
Warp: Multi-Key Transactions for Key-Value Stores

Robert Escriva†, Bernard Wong‡, Emin Gün Sirer†

† Computer Science Department, Cornell University
‡ Cheriton School of Computer Science, University of Waterloo

Abstract

Implementing ACID transactions has been a long-

standing challenge for NoSQL systems. Because these

systems are based on a sharded architecture, transactions

necessarily require coordination across multiple servers.

Past work in this space has relied either on heavyweight

protocols such as Paxos or clock synchronization for this

coordination.

This paper presents a novel protocol for coordinat-

ing distributed transactions with ACID semantics on top

of a sharded data store. Called linear transactions, this

protocol achieves scalability by distributing the coordi-

nation task to only those servers that hold relevant data

for each transaction. It achieves high performance by

serializing only those transactions whose concurrent ex-

ecution could potentially yield a violation of ACID se-

mantics. Finally, it naturally integrates chain-replication

and can thus tolerate faults of both clients and servers.

We have fully implemented linear transactions in a com-

mercially available data store. Experiments show that the

throughput of this system achieves 1-9× more through-

put than MongoDB, Cassandra and HyperDex on the Ya-

hoo! Cloud Serving Benchmark, even though none of the

latter systems provide transactional guarantees.

1 Introduction

Big Data needs have catalyzed radical change in the ar-

chitecture of data stores over the last decade. A new class

of data stores, called NoSQL systems, have emerged to

meet the performance and scalability challenges posed

by large data. While the precise definition of NoSQL

systems remains mired in controversy, the defining char-

acteristic of these systems seems to be their distributed

architecture, where the data is sharded across all hosts in

the cluster. And it is partly because of this distributed ar-

chitecture that has NoSQL systems have found it difficult

to support ACID transactions.

Distributed transactions are inherently difficult, be-

cause they require coordination among multiple servers.

In traditional RDBMSs, transaction managers coordi-

nate the clients and servers, and ensure that all partici-

pants in multi-phase commit protocols run in lock-step.

Such transaction managers constitute bottlenecks, and

modern NoSQL systems have eschewed them for more

distributed implementations. Scatter [20] and Google’s

Megastore [5] map the data to different Paxos groups

based on their key, thereby gaining scalability, but incur

the latency of Paxos. An alternative approach that incurs

comparable costs, pursued in Calvin, is to use a consen-

sus protocol and deterministic execution to determine an

order, though Calvin uses batching to improve through-

put at further latency cost. Most recent work in this

space, Google’s Spanner [13], relies on tight clock syn-

chronization to determine when an operation is safe to

commit. While these systems are well-suited for the par-

ticular domains they were designed, a completely asyn-

chronous, low-latency transaction management protocol,

in line with the fully distributed NoSQL architecture, has

not yet emerged.

This paper introduces Warp, a NoSQL system that

provides support for efficient, one-copy serializable

ACID transactions. Warp’s design combines optimistic

client-side execution with a novel server-side commit

protocol called linear transactions. In line with the

NoSQL design philosophy, linear transactions involve

solely those servers that hold the data affected by a trans-

action, and eliminate the need for transaction managers

and clock synchrony. The coordination among these

servers is performed by a modified single-pass chaining

protocol that is fault-tolerant, non-blocking, and serializ-

able.

Three techniques, working in concert, shape the de-

sign of linear transactions and account for its advan-

tages. First, linear transactions arrange the servers in

dynamically-determined chains, where transaction pro-

cessing is performed in an efficient two-way pipeline.

Traditional consensus protocols, such as Paxos and

Zab, require a designated server to perform a broad-

1

cast followed by a quorum-incast, which divides over-

all throughput by the number of servers involved. In

contrast, each server involved in a linear transaction can

pump messages through the pipeline at line rate. This

improvement comes at the cost of a potential increase in

latency, a cost we address with careful client implemen-

tation, and quantify with microbenchmarks.

Second, linear transactions further reduce transaction

overheads by not explicitly ordering concurrent but in-

dependent operations with respect to each other. Tradi-

tional approaches to transaction management compute a

total order on all transactions, which necessitates costly

global coordination. Such over-synchronization is a sig-

nificant source of inefficiency, which some systems tar-

get by partitioning the consensus groups into smaller

units [5, 20]. In contrast, linear transactions leave un-

ordered the operations belonging to disjoint, independent

transactions. This enables the servers to execute these

operations in natural arrival order, saving synchroniza-

tion and ordering overhead, without leading to any client-

observable violations of one-copy serializability. Linear

transactions determine a partial order between all pairs of

overlapping transactions that have data items in common,

and also detect and order transitively interfering transac-

tions, thereby ensuring that the global timeline is always

well-behaved.

Finally, linear transactions improve performance by

taking advantage of the natural ordering imposed by the

underlying data store. Specifically, they avoid comput-

ing a partial order between old transactions whose ef-

fects are completely reflected in the data store, and new

transactions that cannot have observed any state of the

system prior to fully committed transactions. Traditional

approaches, especially those that involve Paxos state ma-

chines, would require the assignment of an explicit time

slot, and perhaps couple it with garbage collection. In

contrast, linear transactions can avoid these overheads

because the happens-before relationship is inherently re-

flected in the state of the store and no reordering can lead

to a consistency violation.

It is impossible to achieve ACID guarantees without

a consensus protocol or synchronicity assumptions, and

linear transactions are no exception. Our approach relies

on a replicated state machine called a coordinator to es-

tablish the membership of the servers in the cluster, as

well as the mapping of key ranges to servers. A crucial

distinction from past work that invoked consensus on the

data path, however, is that linear transactions involve this

heavy-weight consensus component only in response to

failures.

Overall, this combines these insights, which have

been observed independently in past work, into a cohe-

sive, unique transaction system, and makes three con-

tributions. First, we outline a novel protocol for pro-

RSM

A−E F − J K −O P−T U −Z

Key Space

Read: A, P; Write: Z

Read: C; Write: A, C

Transaction Contexts

Read: E , P; Write: K, M, P

Figure 1: The architecture of Warp. A replicated state ma-

chine (RSM) maintains metastate about cluster membership

and the mapping from keys to servers. Storage servers are as-

signed partitions of the key-space by the RSM. Clients commu-

nicate with Warp through a client library, which transparently

retrieves the mapping from the RSM, maintains a cached copy

of the mapping, and contacts the storage servers to issue oper-

ations.

viding efficient, one-copy serializable transactions on a

distributed, sharded data store. The protocol can with-

stand up to a user-specified threshold of faults, guaran-

tees atomicity and provides isolation. Second, we de-

scribe our implementation of the Warp key-value store,

including the design of the client. The system has been

fully implemented, supports C/C++, Python, Java, and

Ruby bindings, and has been deployed in production at

one large company and a few startups. Third, we report

macro- and microbenchmarks that examine the perfor-

mance characteristics of linear transactions. Our exper-

iments with the YCSB macrobenchmark compare Warp

to popular high-performance NoSQL data stores, specif-

ically MongoDB, Cassandra and HyperDex, and show

that it achieves throughput that 1-9× that of other sys-

tems.

To our knowledge, Warp is the first asynchronous,

fault-tolerant, fully distributed key-value store that sup-

ports multi-key transactions without a shared consensus

component on the data path. It represents a new design

point in the continuum between NoSQL systems and tra-

ditional RDBMSs.

The rest of this paper is organized as follows. Sec-

tion 2 describes linear transactions protocol for NoSQL

systems. Section 3 describes our full implementation of

Warp. Section 4 evaluates the performance of Warp. Sec-

tion 5 surveys existing systems and provides context and

Section 6 concludes.

