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Unreliable failure detectors are mechanisms providing information about process failures,
that allow to solve several problems in asynchronous systems, e.g., Consensus. A particular
failure detector, Omega, provides an eventual leader election functionality. This paper
addresses the implementation of Omega in the crash-recovery failure model. We first
propose an algorithm assuming that processes are reachable from the correct process that
crashes and recovers a minimum number of times. Then, we propose two algorithms which
assume only that processes are reachable from some correct process. Besides this, one of
the algorithms requires the membership to be known a priori, while the other two do not.
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1. Introduction

Unreliable failure detectors were proposed by Chandra and Toueg [1] as a mechanism that provides (possibly incorrect)
information about process failures. This mechanism has been used to solve several problems in crash-prone asynchronous
distributed systems, in particular the Consensus problem [2]. In this paper, we focus on a failure detector called Omega,
proposed by Chandra, Hadzilacos and Toueg in [3], that provides eventual agreement on a common leader among all non-
faulty processes in a system. The Omega failure detector has been shown to be the weakest failure detector for solving
Consensus [3]. In this regard, algorithms solving Consensus using Omega have been proposed, e.g., [4].

Several algorithms implementing Omega have been proposed in the literature. Among them, we can include all the
algorithms that implement the Eventually Perfect class of failure detectors �P , e.g., [1,5,6], since Omega can be trivially
obtained from �P , e.g., by choosing as leader the nonsuspected process with the lowest identifier. The algorithms in [1,5,6]
assume that every pair of processes (p, q) is connected by two unidirectional communication links p → q and q → p, being
all the links eventually timely, i.e., eventually all messages are delivered within an unknown time bound.

Specific algorithms for Omega have also been proposed. Larrea et al. [7] propose an algorithm implementing Omega and�S which also requires all links to be eventually timely. Aguilera et al. [8] propose an Omega algorithm for systems where
some unknown correct process must have all its (incoming and outgoing) links eventually timely, while all other links can
be lossy asynchronous, i.e., messages can be lost or arbitrarily delayed. In [9], Aguilera et al. propose another Omega algorithm
for a weaker system in which only the outgoing links from some unknown correct process to the rest of processes must be
eventually timely. In [10], Aguilera et al. propose an algorithm for a system in which at most f processes can crash, links
are fair lossy, and some correct process has f eventually timely outgoing links. In [11], Jiménez et al. propose an algorithm
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implementing Omega with unknown membership which requires that eventually all correct processes are reachable timely
from the correct process with smallest identifier. Finally, in [12], Jiménez et al. propose another algorithm implementing
Omega with unknown membership which requires that eventually all correct processes are reachable timely from some
correct process.

All the above mentioned algorithms consider a crash failure model, in which once a process crashes it does not recover.
Failure detection and Consensus in the crash-recovery failure model has been studied in [13] (with crash-recovery as a
form of omission failure) and [14–16]. In [13,15,16], adaptations of unreliable failure detector classes �W and/or �S to
the crash-recovery failure model are defined and Consensus protocols based on the new classes are proposed. However,
no algorithm implementing those failure detectors is provided. In [14], Aguilera et al. also define an adaptation of �S to
the crash-recovery failure model and propose an algorithm implementing it in partially synchronous systems [1,17]. The
algorithm assumes a fully connected system and requires the membership to be known a priori by processes.

In this paper, we address the implementation of Omega in the crash-recovery failure model for systems not necessarily
fully connected, proposing three algorithms:

• A first algorithm assuming that eventually all processes are reachable timely from the correct process that crashes and
recovers a minimum number of times. This algorithm does not require the membership to be known a priori.

• A second algorithm assuming that eventually all processes are reachable timely from some correct process. This algo-
rithm requires the membership to be known a priori.

• A third algorithm assuming that eventually all processes are reachable timely from some correct process (as in the
second algorithm), which does not require the membership to be known a priori (as in the first algorithm).

The reachability condition assumed for the second and third algorithms, which will be further refined to adapt to our
new definition of Omega in the crash-recovery failure model, has been shown to be minimal for implementing Omega in
the crash failure model [18]. As we will see, the second and third algorithms will choose as leader the correct process that
is “less suspected” among those that reach timely all processes.

The rest of the paper is organized as follows. In Section 2, we describe the system model considered in this work, and
redefine the property of Omega in the crash-recovery failure model. In Section 3, we present the first algorithm implement-
ing Omega. In Section 4, we weaken the synchrony assumption in order to implement Omega, and present the second and
third algorithms. In Section 5, we discuss about system models regarding their connectivity and synchrony. Finally, Section 6
concludes the paper.

2. System model

We consider a system S composed of a finite and totally ordered set Π of n > 1 processes that communicate only by
sending and receiving messages. Processes are connected by unidirectional communication links. In general, not all pairs of
processes can communicate directly, i.e., there not need to be a communication link between every pair of processes. To
send messages, processes have a broadcasting primitive allowing a process to send the same message m through each of its
outgoing links.

Processes can only fail by crashing. Crashes are not permanent, i.e., crashed processes can recover. In every run, Π is
composed of the following three disjoint subsets:

(1) Eventually up. This is the subset of processes that, after crashing and recovering a finite number of times, remain up
forever, i.e., they do not crash any more. Processes that never crash are included in this subset.

