
Programming Glenn Manacher  
Techniques Editor 

Efficient 
String Matching: 
An Aid to 
Bibliographic Search 
Alfred V. Aho and Margaret J. Corasick 
Bell Laboratories 

This paper describes a simple, efficient algorithm to 
locate all occurrences of any of a finite number of key- 
words in a string of text. The algorithm consists of con- 
structing a finite state pattern matching machine from the 
keywords and then using the pattern matching machine 
to process the text string in a single pass. Construction 
of the pattern matching machine takes time proportional 
to the sum of the lengths of the keywords. The number 
of state transitions made by the pattern matching 
machine in processing the text string is independent of 
the number of keywords. The algorithm has been used to 
improve the speed of a library bibliographic search pro- 
gram by a factor of 5 to 10. 

Keywords and Phrases: keywords and phrases, string 
pattern matching, bibliographic search, information re- 
trieval, text-editing, finite state machines, computational 
complexity. 

CR Categories: 3.74, 3.71, 5.22, 5.25 

Copyright © 1975, Association for Computing Machinery, Inc. 
General permission to republish, but not for profit, all or part of 
this material is granted, provided that ACM's copyright notice is 
given and that reference is made to this publication, to its date of 
issue, and to the fact that reprinting privileges were granted by 
permission of the Association for Computing Machinery. 

Authors' present addresses: A. V. Aho, Bell Laboratories, 
Murray Hill, N.J. 07974. M. J. Corasick, The MITRE Corporation, 
Bedford, Mass. 01730. 

333 

1. Introduction 

In many information retrieval and text-editing appli- 
cations it is necessary to be able to locate quickly some or 
all occurrences of user-specified patterns of words and 
phrases in text. This paper describes a simple, efficient 
algorithm to locate all occurrences of  any of a finite 
number  of keywords and phrases in an arbitrary text 
string. 

The approach should be familiar to those acquainted 
with finite automata. The algorithm consists of  two parts. 
In the first part we construct from the set of keywords a 
finite state pattern matching machine; in the second part 
we apply the text string as input to the pattern matching 
machine. The machine signals whenever  it has found a 
match for a keyword. 

Using finite state machines in pattern matching appli- 
cations is not new [4, 8, 17], but their use seems to be 
frequently shunned by programmers. Part of the reason 
for this reluctance on the part of programmers may be 
due to the complexity of  programming the conventional 
algorithms for constructing finite automata from regular 
expressions [3, 10, 15], particularly if state minimization 
techniques are needed [2, 14]. This paper shows that an 
efficient finite state pattern matching machine can be 
constructed quickly and simply from a restricted class of 
regular expressions, namely those consisting of finite sets 
of  keywords. Our approach combines the ideas in the 
Knuth-Morris-Prat t  algorithm [13] with those of finite 
state machines. 

Perhaps the most interesting aspect of this paper is 
the amount  of improvement  the finite state algorithm 
gives over more conventional  approaches. We used the 
finite state pattern matching algorithm in a library biblio- 
graphic search program. The purpose of the program is 
to allow a bibliographer to find in a citation index all titles 
satisfying some Boolean function of keywords and 
phrases. The search program was first implemented with 
a straightforward string matching algorithm. Replacing 
this algorithm with the finite state approach resulted in a 
program whose running time was a fifth to a tenth of  the 
original program on typical inputs. 

2. A Pattern Matching Machine 

This section describes a finite state string pattern 
matching machine that locates keywords in a text string. 
The next section describes the algorithms to construct 
such a machine from a given finite set of  keywords. 

In this paper a string is simply a finite sequence of  
symbols. Let K = {Yl,Y2 . . . . .  Yk} be a finite set of  
strings which we shall call keywords and let x be an arbi- 
trary string which we shall call the text string. Our prob- 
lem is to locate and identify all substrings of x which are 
keywords in K. Substrings may overlap with one another. 

A pattern matching machine for K is a program which 
takes as input the text string x and produces as output 
the locations in x at which keywords of K appear as sub- 
strings. The pattern matching machine consists of a set 
of states. Each state is represented by a number.  The 
machine processes the text string x by successively read- 
ing the symbols in x, making state transitions and occa- 
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sionally emitting output. The behavior of the pattern 
matching machine is dictated by three functions: a goto 
function g, a failure function f, and an output function 
output.  

Figure 1 shows the functions used by a pattern 
matching machine for the set of keywords {he, she, his, 
hers}. 

Fig. 1. Pattern matching machine. 

