cells are the vertices where three or more

of the depicted edges meet, and the 1 cells are the interiors of the edges connecting

these vertices. This gives the 1 skeleton X1 , and the 2 cells are the components of

the remainder of the space, X − X1 . If one counts up, one finds there are 29 0 cells,

51 1 cells, and 23 2 cells, with the alternating sum 29− 51+ 23 equal to 1. This is

the Euler characteristic, which for a cell complex with finitely many cells is defined

to be the number of even-dimensional cells minus the number of odd-dimensional

cells. As we shall show in Theorem 2.44, the Euler characteristic of a cell complex

depends only on its homotopy type, so the fact that the house with two rooms has the

homotopy type of a point implies that its Euler characteristic must be 1, no matter

how it is represented as a cell complex.

Example 0.3. The sphere Sn has the structure of a cell complex with just two cells, e0

and en , the n cell being attached by the constant map Sn−1→e0 . This is equivalent

to regarding Sn as the quotient space Dn/∂Dn .

Example 0.4. Real projective n space RPn is defined to be the space of all lines

through the origin in Rn+1 . Each such line is determined by a nonzero vector in Rn+1 ,

unique up to scalar multiplication, and RPn is topologized as the quotient space of

R
n+1

− {0} under the equivalence relation v ∼ λv for scalars λ ≠ 0. We can restrict

to vectors of length 1, so RPn is also the quotient space Sn/(v ∼ −v) , the sphere

with antipodal points identified. This is equivalent to saying that RPn is the quotient

space of a hemisphere Dn with antipodal points of ∂Dn identified. Since ∂Dn with

antipodal points identified is just RPn−1 , we see that RPn is obtained from RPn−1 by

attaching an n cell, with the quotient projection Sn−1→RPn−1 as the attaching map.

It follows by induction on n that RPn has a cell complex structure e0
∪ e1

∪ ··· ∪ en

with one cell ei in each dimension i ≤ n .

Example 0.5. Since RPn is obtained from RPn−1 by attaching an n cell, the infinite

union RP∞ =
⋃
nRPn becomes a cell complex with one cell in each dimension. We

can view RP∞ as the space of lines through the origin in R∞ =
⋃
nR

n .

Example 0.6. Complex projective n space CPn is the space of complex lines through

the origin in C
n+1 , that is, 1 dimensional vector subspaces of Cn+1 . As in the case

of RPn , each line is determined by a nonzero vector in C
n+1 , unique up to scalar

multiplication, and CPn is topologized as the quotient space of Cn+1
−{0} under the
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equivalence relation v ∼ λv for λ ≠ 0. Equivalently, this is the quotient of the unit

sphere S2n+1
⊂ C

n+1 with v ∼ λv for |λ| = 1. It is also possible to obtain CPn as a

quotient space of the disk D2n under the identifications v ∼ λv for v ∈ ∂D2n , in the

following way. The vectors in S2n+1
⊂ C

n+1 with last coordinate real and nonnegative

are precisely the vectors of the form (w,
√

1− |w|2 ) ∈ C
n
×C with |w| ≤ 1. Such

vectors form the graph of the function w֏
√

1− |w|2 . This is a disk D2n
+ bounded

by the sphere S2n−1
⊂ S2n+1 consisting of vectors (w,0) ∈ Cn×C with |w| = 1. Each

vector in S2n+1 is equivalent under the identifications v ∼ λv to a vector in D2n
+ , and

the latter vector is unique if its last coordinate is nonzero. If the last coordinate is

zero, we have just the identifications v ∼ λv for v ∈ S2n−1 .

From this description of CPn as the quotient of D2n
+ under the identifications

v ∼ λv for v ∈ S2n−1 it follows that CPn is obtained from CPn−1 by attaching a

cell e2n via the quotient map S2n−1→CPn−1 . So by induction on n we obtain a cell

structure CPn = e0
∪e2

∪···∪e2n with cells only in even dimensions. Similarly, CP∞

has a cell structure with one cell in each even dimension.

After these examples we return now to general theory. Each cell enα in a cell

complex X has a characteristic map Φα :Dnα→X which extends the attaching map

ϕα and is a homeomorphism from the interior of Dnα onto enα . Namely, we can take

Φα to be the composition Dnα֓ Xn−1
∐
αD

n
α→X

n
֓ X where the middle map is

the quotient map defining Xn . For example, in the canonical cell structure on Sn

described in Example 0.3, a characteristic map for the n cell is the quotient map

Dn→Sn collapsing ∂Dn to a point. For RPn a characteristic map for the cell ei is

the quotient map Di→RPi ⊂ RPn identifying antipodal points of ∂Di , and similarly

for CPn .

A subcomplex of a cell complex X is a closed subspace A ⊂ X that is a union

of cells of X . Since A is closed, the characteristic map of each cell in A has image

contained in A , and in particular the image of the attaching map of each cell in A is

contained in A , so A is a cell complex in its own right. A pair (X,A) consisting of a

cell complex X and a subcomplex A will be called a CW pair.

