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Abstract
Functional reactive programming (FRP) has simple and powerful
semantics, but has resisted efficient implementation. In particular,
most past implementations have used demand-driven sampling,
which accommodates FRP’s continuous time semantics and fits
well with the nature of functional programming. Consequently,
values are wastefully recomputed even when inputs don’t change,
and reaction latency can be as high as the sampling period.

This paper presents a way to implement FRP that combines
data- and demand-driven evaluation, in which values are recom-
puted only when necessary, and reactions are nearly instantaneous.
The implementation is rooted in a new simple formulation of FRP
and its semantics and so is easy to understand and reason about.

On the road to a new implementation, we’ll meet some old
friends (monoids, functors, applicative functors, monads, mor-
phisms, and improving values) and make some new friends (func-
tional future values, reactive normal form, and concurrent “unam-
biguous choice”).

Categories and Subject Descriptors D.1.1 [Software]: Program-
ming Techniques—Applicative (Functional) Programming

General Terms Design, Theory

Keywords Functional reactive programming, semantics, concur-
rency, data-driven, demand-driven

1. Introduction
Functional reactive programming (FRP) supports elegant program-
ming of dynamic and reactive systems by providing first-class,
composable abstractions for behaviors (time-varying values) and
events (streams of timed values) (Elliott 1996; Elliott and Hudak
1997; Nilsson et al. 2002).1 Behaviors can change continuously
(not just frequently), with discretization introduced automatically
during rendering. The choice of continuous time makes programs
simpler and more composable than the customary (for computer
programming) choice of discrete time, just as is the case with
continuous space for modeled imagery. For instance, vector and
3D graphics representations are inherently scalable (resolution-
independent), as compared to bitmaps (which are spatially dis-
crete). Similarly, temporally or spatially infinite representations are

1 See http://haskell.org/haskellwiki/FRP for more references.
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more composable than their finite counterparts, because they can be
scaled arbitrarily in time or space, before being clipped to a finite
time/space window.

While FRP has simple, pure, and composable semantics, its ef-
ficient implementation has not been so simple. In particular, past
implementations have used demand-driven (pull) sampling of reac-
tive behaviors, in contrast to the data-driven (push) evaluation typ-
ically used for reactive systems, such as GUIs. There are at least
two strong reasons for choosing pull over push for FRP:

• Behaviors may change continuously, so the usual tactic of idling
until the next input change (and then computing consequences)
doesn’t apply.

• Pull-based evaluation fits well with the common functional
programming style of recursive traversal with parameters (time,
in this case). Push-based evaluation appears at first to be an
inherently imperative technique.

Although some values change continuously, others change only
at discrete moments (say in response to a button click or an object
collision), while still others have periods of continuous change al-
ternating with constancy. In all but the purely continuous case, pull-
based implementations waste considerable resources, recomputing
values even when they don’t change. In those situations, push-based
implementations can operate much more efficiently, focusing com-
putation on updating values that actually change.

Another serious problem with the pull approach is that it im-
poses significant latency. The delay between the occurrence of an
event and the visible result of its reaction, can be as much as the
polling period (and is on average half that period). In contrast, since
push-based implementations are driven by event occurrences, reac-
tions are visible nearly instantaneously.

Is it possible to combine the benefits of push-based evaluation—
efficiency and minimal latency—with those of pull-based evaluation—
simplicity of functional implementation and applicability to tem-
poral continuity? This paper demonstrates that it is indeed possible
to get the best of both worlds, combining data- and demand-driven
evaluation in a simple and natural way, with values being recom-
puted only, and immediately, when their discrete or continuous
inputs change. The implementation is rooted in a new simple for-
mulation of FRP and its semantics and so is relatively easy to
understand and reason about.

This paper describes the following contributions:

• A new notion of reactive values, which is a purely discrete sim-
plification of FRP’s reactive behaviors (no continuous change).
Reactive values have simple and precise denotational semantics
(given below) and an efficient, data-driven implementation.

• Decomposing the notion of reactive behaviors into independent
discrete and continuous components, namely reactive values
and (non-reactive) time functions. Recomposing these two no-
tions and their implementations results in FRP’s reactive behav-
iors, but now with an implementation that combines push-based
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and pull-based evaluation. Reactive values have a lazy, purely
data representation, and so are cached automatically. This com-
posite representation captures a new reactive normal form for
FRP.

• Modernizing the FRP interface, by restructuring much of its
functionality and semantic definitions around standard type
classes, as monoids, functors, applicative functors, and monads.
This restructuring makes the interface more familiar, reduces
the new interfaces to learn, and provides new expressive power.
In most cases, the semantics are defined simply by choosing the
semantic functions to be type class morphisms (Elliott 2009).

• A notion of composable future values, which embody pure
values that (in many cases) cannot yet be known, and is at
the heart of this new formulation of reactivity. Nearly all the
functionality of future values is provided via standard type
classes, with semantics defined as class morphisms.

• Use of Warren Burton’s “improving values” as a richly struc-
tured (non-flat) type for time. Events, reactive values, reactive
behaviors, and future values can all be parameterized with re-
spect to time, which can be any ordered type. Using improving
values (over an arbitrary ordered type) for time, the semantics
of future values becomes a practical implementation.

• A new technique for semantically determinate concurrency via
an “unambiguous choice” operator, and use of this technique to
provide a new implementation of improving values.

2. Functional reactive programming
FRP revolves around two composable abstractions: events and be-
haviors (Elliott and Hudak 1997). Because FRP is a functional
paradigm, events and behaviors describe things that exist, rather
than actions that have happened or are to happen (i.e., what is, not
what does). Semantically, a (reactive) behavior is just a function of
time, while an event (sometimes called an “event source”) is a list
of time/value pairs (“occurrences”).

type Ba = T → a

type Ea = [(bT , a)] -- for non-decreasing times

Historically in FRP, T = R. As we’ll see, however, the semantics
of behaviors assumes only that T is totally ordered. The type bT of
occurrence times is T extended with −∞ and∞.

Orginally, FRP had a notion of events as a single value with
time, which led to a somewhat awkward programming style with
explicit temporal loops (tail recursions). The sequence-of-pairs for-
mulation above, described in, e.g., (Elliott 1998a; Peterson et al.
1999) and assumed throughout this paper, hides discrete time it-
eration, just as behaviors hide continuous “iteration”, resulting in
simpler, more declarative specifications.

The semantic domains Ba and Ea correspond to the behavior
and event data types, via semantic functions:

at :: Behavior a → Ba

occs :: Event a → Ea

This section focuses on the semantic models underlying FRP,
which are intended for ease of understanding and formal reasoning.
The insights gained are used in later sections to derive new correct
and efficient representations.

FRP’s Behavior and Event types came with a collection of
combinators, many of which are instances of standard type classes.
To dress FRP in modern attire, this paper uses standard classes and
methods wherever possible in place of names from “Classic FRP”.