(2) Eventually down. This is the subset of processes that, after crashing and recovering a finite number of times, remain
down forever, i.e., they do not recover any more. Processes that never start their execution are included in this subset.

(3) Unstable. This is the subset of processes that crash and recover an infinite number of times, i.e., there is not a time after
which either they remain up forever, or they remain down forever.

By definition, processes in (1) are correct, and processes in (2) and (3) are incorrect. We assume that the number of
correct processes in the system in any run is at least one. We also assume that every process has access to stable storage to
keep the value of some private variables, in particular an incarnation number, initialized to 0, which is incremented during
initialization and every time a process recovers from a crash.

Processes execute by taking atomic steps. We assume the existence of a lower bound σ on the number of steps per
unit of time taken by any process. For simplicity, we assume that each line of our algorithms represents one step. We also
assume that each task of our algorithms is allowed to run. Processes have clocks that accurately measure intervals of time
but are not necessarily synchronized.

We consider two types of links in S: eventually timely links and lossy asynchronous links. In eventually timely links,
there is an unknown bound δ on message delays and an unknown (system-wide) global stabilization time T , such that if
a message is sent through any of these links at a time t � T , then this message is received by time t + δ (if the receiver
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process is up).1 In lossy asynchronous links, messages can be lost or arbitrarily delayed. We consider that no link in S
modifies its messages nor generates spontaneous messages. However, it may duplicate messages or deliver them out of
order. For simplicity, we assume that messages are unique, in the sense that we can determine whether a message received
is a duplicate of a previously received message. This can be achieved by including the sender process identifier and a
sequence number into each message.

2.1. Redefinition of Omega in the crash-recovery failure model

Chandra, Hadzilacos and Toueg defined in [3] a failure detector for the crash failure model called Omega. The output of
the failure detector module of Omega at a process p is a single process q, that p currently considers to be correct (we say
that p trusts q). Omega satisfies the following property:

Property 1 (Omega-crash). There is a time after which all the correct processes always trust the same correct process.

Note that the output of the failure detector module of Omega at a process p may change through the time, i.e., p may
trust different processes at different times. Furthermore, at any given time t , two processes p and q may trust different
processes.

In practice, Omega can be queried by application processes at any time, e.g., to solve Consensus. Note that in the crash-
recovery failure model it is not possible for a process to determine if it is a correct process, or on the contrary it is an
eventually down (but still up) process, or even an unstable (but up) process. Moreover, usually termination of Consensus
cannot be ensured if correct processes select a leader different from the one selected by unstable processes. It could be
interesting in such a scenario that eventually all the active processes, i.e., processes that are up and have completed the
initialization phase, agree on a common (correct) leader process. Hence, we redefine the property that Omega must satisfy,
adapted to the crash-recovery failure model.

Property 2 (Omega-crash-recovery). There is a time after which all the active processes always trust the same correct process.

As we will see, the three algorithms implementing Omega proposed in this work satisfy Property 2.

3. A first algorithm

In this section we present a first algorithm, adapted from [11], that implements Omega in system S . This algorithm
assumes that eventually all processes are reachable timely from the correct process that crashes and recovers a minimum
number of times. It does not require the membership of the system — the process identifiers — to be known a priori by
processes,

Let us denote by cmin the correct process in S with the smallest identifier among those that have the minimum in-
carnation number incarnationmin . Let us denote by G(S) the directed graph, obtained from S , with the sets of correct and
unstable processes as vertex set and the set of eventually timely outgoing links of correct processes as edge set. We assume
that all vertexes in G(S) are reachable (either directly or indirectly) from cmin .

Property 3. Eventually every process q ∈ (correct ∪ unstable) can be reached from cmin in G(S).

Clearly, unstable processes will only be reached if, each time they recover, they remain up a sufficiently long time. If this
does not happen, we do not need to care about them.

Fig. 1 presents the first algorithm in detail. The process chosen as leader by a process p, i.e., trusted by p, is held in a
variable leaderp . We will show that with this algorithm there is a time after which every active process permanently has
leaderp = cmin , and hence satisfies Property 2.

The basic idea of the algorithm is that eventually only process cmin broadcasts new alive messages (ALIVE, cmin ,
incarnationmin) every η time units, and that (copies of) these messages reach the rest of active processes, either directly, or
indirectly by re-broadcasting. In the worst case O (n2) links carry messages forever. In the algorithm, we assume that for
any process to send (ALIVE, –, –) messages (Lines a11 or a16), it has necessarily incremented its incarnation number by 1
in stable storage during initialization (Line a1). In order to satisfy Property 2, besides incarnationp every process p keeps in
stable storage the value of leaderp (initialized to p), which is read during initialization. We also assume that every unstable
process will be able to write in stable storage infinitely often (Line a8).

In order to satisfy Property 2, we include a wait instruction at the beginning of Task 1 (Line a7). After this wait, p writes
the value of leaderp in stable storage (Line a8). By the assumption that every unstable process is able to execute Line a8
infinitely often, eventually every unstable process will always write the right leader in stable storage. From this point,
whenever an unstable process recovers, it will initialize its leader to the right value (Line a3), satisfying Property 2.

