arXiv:1106.2578v1 [cs.PL] 14 Jun 2011

Extensible Pattern Matching in an Extensible Language

Sam Tobin-Hochstadt

PLT @ Northeastern University

samth@ccs.neu.edu

Abstract. Pattern matching is a widely used technique in functionadjleages,
especially those in the ML and Haskell traditions, wheres iat the core of the
semantics. In languages in the Lisp tradition, in contiaesttern matching it typ-
ically provided by libraries built with macros. We preseatch, a sophisticated
pattern matcher for Racket, implemented as language éatenssing macros.
The system supports novel and widely-useful pattern-niagcforms, and is it-
self extensible. The extensibility @it ch is implemented via a general technique
for creating extensible language extensions.

1 Extending Pattern Matching

The following Rackét [12] program finds the magnitude of a complex number, repre-
sented in either Cartesian or polar form as a 3-elemenulsng the first element as a

type tag:

(define (magnitude n)
(cond [(eq? (first n) ’cart)
(sqrt (+ (sqr (second n)) (sqr (third n))))]
[(eq? (first n) ’polar)
(second n)1))

While this program accomplishes the desired purpose,at'srbm obviously correct,
and commits the program to the list-based representatidditianally, it unnecessarily
repeats accesses to the list structure making up the repagisa. Finally, if the input
is > (cart 7), it produces a hard-to-decipher error from tha rd function.

In contrast, the same program written using pattern magakifar simpler:

(define (magnitude n)
(match n
[(list ’cart x y) (sqrt (+ (sqr x) (sqr y)))]
[(1ist ’polar r theta) r]))

The new program is shorter, more perspicuous, does nottrepegutation, and pro-
duces better error messages. For this reason, patterningalets become a ubiquitous
tool in functional programming, especially for languageshe Haskell and ML fam-
ilies. Unfortunately, pattern matching is less ubiquitougunctional languages in the

! Racket is the new name of PLT Scheme.

http://arxiv.org/abs/1106.2578v1

Lisp tradition, such as Common Lisp, Scheme, and Rackes.i$hinfortunate, since as
we demonstrate in the remainder of the paper, not only arsahee benefits available
as in Haskell or ML, but the extensibility provided by langea such as Racket leads
naturally to expressive and extensible pattern matchers.

1.1 More Expressive Patterns

The function can also be easily converted to arbitrary-disienal coordinates, using
the ... notation for specifying an arbitrary-length list:

(define (magnitude n)
(match n
[(list ’cart xs ...) (sqrt (apply + (map sqr xs)))]
[(1ist ’polar r theta ...) rl))

Racket is untyped, so we can add argument checking in therpatiatch to catch errors
early. Here we use the pattern, which tests the value under consideration agtiast
supplied predicate:

(define (magnitude n)
(match n
[(1ist ’cart (? real? xs) ...) (sqrt (apply + (map sqr xs)))]
[(1ist ’polar (7 real? r) (? real? theta) ...) r]))

This implementation is more robust than our original fuoictibut it approaches it in
complexity, and still commits us to a list-based repres@ntaf coordinates.

1.2 Custom Patterns

By switching to custom, user-defined pattern matching fomscan simplify our pat-
terns and the representation choice can be abstracted away:

(define (magnitude n)
(match n
[(cart xs ...)
(sqrt (apply + (map sqr xs)))]
[(polar r theta ...) r]))

Our custom pattern matching form can use other featuresaid®a pattern matcher
to perform arbitrary computation, allowing us to simplifietfunction further by trans-
parently converting Cartesian to polar coordinates wheessary:

(define (magnitude n)
(match n
[(polar r theta ...) r]))

| x variables

pat = (? expr) predicates
| (and pat) conjunction
| val literal data
| (cons pat pat) pairs
| (list pat) fixed-length lists

Figure 1: Simple Patterns

We now have an implementation which avoids commitment toasgntation and han-
dles arbitrary dimensions as well as argument checkingh®iit extensible pattern
matching, this might require interface changes or a largebar of helper functions.
Instead, we have developed reusable abstractions whiglostthe clear definition of
exactly what we mean.

