
Beehive: O(1) Lookup Performance for Power-Law Query Distributions
in Peer-to-Peer Overlays

Venugopalan Ramasubramanian and Emin Gün Sirer
Dept. of Computer Science,

Cornell University,
Ithaca NY 14853

{ramasv, egs}@cs.cornell.edu

Abstract

Structured peer-to-peer hash tables provide decentral-
ization, self-organization, failure-resilience, and good
worst-case lookup performance for applications, but suf-
fer from high latencies (O(logN)) in the average case.
Such high latencies prohibit them from being used in
many relevant, demanding applications such as DNS.
In this paper, we present a proactive replication frame-
work that can provide constant lookup performance for
common Zipf-like query distributions. This framework
is based around a closed-form optimal solution that
achieves O(1) lookup performance with low storage re-
quirements, bandwidth overhead and network load. Sim-
ulations show that this replication framework can re-
alistically achieve good latencies, outperform passive
caching, and adapt efficiently to sudden changes in ob-
ject popularity, also known as flash crowds. This frame-
work provides a feasible substrate for high-performance,
low-latency applications, such as peer-to-peer domain
name service.

1 Introduction

Peer-to-peer distributed hash tables (DHTs) have re-
cently emerged as a building-block for distributed ap-
plications. Unstructured DHTs, such as Freenet and
the Gnutella network [1, 5], offer decentralization and
simplicity of system construction, but may take up to
O(N) hops to perform lookups in networks of N nodes.
Structured DHTs, such as Chord, Pastry, Tapestry and
others [14, 17, 18, 21, 22, 24, 28], are particularly
well-suited for large scale distributed applications be-
cause they are self-organizing, resilient against denial-
of-service attacks, and can provide O(log N) lookup per-
formance. However, for large-scale, high-performance,
latency-sensitive applications, such as the domain name
service (DNS) and the world wide web, this logarithmic
performance bound translates into high latencies. Pre-

vious work on serving DNS using a peer-to-peer lookup
service concluded that, despite their desirable properties,
structured DHTs are unsuitable for latency-sensitive ap-
plications due to their high lookup costs [8].

In this paper, we describe how proactive replication
can be used to achieve constant lookup performance effi-
ciently on top of a standard O(log N) peer-to-peer dis-
tributed hash table for certain commonly-encountered
query distributions. It is well-known that the query dis-
tributions of several popular applications, including DNS
and the web, follow a power law distribution [2, 15].
Such a well-characterized query distribution presents an
opportunity to optimize the system according to the ex-
pected query stream. The critical insight in this paper is
that, for query distributions based on a power law, proac-
tive (model-driven) replication can enable a DHT system
to achieve a small constant lookup latency on average.
In contrast, we show that common techniques for pas-
sive (demand-driven) replication, such as caching objects
along a lookup path, fail to make a significant impact on
the average-case behavior of the system.

We outline the design of a replication framework,
called Beehive, with the following goals:

• High Performance: Enable O(1) average-case
lookup performance, effectively decoupling the per-
formance of peer-to-peer DHT systems from the
size of the network. Provide O(log N) worst-case
lookup performance.

• High Scalability: Minimize the background traffic
in the network to reduce aggregate network load and
per-node bandwidth consumption. Keep the mem-
ory and disk space requirements at each peer to a
minimum.

• High Adaptivity: Adjust the performance of the
system to the popularity distribution of objects. Re-
spond quickly when object popularities change, as
with flash crowds and the “slashdot effect.”

Beehive achieves these goals through efficient proac-
tive replication. By proactive replication, we mean ac-
tively propagating copies of objects among the nodes
participating in the network. There is a fundamental
tradeoff between replication and resource consumption:
more copies of an object will generally improve lookup
performance at the cost of space, bandwidth and aggre-
gate network load.

Beehive performs this tradeoff through an informed
analytical model. This model provides a closed-form,
optimal solution that guarantees O(1), constant-time
lookup performance with the minimum number of ob-
ject replicas. The particular constant C targeted by the
system is tunable. Beehive enables the system designer
to specify a fractional value. Setting C to a fractional
value, such as 0.5, ensures that 50% of queries will be
satisfied at the source, without any additional network
hops. Consequently, Beehive implements a sub-one hop
hash-table. The value of C can be adjusted dynamically
to meet real-time performance goals.

Beehive uses the minimal number of replicas re-
quired to achieve a targeted performance level. Minimiz-
ing replicas reduces storage requirements at the peers,
lowers bandwidth consumption and load in the network,
and enables cache-coherent updates to be performed ef-
ficiently. Beehive uses low-overhead protocols for track-
ing, propagating and updating replicas. Finally, Beehive
leverages the structure of the underlying DHT to update
objects efficiently at runtime, and guarantees that subse-
quent lookups will return the latest copy of the object.

While this paper describes the Beehive proactive
replication framework in its general form, we use the
domain name system as a driving application. Sev-
eral shortcomings of the current, hierarchical structure
of DNS makes it an ideal application candidate for Bee-
hive. First, DNS is highly latency-sensitive, and poses a
significant challenge to serve efficiently. Second, the hi-
erarchical organization of DNS leads to a disproportion-
ate amount of load being placed at the higher levels of
the hierarchy. Third, the higher nodes in the DNS hierar-
chy serve as easy targets for distributed denial-of-service
attacks and form a security vulnerability for the entire
system. Finally, nameservers required for the internal
leaves of the DNS hierarchy incur expensive adminis-
trative costs, as they need to be manually administered
and secured. Peer-to-peer DHTs address all but the first
critical problem; we show in this paper that Beehive’s
replication strategy can address the first.

We have implemented a prototype Beehive-based
DNS server on Pastry [22]. We envision that the DNS
nameservers that are currently used to serve small, ded-
icated portions of the naming hierarchy would form a
Beehive network and collectively serve the namespace.
While we use DNS as a guiding application and demon-

strate that serving DNS with DHT is feasible, we note
that a full treatment of the implementation of an alterna-
tive peer-to-peer DNS system is beyond the scope of this
paper, and focus instead on the general-purpose Beehive
framework for proactive replication. The framework is
sufficiently general to achieve O(1) lookup performance
in other settings, including web caching, where the query
distribution follows a power law.

Overall, this paper describes the design of a repli-
cation framework that enables constant lookup perfor-
mance in structured DHTs for common query distri-
butions, applies it to a P2P DNS implementation, and
makes the following contributions. First, it proposes
proactive replication of objects and provides a closed-
form analytical solution for the optimal number of repli-
cas needed to achieve O(1) lookup performance. The
storage, bandwidth and load placed on the network by
this scheme are modest. In contrast, we show that sim-
ple caching strategies based on passive replication in-
cur large ongoing costs. Second, it outlines the de-
sign of a complete system based around this analytical
model. This system is layered on top of Pastry, an ex-
isting peer-to-peer substrate. It includes techniques for
estimating the requisite inputs for the analytical model,
mechanisms for replica distribution and deletion, and fast
update propagation. Finally, it presents results from a
prototype implementation of a peer-to-peer DNS service
to show that the system achieves good performance, has
low overhead, and can adapt quickly to flash crowds. In
turn, these approaches enable the benefits of P2P sys-
tems, such as self-organization and resilience against de-
nial of service attacks, to be applied to latency-sensitive
applications.

The rest of this paper is organized as follows. Sec-
tion 2 provides a broad overview of our approach and
describes the storage and bandwidth-efficient replication
components of Beehive in detail. Section 3 describes
our implementation of Beehive over Pastry. Section 4
presents the results and expected benefits of using Bee-
hive to serve DNS queries. Section 5 surveys differ-
ent DHT systems and summarizes other approaches to
caching and replication in peer-to-peer systems Section 6
describes future work and Section 7 summarizes our con-
tributions.