2.1 Behaviors
Perhaps the simplest behavior is time , corresponding to the identity
function.

time :: Behavior Time
at time = id

2.1.1 Functor
Functions can be “lifted” to apply to behaviors. Classic FRP
(CFRP) had a family of lifting combinators:

liftn :: (a1 → ...→ an → b)
→ (Behavior a1 → ...→ Behavior an → Behavior b)

Lifting is pointwise and synchronous: the value of liftn f b1 ...bn at
time t is the result of applying f to the values of the bi at (exactly)
t .2

at (liftn f b1 ... bn) = λt → f (b1 ‘at ‘ t) ... (bn ‘at ‘ t)

The Functor instance for behaviors captures unary lifting, with
fmap replacing FRP’s lift1.

fmap :: (a → b)→ Behavior a → Behavior b

The semantic domain, functions, also form a functor:

instance Functor ((→) t) where
fmap f g = f ◦ g

The meaning of fmap on behaviors mimics fmap on the meaning
of behaviors, following the principle of denotational design using
type class morphisms (Elliott 2009) and captured in the following
“semantic instance”:3

instancesem Functor Behavior where
at (fmap f b) = fmap f (at b)

= f ◦ at b

In other words, at is a natural transformation, or “functor mor-
phism” (for consistency with related terminology), from Behavior
to B (Mac Lane 1998).

The semantic instances in this paper (“instancesem ...”)
specify the semantics, not implementation, of type class instances.

2.1.2 Applicative functor
Applicative functors (AFs) are a recently explored notion (McBride
and Paterson 2008). The AF interface has two methods, pure and
(<∗>), which correspond to the monadic operations return and
ap. Applicative functors are more structured (less populated) than
functors and less structured (more populated) than monads.

infixl 4<∗>
class Functor f ⇒ Applicative f where

pure :: a → f a
(<∗>) :: f (a → b)→ f a → f b

These two combinators suffice to define liftA2, liftA3, etc.

infixl 4<$>
(<$>) :: Functor f ⇒ (a → b)→ f a → f b
f <$> a = fmap f a

liftA2 :: Applicative f ⇒ (a → b → c)
→ f a → f b → f c

liftA2 f a b = f <$> a <∗> b

2 Haskellism: The at function here is being used in both prefix form (on the
left) and infix form (on the right).
3 Haskellism: Function application has higher (stronger) precedence than
infix operators, so, e.g., f ◦ at b ≡ f ◦ (at b).



liftA3 :: Applicative f ⇒ (a → b → c → d)
→ f a → f b → f c → f d

liftA3 f a b c = liftA2 f a b <∗> c
...

The left-associative (<$>) is just a synonym for fmap—a stylistic
preference—while liftA2, liftA3, etc. are generalizations of the
monadic combinators liftM2, liftM3, etc.

CFRP’s lift0 corresponds to pure , while lift2, lift3, etc corre-
spond to liftA2, liftA3, etc., so the Applicative instance replaces
all of the liftn.4

Functions, and hence B, form an applicative functor, where
pure and (<∗>) correspond to the classic K and S combinators:

instance Applicative ((→) t) where
pure = const
f <∗> g = λt → (f t) (g t)

The Applicative instance for functions leads to the semantics
of the Behavior instance of Applicative . As with Functor above,
the semantic function distributes over the class methods, i.e., at is
an applicative functor morphism:

instancesem Applicative Behavior where
at (pure a) = pure a

= const a

at (bf <∗> bx) = at bf <∗> at bx
= λt → (bf ‘at ‘ t) (bx ‘at ‘ t)

So, given a function-valued behavior bf and an argument-valued
behavior bx, to sample bf <∗> bx at time t , sample bf and bx at t
and apply one result to the other.

This (<∗>) operator is the heart of FRP’s concurrency model,
which is semantically determinate, synchronous, and continuous.

2.1.3 Monad
Although Behavior is a semantic Monad as well, the implemen-
tation developed in Section 5 does not implement Monad .

2.2 Events
Like behaviors, much of the event functionality can be packaged
via standard type classes.

2.2.1 Monoid
Classic FRP had a never-occurring event and an operator to merge
two events. Together, these combinators form a monoid, so ∅ and
(⊕) (Haskell’s mempty and mappend) replace the CFRP names
neverE and (.|.).

The event monoid differs from the list monoid in that (⊕) must
preserve temporal monotonicity.

instancesem Monoid (Event a) where
occs ∅ = [ ]
occs (e ⊕ e ′) = occs e ‘merge‘ occs e ′

Temporal merging ensures a time-ordered result and has a left-bias
in the case of simultaneity:

merge :: Ea → Ea → Ea

[ ] ‘merge‘ vs = vs
us ‘merge‘ [ ] = us

((t̂a, a) : ps) ‘merge‘ ((t̂b, b) : qs)

| t̂a 6 t̂b = (t̂a, a) : (ps ‘merge‘ ((t̂b, b) : qs))

| otherwise = (t̂b, b) : (((t̂a, a) : ps) ‘merge‘ qs)

Note that occurrence lists may be infinitely long.

4 The formulation of the liftn in terms of operators corresponding to pure
and (<∗>) was noted in (Elliott 1998a, Section 2.1).

2.2.2 Functor
Mapping a function over an event affects just the occurrence values,
leaving the times unchanged.

instancesem Functor Event where

occs (fmap f e) = map (λ(t̂a, a)→ (t̂a, f a)) (occs e)

2.2.3 Monad
Previous FRP definitions and implementations did not have a
monad instance for events. Such an instance, however, is very
useful for dynamically-generated events. For example, consider
playing Asteroids and tracking collisions. Each collision can break
an asteroid into more of them (or none), each of which has to be
tracked for more collisions. Another example is a chat room hav-
ing an enter event whose occurrences contain new events like speak
(for the newly entered user).

A unit event has one occurrence, which is always available:

occs (return a) = [(−∞, a)]

The join operation collapses an event-valued event ee:

joinE :: Event (Event a)→ Event a

Each occurrence of ee delivers a new event, all of which get merged
together into a single event.

occs (joinE ee) =
foldr merge [ ] ◦map delayOccs ◦ occs ee

delayOccs :: (bT ,Event a)→ Ea

delayOccs (t̂e, e) = [(t̂e ‘max ‘ t̂a, a) | (t̂a, a)← occs e ]

Here, delayOccs ensures that inner events cannot occur before they
are generated.

This definition of occs hides a subtle problem. If ee has in-
finitely many non-empty occurrences, then the foldr , if taken as
an implementation, would have to compare the first occurrences of
infinitely many events to see which is the earliest. However, none
of the occurrences in delayOccs (t̂e, e) can occur before time
t̂e, and the delayOccs applications are given monotonically non-
decreasing times. So, only a finite prefix of the events generated
from ee need be compared at a time.

2.2.4 Applicative functor
Any monad can be made into an applicative functor, by defining
pure = return and (<∗>) = ap. However, this Applicative
instance is unlikely to be very useful for Event . Consider function-
and argument-valued events ef and ex. The event ef <∗> ex would
be equivalent to ef ‘ap‘ ex and hence to

ef >>= λf → ex >>= λx → return (f x )

or more simply

ef >>= λf → fmap f ex

The resulting event contains occurrences for every pair of occur-
rences of ef and ex, i.e., (t̂f ‘max ‘ t̂x, f x ) for each (t̂f , f ) ∈
occs ef and (t̂x, x ) ∈ occs ex. If there are m occurrences of ef
and n occurrences of ex, then there will m × n occurrences of
ef <∗> ex. Since the maximum of two values is one value or the
other, there are at most m +n distinct values of t̂f ‘max ‘ t̂x. Hence
the m × n occurrences must all occur in at most m + n tempo-
rally distinct clusters. Alternatively, one could give a relative time
semantics by using (+) in place of max .

2.3 Combining behaviors and events
FRP’s basic tool for introducing reactivity combines a behavior and
and an event.



switcher :: Behavior a → Event (Behavior a)
→ Behavior a

The behavior b0 ‘switcher ‘ e acts like b0 initially. Each occurrence
of the behavior-valued event e provides a new phase of behavior
to switch to. Because the phases themselves (such as b0) may be
reactive, each transition may cause the switcher behavior to lose
interest in some events and start reacting to others.