For example, each skeleton Xn of a cell complex X is a subcomplex. Particular

cases of this are the subcomplexes RPk ⊂ RPn and CPk ⊂ CPn for k ≤ n . These are

in fact the only subcomplexes of RPn and CPn .

There are natural inclusions S0
⊂ S1

⊂ ··· ⊂ Sn , but these subspheres are not

subcomplexes of Sn in its usual cell structure with just two cells. However, we can give

Sn a different cell structure in which each of the subspheres Sk is a subcomplex, by

regarding each Sk as being obtained inductively from the equatorial Sk−1 by attaching

two k cells, the components of Sk−Sk−1 . The infinite-dimensional sphere S∞ =
⋃
n S

n

then becomes a cell complex as well. Note that the two-to-one quotient map S∞→RP∞

that identifies antipodal points of S∞ identifies the two n cells of S∞ to the single

n cell of RP∞ .
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In the examples of cell complexes given so far, the closure of each cell is a sub-

complex, and more generally the closure of any collection of cells is a subcomplex.

Most naturally arising cell structures have this property, but it need not hold in gen-

eral. For example, if we start with S1 with its minimal cell structure and attach to this

a 2 cell by a map S1→S1 whose image is a nontrivial subarc of S1 , then the closure

of the 2 cell is not a subcomplex since it contains only a part of the 1 cell.

Operations on Spaces

Cell complexes have a very nice mixture of rigidity and flexibility, with enough

rigidity to allow many arguments to proceed in a combinatorial cell-by-cell fashion

and enough flexibility to allow many natural constructions to be performed on them.

Here are some of those constructions.

Products. If X and Y are cell complexes, then X×Y has the structure of a cell

complex with cells the products emα ×e
n
β where emα ranges over the cells of X and

enβ ranges over the cells of Y . For example, the cell structure on the torus S1
×S1

described at the beginning of this section is obtained in this way from the standard

cell structure on S1 . For completely general CW complexes X and Y there is one

small complication: The topology on X×Y as a cell complex is sometimes finer than

the product topology, with more open sets than the product topology has, though the

two topologies coincide if either X or Y has only finitely many cells, or if both X

and Y have countably many cells. This is explained in the Appendix. In practice this

subtle issue of point-set topology rarely causes problems, however.

Quotients. If (X,A) is a CW pair consisting of a cell complex X and a subcomplex A ,

then the quotient space X/A inherits a natural cell complex structure from X . The

cells of X/A are the cells of X−A plus one new 0 cell, the image of A in X/A . For a

cell enα of X−A attached by ϕα :Sn−1→Xn−1 , the attaching map for the correspond-

ing cell in X/A is the composition Sn−1→Xn−1→Xn−1/An−1 .

For example, if we give Sn−1 any cell structure and build Dn from Sn−1 by attach-

ing an n cell, then the quotient Dn/Sn−1 is Sn with its usual cell structure. As another

example, take X to be a closed orientable surface with the cell structure described at

the beginning of this section, with a single 2 cell, and let A be the complement of this

2 cell, the 1 skeleton of X . Then X/A has a cell structure consisting of a 0 cell with

a 2 cell attached, and there is only one way to attach a cell to a 0 cell, by the constant

map, so X/A is S2 .

Suspension. For a space X , the suspension SX is the quotient of

X×I obtained by collapsing X×{0} to one point and X×{1} to an-

other point. The motivating example is X = Sn , when SX = Sn+1

with the two ‘suspension points’ at the north and south poles of

Sn+1 , the points (0, ··· ,0,±1) . One can regard SX as a double cone
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on X , the union of two copies of the cone CX = (X×I)/(X×{0}) . If X is a CW com-

plex, so are SX and CX as quotients of X×I with its product cell structure, I being

given the standard cell structure of two 0 cells joined by a 1 cell.

Suspension becomes increasingly important the farther one goes into algebraic

topology, though why this should be so is certainly not evident in advance. One

especially useful property of suspension is that not only spaces but also maps can be

suspended. Namely, a map f :X→Y suspends to Sf :SX→SY , the quotient map of

f×11 :X×I→Y×I .

Join. The cone CX is the union of all line segments joining points of X to an external

vertex, and similarly the suspension SX is the union of all line segments joining

points of X to two external vertices. More generally, given X and a second space Y ,

one can define the space of all line segments joining points in X to points in Y . This

is the join X∗Y , the quotient space of X×Y×I under the identifications (x,y1,0) ∼

(x,y2,0) and (x1, y,1) ∼ (x2, y,1) . Thus we are collapsing the subspace X×Y×{0}

to X and X×Y×{1} to Y . For example, if

X and Y are both closed intervals, then we

are collapsing two opposite faces of a cube

onto line segments so that the cube becomes

a tetrahedron. In the general case, X ∗ Y

contains copies of X and Y at its two ends,

and every other point (x,y, t) in X ∗Y is on a unique line segment joining the point

x ∈ X ⊂ X ∗ Y to the point y ∈ Y ⊂ X ∗ Y , the segment obtained by fixing x and y

and letting the coordinate t in (x,y, t) vary.