2 The Beehive System

Beehive is a general replication framework that operates
on top of any DHT that uses prefix-routing [19], such
as Chord [24], Pastry [22], Tapestry [28], and Kadem-
lia [18]. Such DHTs operate in the following manner.
Each node has a unique randomly assigned identifier
in a circular identifier space. Each object also has a

home node

other nodes

L 1

L 1

L 2

L 0

L 0

lookup (0121)

M
N

O
P

2012
Q

R

T

S

A
B

0021

C

G
H

I

J
K

L

0112
D

0122
E
F

Figure 1: This figure illustrates the levels of replication in
Beehive. A query for object 0121 takes three hops from
node Q to node E, the home node of the object. By replicat-
ing the object at level 2, that is at D and F, the query latency
can be reduced to two hops. In general, an object replicated
at level i incurs at most i hops for a lookup.

unique randomly selected identifier, and is stored at the
node whose identifier is closest to its own, called the
home node. Routing is performed by successively match-
ing a prefix of the object identifier against node identi-
fiers. Generally, each step in routing takes the query to
a node that has one more matching prefix than the pre-
vious node. A query traveling k hops reaches a node
that has k matching prefixes1. Since the search space is
reduced exponentially, this query routing approach pro-
vides O(logbN) lookup performance on average, where
N is the number of nodes in the DHT and b is the base,
or fanout, used in the system.

The central observation behind Beehive is that the
length of the average query path will be reduced by one
hop when an object is proactively replicated at all nodes
logically preceding that node on all query paths. For ex-
ample, replicating the object at all nodes one hop prior
to the home-node decreases the lookup latency by one
hop. We can apply this iteratively to disseminate objects
widely throughout the system. Replicating an object at
all nodes k hops or lesser from the home node will re-
duce the lookup latency by k hops. The Beehive replica-
tion mechanism is a general extension of this observation
to find the appropriate amount of replication for each ob-
ject based on its popularity.

Beehive controls the extent of replication in the sys-
tem by assigning a replication level to each object. An

1Strictly speaking, the nodes encountered towards the end of the
query routing process may not share progressively more prefixes with
the object, but remain numerically close. This detail does not signifi-
cantly impact either the time complexity of standard DHTs or our repli-
cation algorithm. Section 3 discusses the issue in more detail.

object at level i is replicated on all nodes that have at least
i matching prefixes with the object. Queries to objects
replicated at level i incur a lookup latency of at most i
hops. Objects stored only at their home nodes are at level
logbN , while objects replicated at level 0 are cached at
all the nodes in the system. Figure 1 illustrates the con-
cept of replication levels.

The goal of Beehive’s replication strategy is to find
the minimal replication level for each object such that
the average lookup performance for the system is a con-
stant C number of hops. Naturally, the optimal strategy
involves replicating more popular objects at lower levels
(on more nodes) and less popular objects at higher levels.
By judiciously choosing the replication level for each ob-
ject, we can achieve constant lookup time with minimal
storage and bandwidth overhead.

Beehive employs several mechanisms and protocols
to find and maintain appropriate levels of replication for
its objects. First, an analytical model provides Beehive
with closed-form optimal solutions indicating the appro-
priate levels of replication for each object. Second, a
monitoring protocol based on local measurements and
limited aggregation estimates relative object popularity,
and the global properties of the query distribution. These
estimates are used, independently and in a distributed
fashion, as inputs to the analytical model which yields
the locally desired level of replication for each object.
Finally, a replication protocol proactively makes copies
of the desired objects around the network. The rest of
this section describes each of these components in detail.

2.1 Analytical Model

In this section, we provide a model that analyzes Zipf-
like query distributions and provides closed-form opti-
mal replication levels for the objects in order to achieve
constant average lookup performance with low storage
and bandwidth overhead.

In Zipf-like, or power law, query distributions, the
number of queries to the ith most popular object is pro-
portional to i−α, where α is the parameter of the dis-
tribution. The query distribution has a heavier tail for
smaller values of the parameter α. A Zipf distribution
with parameter 0 corresponds to a uniform distribution.
The total number of queries to the most popular m ob-
jects, Q(m), is approximately m

1−α
−1

1−α
for α 6= 1, and

Q(m) ' ln(m) for α = 1.
Using the above estimate for the number of queries

received by objects, we pose an optimization problem to
minimize the total number of replicas with the constraint
that the average lookup latency is a constant C.

Let b be the base of the underlying DHT system, M
the number of objects, and N the number of nodes in the
system. Initially, all M objects in the system are stored

only at their home nodes, that is, they are replicated at
level k = logbN . Let xi denote the fraction of objects
replicated at level i or lower. From this definition, xk is
1, since all objects are replicated at level k. Mx0 most
popular objects are replicated at all the nodes in the sys-
tem.

Each object replicated at level i is cached in N/bi

nodes. Mxi − Mxi−1 objects are replicated on nodes
that have exactly i matching prefixes. Therefore, the av-
erage number of objects replicated at each node is given
by Mx0+ M(x1−x0)

b
+ · · ·+ M(xk−xk−1)

bk . Consequently,
the average per node storage requirement for replication
is:

M [(1 − 1

b
)(x0 +

x1

b
+ · · · + xk−1

bk−1
) +

1

bk
] (1)

The fraction of queries, Q(Mxi), that arrive for the

most popular Mxi objects is approximately (Mxi)
1−α

−1
M1−α−1 .

The number of objects that are replicated at level i is
Mxi − Mxi−1, 0 < i ≤ k. Therefore, the number of
queries that travel i hops is Q(Mxi) − Q(Mxi−1), 0 <
i ≤ k. The average lookup latency of the entire system
can be given by

∑k

i=1 i(Q(Mxi) − Q(Mxi−1)). The
constraint on the average latency is

∑k

i=1 i(Q(Mxi) −
Q(Mxi−1)) ≤ C, where C is the required constant
lookup performance. After substituting the approxima-
tion for Q(m), we arrive at the following optimization
problem.

Minimize x0 +
x1

b
+ · · · + xk−1

bk−1
, such that (2)

x1−α

0 + x1−α

1 + · · · + x1−α

k−1 ≥ k − C(1 − 1

M1−α
) (3)

and x0 ≤ x1 ≤ · · · ≤ xk−1 ≤ 1 (4)

Note that constraint 4 effectively reduces to xk−1 ≤
1, since any optimal solution to the problem with just
constraint 3 would satisfy x0 ≤ x1 ≤ · · · ≤ xk−1.

We can use the Lagrange multiplier technique to find
an analytical closed-form optimal solution to the above
problem with just constraint 3, since it defines a con-
vex feasible space. However, the resulting solution may
not guarantee the second constraint, xk−1 ≤ 1. If the
obtained solution violates the second constraint, we can
force xk−1 to 1 and apply the Lagrange multiplier tech-
nique to the modified problem. We can obtain the opti-
mal solution by repeating this process iteratively until the
second constraint is satisfied. However, the symmetric
property of the first constraint facilitates an easier analyt-
ical approach to solve the optimization problem without
iterations.