The semantics of b0 ‘switcher ‘ e chooses and samples either b0

or the last behavior from e before a given sample time t :

(b0 ‘switcher ‘ e) ‘at ‘ t = last (b0 : before (occs e) t) ‘at ‘ t

before :: Ea → T → [a ]

before os t = [a | (t̂a, a)← os, t̂a < t ]

As a simple and common specialization, stepper produces
piecewise-constant behaviors (step functions, semantically):

stepper :: a → Event a → Behavior a
a0 ‘stepper ‘ e = pure a0 ‘switcher ‘ (pure <$> e)

Hence

at (a0 ‘stepper ‘ e) = λt → last (a0 : before (occs e) t)

There is a subtle point in the semantics of switcher . Consider
b0 ‘stepper ‘ (e ⊕ e ′). If each of e and e ′ has one or more occur-
rences at the same time, then the ones from e ′ will get reacted to
last, and so will appear in the switcher behavior.

3. From semantics to implementation
Now we have a simple and precise semantics for FRP. Refining it
into an efficient implementation requires addressing the following
obstacles.

• Event merging compares the two occurrence times in order to
choose the earlier one: t̂a 6 t̂b. If time is a flat domain (e.g.,
Double), this comparison could not take place until both t̂a and
t̂b are known. Since occurrence times are not generally known
until they actually arrive, this comparison would hold up event
reaction until the later of the two occurrences, at which time
the earlier one would be responded to. For timely response, the
comparison must complete when the earlier occurrence hap-
pens.5 Section 4 isolates this problem in an abstraction called
“future values”, clarifying exactly what properties are required
for a type of future times. Section 9 presents a more sophisti-
cated representation of time that satisfies these properties and
solves the comparison problem. This representation adds an ex-
pense of its own, which is removed in Sections 10 and 11.

• For each sample time t , the semantics of switcher involves
searching through an event for the last occurrence before t . This
search becomes costlier as t increases, wasting time as well
as space. While the semantics allow random time sampling, in
practice, behaviors are sampled with monotonically increasing
times. Section 8 introduces and exploits monotonic time for
efficient sampling.

• The semantics of behaviors as functions leads to an obvious, but
inefficient, demand-driven evaluation strategy, as in past FRP
implementations. Section 5 introduces a reactive normal form
for behaviors that reveals the reactive structure as a sequence
of simple non-reactive phases. Wherever phases are constant (a
common case), sampling happens only once per phase, driven
by occurrences of relevant events, as shown in Section 8.

5 Mike Sperber noted this issue and addressed it as well (Sperber 2001).

4. Future values
A FRP event occurrence is a “future value”, or simply “future”,
i.e., a value and an associated time. To simplify the semantics and
implementation of events, and to provide an abstraction that may
have uses outside of FRP, let’s now focus on futures. Semantically,

type Fa = (bT , a)

force :: Future a → Fa

Like events and behaviors, much of the interface for future
values is packaged as instances of standard type classes. Moreover,
as with behaviors, the semantics of these instances are defined as
type class morphisms. The process of exploring these morphisms
reveals requirements for the algebraic structure of bT .

4.1 Functor
The semantic domain for futures, partially applied pairing, is a
functor:

instance Functor ((, ) t)
where fmap h (t , a) = (t , h a)

The semantic function, force , is a functor morphism:

instancesem Functor Future where
force (fmap h u) = fmap h (force u)

= (t , h a) where (t , a) = force u

Thus, mapping a function over a future gives a future with the same
time but a transformed value.

4.2 Applicative functor
For applicative functors, the semantic instance (pairing) requires an
additional constraint:

instance Monoid t ⇒ Applicative ((, ) t) where
pure a = (∅, a)
(t , f )<∗> (t ′, x ) = (t ⊕ t ′, f x )

When t is a future time, what meanings do we want for ∅
and (⊕)? Two future values can be combined only when both are
known, so (⊕) = max . Since ∅ is an identity for (⊕), it follows
that ∅ = minBound , and so bT must have a least element.

The Applicative semantics for futures follow from these con-
siderations choosing force to be an applicative functor morphism:

instancesem Applicative Future where
force (pure a) = pure a

= (∅, a)
= (minBound , a)

force (uf <∗> ux) = force uf <∗> force ux

= (t̂f , f )<∗> (t̂x, x )

= (t̂f ⊕ t̂x, f x )

= (t̂f ‘max ‘ t̂x, f x )
where

(t̂f , f ) = force uf

(t̂x, x ) = force ux

Now, of course these definitions of (⊕) and ∅ do not hold
for arbitrary t , even for ordered types, so the pairing instance of
Applicative provides helpful clues about the algebraic structure of
future times.

Alternatively, for a relative-time semantics, use the Sum monoid
in place of the Max monoid.

4.3 Monad
Given the Monoid constraint on t , the type constructor ((, ) t) is
equivalent to the more familiar writer monad.



instance Monoid t ⇒ Monad ((, ) t) where
return a = (∅, a)

(t̂a, a)>>= h = (t̂a ⊕ t̂b, b)

where (t̂b, b) = h a

Taking force to be a monad morphism (Wadler 1990),

instancesem Monad Future where
force (return a) = return a

= (minBound , a)

force (u >>= k) = force u >>= force ◦ k

= (t̂a ‘max ‘ t̂b, b)

where (t̂a, a) = force u

(t̂b , b) = force (k a)

Similarly, join collapses a future future into a future.

joinF :: Future (Future a)→ Future a
force (joinF uu) = join (fmap force (force uu))

= (t̂u ‘max ‘ t̂a, a)

where (t̂u, u) = force uu

(t̂a , a) = force u

So, the value of the join is the value of the of the inner future, and
the time matches the later of the outer and inner futures. (Alterna-
tively, the sum of the future times, in relative-time semantics.)

4.4 Monoid
A useful (⊕) for futures simply chooses the earlier one. Then, as
an identity for (⊕), ∅ must be the future that never arrives. (So bT
must have an upper bound.)

instancesem Monoid (Future a) where
force ∅ = (maxBound ,⊥)

force (ua ⊕ ub) = if t̂a 6 t̂b then ua else ub

where

(t̂a, ) = force ua

(t̂b, ) = force ub

(This definition does not correspond to the standard monoid in-
stance on pairs, so force is not a monoid morphism.)

Note that this Monoid instance (for future values) uses maxBound
and min , while the Monoid instance on future times uses minBound
and max .

4.5 Implementing futures
The semantics of futures can also be used as an implementation,
if the type of future times, FTime (with meaning bT ), satisfies the
properties encountered above:

• Ordered and bounded with lower and upper bounds of−∞ and
∞ (i.e., before and after all sample times), respectively.

• A monoid, in which ∅ = −∞ and (⊕) = max .
• To be useful, the representation must reveal partial information

about times (specifically lower bounds), so that time compar-
isons can complete even when one of the two times is not yet
fully known.