2

class WarpClient:

def get(table, key):

return value

def put(table, key, value):

store value

def cond_put(table, key, check, value):

store value if and only if check

def begin_transaction(table, key):

return WarpTransaction()

(a) Standard Interface

class WarpTransaction:

def get(table, key):

return value

def put(table, key, value):

store value

def cond_put(table, key, check, value):

store value if and only if check

def commit(): # commit the transaction

def abort(): # abort the transaction

(b) Transactional Interface
Figure 2: A subset of the Warp API that illustrates the core operations provided by this system. The full API permits a wide range

of atomic operations that are separate from the API presented here. The non-transactional and transactional APIs intentionally

present the same set of operations.

2 Linear Transactions

Warp builds on top of a linearizable NoSQL store [3, 18,

24, 36]. Our design keeps the core architecture of the

system relatively unchanged, integrating the transaction

processing directly into the storage servers rather than in-

troducing additional components dedicated to processing

transactions.

The Warp system comprises three components. The

first and primary component is a data storage server.

Each data server is responsible for a subset of keys in the

system, generally chosen using consistent hashing [27].

Collectively, the storage servers hold all the data stored

in the system. The data is sharded across servers so that

each server is responsible for a fraction of the systems’

data. While each data server is f +1 replicated to provide

fault-tolerance for node failures and partitions that affect

less than a user-defined threshold of faults, for simplicity,

we treat each data server as a singular entity throughout

the early discussion in this paper. To further simplify the

discussion, we assume that all clients issue solely read

and write operations and not Warp’s complex operations.

A second logical component called a coordinator par-

titions the key space across all data servers, ensuring

balanced key distribution and facilitating membership

changes as servers leave and join the cluster. Since the

coordinator is not on the data path, its implementation

is not critical for the operation of linear transactions.

Many NoSQL systems centralize this functionality at a

single operations console, backed by a human admin-

istrator; our implementation relies on a replicated state

machine [4] that maintains the set of live hosts, the key

partitioning table and an epoch identifier in a replicated,

fault-tolerant object known as a mapping.

The third class of components, the clients, issue re-

quests to the data servers with the aid of this mapping.

Since the mapping is pushed to all non-disconnected

servers by the coordinator after every configuration

change, and since every client request and server re-

sponse carries the epoch id, out of date clients and

servers can be detected and directed to re-fetch the map-

ping when necessary. We defer a full discussion of par-

titions and focus first on the general operation of linear

transactions.

Clients issue operations, both directly to the data

store, and indirectly within the context of a transaction.

Non-transactional requests identify the object to store or

retrieve using a single key, and immediately perform the

request against the relevant back-end storage server. Al-

ternatively, a client may begin a transaction, which cre-

ates a transaction context, and issue several operations

within the context of the transaction. Operations ex-

ecuted within the transaction do not take place on the

servers immediately. Instead, the client library will log

the key and type of each access. For a read, the client will

retrieve the requested data from the storage servers, and

record the value it read in a cache kept within the transac-

tion context. Subsequent reads within that transaction are

satisfied from this cache, providing read isolation. For a

write, the client stores all modifications locally within

the transaction context without contacting any storage

server. Multiple writes to the same key will overwrite the

stored modifications table. At commit time, the client li-

brary submits the set of all read keys, their read values

and all modified unique key value pairs to the storage

servers as a single entity, known as a linear transaction.

The data servers, collectively, will only commit the mod-

ifications if none of the values read within the transaction

context have been modified while the transaction was be-

ing processed.

Figure 1 shows Warp’s overall system architecture. In

this example deployment, data is sharded across five stor-

age servers. The replicated state machine locally main-

tains this mapping. Each server fetches a copy of the

mapping and maintains contact with the RSM to be no-

tified of updates. A client may perform transactions by

directly contacting the storage servers. The arrows indi-

cate the communication necessary for a linear transaction

involving the indicated servers.

For the rest of this section, we’ll examine a simpli-

3

TA TB

re
a

d
(k

a)
w

rite(k
b) re

a
d
(k

c
)

w
ri

te
(k

d
)

Figure 3: An example of two disjoint transactions. The clients

read and write to entirely disjoint sets of keys.

TA TBTC

re
a

d
(k

a)
w

rite(k
b) re

a
d
(k

c
)

w
ri

te
(k

d
)

re
a
d
(k

b
) w

rite(k
c)

Figure 4: An example of three overlapping transactions.

Transaction T3 overlaps with T1 and T2, making all transactions

overlap.

fied subset of Warp’s actual transaction API, shown in

Figure 2. This API captures the essential components

of the interface to the NoSQL store. While clients may

issue get, put, and del primitives either directly to the

data store, or within the context of a transaction, for sim-

plicity of the protocol description, we’ll assume that all

accesses are transactional and that each client has a sin-

gle outstanding transaction. In the actual implementa-

tion, clients may begin any number of transactions si-

multaneously, may mix transactional accesses with di-

rect get/put operations on the data store, and may create

nested transactions. We revisit these issues following the

basic protocol description.

2.1 Ordering Constraints

In order to provide one-copy serializability, the transac-

tion management protocol needs to identify all required

timing related constraints. In order to perform this, Warp

identifies overlapping transactions. Formally, a transac-

tion TA is said to overlap a transaction TB if they have an

object immediately in common, or if TB appears in the

transitive closure of TA’s overlapping transactions. Non-

overlapping transactions are said to be disjoint.

Intuitively, identifying overlapping transactions is

critical for consistency because all of the operations in-

volved in two overlapping transactions need to be or-

dered with respect to each other to ensure atomicity

and serializability. At the same time, identifying dis-

joint transactions is critical for performance, as they

can proceed safely in parallel, without restriction. Fig-

ures 3 and 4 respectively illustrate disjoint and overlap-

ping transactions.

Operations performed within disjoint transactions

may freely interleave without violating one-copy serial-

izability because no matter what order the operations ex-

ecute, the final state is, by definition, indistinguishable

by clients. Had a client issued an operation (whether

its own transaction or raw accesses directly against the

key store) that could have distinguished between these

states, that operation would cause the previously disjoint

transactions to overlap, and thus would cause Warp to

enforce strict atomicity and ordering between them. Lin-

ear transactions leverage this observation by executing

disjoint transactions without any coordination.

Overlapping transactions require careful handling to

ensure serializability. If two transactions TA and TB over-

lap, all operations oA ∈ TA need to be executed either

strictly before, or strictly after, oB ∈ TB. Implemented

naively, such an ordering constraint may imply, in the

worst case, establishing an ordering relationship between

a newly submitted transaction and every previously com-

mitted transaction, yielding O(N) complexity for trans-

action processing. But the astute reader will note that, if

all the reads operations in a transaction TB have read state

that is subsequent to all the write operations in TA, then

the two transactions are already implicitly ordered with

respect to each other. It would be redundant and waste-

ful to spend additional cycles on ordering transactions

whose execution times differ so much that one transac-

tion’s state is already reflected in the read set of a subse-

quent transaction.

The Warp protocol, then, concerns itself with cor-

rectly identifying overlapping transactions, determining

happens-before relationships only between those opera-

tions that need to be serialized with respect to each other,

and enabling disjoint operations to proceed without co-

ordination. The next section describes how the protocol

accomplishes these goals.

2.2 Protocol

Warp operates by crafting a chain of servers to contact

for each transaction such that the chain will identify all

overlapping transactions and enable operations to be se-

quenced.

The chain for each linear transaction is uniquely deter-

mined by the keys accessed or modified within the trans-

action. The chain for a transaction is constructed by sort-

ing a transaction’s keys and mapping each key to a server

using the consistent hashing of the underlying key-value

4

T1

T2

T3

read(T3,ka),write(T1,ka)

write(T1,kb),read(T2,kb)

write(T2,kc),read(T3,kc)

Figure 5: A dependency cycle between three transactions T1-

T3 that read and write keys ka-kc. If the three data servers

were to commit data out-of-order, the transaction dependencies

would yield the cycle shown on the right, violating serializabil-

ity. Linear transactions permit only those dependencies that do

not introduce a cycle.

store. For example, the canonical chain for a linear trans-

action that accessed (read, write or delete) keys ka and kb

is the two servers that hold the keys, in the order ka, kb.