A nice way to write points of X ∗ Y is as formal linear combinations t1x + t2y

with 0 ≤ ti ≤ 1 and t1 + t2 = 1, subject to the rules 0x + 1y = y and 1x + 0y = x

that correspond exactly to the identifications defining X ∗ Y . In much the same

way, an iterated join X1 ∗ ··· ∗ Xn can be constructed as the space of formal linear

combinations t1x1 + ··· + tnxn with 0 ≤ ti ≤ 1 and t1 + ··· + tn = 1, with the

convention that terms 0xi can be omitted. A very special case that plays a central

role in algebraic topology is when each Xi is just a point. For example, the join of

two points is a line segment, the join of three points is a triangle, and the join of four

points is a tetrahedron. In general, the join of n points is a convex polyhedron of

dimension n − 1 called a simplex. Concretely, if the n points are the n standard

basis vectors for Rn , then their join is the (n− 1) dimensional simplex

∆n−1
= { (t1, ··· , tn) ∈ R

n || t1 + ··· + tn = 1 and ti ≥ 0 }

Another interesting example is when each Xi is S0 , two points. If we take the two

points of Xi to be the two unit vectors along the ith coordinate axis in Rn , then the

join X1∗···∗Xn is the union of 2n copies of the simplex ∆n−1 , and radial projection

from the origin gives a homeomorphism between X1 ∗ ··· ∗Xn and Sn−1 .
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If X and Y are CW complexes, then there is a natural CW structure on X ∗ Y

having the subspaces X and Y as subcomplexes, with the remaining cells being the

product cells of X×Y×(0,1) . As usual with products, the CW topology on X∗Y may

be finer than the quotient of the product topology on X×Y×I .

Wedge Sum. This is a rather trivial but still quite useful operation. Given spaces X and

Y with chosen points x0 ∈ X and y0 ∈ Y , then the wedge sum X∨Y is the quotient

of the disjoint union X ∐ Y obtained by identifying x0 and y0 to a single point. For

example, S1
∨ S1 is homeomorphic to the figure ‘8’, two circles touching at a point.

More generally one could form the wedge sum
∨
αXα of an arbitrary collection of

spaces Xα by starting with the disjoint union
∐
αXα and identifying points xα ∈ Xα

to a single point. In case the spaces Xα are cell complexes and the points xα are

0 cells, then
∨
αXα is a cell complex since it is obtained from the cell complex

∐
αXα

by collapsing a subcomplex to a point.

For any cell complex X , the quotient Xn/Xn−1 is a wedge sum of n spheres
∨
αS

n
α ,

with one sphere for each n cell of X .

Smash Product. Like suspension, this is another construction whose importance be-

comes evident only later. Inside a product space X×Y there are copies of X and Y ,

namely X×{y0} and {x0}×Y for points x0 ∈ X and y0 ∈ Y . These two copies of X

and Y in X×Y intersect only at the point (x0, y0) , so their union can be identified

with the wedge sum X ∨ Y . The smash product X ∧ Y is then defined to be the quo-

tient X×Y/X ∨ Y . One can think of X ∧ Y as a reduced version of X×Y obtained

by collapsing away the parts that are not genuinely a product, the separate factors X

and Y .

The smash product X∧Y is a cell complex if X and Y are cell complexes with x0

and y0 0 cells, assuming that we give X×Y the cell-complex topology rather than the

product topology in cases when these two topologies differ. For example, Sm∧Sn has

a cell structure with just two cells, of dimensions 0 and m+n , hence Sm∧Sn = Sm+n .

In particular, when m = n = 1 we see that collapsing longitude and meridian circles

of a torus to a point produces a 2 sphere.

Two Criteria for Homotopy Equivalence

Earlier in this chapter the main tool we used for constructing homotopy equiva-

lences was the fact that a mapping cylinder deformation retracts onto its ‘target’ end.

By repeated application of this fact one can often produce homotopy equivalences be-

tween rather different-looking spaces. However, this process can be a bit cumbersome

in practice, so it is useful to have other techniques available as well. We will describe

two commonly used methods here. The first involves collapsing certain subspaces to

points, and the second involves varying the way in which the parts of a space are put

together.
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Collapsing Subspaces

The operation of collapsing a subspace to a point usually has a drastic effect

on homotopy type, but one might hope that if the subspace being collapsed already

has the homotopy type of a point, then collapsing it to a point might not change the

homotopy type of the whole space. Here is a positive result in this direction:

If (X,A) is a CW pair consisting of a CW complex X and a contractible subcomplex A ,

then the quotient map X→X/A is a homotopy equivalence.

A proof will be given later in Proposition 0.17, but for now let us look at some examples

showing how this result can be applied.

Example 0.7: Graphs. The three graphs are homotopy equivalent since

each is a deformation retract of a disk with two holes, but we can also deduce this

from the collapsing criterion above since collapsing the middle edge of the first and

third graphs produces the second graph.

More generally, suppose X is any graph with finitely many vertices and edges. If

the two endpoints of any edge of X are distinct, we can collapse this edge to a point,

producing a homotopy equivalent graph with one fewer edge. This simplification can

be repeated until all edges of X are loops, and then each component of X is either

an isolated vertex or a wedge sum of circles.