1 Actually, the bound σ on relative process speeds does not need to hold from the beginning, but from T .
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Every process p executes the following:

Initialization:
( a1) increment INCARNATIONp by 1 in stable storage
( a2) incarnationp ← read INCARNATIONp from stable storage
( a3) leaderp ← read LEADERp from stable storage
( a4) incarnationleader ← incarnationp

( a5) Timeoutp ← η + incarnationp

( a6) start tasks 1, 2 and 3

Task 1:
( a7) wait (η + incarnationp )
( a8) write leaderp in stable storage
( a9) loop forever
(a10) if [leaderp = p] then
(a11) broadcast (ALIVE, p, incarnationp )
(a12) end if
(a13) wait (η)

Task 2:
(a14) upon reception of message (ALIVE, q, incarnationq ) with q �= p for the first time do
(a15) if [incarnationq < incarnationleader ] or [(incarnationq = incarnationleader ) and (q � leaderp )] then
(a16) broadcast (ALIVE, q, incarnationq )
(a17) leaderp ← q
(a18) incarnationleader ← incarnationq

(a19) reset timerp to Timeoutp

(a20) end if

Task 3:
(a21) upon expiration of timerp do
(a22) Timeoutp ← Timeoutp + 1
(a23) leaderp ← p
(a24) incarnationleader ← incarnationp

Fig. 1. First algorithm implementing Omega in system S .

Note that every process writes only once leaderp in stable storage every time it starts executing the algorithm. Hence,
from the point of view of the number of write operations in stable storage the algorithm is extremely efficient. Another
approach consists in writing this value in stable storage more frequently, e.g., (1) periodically, or even better (2) every
time it changes. This could help in speeding up stabilization, at the price of a higher number of write operations in stable
storage.

Removing the re-broadcast of ALIVE messages (Line a16) we get a simplified version of the algorithm that works in a
fully (eventually) timely connected system S F , i.e., a system in which every process has a direct communication link with
every other process, all the links being eventually timely. This ensures that eventually every new alive message that process
cmin broadcasts will be received timely by the rest of active processes directly from cmin. Since eventually only process
cmin broadcasts alive messages, eventually O (n) links would carry messages forever. Note that if S F is weakened by either
(1) removing some links or (2) considering some links as lossy asynchronous, then messages must be re-broadcast in order
to guarantee their reception by all the active processes.

Correctness proof

Lemma 1. Any message (ALIVE, p, incarnationp), p ∈ Π , eventually disappears from the system.

Proof. Note first that a message cannot remain forever in a link, since it remains at most T + δ time in an eventually timely
link, and is lost or eventually delivered in a lossy asynchronous link. Note as well that a message cannot remain forever in
a process, since by assumption processes take at least one step (execute at least one line of the algorithm) per unit of time.
Then, a process will eventually crash, drop the message (Lines a14 and a15), or (re-)broadcast it (Lines a11 or a16). Finally,
note that a process never re-broadcasts twice the same message and never re-broadcasts its own messages (Line a14). Hence
a message can be (re-)broadcast at most n times, and will eventually disappear from the system. �

For the rest of the proof we will assume that any time instant t is larger than a time t′
base > tbase , where:

(1) tbase is a time instant that occurs after the stabilization time T (i.e., tbase > T ), and after every eventually down pro-
cess has definitely crashed, every eventually up process has definitely recovered, and every unstable process has an
incarnation number bigger than incarnationmin ,



182 C. Martín et al. / Journal of Computer and System Sciences 75 (2009) 178–189
(2) and t′
base is a time instant such that all messages broadcast for the first time before tbase have disappeared from the

system (this eventually happens from Lemma 1). In particular, this includes (a) all messages broadcast by eventually
down processes, (b) all messages broadcast by eventually up processes before recovering definitely, and (c) all messages
broadcast by unstable processes with incarnation number less or equal to incarnationmin .

Lemma 2. There is a time after which process cmin permanently has leadercmin = cmin and broadcasts a new (ALIVE, cmin,
incarnationmin) message every η time.

Proof. Note that after time t′
base process cmin will never receive an (ALIVE, q, incarnationq) message with incarnationq <

incarnationmin , or with incarnationq = incarnationmin from a process q such that q < cmin . Therefore, after time t′
base process

cmin will never execute Lines a16–a19 of the algorithm. Hence once leadercmin = cmin it will remain so forever. To show
that this eventually happens, note that if leadercmin �= cmin at time t > t′

base , then timercmin must be active at that time
(actually, timercmin was reset the last time Line a19 was executed). Since after time t′

base Line a19 will never be executed,
timercmin will not be reset any more. Then timercmin will eventually expire (Line a21), and cmin will set leadercmin = cmin and
incarnationleader = incarnationmin (Lines a23–a24). Finally, from Task 1, once leadercmin = cmin , process cmin will permanently
broadcast a new (ALIVE, cmin , incarnationmin) message every η time. �
Lemma 3. There is a time after which every process p ∈ correct, p �= cmin, permanently has either (1) incarnationleader >

incarnationmin, or (2) incarnationleader = incarnationmin and leaderp � cmin. Hence, p re-broadcasts each new (ALIVE, cmin,
incarnationmin) message it receives (Line a16), since Line a15 of the algorithm will be satisfied.