The servers are always arranged according to the lexical

order of their respective keys. If a server is responsible

for multiple ranges of keys, then it will occur in multiple

locations in the chain.

The next step in linear transactions is to process a

transaction through its corresponding chain. This is

performed in two phases: a forward pass determines

overlapping transactions, establishes happens-before re-

lationships, and validates previous reads, while a back-

ward pass either passes through an abort or commit re-

sponse. Much like two-phase commit [21], the first phase

validates the transaction before the second phase com-

mits the result; however, unlike two-phase commit, lin-

ear transactions enable multiple transactions operating

on the same data to prepare concurrently, tolerate fail-

ures of the client as well as the servers, and involve no

data servers other than the ones holding the data accessed

in a transaction.

The primary task of the forward phase is to ensure that

a transaction is safe to be committed; that is, the reads it

performed during the transaction and used as the basis

for the writes it issued, are still valid. When a client sub-

mits a transaction, it goes through its transaction context

and issues a condput with the old value it read for each

object in its read set, where the new value is blank if

the transaction did not modify that object. The rest of

its modifications are submitted as regular put operations.

The conditional part of the condput is executed during

the forward phase, and if any conditionals fail, the chain

aborts and unrolls.

The second critical task in the forward phase is to

check each transaction against all concurrent transac-

tions; that is, transactions that have gone through their

forward, but not yet their backward phase. If the transac-

tions operate on separate keys, they are isolated and re-

quire no further consideration. Transactions that operate

on the same keys may either be compatible, in the case

of a read-read conflict, or conflicting, in the case of read-

write or write-write conflicts. Compatible transactions

may be prepared concurrently. Of a pair of conflicting

transactions, only one may ever commit. If a transaction

conflicts with any concurrently prepared transaction, it

must be aborted. On the other hand, if a transaction is

compatible with or isolated from all concurrently pre-

pared transactions, the server may prepare the transac-

tion and forward the message to the next server in the

chain.

Once a prepare message traverses the entire chain, the

prepare phase completes and the commit phase begins.

Commit messages traverse the chain in reverse, starting

with the last server to prepare the transaction. Upon re-

ceipt of a commit message, each server locally applies

writes affecting keys for which it is mapped to by the

key-value store and passes the commit message back-

ward to the previous server in the chain.

While the description above outlines the basic oper-

ation of the chain mechanism, the protocol as described

does not achieve serializability because the overview so

far omitted the third crucial step where compatible trans-

actions are ordered with respect to each other. Figure 5

illustrates why ordering compatible, overlapping transac-

tions is crucial with an example involving three transac-

tions reading and modifying three keys held on three sep-

arate servers. If uncoordinated, these three servers may

inconsistently apply the transactions, forming a depen-

dency cycle between transactions. Under this hypothet-

ical scenario, each server will see only two of the three

transactions and will only establish one edge in the de-

pendency graph with no knowledge of the other depen-

dencies. To rectify this problem, compatible transactions

must be applied in a globally consistent order that does

not introduce dependency cycles. We discuss how linear

transactions propagate dependency information in both

phases to accomplish this.

2.3 Dependency Management

Linear transactions prevent dependency cycles between

transactions by collecting and propagating dependency

information. This dependency information comes in two

forms. First, happens-before relationships establish ex-

plicit serialization between two transactions. To say that

T1 → T2 is to say that T1 happens-before T2 and must

be serialized in that order across all hosts. The sec-

ond dependency type is a needs-ordering dependency

that indicates that two transactions will necessarily have

a happens-before relationship in the future, but cannot

be ordered at the current point in time. Conceptually,

the dependencies may be modeled on a graph, where di-

5

ka kb kc

T1

T2

T3

T1

T2

T3

Dependencies by Key Dependencies

Figure 6: Linear transactions capture dependencies between

transactions. This example shows three transactions, each of

which touches two keys. The diagram on the left shows how

happens-before relationships (arrows) are detected on a per-key

basis. The dashed arrow is a transitively-defined dependency.

The diagram on the right shows the overall acyclic dependency

graph.

rected edges indicate happens-before relationships and

undirected edges indicate needs-ordering relationships

that will eventually become directed edges.

The protocol captures all dependency information as

transactions traverse chains in the forward and reverse di-

rection. Dependencies accumulate and propagate in the

same messages that carry the transactions themselves.

This embedding ensures that, for each transaction, the

dependency information will be immediately available

to every successive node without additional messaging

overhead.

Servers introduce happens before relationships as they

encounter previously committed transactions that pertain

to keys appearing in the current transaction. Concep-

tually, whenever a server introduces a happens-before

relationship, it also embeds all transitive relationships

(in practice, garbage collection limits the size of these

sets, a topic we discuss later). These implicit depen-

dencies are added during both the forward and backward

phases. Note that since all dependencies relate to com-

patible transactions, adding new dependencies during the

backwards phase is a safe operation that cannot cause an

abort.

Servers capture needs-ordering dependencies during

the prepare phase of the transaction. For each concur-

rently prepared, compatible transaction, the server emits

a needs-ordering dependency. The dependency specifies

the two transactions and designates a server §ω that must

translate the needs-ordering dependency into a happens-

before dependency. Sω is chosen such that it is the server

responsible for the last key in common to both transac-

tions. This server sees the commit message first, as it

is being propagated in the backward direction, and thus

assigns the order to the two transactions. Every other

server in common to the chains must commit in accor-

dance with this server’s selected ordering.

A designated server Sω needs to convert a needs-

ordering dependency into a happens-before dependency

in a manner that maintains serializability. If done incor-

rectly, the server could introduce a dependency cycle.

For instance, Figure 6 illustrates a case where transac-

tions T1 and T3 are ordered by the server holding ka. If

this server were to order T3 → T1, the dependency graph

would contain a cycle.

To avoid such failures to serialize, designated servers

transform needs-ordering dependencies into happens-

before dependency only when they have a complete

view of the dependency graph. To obtain this, the

server waits until it receives a commit message for ev-

ery prepared-but-not-committed compatible transaction.

Once a server has this information, it may consult the de-

pendencies of all overlapping, compatible transactions,

and compute the correct direction for the needs-ordering

dependency. In the example above, the server holding ka

should order T1 → T3 based on the embedded dependen-

cies of all transactions, and lead to a serializable order.

The next section discusses the invariants that ensure that

such an order is achievable.

2.4 Anti-Cycle Invariants

The linear transactions protocol ensures correctness by

ensuring that the dependency graph is acyclic. This sec-

tion provides a sketch of why the dependency manage-

ment maintains the anti-cycle invariant at all times.

The observation to make here is that for any possible

cycle that could exist, there is always one happens-before

dependency that, if directed correctly, would prevent the

cycle and preserve the anti-cycle invariant. The protocol

does this by treating every needs-ordering dependency

as a case that may introduce a cycle. Given sufficient

information about other edges in the graph, it’s always

possible to make this decision.

The protocol guarantees that sufficient dependency in-

formation is available by first capturing all dependen-

cies, and then making sure that all dependencies propa-

gate through the whole system. All dependencies are in-

herently captured because each server checks local state

for compatible transactions. The dependencies propagate

because servers only add, and never remove, dependen-

cies.

Note that servers must consult the embedded depen-

dencies for both transactions in a needs-ordering rela-

tionship before a happens-before relationship may be es-

tablished. We can see an example case where this is

necessary in Figure 6. In this figure, the dependency

T1 → T2 may be introduced either as a happens-before

dependency when T1 commits before T2 prepares at kb,

or as a needs-ordering dependency when T2 prepares be-

fore T1 commits at kb. The former case will cause de-

pendencies to propagate through the messages for T2 and

6

f = 0

f = 1

ka kb kc

Figure 7: Fault tolerance is achieved through replication. The

top set of servers shows an f = 0 configuration that tolerates

no failures. By inlining replicas within the linear transaction’s

chain, the f = 1 deployment shown on the bottom can with-

stand one server failure for each key. The linear transaction is

threaded through all relevant replicas.