This raises the question of whether two such graphs, having only one vertex in

each component, can be homotopy equivalent if they are not in fact just isomorphic

graphs. Exercise 12 at the end of the chapter reduces the question to the case of

connected graphs. Then the task is to prove that a wedge sum
∨
mS

1 of m circles is not

homotopy equivalent to
∨
nS

1 if m ≠ n . This sort of thing is hard to do directly. What

one would like is some sort of algebraic object associated to spaces, depending only

on their homotopy type, and taking different values for
∨
mS

1 and
∨
nS

1 if m ≠ n . In

fact the Euler characteristic does this since
∨
mS

1 has Euler characteristic 1−m . But it

is a rather nontrivial theorem that the Euler characteristic of a space depends only on

its homotopy type. A different algebraic invariant that works equally well for graphs,

and whose rigorous development requires less effort than the Euler characteristic, is

the fundamental group of a space, the subject of Chapter 1.

Example 0.8. Consider the space X obtained

from S2 by attaching the two ends of an arc

A to two distinct points on the sphere, say the

north and south poles. Let B be an arc in S2

joining the two points where A attaches. Then

X can be given a CW complex structure with

the two endpoints of A and B as 0 cells, the

interiors of A and B as 1 cells, and the rest of

S2 as a 2 cell. Since A and B are contractible,
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X/A and X/B are homotopy equivalent to X . The space X/A is the quotient S2/S0 ,

the sphere with two points identified, and X/B is S1
∨ S2 . Hence S2/S0 and S1

∨ S2

are homotopy equivalent, a fact which may not be entirely obvious at first glance.

Example 0.9. Let X be the union of a torus with n meridional disks. To obtain

a CW structure on X , choose a longitudinal circle in the torus, intersecting each of

the meridional disks in one point. These intersection points are then the 0 cells, the

1 cells are the rest of the longitudinal circle and the boundary circles of the meridional

disks, and the 2 cells are the remaining regions of the torus and the interiors of

the meridional disks. Collapsing each meridional disk to a point yields a homotopy

equivalent space Y consisting of n 2 spheres, each tangent to its two neighbors, a

‘necklace with n beads’. The third space Z in the figure, a strand of n beads with a

string joining its two ends, collapses to Y by collapsing the string to a point, so this

collapse is a homotopy equivalence. Finally, by collapsing the arc in Z formed by the

front halves of the equators of the n beads, we obtain the fourth space W , a wedge

sum of S1 with n 2 spheres. (One can see why a wedge sum is sometimes called a

‘bouquet’ in the older literature.)

Example 0.10: Reduced Suspension. Let X be a CW complex and x0 ∈ X a 0 cell.

Inside the suspension SX we have the line segment {x0}×I , and collapsing this to a

point yields a space ΣX homotopy equivalent to SX , called the reduced suspension

of X . For example, if we take X to be S1
∨ S1 with x0 the intersection point of the

two circles, then the ordinary suspension SX is the union of two spheres intersecting

along the arc {x0}×I , so the reduced suspension ΣX is S2
∨ S2 , a slightly simpler

space. More generally we have Σ(X ∨ Y) = ΣX ∨ ΣY for arbitrary CW complexes X

and Y . Another way in which the reduced suspension ΣX is slightly simpler than SX

is in its CW structure. In SX there are two 0 cells (the two suspension points) and an

(n+1) cell en×(0,1) for each n cell en of X , whereas in ΣX there is a single 0 cell

and an (n+ 1) cell for each n cell of X other than the 0 cell x0 .

The reduced suspension ΣX is actually the same as the smash product X ∧ S1

since both spaces are the quotient of X×I with X×∂I ∪{x0}×I collapsed to a point.

Attaching Spaces

Another common way to change a space without changing its homotopy type in-

volves the idea of continuously varying how its parts are attached together. A general

definition of ‘attaching one space to another’ that includes the case of attaching cells
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is the following. We start with a space X0 and another space X1 that we wish to

attach to X0 by identifying the points in a subspace A ⊂ X1 with points of X0 . The

data needed to do this is a map f :A→X0 , for then we can form a quotient space

of X0 ∐ X1 by identifying each point a ∈ A with its image f(a) ∈ X0 . Let us de-

note this quotient space by X0 ⊔f X1 , the space X0 with X1 attached along A via f .

When (X1, A) = (D
n, Sn−1) we have the case of attaching an n cell to X0 via a map

f :Sn−1→X0 .

Mapping cylinders are examples of this construction, since the mapping cylinder

Mf of a map f :X→Y is the space obtained from Y by attaching X×I along X×{1}

via f . Closely related to the mapping cylinder Mf is the mapping cone Cf = Y ⊔f CX

where CX is the cone (X×I)/(X×{0}) and we attach this to Y

along X×{1} via the identifications (x,1) ∼ f(x) . For exam-

ple, when X is a sphere Sn−1 the mapping cone Cf is the space

obtained from Y by attaching an n cell via f :Sn−1→Y . A

mapping cone Cf can also be viewed as the quotient Mf /X of

the mapping cylinder Mf with the subspace X = X×{0} collapsed to a point.