(a) Goto function. 

i 

f ( i )  

1 2 3 4 5 6 7 8 9  
0 0 0 1 2 0 3 0 3  

(b) FailureNnction. 

i ou tpu t  ( i )  

2 {he} 
5 {she, he} 
7 {his} 
9 {hers} 

(c) Output function. 

One state (usually 0) is designated as a s tar t  state. In 
Figure 1 the states are 0, 1 . . . .  ,9 .  The goto function g 
maps a pair consisting of a state and an input symbol into 
a state or the message f a i l .  The directed graph in Figure 
l(a) represents the goto function. For example, the edge 
labeled h from 0 to 1 indicates that g(0, h )  = 1. The 
absence of an arrow indicates f a i l  Thus, g(1, tr)  = f a i l  

for all input symbols tr that are not e or i. All our pat- 
tern matching machines have the property that 
g (0, ~r) # f a i l  for all input symbols tr. We shall see that 
this property of the goto function on state 0 ensures that 
one input symbol will be processed by the machine in 
every machine cycle. 

The failure function f maps a state into a state. The 
failure function is consulted whenever the goto function 
reports f a i l  Certain states are designated as output states 
which indicate that a set of keywords has been found. 
The output function formalizes this concept by associat- 
ing a set of keywords (possibly empty) with every state. 

An operat ing cycle of a pattern matching machine is 
defined as follows. Let s be the current state of the 
machine and a the current symbol of the input string x. 

1. If g( s ,  a )  = s', the machine makes a goto transi- 

tion. It enters state s '  and the next symbol of x becomes 
the current input symbol. In addition, if 
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o u t p u t ( s ' )  # empty,  then the machine emits the set 
o u t p u t ( s ' )  along with the position of the current input 
symbol. The operating cycle is now complete. 

2. If g( s ,  a )  = fa i l ,  the machine consults the failure 
function f and is said to make a f a i l u r e  transition. If 
f ( s )  = s"  the machine repeats the cycle with s '  as the 
current state and a as the current input symbol. 

Initially, the current state of the machine is the start 
state and the first symbol of the text string is the current 
input symbol. The machine then processes the text 
string by making one operating cycle on each symbol of 
the text string. 

For example, consider the behavior of the machine M 
that uses the functions in Figure 1 to process the text 
string "ushers." Figure 2 indicates the state transitions 
made by M in processing the text string. 

Fig. 2. Sequence of state transitions. 

u s h e r s 
0 0 3 4 5  8 9  

2 

Consider the operating cycle when M is in state 4 and 
the current input symbol is e. Since g(4, e)  = 5, the 
machine enters state 5, advances to the next input sym- 
bol and emits o u t p u t ( 5 ) ,  indicating that it has found the 
keywords "she" and "he" at the end of position four in the 
text string. 

In state 5 on input symbol r, the machine makes two 
state transitions in its operating cycle. Since 
g(5, r) = f a i l  M enters state 2 = f ( 5 ) .  Then since 
g(2, r) -- 8, M enters state 8 and advances to the next 
input symbol. No output is generated in this operating 
cycle. 

The following algorithm summarizes the behavior of a 
pattern matching machine. 

Algorithm I. Pattern matching machine. 
Input. A text string x = a I a 2 - - • a n where each a i is an input 

symbol and a pattern matching machine M with goto func- 
tion g, failure function f, and output function output, as 
described above. 

Output. Locations at which keywords occur in x. 
Method. 

begin 
state ~ 0 
for i ~  1 until n do 

begin 
while g (state, a i ) = fa i l  do state ~ f ( s ta t e )  
state ~ g (state, a i ) 
if output (state) ;~ empty then 

begin 
print i 
print output (state) 

end 
end 

end 

Each pass through the for-loop represents one operating cy- 
cle of the machine. 
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Algorithm 1 is patterned after the Knuth-Morris-Prat t  
algorithm for finding one keyword in a text string [13] 
and can be viewed as an extension of the "tr ie"  search 
discussed in [11]. Hopcroft and Karp (unpublished) have 
suggested a scheme similar to Algorithm 1 for finding the 
first occurrence of  any of a finite set of keywords in a 
text string [13]. Section 6 of this paper discusses a deter- 
ministic finite automaton version of Algorithm 1 that 
avoids all failure transitions. 

3. Construction of Goto, Failure, and Output Functions 

We say that the three functions g, f, and output are 
valid for a set of keywords if with these functions Algo- 
rithm 1 indicates that keyword y ends at position i of text 
string x if and only if x = uyv and the length of  uy is i. 