T3 while the latter case causes the server holding kb to

dictate the order and embed the dependency in T1’s com-

mit message. In both cases, the server holding ka has

sufficient information to infer that T1 → T3 using the re-

lationships T1 → T2 and T2 → T3.

2.5 Fault Tolerance

In a large-scale deployment, failures are inevitable. Lin-

ear transactions provide a natural way to overcome such

failures. Specifically, linear transactions can easily per-

mit a subchain of f + 1 replicas to be inlined into a

longer chain in place of a single data server. This al-

lows the system to remain available despite up to f fail-

ures for any particular key. Within the subchain, chain

replication maintains a well-ordered series of updates to

the underlying, replicated data. Operations that traverse

the linear transaction chain in the forward direction will

pass forward through all inlined chains. Likewise, op-

erations that traverse the chain in reverse will traverse

inlined chains in reverse. Figure 7 shows a linear trans-

action that traverses an f = 0 configuration and the same

transaction under an f = 1 configuration.

This fault tolerance mechanism naturally tolerates

network partitions as well. Servers that become sepa-

rated from the system during a partition will not make

progress because they are partitioned from the cluster,

and any transaction that commits is guaranteed to have

traversed all servers in the chain. To ensure liveness dur-

ing the partition, the system treats servers that become

partitioned as if they are failed nodes. After the parti-

tion heals, these servers may reassimilate into the clus-

ter. Epoch identifiers in messages prohibit the mixing of

messages from different configurations of the system.

Note that the notion of fault-tolerance provided by lin-

ear transactions is different from the notion of durabil-

ity within traditional databases. While durability ensures

that data may be re-read from disk after a failure, the sys-

tem remains unavailable during the failure and recovery

period; in contrast, fault tolerance ensures that the sys-

tem remains available up to a threshold of failures.

2.6 Atomicity

The protocol ensures that transactions execute atomi-

cally; either all operations take effect, or none do. Since

servers can never convert a COMMIT message into an

ABORT or vice-versa, all nodes on a chain will unani-

mously agree on the outcome by the time an acknowl-

edgement is sent to the client. In the event of a failure,

the chain will be reconfigured and queued messages will

be re-sent, enabling the chain to continue in unison.

2.7 Consistency

The consistency of the data store is preserved by linear

transactions. With each commit, the system is taken from

one valid state to the next. All invariants that an appli-

cation may maintain on the data store are upheld by the

linear transactions protocol.

Transactions are fully consistent with non-

transactional key operations issued against the data

store. Upon receipt of a key operation for a key that is

currently read or written by a transaction, the system

delays the processing of the key operation until after

the transaction commits or aborts. This renders non-

transactional key operations compatible with the linear

transactions.

2.8 Isolation

Clients’ optimistic reads and writes are consistent with

one-copy serializability. Over the course of the transac-

tion, the client collects the set of all values it read. A

committed linear transaction guarantees that the checks

specified by the client are valid at commit time. Al-

though the values read may change (and change back)

between when the client first reads, and when the transac-

tion commits, the client is unable to distinguish between

this case and a case in which the client read the values

immediately before commit.

2.9 Nonblocking

Linear transactions are non-blocking [25] and guaran-

teed to make progress in the normal case of no fail-

ures. A transaction does not spuriously abort; it will

only be aborted or delayed because of a concurrently ex-

ecuted, conflicting transaction. For each aborted trans-

action, there always exists another transaction that made

progress at the key generating the conflict. Because there

are only a finite number of transactions executing at any

given time, there will always be at least one transaction

that commits successfully causing others to abort. This

satisfies the non-blocking criteria.

7

2.10 Garbage Collection

Our protocol as described thus far seems to collect in-

formation about transactions without bound. A sim-

ple gossip-based garbage collector with predictable over-

heads keeps the size of these sets in check. Specifically,

each transaction is identified by a unique 128-bit id as-

signed to it by the first storage server in its chain, created

by concatenating the ip address and port of the server

with a monotonic counter. These transaction identifiers

are strictly increasing, allowing each server to broadcast

the lowest-numbered transaction that has prepared but

not yet committed or aborted. Each server periodically

broadcasts the lowest transaction id that has prepared but

not committed or aborted. Upon collecting such broad-

casts from its peers, a server can completely flush all in-

formation related to previous transactions. This enables

large numbers of transactions to be garbage collected us-

ing a constant amount of background traffic.

3 Implementation

We have fully implemented the system described in this

paper. The codebase consists of 74,563 lines of code, ap-

proximately 5,500 lines of which are exclusively devoted

to processing transactions. The Warp distribution pro-

vides complete bindings for C, C++, and Python and sup-

ports a rich API that supports string, integer, float, list,

set, and map types and complex atomic operations on

these objects, such as conditional put, string prepend and

append, integer addition/subtraction/multiplication/divi-

sion, list prepend, list append, set union/intersection/sub-

traction, and atomic string or integer operations on values

contained within maps and search over secondary values.

Warp supports nested transactions that allow applications

to create an arbitrary number of transaction scopes, and

commit or abort each one independently.

3.1 Programming Model

Clients connect to Warp via a WarpClient object,

through which a client can issue immediate, non-

transactional operations to the data store. Clients create

transaction objects using the begin transaction call

from the WarpClient. The transaction object provides

the exact same interface as the WarpClient, enabling

applications to easily wrap operations within a transac-

tion. Figure 8 shows an example banking application

that was converted from the WarpClient to a transaction

using just the three marked lines of code. Whereas non-

transactional code issues operations immediately to the

data store, the transaction object stores reads and writes

in a per-transaction local key-value store. At commit

time, the read and modified objects are aggregated by

the client and sent en-masse to the datastore.

Warp natively supports transactions that cross schema

boundaries. The linear transaction incorporates servers

def transfer_money(client, src, dst, amt):

t = client.begin_transaction() # <-

src_bal = t.get(src)

dst_bal = t.get(dst)

if src_bal >= amt:

src_bal -= amt

dst_bal += amt

t.put(src, src_bal)

t.put(dst, dst_bal)

t.commit() # <-

return True

else:

t.abort() # <-

return False

Figure 8: An example function that transfers money from one

account to another inside of a transaction. The marked lines

indicate the transaction-specific code that a developer would

add to convert an application to Warp.

from different schemas into the chain just as it does for

operations on different keys.

3.2 Nested Transactions

Warp supports arbitrarily nested transactions. Clients

may perform a transaction within an ongoing transac-

tion. Every nested transaction maintains its own locally-

managed transaction context. Each read within a nested

transaction passes through all parent transactions before

finally reaching the key-value store, stopping at the first

key-value store that contains a copy of the object. At

commit time, the client atomically compares a nested

transaction with its parent, and can locally make the de-

cision to commit or abort. When the nested transaction

commits, it atomically updates its parent’s transaction

context. When the root parent of all nested transactions

commits, it includes all the checks seen by any nested

transactions started within. The resulting linear transac-

tion will commit the changes for both the parent transac-

tion and all linear transactions.

3.3 Coordinator

Warp relies on a coordinator to keep track of metastate

about cluster membership. A replicated state machine

maintains and distributes a mapping that determines how

objects are mapped to servers. Clients consult this map-

ping to issue reads and writes to the appropriate servers,

while servers use the mapping to dynamically determine

their next and previous servers for each linear transac-

tion’s chain.

Each time a server reports to the coordinator that a

failure has disrupted one or more chains, the coordina-

tor issues a new configuration acknowledging this report.