If one varies an attaching map f by a homotopy ft , one gets a family of spaces

whose shape is undergoing a continuous change, it would seem, and one might expect

these spaces all to have the same homotopy type. This is often the case:

If (X1, A) is a CW pair and the two attaching maps f ,g :A→X0 are homotopic, then

X0 ⊔f X1 ≃ X0 ⊔g X1 .

Again let us defer the proof and look at some examples.

Example 0.11. Let us rederive the result in Example 0.8 that a sphere with two points

identified is homotopy equivalent to S1
∨ S2 . The sphere

with two points identified can be obtained by attaching S2

to S1 by a map that wraps a closed arc A in S2 around S1 ,

as shown in the figure. Since A is contractible, this attach-

ing map is homotopic to a constant map, and attaching S2

to S1 via a constant map of A yields S1
∨ S2 . The result

then follows since (S2, A) is a CW pair, S2 being obtained from A by attaching a

2 cell.

Example 0.12. In similar fashion we can see that the necklace in Example 0.9 is

homotopy equivalent to the wedge sum of a circle with n 2 spheres. The necklace

can be obtained from a circle by attaching n 2 spheres along arcs, so the necklace

is homotopy equivalent to the space obtained by attaching n 2 spheres to a circle

at points. Then we can slide these attaching points around the circle until they all

coincide, producing the wedge sum.

Example 0.13. Here is an application of the earlier fact that collapsing a contractible

subcomplex is a homotopy equivalence: If (X,A) is a CW pair, consisting of a cell
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complex X and a subcomplex A , then X/A ≃ X ∪ CA , the mapping cone of the

inclusion A֓X . For we have X/A = (X∪CA)/CA ≃ X∪CA since CA is a contractible

subcomplex of X ∪ CA .

Example 0.14. If (X,A) is a CW pair and A is contractible in X , that is, the inclusion

A֓X is homotopic to a constant map, then X/A ≃ X∨SA . Namely, by the previous

example we have X/A ≃ X ∪CA , and then since A is contractible in X , the mapping

cone X ∪CA of the inclusion A֓X is homotopy equivalent to the mapping cone of

a constant map, which is X ∨ SA . For example, Sn/Si ≃ Sn ∨ Si+1 for i < n , since

Si is contractible in Sn if i < n . In particular this gives S2/S0
≃ S2

∨ S1 , which is

Example 0.8 again.

The Homotopy Extension Property

In this final section of the chapter we will actually prove a few things, including

the two criteria for homotopy equivalence described above. The proofs depend upon

a technical property that arises in many other contexts as well. Consider the following

problem. Suppose one is given a map f0 :X→Y , and on a subspace A ⊂ X one is also

given a homotopy ft :A→Y of f0
||A that one would like to extend to a homotopy

ft :X→Y of the given f0 . If the pair (X,A) is such that this extension problem can

always be solved, one says that (X,A) has the homotopy extension property. Thus

(X,A) has the homotopy extension property if every pair of maps X×{0}→Y and

A×I→Y that agree on A×{0} can be extended to a map X×I→Y .

A pair (X,A) has the homotopy extension property if and only if X×{0}∪A×I is a

retract of X×I .

For one implication, the homotopy extension property for (X,A) implies that the

identity map X×{0}∪A×I→X×{0}∪A×I extends to a map X×I→X×{0}∪A×I ,
so X×{0} ∪A×I is a retract of X×I . The converse is equally easy when A is closed

in X . Then any two maps X×{0}→Y and A×I→Y that agree on A×{0} combine

to give a map X×{0} ∪ A×I→Y which is continuous since it is continuous on the

closed sets X×{0} and A×I . By composing this map X×{0} ∪ A×I→Y with a

retraction X×I→X×{0} ∪ A×I we get an extension X×I→Y , so (X,A) has the

homotopy extension property. The hypothesis that A is closed can be avoided by a

more complicated argument given in the Appendix. If X×{0} ∪ A×I is a retract of

X×I and X is Hausdorff, then A must in fact be closed in X . For if r :X×I→X×I
is a retraction onto X×{0} ∪A×I , then the image of r is the set of points z ∈ X×I

with r(z) = z , a closed set if X is Hausdorff, so X×{0}∪A×I is closed in X×I and

hence A is closed in X .

A simple example of a pair (X,A) with A closed for which the homotopy exten-

sion property fails is the pair (I,A) where A = {0,1,1/2,
1/3,

1/4, ···}. It is not hard to

show that there is no continuous retraction I×I→I×{0} ∪ A×I . The breakdown of
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homotopy extension here can be attributed to the bad structure of (X,A) near 0.

With nicer local structure the homotopy extension property does hold, as the next

example shows.