We shall now show how to construct  valid goto, 
failure and output functions from a set of  keywords. 
There are two parts to the construction. In the first part 
we determine the states and the goto function. In the 
second part we compute the failure function. The com- 
putation of the output function is begun in the first part 
of the construction and completed in the second part. 

To construct the goto function, we shall construct a 
goto graph. We begin with a graph consisting of one ver- 
tex which represents the state 0. We then enter  each 
keyword y into the graph, by adding a directed path to 
the graph that begins at the start state. New vertices and 
edges are added to the graph so that there will be, starting 
at the start state, a path in the graph that spells out the 
keyword y. The keyword y is added to the output func- 
tion of  the state at which the path terminates. We add 
new edges to the graph only when necessary. 

For example, suppose {he, she, his, hers} is the set of 
keywords. Adding the first keyword to the graph, we ob- 
tain: 

The path from state 0 to state 2 spells out the keyword 
"he" ;  we associate the output "he" with state 2. Adding 
the second keyword " she , "  we obtain the graph: 

The output " she"  is associated with state 5. Adding the 
keyword "his," we obtain the following graph. Notice 
that when we add the keyword "his"  there is already an 
edge labeled h from state 0 to state 1, so we do not need 
to add another edge labeled h from state 0 to state 1. The 
output "his"  is associated with state 7. 

( 

Adding the last keyword "hers ,"  we obtain: 

The output "hers"  is associated with state 9. Here we 
have been able to use the existing edge labeled h from 
state 0 to 1 and the existing edge labeled e from state 1 to 
2. 

Up to this point the graph is a rooted directed tree. 
To complete the construction of the goto function we add 
a loop from state 0 to state 0 on all input symbols other 
than h or s. We obtain the directed graph shown in Fig- 
ure l(a).  This graph represents the goto function. 

The failure function is constructed from the goto 
function. Let us define the depth of a state s in the goto 
graph as the length of  the shortest path from the start 
state to s. Thus in Figure 1 (a), the start state is of depth 
0, states 1 and 3 are of depth 1, states 2, 4, and 6 are of  
depth 2, and so on. 

We shall compute the failure function for all states of  
depth 1, then for all states of depth 2, and so on, until the 
failure function has been computed for all states (except 
state 0 for which the failure function is not defined). The 
algorithm to compute the failure function f at a state is 
conceptually quite simple. We make f ( s )  - - 0  for all 
states s of depth 1. Now suppose f has been computed 
for all states of depth less than d. The failure function 
for the states of  depth d is computed from the failure 
function for the states of  depth less than d. The states of 
depth d can be determined from the nonfail values of the 
goto function of  the states of  depth d -  1. 

Specifically, to compute the failure function for the 
states of  depth d, we consider each state r of depth d - -1  
and perform the following actions. 

1. l f g ( r ,  a) = fa i l f o r  all a, do nothing. 

2. Otherwise, for each symbol a such that 
g(r, a) -- s, do the following: 
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(a) Set s t a t e  = f ( r ) .  

(b) Execute the statement s t a t e ' - f  ( s t a t e )  zero or 
more times, until a value for s t a t e  is obtained 
such that g ( s t a t e ,  a ) # f a i l .  (Note that since 
g ( O ,  a )  # f a i l  for all a, such a state will always 
be found.) 

(c) S e t f ( s )  - -g(s ta te ,  a ) .  

For example, to compute the failure function from 
Figure l(a),  we would first set f (1  ) = f ( 3 )  = 0 since 1 
and 3 are the states of depth 1. We then compute the 
failure function for 2, 6, and 4, the states of depth 2. To 
compute f ( 2 ) ,  we set s t a t e  = f (1  ) = 0; and since g(0, e) 
= 0, we find that f ( 2 )  = 0. To compute f ( 6 ) ,  we set 
s t a t e  = f ( 1  ) = 0; and since g(0, i) = 0, we find that f ( 6 )  
= 0. To compute f ( 4 ) ,  we set s t a t e  = f ( 3 )  = 0; and 
since g(0, h) = 1, we find that f ( 4 )  = 1. Continuing in 
this fashion, we obtain the failure function shown in Fig- 
ure 1 (b). 

During the computation of the failure function we 
also update the output function. When we determine 
f ( s )  = s ' ,  we merge the outputs of state s with the out- 
puts of state s'. 

For example, from Figure l(a) we determine 
f ( 5 )  = 2. At this point we merge the output set of state 
2, namely {he}, with the output set of state 5 to derive 
the new output set {he, she}. The final nonempty output 
sets are shown in Figure 1 (c). 