Assuming these three properties for FTime , the implementa-
tion of futures is easy, with most of the functionality derived (using
a GHC language extension) from the pairing instances above.

newtype Future a = Fut (FTime, a)
deriving (Functor ,Applicative,Monad)

A Monoid instance also follows directly from the semantics in
Section 4.4:

instance Monoid (Future a) where
∅ = Fut (maxBound ,⊥)

-- problematic:
ua@(Fut (t̂a, ))⊕ ub@(Fut (t̂b, )) =

if t̂a 6 t̂b then ua else ub

This definition of (⊕) has a subtle, but important, problem.
Consider computing the earliest of three futures, (ua ⊕ ub) ⊕ uc,
and suppose that uc is earliest, so that t̂c < t̂a ‘min‘ t̂b. No matter
what the representation of FTime is, the definition of (⊕) above
cannot produce any information about the time of ua ⊕ ub until
t̂a 6 t̂b is determined. That test will usually be unanswerable until
the earlier of those times arrives, i.e., until t̂a ‘min‘ t̂b, which (as
we’ve supposed) is after t̂c.

To solve this problem, change the definition of (⊕) on futures
to immediately yield a time as the (lazily evaluated) min of the two
future times. Because min yields an FTime instead of a boolean,
it can produce partial information about its answer from partial
information about its inputs.

-- working definition:
Fut (t̂a, a)⊕ Fut (t̂b, b) =

Fut (t̂a ‘min‘ t̂b, if t̂a 6 t̂b then a else b)

This new definition requires two comparison-like operations in-
stead of one. It can be further improved by adding a single oper-
ation on future times that efficiently combines min and (6).

4.6 Future times
Each of the three required properties of FTime (listed in Sec-
tion 4.5) can be layered onto an existing type:

type FTime = Max (AddBounds (Improving Time))

The Max wrapper adds the required monoid instance while
inheriting Ord and Bounded .

newtype Max a = Max a deriving (Eq ,Ord ,Bounded)

instance (Ord a,Bounded a)⇒ Monoid (Max a) where
∅ = Max minBound
Max a ⊕Max b = Max (a ‘max ‘ b)

The AddBounds wrapper adds new least and greatest elements,
preserving the existing ordering.

data AddBounds a =
MinBound | NoBound a | MaxBound deriving Eq

instance Bounded (AddBounds a) where
minBound = MinBound
maxBound = MaxBound

For an unfortunate technical reason, AddBounds does not derive
Ord . The semantics of Haskell’s deriving clause does not guar-
antee that min is defined in terms of min on the component types.
If min is instead defined via (6) (as currently in GHC), then par-
tial information in the type parameter a cannot get passed through
min . For this reason, AddBounds has an explicit Ord instance,
given in part in Figure 1.

The final wrapper, Improving , is described in Section 9. It adds
partial information to times and has min and (6) that work with
partially known values.

5. Reactive normal form
FRP’s behavior and event combinators are very flexible. For in-
stance, in b0 ‘switcher ‘ e , the phases (b0, ...) themselves may be
reactive, either as made by switcher , or by fmap or (<∗>) ap-
plied to reactive behaviors. This flexibility is no trouble at all for



instance Ord a ⇒ Ord (AddBounds a) where
MinBound ‘min‘ = MinBound

‘min‘ MinBound = MinBound
NoBound a ‘min‘ NoBound b = NoBound (a ‘min‘ b)
u ‘min‘ MaxBound = u
MaxBound ‘min‘ v = v

-- similarly for (6) and max

Figure 1. Ord instance for the AddBounds type

the function-based semantics in Section 2, but how can we find our
way to an efficient, data-driven implementation?

Observed over time, a reactive behavior consists of a sequence
of non-reactive phases, punctuated by events. Suppose behaviors
can be viewed or represented in a form that reveals this phase struc-
ture explicitly. Then monotonic behavior sampling could be imple-
mented efficiently by stepping forward through this sequence, sam-
pling each phase until the next one begins. For constant phases (a
common case), sampling would then be driven entirely by relevant
event occurrences.

Definition: A behavior-valued expression is in reactive normal
form (RNF) if it has the form b ‘switcher ‘ e , where the lead
behavior b is non-reactive, i.e., has no embedded switcher (or
combinators defined via switcher ), and the behaviors in e are also
in RNF.

For instance, b can be built up from pure , time , fmap, and
(<∗>). To convert arbitrary behavior expressions into RNF, one
can provide equational rewrite rules that move switchers out of
switcher heads, out of fmap, (<∗>), etc, and prove the correctness
of these equations from the semantics in Section 2. For example,

fmap f (b ‘switcher ‘ e) ≡ fmap f b ‘switcher ‘ fmap f e

The rest of this paper follows a somewhat different path, inspired
by this rewriting idea, defining an RNF-based representation.

5.1 Decoupling discrete and continuous change
FRP makes a fundamental, type-level distinction between events
and behaviors, i.e., between discrete and continuous. Well, not
quite. Although (reactive) behaviors are defined over continuous
time, they are not necessarily continuous. For instance, a behavior
that counts key-presses changes only discretely. Let’s further tease
apart the discrete and continuous aspects of behaviors into two
separate types. Call the purely discrete part a “reactive value” and
the continuous part a “time function”. FRP’s notion of reactive
behavior decomposes neatly into these two simpler notions.

Recall from Section 1 that continuous time is one of the reasons
for choosing pull-based evaluation, despite the typical inefficiency
relative to push-based. As we will see, reactive values can be eval-
uated in push style, leaving pull for time functions. Recomposing
reactive values and time functions yields an RNF representation
for reactive behaviors that reveals their phase structure. The two
separate evaluation strategies combine to produce an efficient and
simple hybrid strategy.

5.2 Reactive values
A reactive value is like a reactive behavior but is restricted to
changing discretely. Its meaning is a step function, which is fully
defined by its initial value and discrete changes, with each change
defined by a time and a value. Together, these changes correspond
exactly to a FRP event, suggesting a simple representation:

data Reactive a = a ‘Stepper ‘ Event a

The meaning of a reactive value is given via translation into a
reactive behavior, using stepper :

rat :: Reactive a → Ba

rat (a0 ‘Stepper ‘ e) = at (a0 ‘stepper ‘ e)
= λt → last (a0 : before (occs e) t)

where before is as defined in Section 2.3.
With the exception of time , all behavior operations in Section 2

(as well as others not mentioned there) produce discretely-changing
behaviors when given discretely-changing behaviors. Therefore, all
of these operations (excluding time) have direct counterparts for
reactive values. In addition, reactive values form a monad.

stepperR :: a → Event a → Reactive a
switcherR :: Reactive a → Event (Reactive a)

→ Reactive a

instance Functor Reactive
instance Applicative Reactive
instance Monad Reactive

The semantic function, rat , is a morphism on Functor , Applicative ,
and Monad :

instancesem Functor Reactive where
rat (fmap f b) = fmap f (rat b)

= f ◦ rat b

instancesem Applicative Reactive where
rat (pure a) = pure a

= const a

rat (rf <∗> rx) = rat rf <∗> rat rx
= λt → (rf ‘rat ‘ t) (rx ‘rat ‘ t)

instancesem Monad Reactive where
rat (return a) = return a

= const a

rat (r >>= k) = rat r >>= rat ◦ k
= λt → (rat ◦ k) (rat r t) t
= λt → rat (k (rat r t)) t

The join operation may be a bit easier to follow than (>>=).

rat (joinR rr) = join (fmap rat (rat r))
= join (rat ◦ rat rr)
= λt → rat (rat rr t) t

Sampling joinR rr at time t then amounts to sampling rr at t to
get a reactive value r , which is itself sampled at t .