Example 0.15. A pair (X,A) has the homotopy extension property if A has a map-

ping cylinder neighborhood in X , by which we mean a closed

neighborhood N containing a subspace B , thought of as the

boundary of N , with N − B an open neighborhood of A ,

such that there exists a map f :B→A and a homeomorphism

h :Mf→N with h||A ∪ B = 11. Mapping cylinder neighbor-

hoods like this occur fairly often. For example, the thick let-

ters discussed at the beginning of the chapter provide such

neighborhoods of the thin letters, regarded as subspaces of the plane. To verify the

homotopy extension property, notice first that I×I retracts onto I×{0}∪∂I×I , hence

B×I×I retracts onto B×I×{0} ∪ B×∂I×I , and this retraction induces a retraction

of Mf×I onto Mf×{0} ∪ (A ∪ B)×I . Thus (Mf , A ∪ B) has the homotopy exten-

sion property. Hence so does the homeomorphic pair (N,A ∪ B) . Now given a map

X→Y and a homotopy of its restriction to A , we can take the constant homotopy on

X − (N − B) and then extend over N by applying the homotopy extension property

for (N,A∪ B) to the given homotopy on A and the constant homotopy on B .

Proposition 0.16. If (X,A) is a CW pair, then X×{0}∪A×I is a deformation retract

of X×I , hence (X,A) has the homotopy extension property.

Proof: There is a retraction r :Dn×I→Dn×{0} ∪ ∂Dn×I , for ex-

ample the radial projection from the point (0,2) ∈ Dn×R . Then

setting rt = tr + (1− t)11 gives a deformation retraction of Dn×I

onto Dn×{0} ∪ ∂Dn×I . This deformation retraction gives rise to

a deformation retraction of Xn×I onto Xn×{0}∪ (Xn−1
∪An)×I

since Xn×I is obtained from Xn×{0}∪ (Xn−1
∪An)× I by attach-

ing copies of Dn×I along Dn×{0} ∪ ∂Dn×I . If we perform the deformation retrac-

tion of Xn×I onto Xn×{0} ∪ (Xn−1
∪An)×I during the t interval [1/2n+1,1/2n] ,

this infinite concatenation of homotopies is a deformation retraction of X×I onto

X×{0} ∪ A×I . There is no problem with continuity of this deformation retraction

at t = 0 since it is continuous on Xn×I , being stationary there during the t interval

[0,1/2n+1] , and CW complexes have the weak topology with respect to their skeleta

so a map is continuous iff its restriction to each skeleton is continuous. ⊔⊓

Now we can prove a generalization of the earlier assertion that collapsing a con-

tractible subcomplex is a homotopy equivalence.

Proposition 0.17. If the pair (X,A) satisfies the homotopy extension property and

A is contractible, then the quotient map q :X→X/A is a homotopy equivalence.
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Proof: Let ft :X→X be a homotopy extending a contraction of A , with f0 = 11. Since

ft(A) ⊂ A for all t , the composition qft :X→X/A sends A to a point and hence fac-

tors as a composition X
q
-----→X/A→X/A . Denoting the latter map by f t :X/A→X/A ,

we have qft = f tq in the first of the two

diagrams at the right. When t = 1 we have

f1(A) equal to a point, the point to which A

contracts, so f1 induces a map g :X/A→X
with gq = f1 , as in the second diagram. It

follows that qg = f 1 since qg(x) = qgq(x) = qf1(x) = f 1q(x) = f 1(x) . The

maps g and q are inverse homotopy equivalences since gq = f1 ≃ f0 = 11 via ft and

qg = f 1 ≃ f 0 = 11 via f t . ⊔⊓

Another application of the homotopy extension property, giving a slightly more

refined version of one of our earlier criteria for homotopy equivalence, is the following:

Proposition 0.18. If (X1, A) is a CW pair and we have attaching maps f ,g :A→X0

that are homotopic, then X0 ⊔f X1 ≃ X0 ⊔g X1 rel X0 .

Here the definition of W ≃ Z rel Y for pairs (W,Y) and (Z, Y ) is that there are

maps ϕ :W→Z and ψ :Z→W restricting to the identity on Y , such that ψϕ ≃ 11

and ϕψ ≃ 11 via homotopies that restrict to the identity on Y at all times.

Proof: If F :A×I→X0 is a homotopy from f to g , consider the space X0⊔F (X1×I) .

This contains both X0 ⊔f X1 and X0 ⊔g X1 as subspaces. A deformation retraction

of X1×I onto X1×{0}∪A×I as in Proposition 0.16 induces a deformation retraction

of X0 ⊔F (X1×I) onto X0 ⊔f X1 . Similarly X0 ⊔F (X1×I) deformation retracts onto

X0⊔gX1 . Both these deformation retractions restrict to the identity on X0 , so together

they give a homotopy equivalence X0 ⊔f X1 ≃ X0 ⊔g X1 rel X0 . ⊔⊓

We finish this chapter with a technical result whose proof will involve several

applications of the homotopy extension property:

Proposition 0.19. Suppose (X,A) and (Y ,A) satisfy the homotopy extension prop-

erty, and f :X→Y is a homotopy equivalence with f ||A = 11 . Then f is a homotopy

equivalence rel A .

Corollary 0.20. If (X,A) satisfies the homotopy extension property and the inclusion

A֓X is a homotopy equivalence, then A is a deformation retract of X .