Embedded within the configuration is a strictly increas-

ing epoch number that uniquely identifies the configura-

8

tion. All server-to-server messages contain this epoch

number, enabling servers to discard late-arriving mes-

sages from a previous epoch. Servers send each prepare/-

commit/abort message at most once per epoch to ensure

that other servers may detect and drop late-arriving mes-

sages. Because metadata about committed and aborted

transactions persists on the servers until garbage collec-

tion, and garbage collection happens only after an op-

eration completely traverses the chain, servers are guar-

anteed to be able to retransmit prepare messages for

incomplete transactions and receive the same response.

Any commit or abort message generated in the previ-

ous epoch will be ignored; only messages from current

epochs will be accepted.

The coordinator is implemented on top of the

Redacted replicated state machine library. Redacted uses

chain replication [52] to sequence the input to the state

machine and a quorum-based protocol to reconfigure

chains on failure. The details of Redacted are beyond

the scope of this paper; the function of the coordinator

could easily be taken on by configuration services such

as ZooKeeper [26] or Chubby [9].

4 Evaluation

We evaluate Warp transactions using both macro and mi-

cro benchmarks against two popular NoSQL systems,

namely, Cassandra and MongoDB. We also include Hy-

perDex in our evaluation, which serves as a represen-

tative for high-performance, second-generation NoSQL

systems. The primary focus of our evaluation is on ex-

amining the performance and scalability – both as a func-

tion of transaction size and cluster size – of Warp transac-

tions. Additionally, we illustrate the correctness of Warp

transactions by building an example credit-card process-

ing application on top of both HyperDex and Warp, and

demonstrating that the Warp variant preserves all credit

charges while the HyperDex variant leads to inaccurate

final balances.

We performed our experiments on our dedicated lab-

size cluster consisting of thirteen servers, each of which

is equipped with two Intel Xeon 2.5 GHz E5420 pro-

cessors, 16 GB of RAM, 500 GB SATA 3.0 Gbit/s hard

disks, and Gigabit Ethernet. The servers are running 64-

bit Debian 6 with the Linux 2.6.32 kernel. We deployed

Cassandra version 1.2.0, MongoDB version 2.2.2, the

latest HyperDex code from Git, and Warp on each server.

Each storage system was configured with appropriate

settings for a real deployment of this size. This includes

setting the replication factor to be the minimum value

necessary to tolerate one failure of any process or ma-

chine. For HyperDex and Warp, this means that both

the coordinators and the storage servers can each toler-

ate one failure. We used the default consistency settings

for each storage system. Both MongoDB and Cassan-

0

50

100

150

200

250

300

350

400

MongoDB Cassandra HyperDex Warp

T
h
ro

u
g
h
p
u
t

(t
h
o
u
sa

n
d

o
p
/s

)

Workload A
Workload B
Workload C
Workload D
Workload F

Figure 9: Warp achieves high throughput. This graph shows

the average throughput for the YCSB benchmarks using 1 kB

objects. MongoDB, Cassandra, and HyperDex are represen-

tative NoSQL systems that do not provide atomic transac-

tions. Despite offering significantly stronger guarantees, Warp

achieves throughput that is comparable to, or exceeds, the

throughput of other systems. Warp achieves a throughput

of more than fifty-thousand transactions per second for each

workload.

dra offer eventual-consistency [50] by default, whereas

HyperDex and Warp default to strong consistency.

4.1 YCSB

The Yahoo! Cloud Serving Benchmark (YCSB) [12]

is the industry-standard tool for comparing the perfor-

mance of NoSQL systems. YCSB provides a common

platform for benchmarking systems through a set of ab-

stractions that match most NoSQL systems’ interfaces,

and a set of workloads that resemble internal workloads

within Yahoo!.

YCSB workloads involve only basic, non-transaction

read or write operations on the primary key. We extend

the YCSB benchmark for Warp to group these operations

into transactions of eight operations each. For this exper-

iment, we run the standard YCSB workloads for Hyper-

Dex, Cassandra, and MongoDB, and group key opera-

tions within begin and end operations for Warp. Fig-

ure 9 shows the overall throughput for the five key-based

workloads in the YCSB benchmark. Warp provides com-

parable performance to MongoDB and Cassandra, out-

performing both in workload A, B, F. For write-heavy

workloads, Warp achieves 80% of the throughput of Hy-

perDex, even though it offers transactional semantics.

By offering comparable performance to these commonly

used NoSQL systems, we demonstrate that Warp trans-

actions have incredibly low overhead, and for a variety of

workloads, Warp will actually offer increased throughput

over MongoDB and Cassandra..

To understand why Warp and HyperDex offer sig-

nificantly higher throughput than the other systems, we

investigate the latency of the read-modify-write opera-

9

0

20

40

60

80

100

1 10 100 1000

C
D

F
(%

)

Latency (ms)

MongoDB
Cassandra
HyperDex

Warp

Figure 10: This graph shows the CDF of latency for write op-

erations in Worload B. Warp and HyperDex have similar per-

formance, and both have significantly lower latency than Mon-

goDB.

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20 25 30

L
at

en
cy

(m
il

li
se

co
n
d
s)

Throughput (thousand ops/s)

HyperDex
Warp

Figure 11: Warp’s latency for transactions is comparable to a

non-transactional workload under different fixed throughputs.

tions. Figure 10 shows a CDF of the latency of update

operations for all four systems for Workload A. Hyper-

Dex and Warp complete 95% of read-modify-write oper-

ations in less than 1 ms while Cassandra takes 2 ms and

MongoDB takes nearly 4 ms. The low latency explains

the high throughput of Figure 9; as operations complete

quicker, the clients may issue more operations per sec-

ond.

Figure 11 illustrates the latency of HyperDex and

Warp for different fixed throughputs. It shows that la-

tency of Warp transactions is largely independent of

the system’s throughput, as the latency stays just under

2.5 ms even with increasing throughput from additional

load. We also see that Warp’s transactional overhead is

independent of the throughput, as the latency of Hyper-

Dex and Warp remain similar throughput the experiment.

0

200

400

600

800

1000

0% 25% 50% 75% 100%

T
h
ro

u
g
h
p
u
t

(t
h
o
u
sa

n
d

o
p
s/

s)

Percent PUT operations

HyperDex
Warp

Figure 12: The ratio of read/write operations does not af-

fect the throughput for transactions. This graph shows the per-

operation throughput of transactions with two operations as the

read/write ratio shifts from 100% read to 100% write.

4.2 Read/Write Ratio

YCSB Workload F specifies a mix of read and read-

modify-write operations where each read-modify-write

operation inherently represents a mix 50% read, 50%

write within the context of a transaction. Intuitively,

Warp should provide throughput that is independent of

the read/write ratio within a transaction because both op-

erations share the same dominant cost: one get to fetch

the most recent object, possibly modifying it locally, and

one pass through the linear transaction chain to validate

the initial get and commit the result.

To test the performance impact of varying the read-

/write ratios, we created a microbenchmark that creates

transactions consisting of eight keys with fixed size keys

and values – 8 B and 64 B respectively – chosen uni-

formly at random, with a configurable read/write ratio.

As we can see in Figure 12, the throughput of Warp

transactions is independent of the read/write ratio. Warp

provides approximately 250,000 operations per second,

or just over 31,000 transactions per second. Unlike our

previous performance results from workload F, we see a

constant performance difference between Warp and Hy-

perDex. This is due to the significantly higher demand of

our microbenchmark compared to workload F in YCSB,

exposing even small performance overheads. The per-

formance gap primarily stems from the extra round trips

Warp performs to fetch data.

4.3 Transaction Size

The size of a transaction, which we define as the number

of keys the transaction touches, determines the number

of servers in a linear transactions chain. Therefore, in-

creasing the size of a transaction decreases the number

of transactions Warp can perform per-second, but does

10

0

200

400

600

800

1000

2 4 6 8 10 12 14 16

T
h
ro

u
g
h
p
u
t

(t
h
o
u
sa

n
d

o
p
s/

s)

Transaction Size (objects)

HyperDex
Warp

Figure 13: The total throughput of Warp is dependent on the

per-operation throughput of the underlying key-value store, and

largely independent of the transaction size. This graph shows

the per-operation throughput of a 100% write workload as the

number of keys in a transaction increases.

not affect the rate at which it performs key-value opera-

tions.