5.3 Time functions
Between event occurrences, a reactive behavior follows a non-
reactive function of time. Such a time function is most directly and
simply represented literally as a function. However, functions are
opaque at run-time, preventing optimizations. Constant functions
are particularly helpful to recognize, in order to perform dynamic
constant propagation, as in (Elliott 1998a; Nilsson 2005). A simple
data type suffices for recognizing constants.

data Fun t a = K a | Fun (t → a)

The semantics is given by a function that applies a Fun to an
argument. All other functionality can be neatly packaged, again, in
instances of standard type classes, as shown in Figure 2. There is a
similar instance for Arrow as well. The semantic function, apply ,
is a morphism with respect to each of these classes.

Other optimizations could be enabled by in a similar way. For
instance, generalize the K constructor to polynomials (adding a
Num constraint for t). Such a representation could support pre-
cise and efficient differentiation and integration and prediction of



data Fun t a = K a | Fun (t → a)

apply :: Fun t a → (t → a) -- semantic function
apply (K a) = const a
apply (Fun f ) = f

instance Functor (Fun t) where
fmap f (K a) = K (f a)
fmap f (Fun g) = Fun (f ◦ g)

instance Applicative (Fun t) where
pure = K
K f <∗>K x = K (f x )
cf <∗> cx = Fun (apply cf <∗> apply cx )

instance Monad (Fun t) where
return = pure
K a >>= h = h a
Fun f >>= h = Fun (f >>= apply ◦ h)

Figure 2. Constant-optimized functions

some synthetic events based on root-finding (e.g., some object col-
lisions). The opacity of the function arguments used with fmap and
arr would, however, limit analysis.

5.4 Composing
Reactive values capture the purely discrete aspect of reactive be-
haviors, while time functions capture the purely continuous. Com-
bining them yields a representation for reactive behaviors.

type Behavior = Reactive ◦ Fun Time

Type composition can be defined as follows:

newtype (h ◦ g) a = O (h (g a))

Functors compose into functors, and applicative functors into
applicative functors (McBride and Paterson 2008).

instance (Functor h,Functor g)
⇒ Functor (h ◦ g) where

fmap f (O hga) = O (fmap (fmap f ) hga)

instance (Applicative h,Applicative g)
⇒ Applicative (h ◦ g) where

pure a = O (pure (pure a))
O hgf <∗>O hgx = O (liftA2 (<∗>) hgf hgx )

The semantics of behaviors combines the semantics of its two
components.

at :: Behavior a → Ba

at (O rf ) = join (fmap apply (rat rf ))
= λt → apply (rat rf t) t

More explicitly,

O (f ‘Stepper ‘ e) ‘at ‘ t = last (f : before (occs e) t) t

This last form is almost identical to the semantics of switcher in
Section 2.3.

This representation of behaviors encodes reactive normal form,
but how expressive is it? Are all of the Behavior combinators
covered, or do some stray outside of RNF?

The time combinator is non-reactive, i.e., purely a function of
time:

time = O (pure (Fun id))

The Functor and Applicative instances are provided automati-
cally from the instances for type composition (above), given the in-
stances for Reactive and Fun (specified in Section 5 and to be de-
fined in Section 7). Straightforward but tedious calculations show
that time and the Functor and Applicative instances have the se-
mantics specified in Section 2.

I doubt that there is a Monad instance. While the semantic do-
mainB is a monad, I think its join surpasses the meanings that can
be represented as reactive time functions. For purely discrete ap-
plications, however, reactive behaviors can be replaced by reactive
values, including the Monad functionality.

6. Another angle on events
The model of events we’ve been working with so far is time-
ordered lists of future values, where a future value is a time/value
pair: [(t0, a0), (t1, a1), ... ]. If such an occurrence list is nonempty,
another view on it is as a time t0, together with a reactive value
having initial value a0 and event with occurrences [(t1, a1), ... ]. If
the occurrence list is empty, then we could consider it to have initial
time∞ (maxBound ), and reactive value of⊥. Since a future value
is a time and value, it follows that an event (empty or nonempty)
has the same content as a future reactive value. This insight leads
to a new representation of functional events:

-- for non-decreasing times
newtype Event a = Ev (Future (Reactive a))

With this representation, the semantic function on events peels off
one time and value at a time.

occs :: Event a → Ea

occs (Ev (Fut (∞, ))) = [ ]

occs (Ev (Fut (t̂a , a ‘Stepper ‘ e ′))) = (t̂a, a) : occs e ′

Why use this representation of events instead of directly mim-
icking the semantic model E? The future-reactive representation
will be convenient in defined Applicative and Monad instances
below. It also avoids a subtle problem similar to the issue of com-
paring future times using (6), discussed in Section 4.5. The defini-
tion of merge in Section 2.2.1 determines that an event has no more
occurrences by testing the list for emptiness. Consider filtering out
some occurrences of an event e . Because the emptiness test yields a
boolean value, it cannot yield partial information, and will have to
block until the prefiltered occurrences are known and tested. These
issues are also noted in Sperber (2001).

7. Implementing operations on reactive values
and events

The representations of reactive values and events are now tightly
interrelated:

data Reactive a = a ‘Stepper ‘ Event a
newtype Event a = Ev (Future (Reactive a))

These definitions, together with Section 5, make a convenient basis
for implementing FRP.

7.1 Reactive values
7.1.1 Functor
As usual, fmap f applies a function f to a reactive value pointwise,
which is equivalent to applying f to the initial value and to each
occurrence value.

instance Functor Reactive where
fmap f (a ‘Stepper ‘ e) = f a ‘Stepper ‘ fmap f e



7.1.2 Applicative
The Functor definition was straightforward, because the Stepper
structure is easily preserved. Applicative is more challenging.

instance Applicative Reactive where ...

First the easy part. A pure value becomes reactive by using it as the
initial value and ∅ as the (never-occuring) change event:

pure a = a ‘Stepper ‘ ∅
Consider next applying a reactive function to a reactive argument:

rf@(f ‘Stepper ‘ Ev uf )<∗> rx@(x ‘Stepper ‘ Ev ux) =
f x ‘Stepper ‘ Ev u

where u = ...

The initial value is f x , and the change event occurs each time
either the function or the argument changes. If the function changes
first, then (at that future time) apply a new reactive function to an
old reactive argument:

fmap (λrf ′ → rf ′ <∗> rx) uf

Similarly, if the argument changes first, apply an old reactive func-
tion and a new reactive argument:

fmap (λrx′ → rf <∗> rx′) ux

Combining these two futures as alternatives:6

u = fmap (λrf ′ → rf ′ <∗> rx) uf ⊕
fmap (λrx′ → rf <∗> rx′) ux

More succinctly,

u = ((<∗>rx)<$> uf )⊕ ((rf<∗>)<$> ux)

A wonderful thing about this (<∗>) definition for Reactive is
that it automatically reuses the previous value of the function or
argument when the argument or function changes. This caching
property is especially handy in nested applications of (<∗>), which
can arise either explicitly or through liftA2, liftA3, etc. Consider
u = liftA2 f r s or, equivalently, u ≡ (f <$>r)<∗>s , where r and
s are reactive values, with initial values r0 and s0, respectively. The
initial value u0 of u is f r0 s0. If r changes from r0 to r1, then the
new value of f <$>r will be f r1, which then gets applied to s0, i.e.,
u1 ≡ f r1 s0. If instead s changes from s0 to s1, then u1 ≡ f r0 s1.
In this latter case, the old value f r0 of f <$>r is passed on without
having to be recomputed. The savings is significant for functions
that do some work based on partial applications.