Proof. Note that, after t′
base , once [incarnationleader > incarnationmin] or [(incarnationleader = incarnationmin) and (leaderp �

cmin)] is satisfied, it will remain so forever, since no (ALIVE, q, incarnationq) message with incarnationq < incarnationmin ,
or with incarnationq = incarnationmin from a process q such that q < cmin will be received. Then, if incarnationleader <

incarnationmin , or incarnationleader = incarnationmin and leaderp < cmin at time t > t′
base with either (1) incarnationp >

incarnationmin , or (2) incarnationp = incarnationmin and p > cmin , then timerp must be active at that time. Then timerp
will eventually expire (Line a21), setting either (1) incarnationleader = incarnationp > incarnationmin , or (2) incarnationleader =
incarnationp = incarnationmin and leaderp = p > cmin . �
Lemma 4. There is a time after which every process p ∈ correct, p �= cmin, permanently receives new (ALIVE, cmin, incarnationmin)

messages with intervals of at most (η + d(p)(δ + 3σ)) time between consecutive messages, where d(p) is the distance in G(S) from
cmin to p.

Proof. The proof uses induction on d(p). If d(p) = 1 then p receives new (ALIVE, cmin, incarnationmin) messages directly from
cmin . From Lemma 2, there is a time after which cmin sends new messages every η time. The messages take at most δ time
to cross the eventually timely link from cmin to p. Then, the base case is clearly satisfied. Then, let us assume d(p) = i > 1.
There must be some process q ∈ correct with d(q) = i −1 and whose link from q to p is eventually timely. Then, by induction
hypothesis q eventually receives new (ALIVE, cmin , incarnationmin) messages forever within intervals of η + (i − 1)(δ + 3σ).
Then, from Lemma 3 q will eventually re-broadcast all these messages (Task 2) in at most 3σ time units. Since the messages
take at most δ time to cross the link from q to p, the lemma holds. �
Theorem 1. There is a time after which every active process p permanently has leaderp = cmin, i.e., p trusts cmin. Hence, the algorithm
of Fig. 1 satisfies Property 2, and implements Omega in system S.

Proof. Lemma 2 shows the claim for p = cmin . For p ∈ correct, such that p �= cmin , from Lemma 3 there is a time after which
p permanently has either (1) incarnationleader > incarnationmin , or (2) incarnationleader = incarnationmin and leaderp � cmin .
From Lemma 4, whenever leaderp �= cmin after this time, leaderp changes back to cmin in at most (η + d(p)(δ + 3σ)) time.
Furthermore, once leaderp = cmin , it only changes (to p) by executing Lines a21–a24, since the conditions in Lines a14 and
a15 prevent leaderp from changing in Line a17. Finally, leaderp changes from cmin to p a finite number of times, since
each time this happens T imeoutp is incremented by 1. By contradiction, assuming this happens an infinite number of
times, T imeoutp eventually grows to the point in which timerp never expires, because new (ALIVE, cmin , incarnationmin)
messages are received timely and timerp is reset before expiration. Hence, eventually leaderp = cmin permanently. Finally,
every unstable process p will eventually receive an (ALIVE, cmin , incarnationmin) message during the waiting instruction of
Line a7, setting leaderp = cmin (Line a17). Then, p will write cmin in stable storage (Line a8). After that, p will have leaderp =
cmin permanently, even upon initialization (Line a3). Hence, the algorithm of Fig. 1 satisfies Property 2, and implements
Omega in system S . �
4. Weakening the synchrony assumption

In this section, we weaken the synchrony assumption of the previous section in order to implement Omega in the crash-
recovery failure model, proposing two algorithms which assume that eventually all processes are reachable timely from
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Every process p executes the following:

procedure updateLeader()
( b1) leaderp ← l such that counterp[l] = min{counterp }
end procedure

Initialization:
( b2) increment INCARNATIONp by 1 in stable storage
( b3) incarnationp ← read INCARNATIONp from stable storage
( b4) leaderp ← read LEADERp from stable storage
( b5) ∀q �= p : Timeoutp[q] ← η + incarnationp

( b6) ∀q �= p: reset timerp(q) to T imeoutp[q]
( b7) ∀q �= p : counterp[q] ← 0
( b8) counterp [p] ← incarnationp

( b9) start tasks 1, 2 and 3

Task 1:
(b10) wait (η + incarnationp )
(b11) write leaderp in stable storage
(b12) loop forever
(b13) broadcast (ALIVE, p, counterp )
(b14) wait (η)

Task 2:
(b15) upon reception of message (ALIVE, q, counterq ) with q �= p for the first time do
(b16) broadcast (ALIVE, q, counterq )
(b17) ∀r : counterp[r] ← max{(counterp [r], counterq[r])}
(b18) reset timerp(q) to Timeoutp[q]
(b19) updateLeader()

Task 3:
(b20) upon expiration of timerp(q) do
(b21) counterp [q] ← counterp[q] + 1
(b22) Timeoutp [q] ← Timeoutp[q] + 1
(b23) reset timerp(q) to Timeoutp[q]
(b24) updateLeader()

Fig. 2. Second algorithm implementing Omega in system S .

some correct process, independently of its identifier and incarnation number. As we will see, the strategy followed by our
algorithms is to choose as leader the correct process that is “less suspected” among those that reach timely all processes.
Besides this, one of the algorithms requires the membership of the system to be known a priori by processes, while the
other one relaxes this assumption too.

Let us denote by G(S) the directed graph, obtained from S , with the sets of correct and unstable processes as vertex set
and the set of eventually timely outgoing links of correct processes as edge set. We assume that all vertexes in G(S) are
reachable (either directly or indirectly) from some process p ∈ correct.