The algorithms to construct the goto, failure and out- 
put functions from K are summarized below. 

Algorithm 2. Construction of the goto function. 
Input. Set of keywords K = {Yl, Y2 . . . . .  Yk}. 
Output. Goto function g and a partially computed output func- 

tion output. 
Method. We assume ou tpu t ( s )  is empty when state s is first 

created, and g(s ,  a )  = fa i l  if a is undefined or if g(s ,  a )  has 
not yet been defined. The procedure en te r (y )  inserts into 
the goto graph a path that spells out y. 

begin 
newstate .-- 0 

for i ~ 1 until k do enter(y  i ) 
for all asuch that g(O, a)  = f a i l d o  g(O, a)  ~ 0 

end 

procedure en ter (a  1 a 2 • • • a m ): 
begin 

state  ~ 0; j *- 1 
while g (state, aj ) # f a i l  do 

begin 
state ~ g (state, a) ) 
j , - - j + l  

end 
for p '-- j until m do 

begin 
newstate  * -  newstate  + 1 
g (state, ap ) *-- newstate  
state ~ newstate  

end 
outpu t ( s ta te )  ~ { a I a 2 . . . a  m} 

end 

The following algorithm, whose inner loop is similar to 
Algorithm 1, computes the failure function. 

Algorithm 3. Construction of the failure function. 
Input. Goto function g and output function output from Algo- 

rithm 2. 
Output. Failure function fand  output function output. 

Method. 
begin 

queue ~ empty  
for each a such that g(O, a )  = s ;~ 0 do 

begin 
queue ~ queue LI {s } 

f ( s )  ~ 0 
end 

while queue ~ empty  do 
begin 

let r be the next state in queue 
queue ~-- queue - {r} 
for each asuch that g(r ,  a )  = s ¢ fa i l  do 

begin 
queue ~ queue t2 {s } 

s tate ~ f ( r )  
while g (state, a )  = f a i l  do state  ~ f ( s t a t e )  
f ( s )  ~ g(s ta te ,  a )  
ou tpu t ( s )  ~ o u t p u t ( s )  U o u t p u t ( f  ( s ) )  

end 
end 

end 

The first for-loop computes the states of depth 1 and enters 
them in a first-in first-out list denoted by the variable queue. 
The main while-loop computes the set of states of depth d 
from the set of states of depth d-- 1. 

The failure function produced by Algorithm 3 is not 
optimal in the following sense. Consider the pattern 
matching machine M o f  Figure 1. We see g(4, e) = 5. If 
M is in state 4 and the current input symbol a i is not an 
e, then M would enter state f ( 4 )  = 1. Since M has al- 
ready determined that a i ~ e ,  M does not then need to 
consider the value of the goto function of state 1 on e. 
In fact, if the keyword "his" were not present, then M 
could go directly from state 4 to state 0, skipping an un-  
necessary intermediate transition to state 1. 

To avoid making unnecessary failure transitions we 
can use f ' ,  a generalization of the n e x t  function from [13], 
in place of f in Algorithm 1. Specifically, define 
f ' ( 1  ) = 0. For i > 1, define f ' ( i )  = f ' O r ( i )  ) if, for all 
input symbols a, g o r ( i ) ,  a )  # f a i l  implies g ( L  a )  # f a i l ;  

define f ' ( i )  = f ( i ) ,  otherwise. However, to avoid mak- 
ing any failure transitions at all, we can use the deter- 
ministic finite automaton version of Algorithm 1 given in 
Section 6. 

4. Propert i e s  of  A l g o r i t h m s  I ,  2, and  3 

This section shows that the goto, failure, and output 
functions constructed by Algorithms 2 and 3 from a 
given set of keywords K are indeed valid for K. 

We say that u is a p r e f i x  and v is a s u f f i x  of the  string 
uv. If u is not the empty string, then u is a p r o p e r  prefix. 
Likewise, if v is not empty, then v is a p r o p e r  suffix. 
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We say that string u represents state s of a pattern 
matching machine if the shortest path in the goto graph 
from the start state to state s spells out u. The start state 
is represented by the empty string. 

Our first lemma characterizes the failure function con- 
structed by Algorithm 3. 

LEMMA 1. Suppose that in the goto graph state s is 
represented by the string u and state t is represented by the 

string v. Then, f ( s )  = t i f  and only i f  v is the longest proper 
suffix o f  u that is also a prefix o f  some keyword. 