7.1.3 Monad
The Monad instance is perhaps most easily understood via its join:

joinR :: Reactive (Reactive a)→ Reactive a

The definition of joinR is similar to (<∗>) above:

joinR ((a ‘Stepper ‘ Ev ur) ‘Stepper ‘ Ev urr ) =
a ‘Stepper ‘ Ev u

where u = ...

Either the inner future (ur) or the outer future (urr ) will arrive first.
If the inner arrives first, switch and continue waiting for the outer:

(‘switcher ‘Ev urr )<$> ur

The (<$>) here is over futures. If instead the outer future arrives
first, abandon the inner and get new reactive values from the outer:

6 Recall from Section 4.1 that fmap f u arrives exactly when the future u
arrives, so the (⊕)’s choice in this case depends only on the relative timing
of uf and ux.

join <$> urr

Choose whichever comes first:

u = ((‘switcher ‘Ev urr )<$> ur)⊕ (join <$> urr )

Then plug this join into a standard Monad instance:

instance Monad Reactive where
return = pure
r >>= h = joinR (fmap h r)

7.1.4 Reactivity
In Section 2.3, stepper (on behaviors) is defined via switcher . For
reactive values, stepperR corresponds to the Stepper constructor:

stepperR :: a → Event a → Reactive a
stepperR = Stepper

The more general switching form can be expressed in terms of
stepperR and monadic join:

switcherR :: Reactive a → Event (Reactive a)
→ Reactive a

r ‘switcherR‘ er = joinR (r ‘stepperR‘ er)

7.2 Events
7.2.1 Functor
The Event functor is also easily defined. Since an event is a future
reactive value, combine fmap on Future with fmap on Reactive .

instance Functor Event where
fmap f (Ev u) = Ev (fmap (fmap f ) u)

7.2.2 Monad
Assuming a suitable join for events, the Monad instance is simple:

instance Monad Event where
return a = Ev (return (return a))
r >>= h = joinE (fmap h r)

This definition of return makes a regular value into an event by
making a constant reactive value (return) and wrapping it up as an
always-available future value (return).

The join operation collapses an event-valued event ee into an
event. Each occurrence of ee delivers a new event, all of which get
adjusted to insure temporal monotonicity and merged together into
a single event. The event ee can have infinitely many occurrences,
each of which (being an event) can also have an infinite number of
occurrences. Thus joinE has the tricky task of merging (a repre-
sentation of) a sorted infinite stream of sorted infinite streams into
a single sorted infinite stream. Since an event is represented as a
Future , the join makes essential use of the Future monad7:

joinE :: Event (Event a)→ Event a
joinE (Event u) = Event (u >>= eFuture ◦ g)

where
g (e ‘Stepper ‘ ee) = e ⊕ joinE ee
eFuture (Ev u) = u

7.2.3 Monoid
The Monoid instance relies on operations on futures:

instance Ord t ⇒ Monoid (Event a) where
∅ = Ev ∅
Ev u ⊕ Ev v = Ev (u ‘mergeu‘ v)

7 This definition is inspired by one from Jules Bean.



The never-occuring event happens in the never-arriving future.
To merge two future reactive values u and v , there are again two

possibilities. If u arrives first (or simultaneously), with value a0 and
next future u ′, then a0 will be the initial value and u ′ ‘mergeu‘ v
will be the next future. If v arrives first, with value b0 and next
future v ′, then b0 will be the initial value and u ‘mergeu‘ v ′ will be
the next future.

mergeu :: Future (Reactive a)→ Future (Reactive a)
→ Future (Reactive a)

u ‘mergeu‘ v = (inFutR (‘merge‘v)<$> u)⊕
(inFutR (u‘merge‘)<$> v)

where
inFutR f (r ‘Stepper ‘ Ev u ′) = r ‘Stepper ‘ Ev (f u ′)

8. Monotonic sampling
The semantics of a behavior is a function of time. That function
can be applied to time values in any order. Recall in the seman-
tics of switcher (Section 2.3) that sampling at a time t involves
searching through an event for the last occurrence before t . The
more occurrences take place before t , the costlier the search. Lazy
evaluation can delay computing occurrences before they’re used,
but once computed, these occurrences would remain in the events,
wasting space to hold and time to search.

In practice, behaviors are rendered forward in time, and so are
sampled with monotonically increasing times. Making this usage
pattern explicit allows for much more efficient sampling.

First, let’s consider reactive values and events. Assume we have
a consumer for generated values:

type Sink a = a → IO ()

For instance, a sink may render a number to a GUI widget or
an image to a display window. The functions sinkR and sinkE

consume values as generated by events and reactive values:

sinkR :: Sink a → Reactive a → IO b
sinkE :: Sink a → Event a → IO b

The implementation is an extremely simple back-and-forth, with
sinkR rendering initial values and sinkE waiting until the next
event occurrence.

sinkR snk (a ‘Stepper ‘ e) = snk a >> sinkE snk e

sinkE snk (Ev (Fut (t̂r , r))) = waitFor t̂r >> sinkR snk r

Except in the case of a predictable event (such as a timer),
waitFor t̂r blocks simply in evaluating the time t̂r of a future
event occurrence. Then when evaluation of t̂r unblocks, the real
time is (very slightly past) t̂r , so the actual waitFor need not do
any additional waiting.

A behavior contains a reactive value whose values are time
functions, so it can be rendered using sinkR if we can come up
with a appropriate sink for time functions.

sinkB :: Sink a → Behavior a → IO b
sinkB snk (O rf ) = do snkF ← newTFunSink snk

sinkR snkF rf

The procedure newTFunSink makes a sink that consumes suc-
cessive time functions. For each consumed constant function K a ,
the value a is rendered just once (with snk ). When a non-constant
function Fun f is consumed, a thread is started that repeatedly
samples f at the current time and renders:

forkIO (forever (f <$> getTime >>= snk))

In either case, the constructed sink begins by killing the current
rendering thread, if any. Many variations are possible, such as using

a GUI toolkit’s idle event instead of a thread, which has the benefit
of working with thread-unsafe libraries.

9. Improving values
The effectiveness of future values, as defined in Section 4, depends
on a type wrapper Improving , which adds partial information in
the form of lower bounds. This information allows a time compar-
ison t̂a 6 t̂b to suceed when the earlier of t̂a and t̂b arrives instead
of the later. It also allows t̂a ‘min‘ t̂b to start producing lower bound
information before either of t̂a and t̂b is known precisely.

Fortunately, exactly this notion was invented, in a more gen-
eral setting, by Warren Burton. “Improving values” (Burton 1989,
1991) provide a high-level abstraction for parallel functional pro-
gramming with determinate semantics.

An improving value (IV) can be represented as a list of lower
bounds, ending in the exact value. An IV representing a simple
value (the exactly function used in Section 4.6), is a singleton list
(no lower bounds). See (Burton 1991, Figure 3) for details.

Of course the real value of the abstraction comes from the
presence of lower bounds. Sometimes those bounds come from
max , but for future times, the bounds will come to be known over
time. One possible implementation of future times would involve
Concurrent Haskell channels (Peyton Jones et al. 1996).

getChanContents :: Chan a → IO [a ]

The idea is to make a channel, invoke getChanContents , and wrap
the result as an IV. Later, lower bounds and (finally) an exact value
are written into the channel. When a thread attempts to look beyond
the most recent lower bound, it blocks. For this reason, this simple
implementation of improving values must be supplied with a steady
stream of lower bounds, which in the setting of FRP correspond to
event non-occurrences.

Generating and manipulating numerous lower bounds is a sig-
nificant performance drawback in the purely functional implemen-
tation of IVs. A more efficient implementation, developed next,
thus benefits FRP and other uses of IVs.