In the remainder of the paper, we describe the implememtafiall of these exam-
ples, focusing on user-extensibility. We begin with a tolypattern matching in Racket,
touching briefly on the adaptation of standard techniqums WiL-style matching[18]
and their implementation via macrds9,7]. Then we desdhkeémplementation of se-
guence patterns—seen above with the use of—and other pattern forms not found in
conventional pattern-matching systems. Third, we desdridw to make patterns user-
extensible by exploiting the flexibility of Racket's macrgsgem. Finally, we discuss
related work, including a history of pattern matching in &cte and Racket.

2 Pattern Matching in Racket

In this section, we describe both the interface and impleatem of the most basic pat-
tern matching constructs in Racket. The fundamental pattetching form isnatch,
with the syntax

(match expr [pat expr])

The meaning ohatch expressions is the traditional first-match semantics. Theng
mar of some simple patterns is given in Figure 1. In reatify,ch provides many more
forms for all of the basic data types in Racket, including aile pairs, vectors, strings,
hash tables, and many others; user-defined structuressatesded in Section 3. The se-
mantics are as usual for pattern matching: variable patteatch any value and bind the
variable in the right-hand side to the value matched, lissparitten here witt?) match
just themselves,ist- andcons-patterns match structurally, aadd-patterns match if
both conjuncts do. The only non-standard pattertrisexpr) . Here,expr must evalu-
ate to a one argument function, and the pattern matcheg iftthetion producesrue
(or any other non-false value) when applied to the valuedgeonsidered (thecruti-
ned. For example, the pattertand (7 even?) x) matches only even numbers and
binds them ta. A match expression matches the scrutinee against each pattemmjn tu
executing the right-hand side corresponding to the firstesgful match. If no pattern
matches, a runtime error is signaled.

2.1 Compilation to Racket

The basic compilation model adopted mytch is the backtracking automata frame-
work introduced by Augustssohl[1] and optimized by Le Fesaad Maranget[18].
However, unlike these modelsatch is implemented as a macro, and thus produces
plain Racket code directly, rather than exploiting lowevdl mechanisms for tag dis-
patch and conditional branching. Each automata state iesepted by a thunk (O-
argument procedure) which may be tail-called by a later agatpn. Conditional
checks simply usef tests and type-testing predicates suchais?.

To compile the followingnatch expression:

(match e_1
[(and (? number?) x) e_2]

[_ e_3])
the following code is generated:

(let ([tmp e_1]
£ (A O e3)D)
(if (number? tmp)
(let ([x tmpl) e_2)
(£

Here, f is the failure continuation; it is invoked if theumber? test fails. Testing is
a simple conditional, and variable patterns translatectliréo 1et binding. In larger
patterns, multiple failure continuations are generatedl may be called in multiple
places.

One important detail is added to the compilation processbypresence of the
pattern. Since patterns contain aexpressiomather than a subpattern, the expression
is evaluated at some point during matching. This expresshonild be only evaluated
once, to avoid needless recomputation as well as dupli¢fget® but should not be
computed if itis not needed. Finally, since backtrackingeata may test data multiple
times, the functioproducedby the expression may be called 0, 1, or more times during
matching.

2.2 Static Checking

One key design choice is already fixed by the simple patt@rsrticular by the pres-
ence of?: disjointness of patterns and completeness of matching@awempossible to
check in the general case, just as in Haskell with pattermdgu&ven in the absence

of 7, the untyped nature of Racket means that checking comglssenf pattern match-

ing is only possible in the trivial case when a catch-all grattis provided. In view of
these limitationsmatch does not warn the user when it cannot prove the absence of
unreachable patterns or potentially uncovered cases.

In more restricted systems, such asd¢hees form provided by some textbooKs[L3]16],
these problems become tractable, but the presence of skgrestterns such aspat-
terns makes it impossible here. We are investigating whétyged Racket[24] makes
more static checking possible.