Assume that in the optimal solution to the problem,
x0 ≤ x1 ≤ · · · ≤ xk′−1 < 1, for some k′ ≤ k, and

xk′ = xk′+1 = · · · = xk = 1. Then we can restate the
optimization problem as follows:

Minimize x0 +
x1

b
+ · · · + xk′−1

bk′
−1

, such that (5)

x1−α

0 + x1−α

1 + · · · + x1−α

k′
−1 ≥ k′ − C ′, (6)

where C ′ = C(1 − 1

M1−α
)

This leads to the following closed-form solution:

x∗

i = [
di(k′ − C ′)

1 + d + · · · + dk′
−1

]
1

1−α , ∀0 ≤ i < k′ (7)

x∗

i = 1, ∀k′ ≤ i ≤ k (8)

where d = b
1−α

α

We can derive the value of k′ by satisfying the condi-

tion that xk′−1 < 1, that is, d
k
′
−1(k′

−C
′)

1+d+···+dk′
−1

< 1.
As an example, consider a DHT with base 32, α =

0.9, 10, 000 nodes, and 1, 000, 000 objects. Applying
this analytical method to achieve an average lookup time,
C, of one hop yields k′ = 2, x0 = 0.001102, x1 =
0.0519, and x2 = 1. Thus, the most popular 1102 ob-
jects would be replicated at level 0, the next most popular
50814 objects would be replicated at level 1, and all the
remaining objects at level 2. The average per node stor-
age requirement of this system would be 3700 objects.

The optimal solution obtained by this model applies
only to the case α < 1. For α > 1, the closed-form
solution will yield a level of replication that will achieve
the target lookup performance, but the amount of repli-
cation may not be optimal because the feasible space is
no longer convex. For α = 1, we can obtain the optimal
solution by using the approximation Q(m) = ln m and
applying the same technique. The optimal solution for
this case is as follows:

x∗

i =
M

−C

k′ bi

b
k′

−1

2

, ∀0 ≤ i < k′ (9)

x∗

i = 1, ∀k′ ≤ i ≤ k (10)

This analytical solution has three properties that are
useful for guiding the extent of proactive replication.
First, the analytical model provides a solution to achieve
any desired constant lookup performance. The system
can be tailored, and the amount of overall replication
controlled, for any level of performance by adjusting C
over a continuous range. Since structured DHTs pref-
erentially keep physically nearby hosts in their top-level
routing tables, even a large value for C can dramatically
speed up end-to-end query latencies [4]. Second, for

a large class of query distributions (α ≤ 1), the solu-
tion provided by this model achieves the optimal number
of object replicas required to provide the desired perfor-
mance. Minimizing the number of replicas reduces per-
node storage requirements, bandwidth consumption and
aggregate load on the network. Finally, k′ serves as an
upper bound for the worst case lookup time for any suc-
cessful query, since all objects are replicated at least in
level k′.

We make two assumptions in the analytical model:
all objects incur similar costs for replication, and objects
do not change very frequently. For applications such as
DNS, which have essentially homogeneous object sizes
and whose update-driven traffic is a very small fraction of
the replication overhead, the analytical model provides
an efficient solution. Applying the Beehive approach to
applications such as the web, which has a wide range
of object sizes and frequent object updates, may require
an extension of the model to incorporate size and update
frequency information for each object. A simple solution
to standardize object sizes is to replicate object pointers
instead of the objects themselves. While effective and
optimal, this approach adds an extra hop to C and vio-
lates sub-one hop routing.

2.2 Popularity and Zipf-Parameter Esti-
mation

The analytical model described in the previous section
requires estimates of the α parameter of the query distri-
bution and the relative popularities of the objects. Bee-
hive employs a combination of local measurement and
limited aggregation to keep track of these parameters and
adapt the replication appropriately.

Beehive nodes locally measure the number of queries
received for each object on that node. For non-replicated
objects, the count at the home node reflects the popularity
of that object. However, queries for an object replicated
at level i are evenly distributed across approximately
N/bi nodes. In order to estimate popularity of such an
object as accurately as an unreplicated object, one would
need an N/bi-fold increase in the measurement interval.
Since dilating the sampling interval would prevent the
system from reacting quickly to changes in object popu-
larity, Beehive aggregates popularity data from multiple
nodes to arrive at accurate estimates of object popularity
within a relatively short sampling interval.

Aggregation in Beehive takes place periodically,
once every aggregation interval. Each node A sends to
node B in the ith level of its routing table an aggregation
message containing the number of accesses of each ob-
ject replicated at level i or lower and having i+1 match-
ing prefixes with B. When node B receives these mes-
sages from all nodes at level i, it aggregates the access

counts and sends the result to all nodes in the (i + 1)th

level of its routing table. This process allows popularity
data to flow towards the home node.

A similar process operates in reverse to disseminate
the aggregated totals from the higher levels towards the
nodes at the leaves. A node at level i + 1 sends the
latest aggregated estimate of access counts to nodes at
level i for that object. This exchange occurs when the
higher level node is contacted by lower level node for
aggregation. For an object replicated at level i, it takes
2(log N − i) rounds of aggregation to complete the in-
formation flow from the leaves up to the home node and
back.

The overall Zipf-parameter, α, is also estimated in
a similar manner. Each node locally estimates α using
linear regression to compute the slope of the best fit line,
since a Zipf-like popularity distribution is a straight line
in log-scale. Beehive nodes then refine this estimate by
averaging it with the local estimates of other nodes they
communicate with during aggregation.

There will be fluctuations in the estimation of access
frequency and the Zipf parameter due to temporal vari-
ations in the query distribution. In order to avoid large
discontinuous changes to an estimate, we age the esti-
mate using exponential decay.

2.3 Replication Protocol

Beehive requires a protocol to replicate objects at the
replication levels determined by the analytical model. In
order to be deployable in wide area networks, the repli-
cation protocol should be asynchronous and not require
expensive mechanisms such as distributed consensus or
agreement. In this section, we describe an efficient pro-
tocol that enables Beehive to replicate objects across a
DHT.

Beehive’s replication protocol uses an asynchronous
and distributed algorithm to implement the optimal solu-
tion provided by the analytical model. Each node is re-
sponsible for replicating an object on other nodes at most
one hop away from itself; that is, at nodes that share one
less prefix than the current node. Initially, each object is
replicated only at the home node at a level k = logbN ,
where N is the number of nodes in the system and b is the
base of the DHT, and shares k prefixes with the object.
If an object needs to be replicated at the next level k − 1,
the home node pushes the object to all nodes that share
one less prefix with the home node. Each of the level
k − 1 nodes at which the object is currently replicated
may independently decide to replicate the object further,
and push the object to other nodes that share one less
prefix with it. Nodes continue the process of indepen-
dent and distributed replication until all the objects are
replicated at appropriate levels. In this algorithm, nodes

*

A B C D E G H IF

home node

level 3

level 2

level 1* * * * * * * *0 0 0 0 0 0 0 0 0

*0 101 10

0 1 2 E

E IB

*

*

*

Figure 2: This figure illustrates how the object 0121 at its
home node E is replicated to level 1. For nodes A through
I, the numbers indicate the prefixes that match the object
identifier at different levels. Each node pushes the object
independently to nodes with one less matching digit.

that share i + 1 prefixes with an object are responsible
for replicating that object at level i, and are called i level
deciding nodes for that object. For each object replicated
at level i at some node A, the i level deciding node is that
node in its routing table at level i that has matching i +1
prefixes with the object. For some objects, the deciding
node may be the node A itself.

This distributed replication algorithm is illustrated in
Figure 2. Initially, an object with identifier 0121 is repli-
cated at its home node E at level 3 and shares 3 prefixes
with it. If the analytical model indicates that this object
should be replicated at level 2, node E pushes the objects
to nodes B and I with which it shares 2 prefixes. Node
E is the level 2 deciding node for the object at nodes B,
E, and I . Based on the popularity of the object, the level
2 nodes B, E, and I may independently decide to repli-
cate the object at level 1. If node B decides to do so, it
pushes a copy of the object to nodes A and C with which
it shares 1 prefix and becomes the level 1 deciding node
for the object at nodes A, B, and C. Similarly, node E
may replicate the object at level 1 by pushing a copy to
nodes D and F , and node I to G and F .