PROOF. The proof proceeds by induction on the 
length of u (or equivalently the depth of state s). By Al- 
gorithm 3 f ( s )  = 0 for all states s of depth 1. Since each 
state of depth 1 is represented by a string of length 1, the 
statement of the lemma is trivially true for all strings of 
length 1. 

For the inductive step, assume the statement of Lem- 
ma 1 is true for all strings of length less than j, j > 1. 
Suppose u = a la  2 . . .  aj for some j > 1, and v is the 
longest proper suffix of u that is a prefix of some key- 
word. Suppose u represents state s and a l a  2 . . . a  j _  1 
represents state r. Let r 1, r 2, • • • , r n be the sequence of 
states such that 

1. r 1 = f ( r ) ,  
2. ri+l = f ( r i )  for 1 ~< i < n, 
3. g ( r  i , a j )  = f a i l f o r l  ~< i < n, and 
4. g(rn, a j )  = t ; ~  fail. 

(If g ( r  l , a j )  ~ f a i l ,  then r n = r  1.) The sequence 
q ,  r 2, • • • , r n is the sequence of values assumed by the 
variable state in the inner while-loop of Algorithm 3. 
The statement following that while-loop makes f ( s )  = t. 
We claim that t is represented by the longest proper 
suffix of u that is a prefix of some keyword. 

To prove this, suppose v i represents state r i for 
1 ~< i ~< n. By the inductive hypothesis v 1 is the longest 
proper suffix of a l a  2 . . . a  j _  1 that is a prefix of some 
keyword; v 2 is the longest proper suffix of v 1 that is a 
prefix of some keyword; v 3 is the longest proper suffix of 
v 2 that is a prefix of some keyword, and so on. 

Thus v n is the longest proper suffix of a 1 a 2 . . .  a j_  1 
such that vna j is a prefix of some keyword. Therefore 
vna j is the longest proper suffix of u that is a prefix of 
some keyword. Since Algorithm 3 sets f ( s )  = g ( r  n, a j )  
= t, the proof is complete. [] 

The next lemma characterizes the output function 
constructed by Algorithms 2 and 3. 

LEMMA 2. The set output(s)  contains y i f  and only i f  y 
is a keyword that is a suffix o f  the string representing state s. 

PROOF. In Algorithm 2 whenever we add to the goto 
graph a state s that is represented by a keyword y we 
make output(s)  = {y}. Given this initialization, we shall 
show by induction on the depth of state s that output(s)  
= {yl y is a keyword that is a suffix of the string 
representing state s }. 

This statement is certainly true for the start state 
which is of depth 0. Assuming this statement is true for 
all states of depth less than d, consider a state s of depth 

d. Let u be the string that represents state s. 
Consider a string y in output(s) .  If y is added to 

output(s)  by Algorithm 2, then y = u and y is a keyword. 
If y is added to output(s)  by Algorithm 3, then y is in 
outputOr(s)) .  By the inductive hypothesis, y is a key- 
word that is a suffix of the string representing state f ( s ) .  
By Lemma 1, any such keyword must be a suffix of u. 

Conversely, suppose y is any keyword that is a suffix 
of u. Since y is a keyword, there is a state t that is 
represented by y. By Algorithm 2, output( t )  contains y. 
Thus if y = u, then s = t and output(s)  certainly contains 
y. If y is a proper suffix of u, then from the inductive hy- 
pothesis and Lemma 1 we know o u t p u t ( f ( s ) )  contains y. 
Since Algorithm 3 considers states in order of increasing 
depth, the last statement of Algorithm 3 adds 
outputOC(s)) and hence y to output(s) .  [] 

The following lemma characterizes the behavior of 
Algorithm 1 on a text string x = a I a 2 • • - a n. 

LEMMA 3. After the j t h  operating cycle, Algorithm 1 will 
be in state s i f  and only i f  s is represented by the longest 

suffix o f  a I a 2 • • • aj that is a prefix o f  some keyword. 

PROOF. Similar to Lemma 1. [] 

THEOREM 1. Algorithms 2 and 3 produce valid goto, 
failure, and output functions. 

PROOF. By Lemmas 2 and 3. [] 

5. Time Complexity of Algorithms 1, 2, and 3 

We now examine the time complexity of Algorithms 
1, 2, and 3. We shall show that using the goto, failure 
and output functions created by Algorithms 2 and 3, the 
number  of state transitions made by Algorithm 1 in pro- 
cessing a text string is independent  of the number  of 
keywords. We shall also show that Algorithms 2 and 3 
can be implemented to run in time that is linearly propor- 
tional to the sum of the lengths of the keywords in K. 