2.3 Implementing Syntactic Extensions

The basic structure of theatch implementation is common to many pattern matching
compilers. The distinctive aspect of the implementatioRatket’s pattern matcher is
the use of syntactic extension in the form of macros to imglenthematch compiler.
We briefly review Racket’s syntactic extension mechanisnasdescribe how they are
used for implementingatch.

Defining Syntactic Extensions The fundamental extension formdefine-syntax,
which binds values to names in tgntacticenvironment, i.e., the environment used
at compilation time. This form is primarily used to defimacros which are functions
from syntax to syntax. The following is a macro that alwaysduces the constant
expressiors:

(define-syntax (always-5 stx) #°5)

always-5is a function with formal parametertx. When thealways-5 macro is used,
this function is provided the syntax of the use as an argunhgtros always produce
syntax objectshere created with theyntax constructor (abbreviated he#’). That
syntax object s, of course, just the expresgioBincealways-5is bound bydefine-
syntax, it is a macro, and can be used in expressions suctras (always-5)).
This expression is rewritteat compile timeto the expressior{+ 3 5), which then
evaluates as usual.

Of course, most syntactic extensions examine their argtsn@ypically, these are
written with pattern matching to simplify destructurﬂdﬁor example, the following
defines a macro which takes a function and an argument, asceatiebugging printout
of the argument value:

(define-syntax (debug-call stx)
(syntax-parse stx
[(debug-call fun arg)
#’(let ([tmp argl)
(printf "argument ~a was: ~a\n" ’arg tmp)
(fun tmp))]1))

> (debug-call addl (+ 3 4))
argument (+ 3 4) was: 7
8

Here the patterfidebug-call fun arg) binds the variablesun andarg which are
then used in the result.

Finally, macros such asebug-call can perform computation in addition to pat-
tern substitution to determine the resulting expressiomudé this ability to define the
match syntactic extension.

(define-syntax (simple-match stx)
(define (parse-pat pat rhs)
(syntax-parse pat

[x:id
#‘[true (let ([x tmp]) #,rhs)]]
[’val
#¢[(equal? tmp ’val) #,rhs]]))
(syntax-parse stx
[(simple-match e:expr [pat rhs] ...)
(with-syntax ([(new-clause ...)

(syntax-map parse-pat
#’ (pat ...) #(rhs ...))1)
#’ (let ([tmp el)
(cond new-clause ...
[else (error "match failed")1)))1))

Figure 2: A simple pattern matcher

The Basics ofmatch Implementing complex language extensions suchaash re-
quires more care than extensions that are expressed a® siempite rules. A simple
pattern matcher supporting only variable and literal pagés given in Figure 2. The
basic architecture is as follows:

— The expression being matchegd js bound to a new temporary variabtep.

— Each clause, consisting of a pattert and a right-hand sidehs, is transformed
into a clause suitable fatond by theparse-pat function. For literal patterns, the
test expression is an equality check againgt. For variable patterns, the test is
trivial, but the variable from the pattern is boundtiap in the right-hand side.

— Finally, all of the clauses are placed in a singdad expression with aalse clause
that throws a pattern-match failure.

This matcher is missing most of the features@f ch, but demonstrates the key aspects
of definingmatch as a syntactic extension. In the subsequent sections, Wesesl
how to extend this matcher via the same syntactic extensanework in which it is
implemented.

A Production Implementation Thematch implementation first translates each pat-
tern into an abstract syntax tree of patterns while also léiymy patterns to remove
redundancy. For examplgist patterns are simplified teons patterns, and patterns
with implicit binding are rewritten to usend with variable patterns.

Given a table of pattern structures, both column optimirei[18] and row op-
timizations [19] are performed to select the best order tonfiatching patterns and
to coalesce related patterns. Finally, the Augustssorrighgo is used to generate the
residual code.