10. Improving on improving values
In exploring how to improve over the functional implementation of
improving values, let’s look at how future times are used.

• Sampling a reactive value requires comparing a sample time t
with a future time t̂r′ .

• Choosing the earlier of two future values ((⊕) from Section 4),
uses min and (6) on future times.

Imagine that we can efficiently compare an improving value
with an arbitrary known (exact) value:8

compareI :: Ord a ⇒ Improving a → a → Ordering

How might we use compareI to compare two future times, e.g.,
testing t̂a 6 t̂b? We could either extract the exact time from t̂a and
compare it with t̂b, or extract the exact time from t̂b and compare
it with t̂a. These two methods produce the same information but
usually not at the same time, so let’s choose the one that can answer
most promptly. If indeed t̂a 6 t̂b, then the first method will likely
succeed more promptly and otherwise the second method. The
dilemma in choosing is that we have to know the answer before
we can choose the best method for extracting that answer.

Like many dilemmas, this one results from either/or thinking.
A third alternative is to try both methods in parallel and just use

8 The Haskell Ordering type contains LT , EQ , and GT to represent less-
than, equal-to, and greater-than.



whichever result arrives first. Assume for now the existence of an
“unambiguous choice” operator, unamb, that will try two methods
to solve a problem and return whichever one succeeds first. The two
methods are required to agree when they both succeed, for semantic
determinacy. Then

t̂a 6 t̂b = ((t̂a ‘compareI ‘ exact t̂b) 6≡ GT ) ‘unamb‘

((t̂b ‘compareI ‘ exact t̂a) 6≡ LT )

Next consider t̂a ‘min‘ t̂b. The exact value can be extracted from
the exact values of t̂a and t̂b, or from (6) on IVs:

exact (t̂a ‘min‘ t̂b) = exact t̂a ‘min‘ exact t̂b
= exact (if (t̂a 6 t̂b) then t̂a else t̂b)

How can we compute (t̂a ‘min‘ t̂b)‘compareI ‘t for an arbitrary
exact value t? The answer is t̂a ‘compareI ‘ t if t̂a 6 t̂b, and
t̂b ‘compareI ‘ t otherwise. However, this method, by itself, misses
an important opportunity. Suppose both of these tests can yield
answers before it’s possible to know whether t̂a 6 t̂b. If the
answers agree, then we can use that answer immediately, without
waiting to learn whether t̂a 6 t̂b.

With these considerations, a new representation for IVs suggests
itself. Since the only two operations we need on IVs are exact
and compareI , use those two operations as the IV representation.
Figure 3 shows the details, with unamb and asAgree defined in
Section 11. Combining (6) and min into minLE allows for a
simple optimization of future (⊕) from Section 4.5.

11. Unambiguous choice
The representation of improving values in Section 10 relies on an
“unambiguous choice” operator with determinate semantics and an
underlying concurrent implementation.

-- precondition: compatible arguments
unamb :: a → a → a

In order to preserve simple, determinate semantics, unamb may
only be applied to arguments that agree where defined.

compatible a b = (a ≡ ⊥ ∨ b ≡ ⊥ ∨ a ≡ b)

unamb yields the more-defined of the two arguments.

∀a b.compatible a b ⇒ unamb a b = a t b

Operationally, unamb forks two threads and evaluates one argu-
ment in each. When one thread finishes its computed value is re-
turned.

Figure 4 shows one way to implement unamb, in terms of an
ambiguous choice operator, amb. The latter, having indeterminate
(ambiguous) semantics, is in the IO type, using race to run two
concurrent threads. For inter-thread communication, the race func-
tion uses a Concurrent Haskell MVar (Peyton Jones et al. 1996) to
hold the computed value. Each thread tries to execute an action and
write the resulting value into the shared MVar. The takeMVar op-
eration blocks until one of the threads succeeds, after which both
threads are killed (one perhaps redundantly).9 This unamb imple-
mentation fails to address an important efficiency concern. When
one thread succeeds, there is no need to continue running its com-
petitor. Moreover, the competitor may have spawned many other
threads (due to nested unamb), all of which are contributing to-
ward work that is no longer relevant.

The assuming function makes a conditional strategy for com-
puting a value. If the assumption is false, the conditional strat-
egy yields ⊥ via hang , which blocks a thread indefinitely, while

9 My thanks to Spencer Janssen for help with this implementation.

-- An improving value. Invariant:
-- compareI iv w compare (exact iv)

data Improving a =
Imp {exact :: a, compareI :: a → Ordering }

exactly :: Ord a ⇒ a → Improving a
exactly a = Imp a (compare a)

instance Eq a ⇒ Eq (Improving a) where
Imp a ≡ Imp b = a ≡ b

instance Ord a ⇒ Ord (Improving a) where
s 6 t = snd (s ‘minLE ‘ t)
s ‘min‘ t = fst (s ‘minLE ‘ t)
s ‘max ‘ t = fst (s ‘maxLE ‘ t)

-- Efficient combination of min and (6)
minLE :: Ord a ⇒ Improving a → Improving a

→ (Improving a,Bool)
Imp u uComp ‘minLE ‘ Imp v vComp =

(Imp uMinV wComp, uLeqV )
where

uMinV = if uLeqV then u else v
-- u 6 v : Try u ‘compare‘ v and v ‘compare‘ u .

uLeqV = (uComp v 6≡ GT ) ‘unamb‘ (vComp u 6≡ LT )
minComp = if uLeqV then uComp else vComp

-- (u ‘min‘ v) ‘compare‘ t : Try comparing according to
-- whether u 6 v , or use either answer if they agree.

wComp t = minComp t ‘unamb‘
(uComp t ‘asAgree‘ vComp t)

-- Efficient combination of max and (>)
maxLE :: Ord a ⇒ Improving a → Improving a

→ (Improving a,Bool)
-- ... similarly ...

Figure 3. Improved improving values

consuming neglible resources and generating no error. One use of
assuming is to define asAgree , which was used in Figure 3.

12. Additional functionality
All of the usual FRP functionality can be supported, including the
following.

Integration Numeric integration requires incremental sampling
for efficiency, replacing the apply interface from Section 5.3 by
applyK from Section 8. The residual time function returned by
applyK remembers the previous sample time and value, so the next
sampling can do a (usually) small number of integration steps. (For
accuracy, it is often desirable to take more integration steps than
samples.) Integration of reactive behaviors can work simply by in-
tegrating each non-reactive phase (a time function) and accumu-
lating the result, thanks the interval-additivity property of definite
integration (

R c

a
f ≡

R b

a
f +

R c

b
f ).