Property 4. There is some process p ∈ correct such that eventually every process q ∈ (correct ∪ unstable) can be reached from p
in G(S).

4.1. A second algorithm

In this section we present a second algorithm, adapted from [9], that implements Omega in system S . This algorithm
requires the membership of the system — the process identifiers — to be known a priori by processes. Fig. 2 presents the
algorithm in detail. With this algorithm there is a time after which every active process permanently has leaderp = l, being
l the less suspected process among those that eventually communicate timely with the rest of processes. As in our first
algorithm, we assume that every unstable process will be able to write in stable storage infinitely often.

The algorithm works as follows. Every process p has a counterp[q] for each process q, which is p’s estimation of the
number of times q has been suspected. Process p selects as its leader the process l with the smallest counterp[l] value.
In order to keep the counterp variable up to date, every process p broadcasts every η time units an (ALIVE, p, counterp)
message.2 If a process p receives a message (ALIVE, q, counterq) with q �= p for the first time, p re-broadcasts the message,
updates its counterp vector accordingly, resets timerp(q) for when it expects to receive the next (ALIVE, q, counterq) message,
and calls the procedure updateLeader().

2 The value η should be bigger than σ multiplied by the number of processes in the system, or messages would possibly be queued at each process after
arriving timely, and only be processed after their respective timeouts had expired.
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If timerp(q) expires before receiving a new (ALIVE, q, counterq) message, then p increments the suspicion counter
counterp[q], increments the value Timeoutp[q], resets timerp(q), and calls updateLeader().

The algorithm includes a mechanism to eventually avoid unstable processes from disturbing the leader election. This
mechanism is based on the incarnation number of processes. Observe that, during initialization, every process p initializes
its timeouts with respect to the rest of processes to η+ incarnationp (Line b5). Also, p initializes counterp[p] to incarnationp
(Line b8). These initializations ensure that eventually (1) every unstable process p will never suspect a correct process q
that reaches timely every other process (since p’s timeout with respect q keeps increasing forever, and hence eventually
timerp(q) will never expire), and consequently p will not increment counterp[q] anymore, and (2) every unstable process
p will never be elected as the leader in the updateLeader() procedure (since incarnationp , and hence counterp[p], keeps
increasing forever).

Also, the algorithm includes a waiting instruction followed by the write of the leader in stable storage in order to force
unstable processes to agree permanently with correct processes on the leader (Lines b10–b11).

The number of messages sent periodically (every η time) in this algorithm is bounded by n ∗ ul, being n and ul the
number of processes and unidirectional links in the system respectively. This derives from the fact that periodically every
alive process sends a new ALIVE message (Line b13), and that every message is (re-)sent exactly once through every link of
the system (Line b16).

In the algorithm for the crash model of [9], processes (re-)broadcast explicit ACCUSATION messages to notify suspicions.
By including the whole vector of suspicion counters into ALIVE messages, the algorithm of Fig. 2 avoids the broadcast of
ACCUSATION messages. Observe that the system model allows scenarios in which many pairs of processes cannot commu-
nicate timely (either directly or indirectly). In the algorithm in [9], these processes would suspect each other and hence
broadcast ACCUSATION messages permanently. Thus, avoiding those messages reduces notably the message complexity of
the algorithm.

Correctness proof

Let R be the set of correct processes that eventually reach timely all the correct and unstable processes in S . Let B be
the set of correct processes p with bounded counterp[p]. By definition, there is a constant Δ and a time after which every
message sent by s, s ∈ R , takes at most Δ = (n − 1)(δ + 2σ) time to be received by every correct and unstable (if active)
process.

Lemma 5. Any message (ALIVE, p, counterp), p ∈ Π , eventually disappears from the system.

Proof. Note first that a message cannot remain forever in a link, since it remains at most T + δ time in an eventually timely
link, and is lost or eventually delivered in a lossy asynchronous link. Note as well that a message cannot remain forever
in a process, since by assumption processes take at least one step (execute at least one line of the algorithm) per unit of
time. Then, a process will eventually crash, drop the message (Line b15), or (re-)broadcast it (Lines b13 or b16). Finally, note
that a process never re-broadcasts twice the same message and never re-broadcasts its own messages (Line b15). Hence a
message can be (re-)broadcast at most n times, and will eventually disappear from the system. �

For the rest of the proof we will assume that any time instant t is larger than a time t1 > t0, where:

(1) t0 is a time instant that occurs after the stabilization time T (i.e., t0 > T ), and after every eventually down process has
definitely crashed, every eventually up process has definitely recovered, and every unstable process u has an incarnation
number such that incarnationu > Δ + 4σ . Note that by definition u will crash and recover an infinite number of times,
and hence eventually incarnationu > Δ + 4σ ,

(2) and t1 is a time instant such that all messages broadcast for the first time before t0 have disappeared from the system
(this eventually happens from Lemma 5).

Lemma 6. ∀s ∈ R, counters[s] is bounded.

Proof. Consider any correct process q �= s. Process s sends a message (ALIVE, s, counters) every η time. Eventually, every
(ALIVE, s, counters) message that s sends is received directly or indirectly by q within Δ + η time from the time q received
the previous message from s. Since q increases Timeoutq[s] every time timerq(s) expires, eventually timerq(s) will not expire
any more. After this, q will not punish s (Line b21) again, and s will not increase counters[s] due to a message from any
q ∈ correct.