2 For more on the relationship betweeatch and these pattern matchers, see Section 5.

3 Advanced Patterns

Extending the simple patterns described in Section 2, we aabavrepetition to lists,
patterns that transform their input, and matching of usdimed structures. These pat-
terns are necessary both to support the examples presentetiion 1, as well as
introducing concepts that are used in the definitiomatfch expanders.

3.1 Lists with Repetition

The first significant extension is the ability to describetaaloy-length lists. Of course,
we can already describe some uses of such lists usingpthepattern:

(match (list 1 2 3)
[(cons (and x (? number?)) xs) x])

However, the use of .. allows the specification of arbitrary-length lists with a
specification of a pattern to be matched against each elef@néxample, to match a
list of numbers:

(match (list 1 2 3)
[(1ist (and xs (7?7 number?)) ...) xs])

This checks that every element of the list is a number, andisbia to alist of numbers
(or fails to match). The .. suffix functions similarly to the Kleene closure operator
in regular expressions. In fact, in conjunction wéthandand patternsnatch patterns
can express many regular languages.

Compilation Compiling patterns with . . requires a straightforward extension to the
traditional pattern matching compilation algorithm. A feah clause such as(1ist

p -..) expr] is compiled using two clauses. The firstli§list) expr], matching
empty list and the second i&(cons p rest) (loop rest)] whereloop is a re-
cursive function that repeats the matching again on itsraggi. Of course, all of the
variables bound by must be passed along in the loop so that they are accumukated a
a list.

3.2 app Patterns

The simplest form of extensible pattern matching isdhe pattern. A pattern of the
form (app f pat) applies the (user-specified) functidrio the value being matched,
and then matchgsat against theesultof £. For example:

> (match 16
[(app sqrt (and (7 integer?) x))
(format "perfect square: ~a" x)]
[_ "not perfect"])

"perfect square: 4"

Implementing theapp pattern is straightforward. We simply apply the functiorthe
value being matched, and continue pattern matching wittnéwve result and the sub-
pattern. This fits straightforwardly into the Augustsstylesmatching algorithm. Cur-
rently, we do not attempt to coalesce multiple uses of theesapression, however this
would be a straightforward addition. As a result of the beadiing algorithm, the func-
tion may be called multiple times; the use of side-effectthia function is therefore
discouraged.

app patterns are already very expressive—Peyton Jonés [26% giany examples
of their use under the nanview patternsBelow is one simple demonstration of their
use:

(define (map £ 1)
(match 1
o 0ol
[(cons (app f x) (app (curry map f) xs))
(cons x xs)]))

> (map addl (list 1 2 3 4 5))
’(2 345 6)

In combination with the ability to define new pattern forrapp patterns allow almost
arbitrary extensions to patterns.

3.3 User-defined Structures

Racket supports the definition of new user-specified strastu

(struct point (x y))
(define pl (make-point 1 2))

> (point-x p1)
1

Of course, they should also be supported in pattern matching

> (match pl
[(point a b) al)
1

To accomplish this, thetruct form, which is also implemented as a language exten-
sion, must communicate wittat ch at expansion timeso thatmatch can produce code
using thepoint? predicate angoint-x selector.

Static Binding The simplest form of communication between two portionsefiro-
gram is binding. To take advantage of this at expansion timeecan bind arbitrary
values with thelef ine-syntax form, not just macros.

(define-syntax just-5 5)

Now, just-5 is bound to5 in the static environment. We can access this environment
with the syntax-1local-value function, rewriting thealways-5 macro thus:

(define-syntax (always-5 stx)
(to-syntax (syntax-local-value #’just-5)))

> (always-5)
reference to undefined identifier: to-syntax

syntax-local-value produces the value to which an identifier suchtagust-5 is
bound. We then convert that value to a piece of syntax withsyntax.

Static Structure Information We can take advantage of this static binding mechanism
to record statically known information about structure niéitns. The(struct point
(x y)) form expands to definitions of the runtime values:

(define point-x —) (define point-y —) (define make-point —)
as well ascompile-timestatic information about the structure.