Our replication algorithm does not require any agree-
ment in the estimation of relative popularity among the
nodes. Consequently, some objects may be replicated
partially due to small variations in the estimate of the rel-
ative popularity. For example in Figure 2, node E might
decide not to push object 0121 to level 1. We tolerate this
inaccuracy to keep the replication protocol efficient and
practical. In the evaluation section, we show that this in-
accuracy in the replication protocol does not produce any
noticeable difference in performance.

Beehive implements this distributed replication algo-
rithm in two phases, an analysis phase and a replicate
phase, that follow the aggregation phase. During the
analysis phase, each node uses the analytical model and
the latest known estimate of the Zipf-parameter α to ob-

tain a new solution. Each node then locally changes the
replication levels of the objects according to the solution.
The solution specifies for each level i, the fraction of ob-
jects, xi that need to be replicated at level i or lower.
Hence, xi

xi+1
fraction of objects replicated at level i + 1

or lower should be replicated at level i or lower. Based
on the current popularity, each node sorts all the objects
at level i + 1 or lower for which it is the i level decid-
ing node. It chooses the most popular xi

xi+1
fraction of

these objects and locally changes the replication level of
the chosen objects to i, if their current replication level
is i + 1. The node also changes the replication level of
the objects that are not chosen to i + 1, if their current
replication level is i or lower.

After the analysis phase, the replication level of some
objects could increase or decrease, since the popularity
of objects changes with time. If the replication level of
an object decreases from level i + 1 to i, it needs to be
replicated in nodes that share one less prefix with it. If
the replication level of an object increases from level i
to i + 1, the nodes with only i matching prefixes need to
delete the replica. The replicate phase is responsible for
enforcing the correct extent of replication for an object
as determined by the analysis phase. During the repli-
cate phase, each node A sends to each node B in the
ith level of its routing table, a replication message list-
ing the identifiers of all objects for which B is the i level
deciding node. When B receives this message from A,
it checks the list of identifiers and pushes to node A any
unlisted object whose current level of replication is i or
lower. In addition, B sends back to A the identifiers of
objects no longer replicated at level i. Upon receiving
this message, A removes the listed objects.

Beehive nodes invoke the analysis and the replicate
phases periodically. The analysis phase is invoked once
every analysis interval and the replicate phase once every
replication interval. In order to improve the efficiency
of the replication protocol and reduce load on the net-
work, we integrate the replication phase with the aggre-
gation protocol. We perform this integration by setting
the same durations for the replication interval and the ag-
gregation interval and combining the replication and the
aggregation messages as follows: When node A sends an
aggregation message to B, the message contains the list
of objects replicated at A whose i level deciding node
is B. Similarly, when node B replies to the replication
message from A, it adds the aggregated access frequency
information for all objects listed in the replication mes-
sage.

The analysis phase estimates the relative popularity
of the objects using the estimates for access frequency
obtained through the aggregation protocol. Recall that,
for an object replicated at level i, it takes 2(logN − i)
rounds of aggregation to obtain an accurate estimate of

the access frequency. In order to allow time for the in-
formation flow during aggregation, we set the replication
interval to at least 2logN times the aggregation interval.

Random variations in the query distribution will lead
to fluctuations in the relative popularity estimates of ob-
jects, and may cause frequent changes in the replication
levels of objects. This behavior may increase the object
transfer activity and impose substantial load on the net-
work. Increasing the duration of the aggregation interval
is not an efficient solution because it decreases the re-
sponsiveness of system to changes. Beehive limits the
impact of fluctuations by employing hysteresis. During
the analysis phase, when a node sorts the objects at level
i based on their popularity, the access frequencies of ob-
jects already replicated at level i − 1 is increased by a
small fraction. This biases the system towards maintain-
ing already existing replicas when the popularity differ-
ence between two objects is small.

The replication protocol also enables Beehive to
maintain appropriate replication levels for objects when
new nodes join and others leave the system. When a new
node joins the system, it obtains the replicas of objects
it needs to store by initiating a replicate phase of the
replication protocol. If the new node already has objects
replicated when it was previously part of the system, then
these objects need not be fetched again from the decid-
ing nodes. A node leaving the system does not directly
affect Beehive. If the leaving node is a deciding node
for some objects, the underlying DHT chooses a new de-
ciding node for these objects when it repairs the routing
table.

2.4 Mutable Objects

Beehive directly supports mutable objects by proactively
disseminating object updates to the replicas in the sys-
tem. The semantics of read and update operations on ob-
jects is an important issue to consider while supporting
object mutability. Strong consistency semantics require
that once an object is updated, all subsequent queries to
that object only return the modified object. Achieving
strong consistency is challenging in a distributed system
with replicated objects, because each copy of the repli-
cated object should be updated or invalidated upon ob-
ject modification. In Beehive, we exploit the structure
of the underlying DHT to efficiently disseminate object
updates to all the nodes carrying replicas of the object.
Our scheme guarantees that when an object is modified,
all replicas will be consistently updated at all nodes.

Beehive associates a version number with each ob-
ject to identify modified objects. An object replica with
higher version number is more recent than a replica with
lower version number. The owner of an object in the
system can modify the object by inserting a fresh copy

of the object with a higher version number at the home
node. The home node proactively propagates the update
to all the replicas of the objects using the routing table. If
the object is replicated at level i, the home node sends a
copy of the updated object to each node B in the ith level
of the routing table. Node B then propagates the update
to each node in the (i + 1)th level of its routing table.

The update propagation protocol ensures that each
node A sharing at least i prefixes with the object obtain
a copy of the modified object. The object update reaches
the node A following exactly the same path a query is-
sued at the object’s home node for node A’s identifier
would follow. Because of this property, all nodes with a
replica of the object get exactly one copy of the mod-
ified object. Hence, this scheme is both efficient and
provides guaranteed cache coherency in the absence of
nodes leaving the system.

Nodes leaving the system may cause temporary in-
consistencies in the routing table. Consequently, updates
may not reach some nodes where objects are replicated.
Beehive alleviates this problem by incorporating a lazy
update propagation mechanism to the replicate phase.
Each node includes in the replication message, the cur-
rent version numbers of the replicated objects. Upon re-
ceiving this message, the deciding node pushes a copy of
the object if it has a more recent version.

3 Implementation

Beehive is a general replication mechanism that can
be applied to any prefix-based distributed hash table.
We have layered our implementation on top of Pas-
try, a freely available DHT with log(N) lookup perfor-
mance. Our implementation is structured as a trans-
parent layer on top of FreePastry 1.3, supports a tradi-
tional insert/modify/delete/query DHT interface for ap-
plications, and required no modifications to underlying
Pastry. However, converting the preceding discussion
into a concrete implementation of the Beehive frame-
work, building a DNS application on top, and combin-
ing the framework with Pastry required some practical
considerations and identified some optimization oppor-
tunities.

Beehive needs to maintain some additional, modest
amount of state in order to track the replication level,
freshness, and popularity of objects. Each Beehive node
stores all replicated objects in an object repository. Bee-
hive associates the following meta-information with each
object in the system, and each Beehive node maintains
the following fields within each object in its repository:

• Object-ID: A 128-bit field uniquely identifies the
object and helps resolve queries. The object iden-

tifier is derived from the hash key at the time of in-
sertion, just as in Pastry.

• Version-ID: A 64-bit version number differentiates
fresh copies of an object from older copies cached
in the network.

• Home-Node: A single bit specifies whether the cur-
rent node is the home node of the object.

• Replication-Level: A small integer specifies the
current, local replication level of the object.

• Access-Frequency: An integer monitors the number
of queries that have reached this node. It is incre-
mented by one for each locally observed query, and
reset at each aggregation.