On the other hand, every unstable process u will eventually and permanently set timeru(s) > Δ + η + 4σ during ini-
tialization. Every time u resets timeru(s), we know that timeru(s) will expire after time Δ + η + 4σ time. As messages
from s are sent every η time, in the worst case process s will send a message at time t + η, and the message will be
received at process u at time t + Δ + η, and timeru(s) will be reset at t + Δ + η + 4σ . Hence, timeru(s) will never expire
on any s ∈ R . After this, u will not punish s (Line b21) again, and s will not increase counters[s] due to a message from any
u ∈ unstable. �
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The following observation derives from Lemma 6:

Observation 1. R ⊆ B.

Lemma 7. For every process p ∈ B, every process s ∈ R receives messages from p infinitely often.

Proof. The proof is by contradiction. Assume that s does not receive messages from p infinitely often. Each time timers[p]
expires, process p is punished by s (Line b21). Eventually, a new ALIVE message sent by s will be received by p and p will
increase counterp[p] (Line b17). Since this happens infinitely often, counterp[p] is not bounded, which is a contradiction
with the fact that p ∈ B . �

The following observation derives from Lemma 7:

Observation 2. There is a constant Δ′ and a time t2 > t1 after which every message sent by p ∈ B takes at most Δ′ time to be received
by every correct and unstable (if active) process.

For the rest of the proof we will assume that any time instant t is larger than time t2 > t1, where t2 is a time instant
that occurs after counterp[q] > counterp[p], ∀q /∈ correct and ∀p ∈ B , and incarnationu > counterp[p], ∀u ∈ unstable. This will
eventually happen because counterp[q] and incarnationu grow infinitely, and by definition counterp[p] is bounded. Note that
during initialization (Line b8) counteru[u] is set to incarnationu , so counteru[u] > counterp[p].

Henceforth, varpt denotes the value of the local variable var of p at time t .

Lemma 8. For every pair of correct processes p and q, p ∈ B, there is a time after which for every time t, counterq[p] � counterpt [p].

Proof. For p = q, the lemma is trivial. Now assume p �= q. As p ∈ B , by Lemma 7 every process s ∈ R receives messages
from p infinitely often, and hence by rebroadcast q will receive messages of type (ALIVE, p, counterp) infinitely often. Let
t > t2 be any time. There is a time t′ > t when q receives (ALIVE, p, counterp) with counterp[p] = c, originally sent by p
after time t , so c � counterpt [p]. Then at time t′ , q sets its counterq[p] to c, and so we have: counterq[p] � counterpt [p]. The
lemma now follows since counterq[p] is monotonically nondecreasing. �
Lemma 9. For every correct process p:

1. If counterp[p] is bounded, then there exists a value V p and a time after which for every correct process q, counterq[p] = V p.
2. If counterp[p] is not bounded, then for every correct process q, counterq[p] is not bounded.

Proof. Let p be a correct process.

(1) Suppose counterp[p] is bounded. Thus, by Lemma 8, for every correct process q, there is a time t > t2 after which
counterq[p] � counterpt [p]. Since counterp[p] is bounded and monotonically nondecreasing, there exists a value V p

and a time after which counterp[p] = V p . Therefore, there exists a time after which, for every correct process q,
counterq[p] = V p .

(2) Suppose counterp[p] is not bounded. Lemma 8 implies that counterq[p] is also not bounded. �
Lemma 10. For every correct process p:

1. If counterp[p] is bounded, then there is a time after which for every unstable process u, counteru[p] = V p in at most Δ′ +η+ 3σ
time after its initialization.

2. If counterp[p] is not bounded, then for every unstable process u, counteru[p] is not bounded.

Proof. Let p be a correct process.

(1) Suppose counterp[p] is bounded. Thus, by Lemma 9 there is a time after which counterp[p] = V p . From Observation 2,
every unstable process u will receive (if active) an alive message from every process p ∈ B in at most Δ′ + η time.
Hence, at most Δ′ + η + 3σ time after initialization, counteru[p] = V p .

(2) Suppose counterp[p] is not bounded. By definition every unstable process u will receive (if active) an alive message
infinitely often from every process q ∈ B , and will update counteru[p] (Line b17). By Lemma 9, if counterp[p] is not
bounded, then counterq[p] is not bounded. Hence, counteru[p] is also unbounded. �

The following observation derives from Lemmas 9 and 10:
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Observation 3. There is a time t′ > t2 after which every message sent by every process q will contain counterq[p] = V p, ∀p ∈ B.

For the rest of the proof we will assume that any time instant t is larger than t′ of Observation 3.

Lemma 11. If process k is not correct then for every process q there is a time after which k will not be leaderq.

Proof. As process k is not correct, there is a time t > t2 after which counterk[k] > counterp[p], and counterp[k] > counterp[p],
for every p ∈ B . If q is correct, since eventually every message broadcast by every process p reaches timely every correct
process q, counterq[k] � counterp[k], and process k will not be elected as leader anymore. If q is unstable, by definition q will
execute Line b11 infinitely often. By Lemma 10 there is a time after which counterq[p] = V p and counterq[k] > counterq[p]
in at most Δ′ + η + 3σ time after initialization. Hence, eventually, leaderq �= k will be permanently saved in stable storage,
and process k will not be elected as leader anymore. �
Lemma 12. There exists a correct process l and a time after which, for every correct process q, leaderq = l.