To test the performance impact of transaction size, we

modified our previous microbenchmark to vary the num-

ber of keys in a transaction rather than the read/write ra-

tio. In this experiment, the microbenchmark issues trans-

actions with a configurable number of put operations on

random keys. Figure 13 shows the results of this experi-

ment. We can see that, as expected, the number of opera-

tions per second is relatively independent of the trans-

action size. This demonstrates that longer transaction

chains do not introduce additional overhead, and that, for

this workload, the transaction rate is a linear function of

the transaction size.

4.4 Scalability

The performance of linear transactions should scale lin-

earily with the number of servers in the cluster, as the

number of servers that participate in a linear transac-

tion is dependent only on the transaction size. Adding

more servers to the cluster should therefore yield a pro-

portional increase in performance by spreading the work

across more servers. Figure 14 shows the aggregate

throughput of our microbenchmark with different clus-

ter sizes. As we had expected, Warp achieves perfect

scalability in this experiment, with throughput increas-

ing linearily with the cluster size.

4.5 Credit Card Application

To demonstrate the correctness of Warp transactions, we

created a simulation of a credit card processing appli-

cations with strict atomicity, consistency, and isolation

requirements. Our example application consists of mer-

0

50000

100000

150000

200000

250000

300000

350000

400000

2 4 6 8 10 12

T
h
ro

u
g
h
p
u
t

(o
p
s/

s)

Servers

Warp

Figure 14: Warp is a scalable system. This graph shows the

aggregate throughput of the system as servers are added. The

number of clients and the workload remain fixed for all deploy-

ment sizes. Each point represents the average across three runs.

With each additional server, the overall throughput increases

proportionally, exhibiting linear scaling.

chants, users and banks, and simulates the process of a

user charging her credit card. Each credit card transac-

tion randomly selects a bank using a Zipf distribution,

a user using a uniform distribution, and a merchant also

using a uniform distribution. For each credit card trans-

action, the system picks an amount uniformly distributed

between 10 and 100, and charges to the user, credits the

merchant, and collects a processing fee for the bank.

Without transactional guarantees, this application is

prone to lost-updates, which can lead to missing charges

and even money disappearing from the system. Figure 15

shows the same bank application running on top of Warp

and HyperDex to process 1,200,000 transactions. On av-

erage, using HyperDex as the storage system, the appli-

cation neglected to charge users $100,000 in charges, did

not credit merchants for that said $100,000, and cost the

banks $12. Warp using linear transactions presented no

such anomalies. Although this example is synthetic, the

result generalizes to real-world applications.

4.6 Abort Rate

As with any optimistic concurrency control scheme,

Warp transactions may occasionally abort. To determine

Warp’s abort rate, we performed read-write transactions

on two keys, varying the size of the key set used to

choose one of the keys. Intuitively a smaller key set will

abort more often. Figure 16 shows the results of this ex-

periment. For any write set consisting of more than ten

thousand keys, the abort rate is less than 1% of all trans-

actions.

11

1

10

100

1000

10000

100000

1e+06

1e+07

1e+08

B
ank

U
ser

M
erchant

E
rr

o
r

(D
o
ll

ar
s)

HyperDex (average)
Warp (average)

Warp (maximum)

Figure 15: An example credit-card processing application

built on top of HyperDex and Warp. The HyperDex application

has a large discrepancy between expected and actual account

balances, while the Warp application has no such discrepan-

cies. After processing 10,000 transactions, merchants lost an

average of $100,000.

5 Related Work

Transaction management has been an active research

topic since the early days of distributed database sys-

tems [7, 44]. Existing approaches can be broadly clas-

sified into the following categories based on the mecha-

nism they employ for ordering and atomicity guarantees.

Centralized: Early RDBMS systems relied on physi-

cally centralized transaction managers []. While central-

ization greatly simplifies the implementation of a trans-

action manager, it poses a performance and scalability

bottleneck and acts as a single point of failure. Warp,

like many other systems, is based on a distributed archi-

tecture.

Distributed: The traditional approach to distributing

transaction management is to provide a set of special-

ized transaction managers that serve as intermediaries

between clients and back-end data servers. These trans-

action managers perform lock or timestamp manage-

ment [8], and employ a protocol, such as two phase-

commit (2PC), for coordination. Gray and Lamport [22]

show that the classic two-phase commit algorithm is a

special, f = 0 variant of Paxos that cannot tolerate a co-

ordinator fault.

Some systems physcially separate and unbundle

transaction management logic from the servers that store

the data. Such a separation allows the design of the

transactional component to be independent from the de-

sign of the rest of the system, such as data layout and

caching [34]. ElasTraS [15] builds on this technique

to provide an elastic layer of transaction managers for

cloud services. Warp takes the opposite approach: in-

10

20

30

40

50

60

70

80

90

100

1 10 100 1000 10000 100000 1e+06

P
er

ce
n
ta

g
e

o
f

A
b
o
rt

s

Number of Keys

Figure 16: The abort rate decreases significantly as contention

decreases. This experiment selects 2-key transactions where

one key is selected uniformly at random from a set of 1 million

keys and the other key is selected uniformly at random from a

key set of varying size.

stead of separating transactions from the underlying stor-

age, it integrates transaction management with the un-

derlying servers that hold the data and threads transac-

tional updates through the storage components. This

coupling refactors transaction management out of ded-

icated servers, distributes it across a larger set of hosts

and leads to an efficient implementation.

Consensus-based: More recent work has examined how

to use a general consensus protocol, such as Paxos [30]

and Zab [26], to perform ordering while preserving fault-

tolerance. Calvin [51] batches transactions, sequences

them using a consensus protocol, and employs deter-

ministic execution to arrive at a globally-agreed sched-

ule of operations. Megastore [5] commits transactions

within a single partition to a persistent log replicated

by Paxos; cross-partition transactions employ two-phase

commit. MDCC [28] durably commits transactions with

one round trip using Fast Paxos, escrow transactions [37]

and demarcation [6]. Scatter [20] is a strongly consis-

tent DHT that uses Paxos for to provide linearizability

and robust membership changes. Scalaris [46] builds

strongly consistent multi-key transactions using Paxos.

Like the consensus-based approaches, Warp relies on

a fault-tolerant agreement protocol, inspired by chain-

replication [52] and value-dependent chaining [18], to

achieve strong consistency and atomicity. Warp does not

partition the data or the consensus group, and does not

place any restrictions on which keys may appear in a

transaction. Warp uses no special, designated hosts to

sequence transactions or to perform consensus; instead,

only those servers that house the relevant data (plus tran-

sitive closure) partake in the agreement protocol. More

importantly, Paxos-based approaches impose a signifi-

12

cant performance overhead, whereas Warp transactions

are fast with minimal overhead.

Synchronized clocks: Some notable systems in this

space take advantage of synchronized clocks to assign

timestamps to transactions as well as determine when

they are safe to commit. Adya et. al. [1] support serial-

izable transactions and use loosely synchronized clocks

as a performance optimization. Spanner [13] uses syn-

chronized clocks to achieve high-throughput and exter-

nal consistency for transactions. These techniques are

complementary to Warp, which makes no assumptions

about clock synchrony; processes’ clocks may proceed

at different rates without negatively affecting either per-

formance or safety.