Proof: Apply the proposition to the inclusion A֓X . ⊔⊓

Corollary 0.21. A map f :X→Y is a homotopy equivalence iff X is a deformation

retract of the mapping cylinder Mf . Hence, two spaces X and Y are homotopy

equivalent iff there is a third space containing both X and Y as deformation retracts.
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Proof: In the diagram at the right the maps i and j are the inclu-

sions and r is the canonical retraction, so f = ri and i ≃ jf . Since

j and r are homotopy equivalences, it follows that f is a homotopy

equivalence iff i is a homotopy equivalence, since the composition

of two homotopy equivalences is a homotopy equivalence and a map homotopic to a

homotopy equivalence is a homotopy equivalence. Now apply the preceding corollary

to the pair (Mf , X) , which satisfies the homotopy extension property by Example 0.15

using the neighborhood X×[0, 1/2] of X in Mf . ⊔⊓

Proof of 0.19: Let g :Y→X be a homotopy inverse for f . There will be three steps

to the proof:

(1) Construct a homotopy from g to a map g1 with g1
||A = 11.

(2) Show g1f ≃ 11 rel A .

(3) Show fg1 ≃ 11 rel A .

(1) Let ht :X→X be a homotopy from gf = h0 to 11 = h1 . Since f ||A = 11, we

can view ht ||A as a homotopy from g ||A to 11. Then since we assume (Y ,A) has the

homotopy extension property, we can extend this homotopy to a homotopy gt :Y→X
from g = g0 to a map g1 with g1

||A = 11.

(2) A homotopy from g1f to 11 is given by the formulas

kt =

{
g1−2tf , 0 ≤ t ≤ 1/2

h2t−1,
1/2 ≤ t ≤ 1

Note that the two definitions agree when t = 1/2. Since f ||A = 11 and gt = ht on A ,

the homotopy kt ||A starts and ends with the identity, and its second half simply re-

traces its first half, that is, kt = k1−t on A . We will define a ‘homotopy of homotopies’

ktu :A→X by means of the figure at the right showing the param-

eter domain I×I for the pairs (t,u) , with the t axis horizontal

and the u axis vertical. On the bottom edge of the square we de-

fine kt0 = kt ||A . Below the ‘V’ we define ktu to be independent

of u , and above the ‘V’ we define ktu to be independent of t .

This is unambiguous since kt = k1−t on A . Since k0 = 11 on A ,

we have ktu = 11 for (t,u) in the left, right, and top edges of the square. Next we

extend ktu over X , as follows. Since (X,A) has the homotopy extension property,

so does (X×I,A×I) , as one can see from the equivalent retraction property. Viewing

ktu as a homotopy of kt ||A , we can therefore extend ktu :A→X to ktu :X→X with

kt0 = kt . If we restrict this ktu to the left, top, and right edges of the (t,u) square,

we get a homotopy g1f ≃ 11 rel A .

(3) Since g1 ≃ g , we have fg1 ≃ fg ≃ 11, so fg1 ≃ 11 and steps (1) and (2) can be

repeated with the pair f ,g replaced by g1, f . The result is a map f1 :X→Y with

f1
||A = 11 and f1g1 ≃ 11 rel A . Hence f1 ≃ f1(g1f) = (f1g1)f ≃ f rel A . From this

we deduce that fg1 ≃ f1g1 ≃ 11 rel A . ⊔⊓
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Exercises

1. Construct an explicit deformation retraction of the torus with one point deleted

onto a graph consisting of two circles intersecting in a point, namely, longitude and

meridian circles of the torus.

2. Construct an explicit deformation retraction of Rn − {0} onto Sn−1 .

3. (a) Show that the composition of homotopy equivalences X→Y and Y→Z is a

homotopy equivalence X→Z . Deduce that homotopy equivalence is an equivalence

relation.

(b) Show that the relation of homotopy among maps X→Y is an equivalence relation.

(c) Show that a map homotopic to a homotopy equivalence is a homotopy equivalence.

4. A deformation retraction in the weak sense of a space X to a subspace A is a

homotopy ft :X→X such that f0 = 11, f1(X) ⊂ A , and ft(A) ⊂ A for all t . Show

that if X deformation retracts to A in this weak sense, then the inclusion A֓ X is

a homotopy equivalence.

5. Show that if a space X deformation retracts to a point x ∈ X , then for each

neighborhood U of x in X there exists a neighborhood V ⊂ U of x such that the

inclusion map V֓U is nullhomotopic.

6. (a) Let X be the subspace of R2 consisting of the horizontal segment

[0,1]×{0} together with all the vertical segments {r}×[0,1− r] for

r a rational number in [0,1] . Show that X deformation retracts to

any point in the segment [0,1]×{0} , but not to any other point. [See

the preceding problem.]

(b) Let Y be the subspace of R2 that is the union of an infinite number of copies of X

arranged as in the figure below. Show that Y is contractible but does not deformation

retract onto any point.

(c) Let Z be the zigzag subspace of Y homeomorphic to R indicated by the heavier

line. Show there is a deformation retraction in the weak sense (see Exercise 4) of Y

onto Z , but no true deformation retraction.