Proof. Note that B is not empty. By Lemma 9(1), for every process p ∈ B , there is a corresponding integer V p and a
time after which for every correct process q, counterq[p] = V p (forever). Let l denote the process p ∈ B with the smallest
corresponding tuple (V p , p). We now show that eventually every correct process q selects l as its leader (forever). For any
other process p �= l: (*) there is a time after which (counterq[p], p) > (counterq[l], l). This implies that eventually q selects
l as its leader, forever. To show (*) holds, consider the following 3 possible cases. If p is not correct then, by Lemma 11,
eventually p will never be elected as leader (forever). Now suppose that p is correct. If counterp[p] is bounded, then
p ∈ B; so, by our selection of l in B , eventually (counterq[p] = V p, p) > (counterq[l] = Vl, l) forever. Finally, if counterp[p]
is not bounded, then, by Lemma 9(2), there is a time after which counterq[p] > counterq[l] = Vl (because counterq[p] is
unbounded and monotonically nondecreasing). In all cases (*) holds. �
Lemma 13. There exists a correct process l and a time after which, for every unstable process u, leaderu = l.

Proof. By Lemma 10(1), for every process p ∈ B , there is a corresponding integer V p and a time after which for every
unstable process u, counteru[p] = V p Δ′ +η+ 3σ time after initialization. By definition, u executes Line b11 infinitely often,
saving leaderu in stable storage. Let l denote the process p ∈ B with the smallest corresponding tuple (V p, p). We now show
that eventually every unstable process u selects l as its leader (forever). For any other process p �= l: (*) there is a time after
which (counteru[p], p) > (counteru[l], l). This implies that eventually u selects l as its leader, writes leaderu = l in stable
storage (forever), and reads leaderu = l from stable storage during initialization. To show (*) holds, consider the following 3
possible cases. If p is not correct then, by Lemma 11, eventually p will never be elected as leader (forever). Now suppose
that p is correct. If counterp[p] is bounded, then p ∈ B; so, eventually every (ALIVE, z, counterz) message that u receives
after initialization will contain always (counterz[p] = V p, p) > (counterz[l] = Vl, l) forever. Since during initialization every
counter is set to 0 except counteru[u] that is unbounded, counteru[p] will be set to counterz[p] and counteru[l] to counterz[l]
respectively (Line b17). By our selection of l in B , l will be chosen as leader and written in stable store at Line b11. Finally,
if counterp[p] is not bounded, then, by Lemma 10(2), there is a time after which counteru[p] > counteru[l] = Vl (because
counteru[p] is unbounded and monotonically nondecreasing). In all cases (*) holds. �
Theorem 2. There is a time after which every active process p permanently has leaderp = l, i.e., p trusts l. Hence, the algorithm of
Fig. 2 satisfies Property 2, and implements Omega in system S.

Proof. It follows directly from Lemmas 12 and 13, and the common definition of process l made in both lemmas. �
4.2. A third algorithm

In this section we present a third algorithm, adapted from [12], that implements Omega in system S . Contrary to the
algorithm of Fig. 2, this algorithm does not require the membership of the system to be known a priori by processes. The
process identifiers are totally ordered, but need not be consecutive. Furthermore, processes have no knowledge about the
total number of processes n. Fig. 3 presents the algorithm in detail. As in the previous two algorithms, we assume that
every unstable process will be able to write in stable storage infinitely often.

The algorithm works as follows. Processes send messages periodically to show they are alive. These messages are
re-broadcast to attempt reaching all processes. Each process p maintains a set membershipp of pairs (q, v) (initially
(p, incarnationp)), where q is a process that p knows, and v � 0 is roughly the number of times that q has been “pun-
ished.” Every message sent by p contains this set membershipp .

When a process p receives a message from q �= p for the first time, after re-broadcasting it, for every pair (r, −) ∈
membershipq , p checks if (r, −) /∈ membershipp , in which case p includes (r, v) in membershipp (being v the value associated
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Every process p executes the following:

procedure updateLeader()
( c1) leaderp ← process in min{membershipp}
end procedure

Initialization:
( c2) increment INCARNATIONp by 1 in stable storage
( c3) incarnationp ← read INCARNATIONp from stable storage
( c4) leaderp ← read LEADERp from stable storage
( c5) membershipp ← {(p, incarnationp)}
( c6) start tasks 1, 2 and 3

Task 1:
( c7) wait (η + incarnationp )
( c8) write leaderp in stable storage
( c9) loop forever
(c10) broadcast (ALIVE, p, membershipp )
(c11) wait (η)

Task 2:
(c12) upon reception of message (ALIVE, q, membershipq ) with q �= p for the first time do
(c13) broadcast (ALIVE, q, membershipq )
(c14) ∀(r,−) ∈ membershipq :
(c15) if (r,−) /∈ membershipp then
(c16) membershipp ← membershipp ∪ {(r, v)} : (r, v) ∈ membershipq

(c17) create timerp(r) and Timeoutp[r]
(c18) Timeoutp [r] ← η + incarnationp

(c19) reset timerp(r) to Timeoutp [r]
(c20) else
(c21) replace in membershipp (r, v) by (r, max{v, v ′}): (r, v ′) ∈ membershipq