• Aggregate-Popularity: A integer used in the aggre-
gation phase to collect and sum up the access count
from all dependent nodes for which this node is the
home node. We also maintain an older aggregate
popularity count for aging.

In addition to the state associated with each object, Bee-
hive nodes also maintain a running estimate of the Zipf
parameter. Overall, the storage cost consists of several
bytes per object, and the processing cost of keeping the
meta-data up to date is small.

Pastry’s query routing deviates from the model de-
scribed earlier in the paper because it is not entirely
prefix-based and uniform. Since Pastry maps each object
to the numerically closest node in the identifier space, it
is possible for an object to not share any prefixes with its
home node. For example, in a network with two nodes
298 and 315, Pastry will store an object with identifier
304 on node 298. Since a query for object 304 propa-
gated by prefix matching alone cannot reach the home
node, Pastry completes the query with the aid of an aux-
iliary data structure called leaf set. The leaf set is used in
the last few hops to directly locate the numerically clos-
est node to the queried object. Pastry initially routes a
query using entries in the routing table, and may route
the last couple of hops using the leaf set entries. This
required us to modify Beehive’s replication protocol to
replicate objects at the leaf set nodes as follows. Since
the leaf set is most likely to be used for the last hop, we
replicate objects in the leaf set nodes only at the highest
replication levels. Let k = logbN be the highest repli-
cation level for Beehive, that is, the default replication
level for an object replicated only at its home node. As
part of the replicate phase, a node A sends a replication
message to all nodes B in its routing table as well as its
leaf set with a list of identifiers of objects replicated at
level k − 1 whose deciding node is B. B is the deciding
node of an object homed at node A, if A would forward

a query to that object to node B next. Upon receiving a
maintenance message at level k − 1, node B would push
an object to node A only if node A and the object have at
least k−1 matching prefixes. Once an object is replicated
on a leaf set node at level k − 1, further replication to
lower levels follow the replication protocol described in
Section 2. This slight modification to Beehive enables it
to work on top of Pastry. Other routing metrics for DHT
substrates, such as the XOR metric [18], have been pro-
posed that do not exhibit this non-uniformity, and where
the Beehive implementation would be simpler.

Pastry’s implementation provides two opportunities
for optimization, which improve Beehive’s impact and
reduce its overhead. First, Pastry nodes preferentially
populate their routing tables with nodes that are in physi-
cal proximity [4]. For instance, a node with identifier 100
has the opportunity to pick either of two nodes 200 and
201 when routing based on the first digit. Pastry selects
the node with the lowest network latency, as measured
by the packet round-trip time. As the prefixes get longer,
node density drops and each node has progressively less
freedom to find and choose between nearby nodes. This
means that a significant fraction of the lookup latency ex-
perienced by a Pastry lookup is incurred on the last hop.
Hence, selecting even a large number of constant hops,
C, as Beehive’s performance target, will have a signifi-
cant effect on the real performance of the system. While
we pick C = 1 in our implementation, note that C is a
continuous variable and may be set to a fractional value,
to get average lookup performance that is a fraction of a
hop. C = 0 yields a solution that will replicate all ob-
jects at all hops, which is suitable only if the total hash
table size is small.

The second optimization opportunity stems from the
periodic maintenance messages used by Beehive and
Pastry. Beehive requires periodic communication be-
tween nodes and the member of their routing table and
leaf-set for replica dissemination and data aggregation.
Pastry nodes periodically send heart-beat messages to
nodes in their routing table and leaf set to detect node
failures. They also perform periodic network latency
measurements to nodes in their routing table in order to
obtain closer routing table entries. We can improve Bee-
hive’s efficiency by combining the periodic heart-beat
messages sent by Pastry with the periodic aggregation
messages sent by Beehive. By piggy-backing the ith row
routing table entries on to the Beehive aggregation mes-
sage at replication level i, a single message can simul-
taneously serve as a heart beat message, Pastry mainte-
nance message, and a Beehive aggregation message.

We have built a prototype DNS name server on
top of Beehive in order to evaluate the caching strat-
egy proposed in this paper. Beehive-DNS uses the
Beehive framework to proactively disseminate DNS re-

source records containing name to IP address bindings.
The Beehive-DNS server currently supports UDP-based
queries and is compatible with widely-deployed resolver
libraries. Queries that are not satisfied within the Bee-
hive system are looked up in the legacy DNS by the home
node and are inserted into the Beehive framework. The
Beehive system stores and disseminates resource records
to the appropriate replication levels by monitoring the
DNS query stream. Clients are free to route their queries
through any node that is part of the Beehive-DNS. Since
the DNS system relies entirely on aggressive caching in
order to scale, it provides very loose coherency seman-
tics, and limits the rate at which updates can be per-
formed. Recall that the Beehive system enables resource
records to be modified at any time, and disseminates the
new resource records to all caching name servers as part
of the update operation. However, for this process to be
initiated, name owners would have to directly notify the
home node of changes to the name to IP address bind-
ing. We expect that, for some time to come, Beehive will
be an adjunct system layered on top of legacy DNS, and
therefore name owners who are not part of Beehive will
not know to contact the system. For this reason, our cur-
rent implementation delineates between names that ex-
ist solely in Beehive versus resource records originally
inserted from legacy DNS. In the current implementa-
tion, the home node checks for the validity of each legacy
DNS entry by issuing a DNS query for the domain when
the time-to-live field of that entry is expired. If the DNS
mapping has changed, the home node detects the update
and propagates it as usual. Note that this strategy pre-
serves DNS semantics and is quite efficient because only
the home nodes check the validity of each entry, while
replicas retain all mappings unless invalidated.

Overall, the Beehive implementation adds only a
modest amount of overhead and complexity to peer-to-
peer distributed hash tables. Our prototype implementa-
tion of Beehive-DNS is only 3500 lines of code, com-
pared to the 17500 lines of code for Pastry.

4 Evaluation

In this section, we evaluate the performance costs and
benefits of the Beehive replication framework. We exam-
ine Beehive’s performance in the context of a DNS sys-
tem and show that Beehive can robustly and efficiently
achieve its targeted lookup performance. We also show
that Beehive can adapt to sudden, drastic changes in the
popularity of objects as well as global shifts in the pa-
rameter of the query distribution, and continue to provide
good lookup performance.

We compare the performance of Beehive with that
of pure Pastry and Pastry enhanced by passive caching.

By passive caching, we mean caching objects along all
nodes on the query path, similar to the scheme proposed
in [23]. We impose no restrictions on the size of the
cache used in passive caching. We follow the DNS cache
model to handle mutable objects, and associate a time
to live with each object. Objects are removed from the
cache upon expiration of the time to live.

4.1 Setup

We evaluate Beehive using simulations, driven by a DNS
survey and trace data. The simulations were performed
using the same source code as our implementation. Each
simulation run was started by seeding the network with
just a single copy of each object, and then querying for
objects according to a DNS trace. We compared the
proactive replication of Beehive to passive caching in
Pastry (PC-Pastry), as well as regular Pastry.

Since passive caching relies on expiration times for
coherency, and since both Beehive and Pastry need to
perform extra work in the presence of updates, we con-
ducted a large-scale survey to determine the distribution
of TTL values for DNS resource records and to compute
the rate of change of DNS entries. Our survey spanned
July through September 2003, and periodically queried
web servers for the resource records of 594059 unique
domain names, collected by crawling the Yahoo! and
the DMOZ.ORG web directories. We used the distribu-
tion of the returned time-to-live values to determine the
lifetimes of the resource records in our simulation. We
measured the rate of change in DNS entries by repeating
the DNS survey periodically, and derived an object life-
time distribution. We used this distribution to introduce
a new version of an object at the home node.