Accumulation Integration is continuous accumulation on behav-
iors. The combinators accumE and accumR discretely accumulate
the results of event occurrences.

accumR :: a → Event (a → a)→ Reactive a
accumE :: a → Event (a → a)→ Event a



-- Unambiguous choice on compatible arguments.
unamb :: a → a → a
a ‘unamb‘ b = unsafePerformIO (a ‘amb‘ b)

-- Ambiguous choice, no precondition.
amb :: a → a → IO a
a ‘amb‘ b = evaluate a ‘race‘ evaluate b

-- Race two actions in separate threads.
race :: IO a → IO a → IO a
race :: IO a → IO a → IO a
a ‘race‘ b =

do v ← newEmptyMVar
ta ← forkIO (a >>= putMVar v)
tb ← forkIO (b >>= putMVar v)
x ← takeMVar v
return x

-- Yield a value if a condition is true.
assuming :: Bool → a → a
assuming c a = if c then a else bottom

-- The value of agreeing values (or bottom)
asAgree :: Eq a ⇒ a → a → a
a ‘asAgree‘ b = assuming (a ≡ b) a

-- Never yield an answer. Identity for unamb.
bottom :: a
bottom = unsafePerformIO hangIO

-- Block forever, cheaply
hangIO :: IO a
hangIO = do forever (threadDelay maxBound)

return ⊥

Figure 4. Reference (inefficient) unamb implementation

Each occurrence of the event argument yields a function to be
applied to the accumulated value.

a ‘accumR‘ e = a ‘stepper ‘ (a ‘accumE ‘ e)
a ‘accumE ‘ Ev ur = Ev (h <$> ur)

where
h (f ‘Stepper ‘ e ′) = f a ‘accumR‘ e ′

Filtering It’s often useful to filter event occurrences, keeping
some occurrences and dropping others. The Event monad instance
allows a new, simple and very general definition that includes
event filtering as a special case. One general filtering tool con-
sumes Maybe values, dropping each Nothing and unwrapping
each Just .10

joinMaybes :: MonadPlus m ⇒ m (Maybe a)→ m a
joinMaybes = (>>=maybe mzero return)

The MonadPlus instance for Event uses mzero = ∅ and
mplus = (⊕). The more common FRP event filter has the fol-
lowing simple generalization:

filterMP :: MonadPlus m ⇒ (a → Bool)→ m a → m a
filterMP p m = joinMaybes (liftM f m)
where

f a | p a = Just a
| otherwise = Nothing

10 My thanks to Cale Gibbard for this succinct formulation.

13. Related work
The most closely related FRP implementation is the one underlying
the Lula system for design and control of lighting, by Mike Sper-
ber (2001). Like the work described above, Lula-FRP eliminated
the overhead of creating and processing the large numbers of event
non-occurrences that have been present, in various guises, in al-
most all other FRP implementations. Mike noted that the pull-based
event interface that motivates these non-occurrences also imposes a
reaction latency bounded by the polling frequency, which detracts
noticeably from the user experience. To eliminate non-occurrences
and the resulting overhead and latency, he examined and addressed
subtle issues of events and thread blocking, corresponding to the
those discussed in Section 4.5. Mike’s solution, like the one de-
scribed in Section 10 above, involved a multi-threaded implemen-
tation. However, it did not guarantee semantic determinism, in case
of simultaneous or nearly-simultaneous event occurrences. The im-
plementation of event operations was rather complex, especially for
event merging. The supporting abstractions used above (future val-
ues, improving values, and unambiguous choice) seem to be helpful
in taming that complexity. Lula-FRP’s behaviors still used a pure
pull interface, so the latency solution was limited to direct use of
events rather than reactive behaviors. The reactive value abstrac-
tion used above allows behavior reactions at much lower latency
than the sampling period. Unlike most published FRP implemen-
tations, Lula-FRP was implemented in a strict language (Scheme).
For that reason, it explicitly managed details of laziness left implicit
in Haskell-based implementations.

“Event-Driven FRP” (E-FRP) (Wan et al. 2002) also has similar
goals. It focused on event-driven systems, i.e., ones in which lim-
ited work is done in reaction to an event, while most FRP imple-
mentations repeatedly re-evaluate the whole system, whether or not
there are relevant changes. Like RT-FRP (Wan et al. 2001), expres-
siveness is restricted in order to make guarantees about resource-
bounded execution. The original FRP model of continuous time is
replaced by a discrete model. Another restriction compared with
the semantics of the original FRP (preserved in this paper) is that
events are not allowed to occur simultaneously.

Peterson et al. (2000) explored opportunities for parallelism in
implementing a variation of FRP. While the underlying semantic
model was not spelled out, it seems that semantic determinacy was
not preserved, in contrast to the semantically determinate concur-
rency used in this paper (Section 11).

Nilsson (2005) presented another approach to FRP optimiza-
tion. The key idea was to recognize and efficiently handle several
FRP combinator patterns. In some cases, the standard Haskell type
system was inadequate to capture and exploit these patterns, but
generalized algebraic data types (GADTs) were sufficient. These
optimizations proved worthwhile, though they did introduce signif-
icant overhead in run-time (pattern matching) and code complexity.
In contrast, the approach described in the present paper uses very
simple representations and unadventurous, Hindley-Milner types.
Another considerable difference is that (Nilsson 2005) uses an
arrow-based formulation of FRP, as in Fruit (Courtney and Elliott
2001) and Yampa (Nilsson et al. 2002). The nature of the Arrow
interface is problematic for the goal of minimal re-evaluation. Input
events and behaviors get combined into a single input, which then
changes whenever any component changes. Moreover, because the
implementation style was demand-driven, event latency was still
tied to sampling rate.

FranTk is a GUI library containing FRP concepts but mixing in
some imperative semantics (Sage 2000). Its implementation was
based on an experimental data-driven FRP implementation (El-
liott 1998b), which was itself inspired by Pidgets++ (Scholz and
Bokowski 1996). Pidgets++ used functional values interactively re-
computed in a data-driven manner via one-way constraints. None



of these three systems supported continuous time, nor implemented
a pure FRP semantics.

At first blush, one might think that an imperative implementa-
tion could accomplish what we set out to do in this paper. For in-
stance, there could be imperative call-backs associated with meth-
ods that side-effect some sort of dependency graph. As far as I
know, no such implementation has achieved (nor probably could
achieve) FRP’s (determinate) merge semantics for ordered receipt
of simultaneous occurrences (which happens easily with composi-
tional events) or even nearly-simultaneous occurrences. Imperative
implementations are quite distant from semantics, hence hard to
verify or trust. In contrast, the functional implementation in this
paper evolves from the semantics.

In some formulations of FRP, simultaneous occurrences are
eliminated or merged (Nilsson et al. 2002; Wan and Hudak 2000;
Wan et al. 2001), while this paper retains such occurrences as dis-
tinct. In some cases, the elimination or merging was motivated by
a desire to reduce behaviors and events to a single notion. This
desire is particularly compelling in the arrow-based FRP formu-
lations, which replace behaviors (or “signals”) and events with a
higher level abstraction of “signal transformers”. Although simul-
taneity is very unlikely for (distinct) purely physical events, it can
easily happen with FRP’s compositional events.

14. Future work
• Much more testing, measurement, and tuning is needed in order

to pragmatically and quantitatively evaluate the implementation
techniques described in this paper, especially the new imple-
mentation of improving values described in Section 10. How
well do the techniques work in a complex application?

• Can these ideas be transplanted to arrow-based formulations
of FRP? How can changes from separately-changing inputs be
kept from triggering unnecessary computation, when the arrow
formulations seem to require combining all inputs into a single
varying value?

• Explore other uses of the unambiguous choice operator defined
in Section 11, and study its performance, including the kinds
of parallel search algorithms for which improving values were
invented (Burton 1989, 1991).

• Experiment with relaxing the assumption of temporal mono-
tonicity exploited in Section 8. For instance, a zipper represen-
tation for bidirectional sampling could allow efficient access to
nearby past event occurrences as well as future ones. Such a
representation may be efficient in time though leaky in space.

• Type class morphisms are used to define the the semantics
of every key type in this paper except for events. Can this
exception be eliminated?

• Since reactive values are purely data, they cache “for free”.
In contrast, time functions (Section 5.3) have a partly function
representation. Is there an efficiently caching representation?
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