7. Fill in the details in the following construction from

[Edwards 1999] of a compact space Y ⊂ R
3 with the

same properties as the space Y in Exercise 6, that is, Y

is contractible but does not deformation retract to any

point. To begin, let X be the union of an infinite se-

quence of cones on the Cantor set arranged end-to-end,

as in the figure. Next, form the one-point compactifica-

tion of X×R . This embeds in R
3 as a closed disk with curved ‘fins’ attached along
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circular arcs, and with the one-point compactification of X as a cross-sectional slice.

The desired space Y is then obtained from this subspace of R3 by wrapping one more

cone on the Cantor set around the boundary of the disk.

8. For n > 2, construct an n room analog of the house with two rooms.

9. Show that a retract of a contractible space is contractible.

10. Show that a space X is contractible iff every map f :X→Y , for arbitrary Y , is

nullhomotopic. Similarly, show X is contractible iff every map f :Y→X is nullhomo-

topic.

11. Show that f :X→Y is a homotopy equivalence if there exist maps g,h :Y→X
such that fg ≃ 11 and hf ≃ 11. More generally, show that f is a homotopy equiva-

lence if fg and hf are homotopy equivalences.

12. Show that a homotopy equivalence f :X→Y induces a bijection between the set

of path-components of X and the set of path-components of Y , and that f restricts to

a homotopy equivalence from each path-component of X to the corresponding path-

component of Y . Prove also the corresponding statements with components instead

of path-components. Deduce that if the components of a space X coincide with its

path-components, then the same holds for any space Y homotopy equivalent to X .

13. Show that any two deformation retractions r 0
t and r 1

t of a space X onto a

subspace A can be joined by a continuous family of deformation retractions r st ,

0 ≤ s ≤ 1, of X onto A , where continuity means that the map X×I×I→X sending

(x, s, t) to r st (x) is continuous.

14. Given positive integers v , e , and f satisfying v − e + f = 2, construct a cell

structure on S2 having v 0 cells, e 1 cells, and f 2 cells.

15. Enumerate all the subcomplexes of S∞ , with the cell structure on S∞ that has Sn

as its n skeleton.

16. Show that S∞ is contractible.

17. (a) Show that the mapping cylinder of every map f :S1→S1 is a CW complex.

(b) Construct a 2 dimensional CW complex that contains both an annulus S1
×I and

a Möbius band as deformation retracts.

18. Show that S1
∗ S1

= S3 , and more generally Sm ∗ Sn = Sm+n+1 .

19. Show that the space obtained from S2 by attaching n 2 cells along any collection

of n circles in S2 is homotopy equivalent to the wedge sum of n+ 1 2 spheres.

20. Show that the subspace X ⊂ R
3 formed by a Klein bottle

intersecting itself in a circle, as shown in the figure, is homotopy

equivalent to S1
∨ S1

∨ S2 .

21. If X is a connected Hausdorff space that is a union of a finite number of 2 spheres,

any two of which intersect in at most one point, show that X is homotopy equivalent

to a wedge sum of S1 ’s and S2 ’s.
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22. Let X be a finite graph lying in a half-plane P ⊂ R
3 and intersecting the edge

of P in a subset of the vertices of X . Describe the homotopy type of the ‘surface of

revolution’ obtained by rotating X about the edge line of P .

23. Show that a CW complex is contractible if it is the union of two contractible

subcomplexes whose intersection is also contractible.

24. Let X and Y be CW complexes with 0 cells x0 and y0 . Show that the quotient

spaces X∗Y/(X∗{y0}∪{x0}∗Y) and S(X∧Y)/S({x0}∧{y0}) are homeomorphic,

and deduce that X ∗ Y ≃ S(X ∧ Y) .

25. If X is a CW complex with components Xα , show that the suspension SX is

homotopy equivalent to Y
∨
αSXα for some graph Y . In the case that X is a finite

graph, show that SX is homotopy equivalent to a wedge sum of circles and 2 spheres.

26. Use Corollary 0.20 to show that if (X,A) has the homotopy extension property,

then X×I deformation retracts to X×{0} ∪ A×I . Deduce from this that Proposi-

tion 0.18 holds more generally for any pair (X1, A) satisfying the homotopy extension

property.

27. Given a pair (X,A) and a homotopy equivalence f :A→B , show that the natural

map X→B⊔f X is a homotopy equivalence if (X,A) satisfies the homotopy extension

property. [Hint: Consider X ∪Mf and use the preceding problem.] An interesting

case is when f is a quotient map, hence the map X→B ⊔f X is the quotient map

identifying each set f−1(b) to a point. When B is a point this gives another proof of

Proposition 0.17.

28. Show that if (X1, A) satisfies the homotopy extension property, then so does every

pair (X0 ⊔f X1, X0) obtained by attaching X1 to a space X0 via a map f :A→X0 .

29. In case the CW complex X is obtained from a subcomplex A by attaching a single

cell en , describe exactly what the extension of a homotopy ft :A→Y to X given by

the proof of Proposition 0.16 looks like. That is, for a point x ∈ en , describe the path

ft(x) for the extended ft .