THEOREM 2. Using the goto, failure and output functions 
created by Algorithms 2 and 3, Algorithm 1 makes fewer than 
2n state transitions in processing a text string o f  length n. 

PROOF. In each operating cycle Algorithm 1 makes 
zero or more failure transitions followed by exactly one 
goto transition. From a state s of depth d Algorithm 1 
can never make more than d failure transitions in one 
operating cycle. 1 Thus the total number  of failure transi- 
tions must be at least one less than the total number  of 
goto transitions. In processing an input of length n Algo- 
rithm 1 makes exactly n goto transitions. Therefore the 
total number  of state transitions is less than 2n. [] 

The actual time complexity of Algorithm 1 depends 
on how expensive it is: 

1. to determine g(s, a)  for each state s and input 
symbol a, 

1 As many as d failure transitions can be made. [13] shows 
that, if there is only one keyword in K, O(logd) is the maximum 
number of failure transitions which can be made in one operat- 
ing cycle. 
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2. to determine f ( s )  for each state s, 
3. to determine whether  output(s) is empty, and 
4. to emit output(s). 

We could store the goto function in a two- 
dimensional array, which would allow us to determine the 
value of g(s, a) in constant  time for each s and a. If the 
size of  the input alphabet and the keyword set are large, 
however, then it is far more economical to store only the 
nonfail values in a linear list [1,11] for each state. Such a 
representation would make the cost of  determining 
g(s, a) proportional to the number  of  nonfail values of  
the goto function for state s. A reasonable compromise,  
and one which we have employed,  is to store the most 
frequently used states (such as state 0) as direct access 
tables in which the next state can be determined by 
directly indexing into the table with the current  input 
symbol. Then for the most frequently used states we can 
determine g(s, a) for each a in constant  time. Less fre- 
quently used states and states with few nonfail values of  
the goto function can be encoded as linear lists. 

Another  approach would be to store the goto values 
for each state in the form of a binary search tree [1, 12]. 

The failure function can be stored as a one- 
dimensional  array so that f ( s )  can be determined in con- 
stant t ime for each s. 

Thus, the non-printing portion of  Algorithm 1 can be 
implemented to process a text string of  length n in cn 
steps, where c is a constant  that is independent  of the 
number  of keywords. 

Let us now consider the time required to print the 
output. A one-dimensional  array can be used to deter- 
mine whether  output(s) is empty in constant  t ime for 
each s. The cost of printing the output in each operating 
cycle is proportional to the sum of the lengths of the key- 
words in output(s) where s is the state in which Algo- 
rithm 1 is at the end of the operating cycle. In many ap- 
plications output (s) will usually contain at most one key- 
word, so the time required to print the output at each in- 
put position is constant. 

It is possible, however, that a large number  of  key- 
words occur at every position of  the text string. In this 
case Algorithm 1 will spend a considerable amount  of  
time printing out the answer. In the worst case we may 
have to print all keywords in K at virtually every position 
of the text string. (Consider an extreme case where 
K = {a,a 2,a 3 . . . . .  a k} and the text string is a n . Here 
a i denotes the string of  i a's.) Any other pattern match- 
ing algorithm, however, would also have to print out the 
same number  of  keywords at each position of the text 
string so it is reasonable to compare pattern matching al- 
gorithms on the basis of the time spent  in recognizing 
where the keywords occur. 

We should contrast the performance of  Algorithm 1 
with a more straightforward way of  locating all keywords 
in K that are substrings of a given text string. One such 
way would be to take in turn each keyword in K and suc- 
cessively match that keyword against all character posi- 
tions in the text string. The running time of  this tech- 
nique is at best proportional to the product of  the number  
of  keywords in K times the length of  the text string. If 

there are many keywords, the performance of  this algo- 
rithm will be considerably worse that that of  Algorithm 1. 
In fact it was the time complexity of  the straightforward 
algorithm that prompted the development  of  Algorithm 1. 
(The reader may wish to compare the performance of the 
two algorithms when K = {a, a 2 . . . . .  a k} and the text 
string is an.) 

Finally let us consider the cost of  computing the goto, 
failure, and output functions using Algorithms 2 and 3. 

THEOREM 3. Algorithm 2 requires time linearly propor- 
tional to the sum of  the lengths of  the keywords. 

PROOF. Straightforward. [] 

THEOREM 4. Algorithm 3 can be implemented to run in 
time proportional to the sum of  the lengths of  the keywords. 