(c22) end if
(c23) reset timerp(q) to Timeoutp[q]
(c24) if (p,−) /∈ membershipq then
(c25) replace in membershipp (p, v) by (p, v + 1)
(c26) end if
(c27) updateLeader()

Task 3:
(c28) upon expiration of timerp(q) do
(c29) replace in membershipp (q, v) by (q, v + 1)
(c30) Timeoutp[q] ← Timeoutp [q] + 1
(c31) reset timerp(q) to Timeoutp[q]
(c32) updateLeader()

Fig. 3. Third algorithm implementing Omega in system S .

to r in membershipq), creates timerp(r) and Timeoutp[r], initializes Timeoutp[r] to η + incarnationp , and resets timerp(r).
Otherwise, if (r, −) ∈ membershipp , then p updates the value associated to r in membershipp . After that, p resets timerp(q)

to Timeoutp[q]. Then, if (p, −) /∈ membershipq , then p punishes itself by incrementing its associated counter in membershipp .
Finally, the updateLeader() procedure is called to change leaderp if required. A process p will hold in leaderp its current
leader, which is the process q whose pair (q, v) in membershipp has the smallest value v , using the process identifier to
break ties.

If timerp(q) expires before receiving a new (ALIVE, q, membershipq) message, then p increments the value associated to
q in membershipp , increments the value Timeoutp[q], resets timerp(q) to Timeoutp[q], and calls updateLeader().

To avoid unstable processes from disturbing the leader election, during initialization every process p initializes
membershipp with the pair (p, incarnationp) (Line c5). Also, in Task 1 p waits η + incarnationp units of time (Line c7)
before sending messages (that include membershipp) periodically. This waiting ensures that eventually every unstable pro-
cess p will only send messages with membershipp containing a pair (l, v) such that l is a correct process and v is smaller
than the value associated to any other (correct or unstable) process in the system.

As in the algorithm of Fig. 2, the number of messages sent periodically (every η time) in this algorithm is also bounded
by n ∗ ul, being n and ul the number of processes and unidirectional links in the system respectively.

In the algorithm for the crash model of [12], an additional set candidatesp , containing the processes considered alive,
is maintained by every process p, and ALIVE messages include the set candidatesp . Upon a suspicion on a process q, p
removes q from candidatesp and broadcasts an explicit ALIVE message to notify the suspicion. Again, our algorithm for the
crash-recovery model avoids the explicit broadcast of messages to notify suspicions, reducing the message complexity of the
algorithm.
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Fig. 4. Relation between systems S F , S P , S L and SPL .

Regarding the correctness proof of this algorithm, it is close to that of algorithm in Fig. 2. The main difference is the
unknown membership, which is addressed with a nondecreasing membership (membershipp), dynamically created timers,
and a mechanism by which a process punishes itself (Lines c24–c26). This mechanism is needed because a process may
never be known by the rest of processes.

Theorem 3. There is a time after which every active process p permanently trust the same correct process. Hence, the algorithm of
Fig. 3 satisfies Property 2, and implements Omega in system S.

5. A note about connectivity and synchrony

From the point of view of the communication, in order to get to the system S considered in this work, we can start
from a system fully (eventually) timely connected S F , i.e., a system in which every process has a direct communication link
with every other process, all the links being eventually timely. The system S F can be weakened by (1) removing some links,
leading to systems partially (eventually) timely connected S P , or (2) considering some links as lossy asynchronous, leading to
systems fully connected with (some) lossy links SL . Clearly, S F ⊂ S P and S F ⊂ SL . Also, S P ⊂ SL , since links that have been
removed in S P can be seen as lossy asynchronous links that systematically drop all the messages in S L . If we apply both
(1) and (2) to S F , we get systems partially connected with (some) lossy links SPL . Note that SPL ≡ SL , since links that have
been removed in SPL can be seen as lossy asynchronous links that systematically drop all the messages in S L , while SL

can be seen as a subset of SPL in which no links are removed. In other words, any Omega algorithm that works correctly
in SPL must also work correctly in SL , and vice versa. Also, S P ⊂ SPL , since a subset of the links that have been removed
in S P can be seen as lossy asynchronous links that systematically drop all the messages in SPL . To summarize, we have
S F ⊂ S P ⊂ SL ≡ SPL (see Fig. 4).

The system S considered in this work assumes partial connectivity as in S P and some lossy asynchronous links as in SL ,
so S ⊂ SPL . Nevertheless, S requires timely connectivity from some correct process to the rest of processes. More precisely,
S requires that there is a path formed exclusively by eventually timely links between some correct process (which must be
cmin in the case of the first algorithm) and the rest of correct and unstable processes.

6. Conclusion

In this paper, we have presented three algorithms that implement the Omega failure detector in the crash-recovery
failure model. The algorithms work in systems in which not every pair of processes is connected by a direct communication
link and also some links can be lossy asynchronous. The first algorithm assumes that eventually all processes are reachable
timely from the correct process that crashes and recovers a minimum number of times. This algorithm does not require
the membership to be known a priori. The second algorithm assumes that eventually all processes are reachable timely
from some correct process. This algorithm requires the membership to be known a priori. Finally, the third algorithm also
assumes that eventually all processes are reachable timely from some correct process, but does not require the membership
to be known a priori.
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