Client-managed transactions: Some systems have ex-

plored how to factor transaction management function-

ality to clients. CrSO [19] uses a centralized status or-

acle to check for read-write or write-write conflicts at

commit time. Clients directly modify the underlying

storage; consequently, CrSO must make provisions to

garbage collect state when clients fail. Percolator [39]

maintains Google’s search index using distributed trans-

actions. Clients of Percolator store both data and locks in

BigTable. Periodic background processes clean up locks

held by failed processes. Warp’s transactions do not rely

upon the client to remain available. Instead, transactions

are fully fault-tolerant and do not require background

processes to compensate for failures.

Alternative consistency models: Systems that operate

across the wide area have explored consistency mod-

els weaker than linearizability. Real-time causal con-

sistency [35] has been shown to be an upper bound for

always-available, convergent data stores. COPS-GT [32]

provides get transactions which retrieve a causal+-

consistent view of a set of keys. Eiger [33] expands the

guarantees of COPS-GT with write-transactions which

commit atomically in accordance with the causal order of

the respective writes. Both COPS-GT and Eiger build on

top of strongly-consistent key-value stores. Walter [47]

implements a consistency model called parallel snapshot

isolation using counting sets for resolving conflicts. Sim-

ilar to commutative data types [31], counting sets rec-

oncile multiple concurrent writes by merging conflicting

versions. Warp focuses not on low-latency geograph-

ically distributed transactions, but on providing fully-

serializable transactions within a single datacenter.

Data Shipping G-Store [16] provides serializable trans-

actions on top of HBase. Instead of using a sepa-

rate transaction manager, G-Store changes the primary

replica of all objects involved in a transaction to a sin-

gle server which may then process the transaction atom-

ically.

Limited Functionality Sinfonia [2] provides minitrans-

actions which allow an application to specify sets of

checks, reads, and writes and commit the result in two

round trips. Granola [14] supports independent transac-

tions which can be independently executed across mul-

tiple machines without coordination. Warp’s transaction

commit uses a set of checks and writes to validate and

apply a client’s changes and reduces coordination where

possible.

H-Store [49] provides relational transactions and ef-

ficiently supports constrained tree applications through

an optimization that guarantees that OLTP transactions

are executed by a single server. Warp targets workloads

that make use of key-value stores and is not designed for

OLTP applications.

NoSQL Stores: NoSQL systems offer high perfor-

mance and scalability, often obtained through trade-

offs involving consistency and transaction functional-

ity. Amazon’s Dynamo [17] and its derivatives [29,

40, 43] provides high write availability via sloppy quo-

rums. Google’s BigTable [10] manages structured data

at the petabyte scale on top of commodity servers. Ya-

hoo!’s PNUTS [11] stores data within structured tables

using record-level replication on top of a guaranteed

message-delivery service. More generally, these NoSQL

systems have roots in Distributed Data Structures [23]

and distributed hash tables [42, 45, 48, 53]. FAWN-

KV [3] is a linearizable key-value store built on low-

power servers. RAMCloud [38] provides strong con-

sistency and fast failure recovery. Spinnaker [41] uses

Paxos to provide atomic compare-and-swap operations

on keys.

6 Conclusion

This paper described Warp, a key-value store that pro-

vides one-copy-serializable ACID transactions. The

main insight behind Warp is a protocol called linear

transactions which enables the system to completely dis-

tribute the task of ordering transactions. Consequently,

transactions on separate servers will not require expen-

sive coordination and the number of servers that process

a transaction is independent of the number of servers in

the system. The system achieves high performance on

a variety of standard benchmarks, performing nearly as

well as the non-transactional key-value store that Warp

builds upon.

References

[1] Atul Adya, Robert Gruber, Barbara Liskov, and Umesh Mahesh-
wari. Efficient Optimistic Concurrency Control Using Loosely

Synchronized Clocks. In Proceedings of the SIGMOD Interna-

tional Conference on Management of Data, pages 23-34, San

Jose, California, May 1995.

[2] Marcos Kawazoe Aguilera, Arif Merchant, Mehul A. Shah, Al-

istair C. Veitch, and Christos T. Karamanolis. Sinfonia: A New

13

Paradigm For Building Scalable Distributed Systems. In Proceed-

ings of the Symposium on Operating Systems Principles, pages

159-174, Stevenson, Washington, October 2007.

[3] David G. Andersen, Jason Franklin, Michael Kaminsky, Amar

Phanishayee, Lawrence Tan, and Vijay Vasudevan. FAWN: A
Fast Array Of Wimpy Nodes. In Proceedings of the Symposium

on Operating Systems Principles, pages 1-14, Big Sky, Montana,

October 2009.

[4] Anonymized for submission.

[5] Jason Baker, Chris Bond, James Corbett, J. J. Furman, Andrey

Khorlin, James Larson, Jean-Michel Leon, Yawei Li, Alexander

Lloyd, and Vadim Yushprakh. Megastore: Providing Scalable,

Highly Available Storage For Interactive Services. In Proceed-
ings of the Conference on Innovative Data Systems Research,

pages 223-234, 2011.

[6] Daniel Barbará and Hector Garcia-Molina. The Demarcation

Protocol: A Technique For Maintaining Constraints In Dis-

tributed Database Systems. In VLDB Journal, 3(3):325-353,

1994.

[7] Philip A. Bernstein and Nathan Goodman. Concurrency Control

In Distributed Database Systems. In ACM Computing Surveys,

13(2):185-221, 1981.

[8] Philip A. Bernstein and Nathan Goodman. Concurrency Control

In Distributed Database Systems. In ACM Computing Surveys,

13(2):185-221, 1981.

[9] Michael Burrows. The Chubby Lock Service For Loosely-

Coupled Distributed Systems. In Proceedings of the Symposium

on Operating System Design and Implementation, pages 335-350,

Seattle, Washington, November 2006.

[10] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh,

Deborah A. Wallach, Michael Burrows, Tushar Chandra, Andrew

Fikes, and Robert Gruber. Bigtable: A Distributed Storage Sys-

tem For Structured Data. In Proceedings of the Symposium on

Operating System Design and Implementation, pages 205-218,

Seattle, Washington, November 2006.

[11] Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava,

Adam Silberstein, Philip Bohannon, Hans-Arno Jacobsen, Nick
Puz, Daniel Weaver, and Ramana Yerneni. PNUTS: Yahoo!’s

Hosted Data Serving Platform. In Proceedings of the VLDB En-

dowment, 1(2):1277-1288, 2008.

[12] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakr-

ishnan, and Russell Sears. Benchmarking Cloud Serving Systems

With YCSB. In Proceedings of the Symposium on Cloud Com-

puting, pages 143-154, Indianapolis, Indiana, June 2010.

[13] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew
Fikes, Christopher Frost, JJ Furman, Sanjay Ghemawat, Andrey

Gubarev, Christopher Heiser, Peter Hochschild, Wilson Hsieh,

Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexander Lloyd,

Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan,

Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak,

Christopher Taylor, Ruth Wang, and Dale Woodford. Spanner:

Googles Globally-Distributed Database. In Proceedings of the
Symposium on Operating System Design and Implementation,

pages 251-264, 2012.

[14] James Cowling and Barbara Liskov. Granola: Low-Overhead

Distributed Transaction Coordination. In Proceedings of the

USENIX Annual Technical Conference, 2012.

[15] Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. ElasTraS:

An Elastic Transactional Data Store In The Cloud. In Proceedings

of the Workshop on Hot Topics in Cloud Computing, San Diego,

California, June 2009.

[16] Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. G-Store:

A Scalable Data Store For Transactional Multi Key Access In The

Cloud. In Proceedings of the Symposium on Cloud Computing,

pages 163-174, Indianapolis, Indiana, June 2010.

[17] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gu-

navardhan Kakulapati, Avinash Lakshman, Alex Pilchin, Swami-

nathan Sivasubramanian, Peter Vosshall, and Werner Vogels. Dy-

namo: Amazon’s Highly Available Key-Value Store. In Proceed-

ings of the Symposium on Operating Systems Principles, pages
205-220, Stevenson, Washington, October 2007.