(define-syntax point
(list #’make-point #’point? #’point-x #’point-y))

Thus, the identifiepoint contains information about how to createints, test for
them, and extract their components. Using this facility,caa now extend our simple
pattern matcher from Figure 2 to test for structures. We auklaclause to thparse-
pat function:

[(struct sname)
(let* ([static-info (syntax-local-value #’sname)]
[predicate (second static-info)])
#[(#,predicate tmp) #,rhs])]

In this, we first access the static structure informationualtee mentioned structure
(static-info), and select the element naming the structure predigateifcate).
Then the result clause simply uses the predicate tatgst

In Racket, of course, thetruct pattern also takes patterns to match against each
field of the structure. Compiling these patterns uses the fietessors names provided
by the static information.

4 Extensible Patterns

Using the techniques of Section 3.3, we now add extensibdihatch.

4.1 match Expanders

The first task is to define the API for extendingt ch. The fundamental mechanismis a
procedure that consumes the syntax for a pattern using taesian and produces syn-
tax for a new pattern. For example, the following procediwags produces a pattern

matching numbers:

(X (stx) #’(? number?))

Of course, more interesting functions are possible. Thisrgde combines thend
and? pattern to make them more useful together than the onesrptegse our original
grammar in Figure f:

(A (stx)
(syntax-parse stx
[(?? pred pat) #’(and (? pred) pat)]))

To informmatch that this is to be used as an extension, we introducéétiéne-
match-expander form. This form expects a procedure for transforming pateand
binds it statically. We could simply us&efine-syntax, but this has several draw-
backs: (a) it prevents us from distinguishingtch expanders from other forms and
(b) it prevents us from adding additional informationntetch expanders. For exam-
ple, the Rackematch implementation supports an old-style syntax for backwards
compatibility, and the distinction betweeratch expanders and other static binding
enables the definition of expanders that work with both sygda

We can therefore define our trivimht ch expander for numbers with

(define-match-expander num
(A (stx) #’(?7 number?)))

which is equivalent to

(define-syntax num
(make-match-expander (A (stx) #’(7 number?))))

This simply wraps the given procedure in a structure ttaaich will later recognize.
We can now use theatch expander in a pattern as follows:

> (match 7
[(num) ’yes]
[_ ’nol)

’yes

% Racket's version ohatch includes this functionality in the pattern, as demonstrated in the
first section.

4.2 Parsingmatch expanders

Extending theparse-pat function of Figure 2 to handlgatch expanders is surpris-
ingly straightforward. We add one new clause:

[(expander . rest)
; (1) look up the match expander
(let ([val (syntax-local-value #’expander)])
(if (match-expander? val)
(let (; (2) extract the transformer function
[transformer (match-expander-transformer val)]
; (3) transform the original pattern
[new-pat (transformer #’(expander . rest))])
; (4) recur on the new pattern
(parse-pat new-pat rhs))
(error "not an expander")))]

There are four parts to this new clause. In step 1, we look @pdlue bound to the
nameexpander. If this is amatch-expander value, then we extract the transformer
function in step 2, which we defined to be a function from thetay of a pattern to
syntax for a new pattern. In step 3, we apply this transforimehe original pattern,
producing a new pattern. Finally, in step 4, we recur with phese-pat function,
since we now have a new pattern to be handled.

This loop executes the same steps as the basic loop of mgmaosrn as presented
by Dybvig et al.[9, Figure 4] and by Culpepper and Fellei&@rHigure 2]. This is un-
surprising, since we have extended the syntax of an embeéddgdage, that afatch
patterns, with transformer functions, just as macros ektkea syntax of the expression
language with transformers. Based on this insight, we carthessame strategies to en-
surehygiene a key correctness criterion for macro systems, that arkegip existing
systems. Racket provides an API to these facilities, buit tise is beyond the scope of
this paper.