We used the DNS trace [15] collected at MIT be-
tween 4 and 11 December 2000. This trace spans
4, 160, 954 lookups over 7 days featuring 1233 distinct
clients and 302, 032 distinct fully-qualified names. In
order to reduce the memory consumption of the simu-
lations, we scale the number of distant objects to 40960,
and issue queries at the same rate of 7 queries per sec.
The rate of issue for requests has little impact on the hit
rate achieved by Beehive, which is dominated mostly by
the performance of the analytical model, parameter esti-
mation, and rate of updates. The overall query distribu-
tion of this trace follows an approximate Zipf-like distri-
bution with parameter 0.91 [15]. We separately evaluate
Beehive’s robustness in the face of changes in this pa-
rameter.

We performed our evaluations by running the Bee-
hive implementation on Pastry in simulator mode with
1024 nodes. For Pastry, we set the base to be 16, the
leaf-set size to be 24, and the length of identifiers to
be 128, as recommended in [22]. In all our evalua-

0 8 16 24 32 40
0

0.5

1

1.5

2

2.5

3

time (hours)

la
te

n
cy

 (
h

o
p

s)
Pastry
PC−Pastry
Beehive

Figure 3: Latency (hops) vs Time. The average lookup per-
formance of Beehive converges to the targeted C = 1 hop
after two replication phases.

tions, the Beehive aggregation and replication intervals
were 48 minutes and the analysis interval was 480 min-
utes. The replication phases at each node were randomly
staggered to approximate the behavior of independent,
non-synchronized hosts. We set the target lookup perfor-
mance of Beehive to average 1 hop.

Beehive Performance

Figure 3 shows the average lookup latency for Pastry,
PC-Pastry, and Beehive over a query period spanning 40
hours. We plot the lookup latency as a moving average
over 48 minutes. The average lookup latency of pure
Pastry is about 2.34 hops. The average lookup latency
of PC-Pastry drops steeply during the first 4 hours and
averages 1.54 after 40 hours. The average lookup per-
formance of Beehive decreases steadily and converges to
about 0.98 hops, within 5% of the target lookup perfor-
mance. Beehive achieves the target performance in about
16 hours and 48 minutes, the time required for two anal-
ysis phases followed by a replication phase at each node.
These three phases, combined, enable Beehive to prop-
agate the popular objects to their respective replication
levels and achieve the expected payoff. In contrast, PC-
Pastry provides limited benefits, despite an infinite-sized
cache. There are two reasons for the relative ineffective-
ness of passive caching. First, the heavy tail in Zipf-like
distributions implies that there will be many objects for
which there will be few requests, where queries will take
many disjoint paths in the network until they collide on a
node on which the object has been cached. Second, PC-
Pastry relies on time-to-live values for cache coherency,
instead of tracking the location of cached objects. The
time-to-live values are set conservatively in order to re-
flect the worst case scenario under which the record may

0 8 16 24 32 40
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

6

time (hours)

o
b

je
ct

 t
ra

n
sf

e
rs

 (
#

)

PC−Pastry
Beehive

Figure 4: Object Transfers (cumulative) vs Time. The total
amount of object transfers imposed by Beehive is signifi-
cantly lower compared to caching. Passive caching incurs
large costs in order to check freshness of entries in the pres-
ence of conservative timeouts.

be updated, as opposed to the expected lifetime of the ob-
ject. Our survey indicates that 95% of the DNS records
have a lifetime of less than one day, whereas fewer than
0.8% of the records change in 24 hours. Consequently,
passive caching suffers from a low hit rate as entries are
evicted due to conservative values of TTL set by name
owners.

Next, we examine the bandwidth consumed and the
network load incurred by PC-Pastry and Beehive, and
show that Beehive generates significantly lower back-
ground traffic due to object transfers compared to pas-
sive caching. Figure 4 shows the total amount of objects
transferred by Beehive and PC-Pastry since the begin-
ning of the experiment. PC-Pastry has an average object
transfer rate proportional to its lookup latency, since it
transfers an object to each node along the query path.
Beehive incurs a high rate of object transfer during the
initial period; but once Beehive achieves its target lookup
performance, it incurs considerably lower overhead, as it
needs to perform transfers only in response to changes in
object popularity and, relatively infrequently for DNS,
to object updates. Beehive continues to perform limited
amounts of object replication, due to fluctuations in the
popularity of the objects as well as estimation errors not
dampened down by hysteresis. The rate of object trans-
fers is initially high because the entire system is started at
the same time with only one copy of each object. In prac-
tice, node-joins and object-inserts would be staggered in
time allowing the system to operate smoothly without
sudden spikes in bandwidth consumption.

The average number of objects stored at each node at
the end of 40 hours is 380 for Beehive and 420 for pas-

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5
x 10

4

target lookup performance (hops)

a
v
g

o
b
j
e
c
t
s

p
e
r

n
o
d
e

storage

0 0.5 1 1.5 2
0

100

200

300

400

500

e
s
t
i
m
a
t
e
d

l
a
t
e
n
c
y

(
m
s
)

latency

Figure 5: Storage Requirement vs Latency. This graph
shows the average per node storage required by Beehive
and the estimated latency for different target lookup per-
formance. This graph captures the trade off between the
overhead incurred by Beehive and the lookup performance
achieved.

sive caching. PC-Pastry caches more objects than Bee-
hive even though its lookup performance is worse, due to
the heavy tailed nature of Zipf distributions. Beehive re-
quires only 95 objects per node to provide 1.54 hops, the
lookup performance achieved by PC-Pastry. Our evalu-
ation shows that Beehive provides 1 hop average lookup
latency with low storage and bandwidth overhead.

Beehive efficiently trades off storage and bandwidth
for improved lookup latency. Our replication framework
enables administrators to tune this trade off by varying
the target lookup performance of the system. Figure 5
shows the trade off between storage requirement and es-
timated latency for different target lookup performance.
We used the analytical model described in Section 2 to
estimate the storage requirements. We estimated the ex-
pected lookup latency from round trip time obtained by
pinging all pairs of nodes in PlanetLab, and adding to
this 0.42 ms for accessing the local DNS resolver. The
average 1 hop round trip time between nodes in Planet-
Lab is 202.2 ms (median 81.9 ms). In our large scale
DNS survey, the average DNS lookup latency was 255.9
ms (median 112 ms). Beehive with a target performance
of 1 hop can provide better lookup latency than DNS.

Flash Crowds

Next, we examine the performance of proactive and pas-
sive caching in response to changes in object popularity.
We modify the trace to suddenly reverse the popularities
of all the objects in the system. That is, the least popu-
lar object becomes the most popular object, the second
least popular object becomes the second most popular
object, and so on. This represents a worst case scenario

32 40 48 56 64 72 80
0

0.5

1

1.5

2

2.5

3

time (hours)

la
te

n
cy

 (
h

o
p

s)

Pastry
PC−Pastry
Beehive

Figure 6: Latency (hops) vs Time. This graph shows that
Beehive quickly adapts to changes in the popularity of ob-
jects and brings the average lookup performance to one
hop.

32 40 48 56 64 72 80
0

2

4

6

8

10

12

14

16

18

20

time (hours)

o
b

je
ct

 t
ra

n
sf

e
rs

 p
e

r
se

c
PC−Pastry
Beehive

Figure 7: Rate of Object Transfers vs Time. This graph
shows that when popularity of the objects change, Beehive
imposes extra bandwidth overhead temporarily to replicate
the newly popular objects and maintain constant lookup
time.

for proactive replication, as objects that are least repli-
cated suddenly need to be replicated widely, and vice
versa. The switch occurs at t = 40, and we issue queries
from the reversed popularity distribution for another 40
hours.