[18] Robert Escriva, Bernard Wong, and Emin Gün Sirer. HyperDex:

A Distributed, Searchable Key-Value Store. In Proceedings of the

SIGCOMM Conference, pages 25-36, Helsinki, Finland, August

2012.

[19] Daniel Gómez Ferro, Flavio Junqueira, Benjamin Reed, and

Maysam Yabandeh. Lock-Free Transactional Support For Dis-

tributed Data Stores. Poster Session. Symposium on Operating

Systems Principles, Cascais, Portugal, 2011.

[20] Lisa Glendenning, Ivan Beschastnikh, Arvind Krishnamurthy,

and Thomas E. Anderson. Scalable Consistency In Scatter. In

Proceedings of the Symposium on Operating Systems Principles,

pages 15-28, Cascais, Portugal, October 2011.

[21] Jim Gray. A Transaction Model. In Automata, Languages and

Programming, 85:282-298, 1980.

[22] Jim Gray and Leslie Lamport. Consensus On Transaction Com-

mit. In ACM Transactions on Database Systems, 31(1):133-160,

2006.

[23] Steven D. Gribble. A Design Framework And A Scalable Storage
Platform To Simplify Internet Service Construction. PhD thesis,

U.C. Berkeley, 2000.

[24] HBase. http://hbase.apache.org/.

[25] Maurice Herlihy. Wait-Free Synchronization. In ACM Transac-

tions on Programming Languages and Systems, 13(1):124-149,

1991.

[26] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin

Reed. ZooKeeper: Wait-Free Coordination For Internet-Scale

Systems. In Proceedings of the USENIX Annual Technical Con-

ference, 2010.

[27] David R. Karger, Eric Lehman, Frank Thomson Leighton, Rina

Panigrahy, Matthew S. Levine, and Daniel Lewin. Consistent

Hashing And Random Trees: Distributed Caching Protocols For

Relieving Hot Spots On The World Wide Web. In Proceedings of

the ACM Symposium on Theory of Computing, pages 654-663, El

Paso, Texas, May 1997.

[28] Tim Kraska, Gene Pang, Michael J. Franklin, and Samuel Mad-

den. MDCC: Multi-Data Center Consistency. In The Computing

Research Repository, abs/1203.6049, 2012.

[29] Avinash Lakshman and Prashant Malik. Cassandra: A Decentral-

ized Structured Storage System. In Proceedings of the Interna-

tional Workshop on Large Scale Distributed Systems and Middle-

ware, Big Sky, Montana, October 2009.

14

[30] Leslie Lamport. The Part-Time Parliament. In ACM Transactions

on Computer Systems, 16(2):133-169, 1998.

[31] Mihai Letia, Nuno M. Preguiça, and Marc Shapiro. CRDTs:

Consistency Without Concurrency Control. In The Computing

Research Repository, abs/0907.0929, 2009.

[32] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and
David G. Andersen. Don’t Settle For Eventual: Scalable Causal

Consistency For Wide-Area Storage With COPS. In Proceedings

of the Symposium on Operating Systems Principles, pages 401-

416, Cascais, Portugal, October 2011.

[33] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and

David G. Andersen. Stronger Semantics For Low-Latency Geo-

Replicated Storage. In Proceedings of the Symposium on Net-

worked System Design and Implementation, Lombard, Illinois,

April 2013.

[34] David B. Lomet, Alan Fekete, Gerhard Weikum, and Michael J.
Zwilling. Unbundling Transaction Services In The Cloud. In

Proceedings of the Conference on Innovative Data Systems Re-

search, 2009.

[35] Prince Mahajan, Lorenzo Alvisi, and Mike Dahlin. Consistency,

Availability, Convergence. University of Texas at Austin, Tech-

nical Report TR-11-22, 2011.

[36] Memcached. http://memcached.org/.

[37] Patrick E. O’Neil. The Escrow Transactional Method. In ACM

Transactions on Database Systems, 11(4):405-430, 1986.

[38] Diego Ongaro, Stephen M. Rumble, Ryan Stutsman, John K.

Ousterhout, and Mendel Rosenblum. Fast Crash Recovery In

RAMCloud. In Proceedings of the Symposium on Operating Sys-

tems Principles, pages 29-41, Cascais, Portugal, October 2011.

[39] Daniel Peng and Frank Dabek. Large-Scale Incremental Process-

ing Using Distributed Transactions And Notifications. In Pro-

ceedings of the Symposium on Operating System Design and Im-

plementation, pages 251-264, Vancouver, Canada, October 2010.

[40] Project Voldemort. http://project-voldemort.com/.

[41] Jun Rao, Eugene J. Shekita, and Sandeep Tata. Using Paxos To

Build A Scalable, Consistent, And Highly Available Datastore.

In Proceedings of the VLDB Endowment, 4(4):243-254, 2011.

[42] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard M.

Karp, and Scott Shenker. A Scalable Content-Addressable Net-
work. In Proceedings of the SIGCOMM Conference, pages 161-

172, San Diego, California, August 2001.

[43] Riak. http://basho.com/.

[44] Daniel J. Rosenkrantz, Richard Edwin Stearns, and Philip M.

Lewis II. System Level Concurrency Control For Distributed

Database Systems. In ACM Transactions on Database Systems,

3(2):178-198, 1978.

[45] Antony I. T. Rowstron and Peter Druschel. Pastry: Scalable, De-

centralized Object Location, And Routing For Large-Scale Peer-

To-Peer Systems. In Proceedings of the IFIP/ACM International

Conference on Distributed Systems Platforms, pages 329-350,
2001.

[46] Thorsten Schütt, Florian Schintke, and Alexander Reinefeld.

Scalaris: Reliable Transactional P2p Key/value Store. In Pro-

ceedings of the SIGPLAN Workshop on ERLANG, pages 41-48,

Victoria, Canada, 2008.

[47] Yair Sovran, Russell Power, Marcos K. Aguilera, and Jinyang Li.

Transactional Storage For Geo-Replicated Systems. In Proceed-

ings of the Symposium on Operating Systems Principles, pages

385-400, Cascais, Portugal, October 2011.

[48] Ion Stoica, Robert Morris, David R. Karger, M. Frans Kaashoek,

and Hari Balakrishnan. Chord: A Scalable Peer-To-Peer Lookup

Service For Internet Applications. In Proceedings of the SIG-

COMM Conference, pages 149-160, San Diego, California, Au-
gust 2001.

[49] Michael Stonebraker, Samuel Madden, Daniel J. Abadi, Stavros

Harizopoulos, Nabil Hachem, and Pat Helland. The End Of An
Architectural Era (It’s Time For A Complete Rewrite). In Pro-

ceedings of the International Conference on Very Large Data

Bases, pages 1150-1160, 2007.

[50] Douglas B. Terry, Marvin Theimer, Karin Petersen, Alan J. De-

mers, Mike Spreitzer, and Carl Hauser. Managing Update Con-

flicts In Bayou, A Weakly Connected Replicated Storage System.

In Proceedings of the Symposium on Operating Systems Prin-

ciples, pages 172-183, Copper Mountain, Colorado, December

1995.

[51] Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun

Ren, Philip Shao, and Daniel J. Abadi. Calvin: Fast Distributed

Transactions For Partitioned Database Systems. In Proceedings

of the SIGMOD International Conference on Management of

Data, pages 1-12, Scottsdale, Arizona, May 2012.

[52] Robbert van Renesse and Fred B. Schneider. Chain Replication

For Supporting High Throughput And Availability. In Proceed-

ings of the Symposium on Operating System Design and Imple-

mentation, pages 91-104, San Francisco, California, December

2004.

[53] Ben Y. Zhao, John Kubiatowicz, and Anthony D. Joseph.

Tapestry: A Fault-Tolerant Wide-Area Application Infras-
tructure. In SIGCOMM Computer Communications Review,

32(1):81, 2002.

15