These 8 lines of code are the key to extensible pattern nmagchihey provide a
simple facility for defining arbitrary syntactic transfoations on patterns. In combina-
tion with expressive patterns suchas, and, and?, new pattern abstractions and new
uses of pattern matching can be created.

4.3 Usingmatch expanders

In combination with theapp pattern, we can now define tipelar example from the
introduction. The implementation is given in Figure 3. Thigpander makes use of
the or pattern to handle either polar or Cartesian coordinates tlamapp pattern to
transform the Cartesian coordinates into polar ones.

match expanders have been putto numerous other uses in Rackekdrople, they
are used to create a domain-specific matching language éoifgimg rewrite rules in
the PLT web servel [17]. They are used to provide abstrasssors to complicated
data structures in numerous systems. A library for definiraglMf-style "views” using
match expanders is available for Racket as well.

(define-match-expander polar
(A (stx)
(syntax-parse stx
[(_ r pats ...)
#’ (or (list ’polar r (? real? pats) ...)
(cons ’cart
(app (A (%)
(cons (sqrt (apply + (map sqr x)))
... compute angles).
(list r (7 real? pats) ...))))1)))

Figure 3: A match expander

4.4 Further Extensions

Based on this framework, we can add additional featuremteh expanders, making
them more useful in real-world applications. Above, we dgscthe ability to specify

a separate transformer for legacy pattern-matching syaffowing the samenatch
expander to be used with both syntaxes. Additionally, siReeket supports creat-
ing structures which can be used as procedurés[12, Sectigf), define-match-
expander supports creatingatch expanders which can be also used in expressions,
allowing the same name to be both a constructor and a patt@ching form.

5 History and Related Work

5.1 A History of Pattern Matching in Scheme

To the best of the author’s knowledge, the first pattern netochScheme was written
by Matthias Felleisen in February or March of 1984, inspigdhe pattern matching
features of Prolod4]. This original system was writtenanported to, Kohlbecker et
al's extend-syntax macro systeni[14], and went by the namenat ch, which was
also the name of the primary macro. The system was then nraédtdy Bruce Duba
until 1991, when Andrew Wright began maintaining it. At thigint, it was ported to a
number of other macro systems, including Common Lisp-styfmacro [22], Clinger
and Rees’s explicit renaming system [2], and Dybvig et aljsamder-passing stylel[8].
In 1995, Wright and Duba prepared an unpublished manu describing the
features omatch, including the grammar of patterns. This matcher genemdedsion
trees rather than automata.

At this point, the development of theatch library, usually known as the “Wright
matcher”, stagnated. Wright's implementation was pomeghtax-case [9] by Bruce
Hauman in Racket, but this implementation was not used byo#imgr Scheme imple-
mentation. Hauman also added a number of features not founther versions of

4 Although this is often cited as a Rice University techniagpart, it was never published as
such.

Wright's library. Hauman’s implementation was then maiméa by the author, and
extended withmatch expanders as described in Section 4. The author subseguentl
created a new implementation in 2008 using backtrackingraata, which is currently
distributed with Racket.

In 1990, Quinnecd[21] presented a pattern matcher for Sesgwns as well as a
formal semantics for his matcher. However, we know of no Sahémplementation
which distributes his implementation.

Eisenberg, Clinger and Hartheimer also included a patteatciner in their intro-
ductory bookProgramming in MacSchenj&0]. This matcher was implemented as a
procedure rather than a macro, functioned on quoted ligt&tisrns, and did not bind
variables.

Of course, Scheme macro systems, beginning with KohlbearkaéiWand’sMacro
by Exampld15] have included sophisticated pattern matchers, fangtg entirely on
S-expressions. These systems introduced thenotation for sequence patterns, later
adopted by Wright's matcher among others and seen in thedes@mple in the intro-
duction. However, these have typically not been integratexdthe rest of the program-
ming language and have not made use of sophisticated patiarpilation techniques.
An exception is Culpepper et al$&gntax-parse system[[5], which uses a novel com-
pilation strategy to support sophisticated error repgrtin

Finally, numerous Scheme and Lisp systems have implemehnégdown simple
pattern matching libraries, too many to list here.