Figure 6 shows the lookup performance of Pastry,
PC-Pastry and Beehive in response to flash crowds. Pop-
ularity reversal causes a temporary increase in average
latency for both Beehive and PC-Pastry. Beehive adjusts
the replication levels of its objects appropriately and re-
duces the average lookup performance to about 1 hop
after two replication intervals. The lookup performance
of passive caching also decreases to about 1.6 hops. Fig-

0 24 48 72 96

0.5

1

1.5

2

2.5

3

time (hours)

l
a
t
e
n
c
y

(
h
o
p
s
)

latency

0 24 48 72 96
0.4

0.5

0.6

0.7

0.8

0.9

1

a
l
p
h
a

alpha

Figure 8: Latency (hops) vs Time. This graph shows that
Beehive quickly adapts to changes in the parameter of the
query distribution and brings the average lookup perfor-
mance to one hop.

ure 7 shows the instantaneous rate of object transfer in-
duced by the popularity reversal for Beehive and PC-
Pastry. The popularity reversal causes a temporary in-
crease in the object transfer activity of Beehive as it ad-
justs the replication levels of the objects appropriately.
Even though Beehive incurs this high rate of activity in
response to a worst-case scenario, it consumes less band-
width and imposes less aggregate load compared to pas-
sive caching.

Zipf Parameter Change

Finally, we examine the adaptation of Beehive to global
changes in the parameter of the overall query distribu-
tion. We issue queries from Zipf-like distributions gen-
erated with different values of the parameter α at each
24 hour interval. We seeded these simulations with 4096
objects.

Figure 8 shows the lookup performance of Beehive
as it adapts to changes in the parameter of the query dis-
tribution. Beehive effectively detects changes in alpha
and redistributes object replicas to meet targeted perfor-
mance objectives. Figure 9 shows the average number
of objects replicated at each node in the system by Bee-
hive. As α varies, so do the number of replicas Beehive
creates on each node. Beehive increases the number of
replicated objects per node as α decreases to meet the
targeted performance goal, and reduces the number of
replicas as alpha increases to reclaim space. The num-
ber of replicas per node shown in Figure 9 agrees with
optimal solution provided by the analytical model. Over-
all, continuously monitoring and estimating the α of the
query distribution enables Beehive to adjust the extent
and level of replication to compensate for drastic, global
changes.

0 24 48 72 96
0

40

80

120

160

200

240

time (hours)

a
v
g

o
b
j
e
c
t
s

p
e
r

n
o
d
e

objects

0 24 48 72 96
0.4

0.5

0.6

0.7

0.8

0.9

1

a
l
p
h
a

alpha

Figure 9: Objects stored per node vs Time. This graph
shows that when the parameter of the query distribution
changes, Beehive adjusts the number of replicated objects
to maintain O(1) lookup performance with storage effi-
ciency.

Summary

In this section, we have evaluated the performance of the
Beehive replication framework for different scenarios in
the context of DNS. Our evaluation indicates that Bee-
hive achieves O(1) lookup performance with low storage
and bandwidth overhead. In particular, it outperforms
passive caching in terms of average latency, storage re-
quirements, network load and bandwidth consumption.
Beehive continuously monitors the popularity of the ob-
jects and the parameter of the query distribution, and
quickly adapts its performance to changing conditions.

5 Related Work

Unstructured peer-to-peer systems, such as Freenet [5]
and Gnutella [1] locate objects through on generic graph
traversal algorithms, such as iterative depth-first search
and flooding-based breadth-first search, respectively.
These algorithms are inefficient, do not scale well, and
do not provide sublinear bounds on lookup performance.

Several structured peer-to-peer systems, which pro-
vide a worst-case bound on lookup performance, have
been proposed recently. CAN [21] maps both objects
and nodes on a d-dimensional torus and provides O(dn

1
d)

lookup performance. Plaxton et al. [19] introduce a ran-
domized lookup algorithm based on prefix matching to
locate objects in a distributed network in O(logN) prob-
abilistic time. Chord [24], Pastry [22], and Tapestry [28]
use consistent hashing to map objects to nodes and
use Plaxton’s prefix-matching algorithms to achieve
O(logN) worst-case lookup performance. Kademlia [24]
also provides O(logN) lookup performance using a sim-
ilar search technique, but uses the XOR metric for rout-

ing. Viceroy [17] provides O(logN) lookup perfor-
mance with a constant degree routing graph. De Bruijn
graphs [16, 26] provide O(logN) lookup performance
with 2 neighbors per node and O(logN/loglogN) with
logN degree per node. Beehive can be applied to any of
the overlays based on prefix-matching.

A few recently introduced DHTs provide O(1)
lookup performance. Kelips [12] probabilistically pro-
vides O(1) lookup performance by dividing the network
into O(

√
N) affinity groups of O(

√
N) nodes, replicat-

ing every object on every node within an affinity group,
and using gossip to propagate updates. An alternative
method [13] relies on maintaining full routing state, that
is, a complete list of all system members, at each node.
Farsite [10] uses routing tables of size O(dn

1
d) to route

in O(d) hops, but does not address rapid membership
changes. Beehive fundamentally differs from these sys-
tems in three fundamental ways. First, Beehive can serve
queries in less than one hop on average. And second, it
achieves low storage overhead, bandwidth consumption
and network load by minimizing the amount of replicated
data in the system. Finally, Beehive provides a fine grain
control of the trade off between lookup performance and
overhead by allowing users to choose the target lookup
performance from a continuous range.

Some DHTs pick routing table entries based on net-
work proximity. Recent work [4, 27] has shown that
this method can reduce the total lookup latency to a con-
stant. However, the performance improvement is limited
in large networks because the achieved absolute latency
is several times more than the average single-hop latency.

Several peer-to-peer applications, such as PAST [23]
and CFS [9], incorporate caching and replication. Both
reserve a part of the storage space at each node to cache
query results on the lookup path in order to improve sub-
sequent queries. They also maintain a constant number
of replicas of each object in the system in order to im-
prove fault tolerance. As shown in this paper, passive
caching schemes achieve limited improvement and do
not provide provide performance guarantees.

Some systems employ a combination of caching with
proactive object updates. In [6], the authors describe a
proactive cache for DNS records where the cache proac-
tively refreshes DNS records as they expire. While this
technique reduces the impact of short expiration times
on lookup performance, it introduces a large amount of
overhead and does not qualitatively improve lookup per-
formance. Controlled Update Propagation (CUP) [20] is
a demand-based caching mechanism with proactive ob-
ject updates. CUP nodes propagate object updates away
from a designated home node in accordance to a popular-
ity based incentive that flows from the leaf nodes towards
the home node. While there are some similarities be-
tween the replication protocols of CUP and Beehive, the

decision to cache objects and propagate updates in CUP
are based on heuristics. [25] describes a distributed hi-
erarchical web cache that replicates objects proactively,
selects replica locations based on heuristics and pushes
updates to replicas.

The closest work to Beehive is [7], which examines
optimal strategies for replicating objects in unstructured
peer-to-peer systems. This paper analytically derives
the optimal number of randomly-placed object replicas
in unstructured peer-to-peer systems. The observations
in this work are not directly applicable to structured
DHTs, because it assumes that the lookup time for an
object depends only on the number of replicas and not
the placement strategy. Beehive achieves higher perfor-
mance with fewer replicas by exploiting the structure of
the underlying overlay.