PROOF. Using an argument  similar to that in Theorem 
2, we can show that the total number  of  executions of  
the s ta tement  state ,---f(state) made during the course of  
Algorithm 3 is bounded by the sum of  the lengths of the 
keywords. Using linked lists to represent  the output set 
of  a state, we can execute the s ta tement  
output(s) , - o u t p u t ( s )  U output( f  ( s ) )  in constant  time. 
Note that output(s) and outputOC(s)) are disjoint when 
this s ta tement  is executed. Thus the total time needed to 
implement  Algori thm 3 is dominated by the sum of  the 
lengths of  the keywords. [] 

6. Eliminating Failure Transitions 

This section shows how to el iminate all failure transi- 
tions from Algori thm 1 by using the next move function 
of  a determinist ic finite automaton in place of  the goto 
and failure functions. 

A determinist ic finite automaton [15] consists of  a 
finite set of  states S and a next move function 8 such that 
for each state s and input symbol a, 8 (s, a )  is a state in S. 
That is to say, a determinist ic finite automaton makes ex- 
actly one state transition on each input symbol.  

By using the next move function 8 of  an appropriate 
deterministic finite automaton in place of  the goto func- 
tion in Algori thm 1, we can dispense with all failure tran- 
sitions. This can be done by simply replacing the first 
two statements in the for-loop of Algori thm 1 by the sin- 
gle s tatement  state,--- 8 (state, a i). Using 8, Algori thm 1 
makes exactly one state transition per input character. 

We can compute  the required next move function 8 
from the goto and failure functions found by Algori thms 
2 and 3 using Algori thm 4. Algori thm 4 just  precom- 
putes the result of every sequence of  possible failure 
transitions. The t ime taken by Algori thm 4 is linearly 
proportional to the size of  the keyword set. In practice, 
Algorithm 4 would be evaluated in conjunct ion with Al- 
gorithm 3. 

The next move function computed by Algori thm 4 
from the goto and failure functions shown in Figure 1 is 
tabulated in Figure 3. 

The next move function is encoded in Figure 3 as fol- 
lows. In state 0, for example,  we have a transition on h 
to state 1, a transition on s to state 3, and a transition on 
any other symbol to state 0. In each state, the dot stands 
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Algorithm 4. Construction of a deterministic finite automaton. Fig. 3. Next move function. 
Input. Goto function g from Algorithm 2 and failure function f 

from Algorithm 3. input symbol next state 
Output. Next move function 8. state 0: h 1 
Method. s 3 

begin 0 

queue ~ empty state 1 : e 2 
for each symbol a do i 6 

begin h 1 
8(0, a) ~ g(O, a) s 3 

if g (0, a) ~ 0 then queue ~ queue [.) {g (0, a) } 0 

end 
while queue ;e empty do state 9: state 7: state 3: h 4 

begin S 3 
let r be the next state in queue 0 

queue ~ queue - {r} state 5: state 2: r 8 
for each symbol a do h 1 

ifg(r, a) = s ~ fail do S 3 

begin 0 
queue ~ queue U {s} 
8(r, a) ~ s state 6: s 7 

end h 1 

else 8 (r, a) ~ 8 ( f (r) ,  a) 0 

end state 4: e 5 
end i 6 

h 1 

for any input character other than those above it. This s 3 
method of encoding the next move function is more 0 
economical than storing 8 as a two-dimensional array, state 8: s 9 
However, the amount  of memory required to store 8 in h 1 
this manner  is somewhat larger than the corresponding 0 
representation for the goto function from which /5 was 
constructed since many of the states in 8 each contain 
transitions from several states of the goto function. 

Using the next move function in Figure 3, Algorithm 
1 with input "ushers" would make the sequence of state 
transitions shown in the first line of states of Figure 2. 

Using a deterministic finite automaton in Algorithm 1 
can potentially reduce the number  of state transitions by 
50%. This amount of saving, however, would virtually 
never be achieved in practice because in typical applica- 
tions Algorithm 1 will spend most of its time in state 0 
from which there are no failure transitions. Calculating 
the expected saving is difficult, however, because mean- 
ingful definitions of "average" set of keywords and "aver- 
age" text string are not available. 

7. An Application to Bibliographic Search 

Algorithm 1 is attractive in pattern matching applica- 
tions involving large numbers  of keywords, since all key- 
words can be simultaneously matched against the text 
string in just one pass through the text string. One such 
application in which this algorithm has been successfully 
used arose in a library bibliographic search program 
which locates in a cumulative citation index all citations 
satisfying some Boolean function of keywords. 