5.2 Other Extensible Pattern Matchers

Numerous other proposals for extensible pattern matchifigrictional languages have
been presented. Here, we survey only the most significant.

The original proposal for extensible pattern matching isl\&ds "views” [25], pre-
sented in the context of Haskell. In this system, a view is ia glaan injection and
projection from an abstract type to an algebraic datatymv¥are intended to support
data abstraction in conjunction with pattern matching.

Expressing views usingatch expanders is straightforward, as is seen with the
example ofcart andpolar, which form a simple view on tagged lists. More complex
examples are also expressible, including the use of viewgetions, which uses the
extensions discussed in Section 4.4. Colbe [3] providelsrari which implements
view definitions as a layer on top m&tch expanders.

Also in Haskell, Peyton Jones presents view patterns [2@nasxtension to the
GHC compiler and gives a wide range of motivating examplégse view patterns are
almost identical tapp patterns imatch, with the exception that Peyton Jones suggests
using typeclasses to implicitly provide the function whersinot supplied. However,
this extension is not implemented in GHC. Peyton Jones &isd desirable properties
of pattern matching extensions, all of which are provideabych with app patterns
andmatch expanders.

Active patterns, originally proposed by Erwig[11] and sedpsently extended and
implemented in F# by Syme et al. [23], as well as Scala exirad®], provide more
expressive extensions. Users can define both partial aaldp@iterns. Partial patterns
can be implemented as an abstraction eygrand? patterns, using a helper function.

Total patterns require the definition of seveiat ch expanders, each using such an ab-
straction, with only one helper function. Using both pattabstraction and abstraction
over definitions provided by macros, such extensions carpbeifeed in Racket just
as in F#, but again without the need to modify the base languaipcematch does
not check exhaustiveness of pattern matching, total apttterns cannot be verified to
match completely.

6 Conclusion

Pattern matching is an invaluable tool for programmers titevaoncise, maintainable,
and performant code. However, it does not usually supperabistraction facilities that
functional programmers expect in other parts of the langulthis paper, we describe
a syntactic abstraction facility that allows arbitrary riimg of patterns at compilation
time. Furthermore, this is provided in a pattern matchingtesy that is implemented
as a syntactic extension in Racket. The implementationafe\e striking similarity
between the base language extension mechanism and extedsiied in higher-level
domain-specific languages such as pattern matching.

Acknowledgments

Ryan Culpepper provided invaluable assistance in the dpwent ofmatch, and de-
vised the algorithm used for handling sequence patterngthida Felleisen shared his
knowledge of the early history of pattern matching in Sche8tevie Strickland and
Vincent St-Amour provided feedback on earlier drafts ofplapger. The author is sup-
ported by a grant from the Mozilla Foundation.

References

1. Lennart Augustsson. Compiling pattern matchingPtoc. of a conference on Functional
programming languages and computer architectymages 368—-381, New York, NY, USA,
1985. Springer-Verlag.

. William Clinger. Hygienic macros through explicit reniag. LISP Pointers4(4), 1991.

. Richard Cobbe. Views, 200%ttp://planet.racket-lang.org/.

4. Alain Colmerauer and Philippe Roussel. The birth of Ryoltn History of programming

languages—Ilpages 331-367, New York, NY, USA, 1996. ACM.

5. Ryan Culepper and Matthias Felleisen. Fortifying machoACM SIGPLAN International
Conference on Functional Programmir010.

6. Ryan Culpepper and Matthias Felleisen. Debugging hygieracros. Sci. Comput. Pro-
gram, 75(7):496-515, 2010.

7. Ryan Culpepper, Sam Tobin-Hochstadt, and Matthew Fkadtvanced macrology and the
implementation of Typed Scheme. Rroc. 2007 Workshop on Scheme and Functional
Programming, Université Laval Technical Report DIUL-BT01, pages 1-13, 2007.