6 Future Work

This paper has investigated the potential performance
benefits of model-driven proactive caching and has
shown that it is feasible to use peer-to-peer systems in co-
operative low-latency, high-performance environments.
Deploying full-blown applications, such as a complete
peer-to-peer DNS replacement, on top of this substrate
will require substantial further effort. Most notably, se-
curity issues need to be addressed before peer-to-peer
systems can be deployed widely. At the application level,
this involves using some authentication technique, such
as DNSSEC [11], to securely delegate name service to
nodes in a peer to peer system. At the underlying DHT
layer, secure routing techniques [3] are required to limit
the impact of malicious nodes on the DHT. Both of these
techniques will add additional latencies, which may be
offset at the cost of additional bandwidth, storage and
load by setting Beehive’s target performance to lower
values. At the Beehive layer, the proactive replication
layer needs to be protected from nodes that misreport the
popularity of objects. Since a malicious peer in Beehive
can replicate an object, or indirectly cause an object to
be replicated, at b nodes that have that malicious node
in their routing tables, we expect that one can limit the
amount of damage that attackers can cause through mis-
reported object popularities.

7 Conclusion

Structured DHTs offer many desirable properties for a
large class of applications, including self-organization,
failure resilience, high scalability, and a worst-case per-
formance bound. However, their O(logN) hop average-
case performance has prohibited them from serving
latency-sensitive applications.

In this paper, we outline a framework for proactive
replication that offers O(1) DHT lookup performance for
a frequently encountered class of query distributions. At
the core of this framework is an analytical model that
yields the optimal object replication required to achieve
constant time lookups. Beehive achieves high perfor-
mance by decoupling lookup performance from the size
of the network. It adapts quickly to flash crowds, detects
changes in the global query distribution and self-adjusts
to retain its performance guarantees. Overall, Beehive
enables DHTs to be used for serving latency-sensitive
applications.

Acknowledgments
We are grateful to Robert Morris, Hari Balakrishnan, Jaeyon
Jung, and Emil Sit for providing us with their DNS traces.

References
[1] “The Gnutella Protocol Specification v.0.4.”

http://www9.limewire.com/developer/gnutella protocol 0.4
.pdf, Mar 2001.

[2] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker.
“Web Caching and Zipf-like Distributions: Evidence and
Implications.” IEEE INFOCOM 1999, New York NY,
Mar 1999.

[3] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and
D. Wallach. “Secure Routing for Structured Peer-to-Peer
Overlay Networks.” OSDI 2002, Boston MA, Dec 2002.

[4] M. Castro, P. Druschel, C. Hu, and A. Rowstron. “Ex-
ploiting Network Proximity in Peer-to-Peer Overlay Net-
works.” Technical Report MSR-TR-2002-82, Microsoft
Research, May 2002.

[5] I. Clarke, O. Sandberg, B. Wiley, and T. Hong. “Freenet:
A Distributed Anonymous Information Storage and Re-
trieval System.” Lecture Notes in Computer Science,
2009:46-66, 2001.

[6] E. Cohen and H. Kaplan. “Proactive Caching of DNS
Records: Addressing a Performance Bottleneck.” SAINT
2001, San Diego CA, Jan 2001.

[7] E. Cohen and S. Shenker. “Replication Strategies in
Unstructured Peer-to-Peer Networks.” ACM SIGCOMM
2002, Pittsburgh PA, Aug 2002.

[8] R. Cox, A. Muthitacharoen, and R. Morris. “Serving DNS
using a Peer-to-Peer Lookup Service.” IPTPS 2002, Cam-
bridge MA, Mar 2002.

[9] F. Dabek, F. Kaashoek, D. Karger, R. Morris, and I. Sto-
ica. “Wide-Area Cooperative Storage with CFS.” ACM
SOSP 2001, Banff Alberta, Canada, Oct 2001.

[10] J. R. Douceur, A. Adya, W. J. Bolosky, D. Simon, and
M. Theimer. “Reclaiming Space from Duplicate Files in
a Serverless Distributed File System.” ICDCS 2002, Vi-
enna, Austria, Jul 2002.

[11] D. Eastlake. “Domain Name System Security Exten-
sions”. Request for Comments (RFC) 2535, 3rd edition,
Mar 1999.

[12] I. Gupta, K. Birman, P. Linga, A. Demers, and R. v. Ren-
nesse. “Kelips: Building an Efficient and Stable P2P DHT
Through Increased Memory and Background Overhead.”
IPTPS 2003, Berkeley CA, Feb 2003.

[13] A. Gupta, B. Liskov, R. Rodrigues. “One Hop Lookups
for Peer-to-Peer Overlays.” HotOS 2003. Lihue HI, May
2003.

[14] N. Harvey, M. Jones, S. Saroiu, M. Theimer, and A. Wol-
man. “SkipNet: A Scalable Overlay Network with Prac-
tical Locality Properties.”, USITS 2003, Seattle WA, Mar
2003.

[15] J. Jung, E. Sit, H. Balakrishnan, and R. Morris. “DNS
Performance and Effectiveness of Caching.” ACM SIG-
COMM Internet Measurement Workshop 2001, San Fran-
cisco CA, Nov 2001.

[16] F. Kaashoek and D. Karger. “Koorde: A Simple Degree-
Optimal Distributed Hash Table.” IPTPS 2003, Berkeley
CA, Feb 2003.

[17] D. Malkhi, M. Naor, and D. Ratajczak. “Viceroy: A
Scalable and Dynamic Emulation of the Butterfly.” ACM
PODC 2002, Monterey CA, Aug 2002.

[18] P. Maymounkov and D. Maziéres. “Kademlia: A Peer-
to-peer Information System Based on the XOR Metric.”
IPTPS 2002, Cambridge MA, Mar 2002.

[19] G. Plaxton, R. Rajaraman, and A. Richa. “Accessing
nearby copies of replicated objects in a distributed en-
vironment.” Theory of Computing Systems, 32:241-280,
1999.

[20] M. Roussopoulos and M. Baker. “CUP: Controlled Up-
date Propagation in Peer-to-Peer Networks.” USENIX
2003 Annual Technical Conference, San Antonio TX, Jun
2003.

[21] S. Ratnasamy, P. Francis, M. Hadley, R. Karp, and
S. Shenker. “A Scalable Content-Addressable Network.”
ACM SIGCOMM 2001, San Diego CA, Aug 2001.

[22] A. Rowstorn and P. Druschel. “Pastry: Scalable, De-
centralized Object Location and Routing for Large-Scale
Peer-to-Peer Systems.” IFIP/ACM Middleware 2001,
Heidelberg, Germany, Nov 2001.

[23] A. Rowstorn and P. Druschel. “Storage Management
and Caching in PAST, a Large-Scale Persistent Peer-to-
Peer Storage Utility.” ACM SOSP 2001, Banff Alberta,
Canada, Oct 2001.

[24] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Bal-
akrishnan. “Chord: A Scalable Peer-to-peer Lookup Ser-
vice for Internet Applications.” ACM SIGCOMM 2001,
San Diego CA, Aug 2001.

[25] R. Tewari, M. Dahlin, H. Vin, and J. Kay. “Design
Considerations for Distributed Caching on the Internet.”
ICDCS 1999, Austin TX, Jun 1999.

[26] U. Wieder and M. Naor. “A Simple Fault Tolerant Dis-
tributed Hash Table.” IPTPS 2003, Berkeley CA, Feb
2003.

[27] H. Zhang, A. Goel, and R. Govindan. “Incrementally Im-
proving Lookup Latency in Distributed Hash Table Sys-
tems.” SIGMETRICS 2003, San Diego CA, Jun 2003.

[28] B. Zhao, L. Huang, J. Stribling, S. Rhea, A. Joseph,
and J. Kubiatowicz. “Tapestry: A Resilient Global-scale
Overlay for Service Deployment.” IEEE Journal on Se-
lected Areas in Communications, JSAC, 2003.