The data base used for this retrieval system is the cu- 
mulated machine-readable data used for Current Technical 

Papers, a fortnightly citation bulletin produced for internal 
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use by the technical libraries of Bell Laboratories. These 
citations are gathered from journals, covering a broad 
classification of technical interests. In the summer of 
1973 there were three years of cumulated data, represent- 
ing about 150,000 citations with a total length of about 
107 characters. 

With this search system a bibliographer can retrieve 
from the data base all titles satisfying some Boolean com- 
bination of keywords. For example, the bibliographer can 
ask for all titles in the data base containing both the key- 
words "ion" and "bombardment ."  The bibliographer can 
also specify whether a keyword is required to be preceded 
and/or followed by a punctuation character such as space, 
comma, semicolon, etc. A specification of this nature can 
explicitly deny matching on keywords embedded in the 
text. For example, it is often reasonable to accept the 
word "ions" as a match for the substring "ion." However, 
it is usually unreasonable to accept a word such as "mo- 
tion" as a match on that keyword. The implementation 
permits specification of acceptance with full embedding, 
left embedding, right embedding, or none at all. This 
provision creates no difficulty for Algorithm 1 although 
the use of a class of punctuation characters in the key- 
word syntax creates some states with a large number  of 
goto transitions. This may make the deterministic finite 
automaton implementation of Algorithm 1 more space 
consuming and less attractive for some applications. 

An early version of this bibliographic search program 
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employed a direct pattern matching algorithm in which 
each keyword in the search prescription was successively 
matched against each title. A second version of this 
search program was implemented, also in FORTRAN, in 
which the only difference was the substitution of Algo- 
rithms 1, 2 and 3 for the direct pattern matching scheme. 
The following table shows two sample runs of the two 
programs on a Honeywell 6070 computer. The first run 
involved a search prescription containing 15 keywords, 
the second a search prescription containing 24 keywords. 

15 keywords 24 keywords 

old .79 1.27 

new .18 .21 

CPU Time in Hours 

With larger numbers  of keywords the improvement in 
performance became even more pronounced. The figures 
tend to bear out the fact that with Algorithm 1 the cost 
of a search is roughly independent  of the number  of key- 
words. The time spent in constructing the pattern match- 
ing machine and making state transitions was 
insignificant compared to the time spent reading and un- 
packing the text string. 

8. Concluding Remarks 

The pattern matching scheme described in this paper 
is well suited for applications in which we are looking for 
occurrences of large numbers  of keywords in text strings. 
Since no additional information needs to be added to the 
text string, searches can be made over arbitrary files. 

Some information retrieval systems compute an index 
or concordance for a text file to allow searches to be con- 
ducted without having to scan all of the text string [7]. 
In such systems making changes to the text file is expen- 
sive because after each change the index to the file must 
be updated. Consequently, such systems work best with 
long static text files and short patterns. 

An interesting question from finite automata theory 
is: Given a regular expression R of length r and an input 
string x of length n, how quickly can one determine 
whether x is in the language denoted by R? One method 
for solving this problem is first to construct from R a 
nondeterministic finite automaton M and then to simulate 
the behavior of M on the input x. This gives an O ( r n )  
solution [1]. 

Another approach along these lines is to construct 
from R a nondeterministic finite automaton M, then to 
convert M into a deterministic finite automaton M'  and 
then to simulate the behavior of M '  on x. The only 
difficulty with this approach is that M '  can have on the 
order of 2r states. The simulation of M '  on the other 
hand is linear in n of course. The overall complexity is 
0 ( 2  r + n). 

Using Algorithm 4 we can construct a deterministic 
finite automaton directly from a regular expression R in 
time that is linear in the length of R. However, the regu- 
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lar expression is now restricted to be the form 
~*0 '1  + Y2 + " ' "  + Yk) E - w h e r e  E is the input sym- 
bol alphabet. By "concatenating" a series of determinis- 
tic finite automata in tandem, we can extend this result to 
regular expressions of the form E * 111 7_, * Y2 " ' " E * Ym E * 

where each Yi is a regular expression of the form 

Yil -k- Yt2 + " '"  + Yikj" 
A related open question is what new classes of regular 

sets can be recognized in less than O ( r n )  time. Along 
these lines, in [5] it is shown that regular expressions of 
the form E*y7,* where y is a keyword with "don' t  care" 
symbols can be recognized in O (n log r log log r) time. 
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