8. R. Kent Dybvig, Daniel P. Friedman, and Christopher T. hé&®y Expansion-passing style:
A general macro mechanisrhisp and Symbolic Computatiph(1):53—75, January 1988.

9. R. Kent Dybvig, Robert Hieb, and Carl Bruggeman. Syntaakistraction in Schemd.isp
and Symbolic Computatioh(4):295-326, 1993.

w N

http://planet.racket-lang.org/

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.

25.

26

Michael Eisenberg, William Clinger, and Anne Hartheim@rogramming in MacScheme
MIT Press, Cambridge, MA, USA, 1990.

Martin Erwig. Active patterns. IhFL '96: Selected Papers from the 8th International
Workshop on Implementation of Functional Languagesges 21-40, London, UK, 1997.
Springer-Verlag.

Matthew Flatt and PLT. Reference: Racket. TechnicaloRepLT-TR-2010-1, PLT Inc.,
2010.http://racket-lang.org/trl/.

Daniel P. Friedman and Mitchell WanBssentials of Programming Languages, 3rd Edition
The MIT Press, 2008.

Eugene E. Kohlbecker, Daniel P. Friedman, Matthiaselsah, and Bruce F. Duba. Hy-
gienic macro expansion. loFP '86: Proc. 1986 ACM Conference on LISP and Functional
Programming pages 151-161, New York, NY, USA, 1986. ACM Press.

Eugene E. Kohlbecker and Mitchell Wand. Macros-by-gXanDeriving syntactic transfor-
mations from their specifications. Bymposium on Principles of Programming Languages
pages 77-84, 1987.

Shriram Krishnamurthi. Programming Languages: Application and Interpretation
Lulu.com, January 2007.

Shriram Krishnamurthi, Peter Walton Hopkins, Jay MttoarPaul T. Graunke, Greg Pet-
tyjohn, and Matthias Felleisen. Implementation and usehefRLT Scheme web server.
Higher Order Symbol. Compuf0(4):431-460, 2007.

Fabrice Le Fessant and Luc Maranget. Optimizing pattetching. InICFP '01: Pro-
ceedings of the sixth ACM SIGPLAN international conferesrt&unctional programming
pages 26-37, New York, NY, USA, 2001. ACM.

Luc Maranget. Compiling pattern matching to good deaigiees. InProceedings of the
2008 ACM Workshop on MIpages 35-46, 2008.

Simon Peyton Jones. View patterns: lightweight views fdaskell, 2007.
http://hackage.haskell.org/trac/ghc/wiki/ViewPatterns|

Christian Queinnec. Compilation of non-linear, secordér patterns on S-expressions. In
PLILP '90: Proceedings of the 2nd International WorkshopRimgramming Language Im-
plementation and Logic Programmingages 340-357, London, UK, 1990. Springer-Verlag.
Guy Lewis Steele JCommon Lisp—The Languag®igital Press, Bedford, MA, 1984.

Don Syme, Gregory Neverov, and James Margetson. Ektensattern matching via a
lightweight language extension. IBFP '07: Proceedings of the 12th ACM SIGPLAN inter-
national conference on Functional programmimages 29-40, New York, NY, USA, 2007.
ACM.

Sam Tobhin-Hochstadt and Matthias Felleisen. The demnghimplementation of Typed
Scheme. IrProc. 35th Symposium on Principles of Programming Langsiagages 395—
406. ACM Press, 2008.

P. Wadler. Views: a way for pattern matching to cohahtihwlata abstraction. IROPL '87:
Proceedings of the 14th ACM SIGACT-SIGPLAN symposium aipkes of programming
languagespages 307-313, New York, NY, USA, 1987. ACM.

. Andrew Wright and Bruce Duba. Pattern matching for Sahef95.

http://racket-lang.org/tr1/
http://hackage.haskell.org/trac/ghc/wiki/ViewPatterns

	Extensible Pattern Matching in an Extensible Language
	Sam Tobin-Hochstadt

