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The Early History of Smalltalk
Alan C. Kay

Abstract

Most ideas come from previous ideas. The sixties, particularly in the ARPA com-
munity, gave rise to a host of notions about “human-computer symbiosis” through
interactive time-shared computers, graphics screens and pointing devices. Advanced
computer languages were invented to simulate complex systems such as oil refineries
and semi-intelligent behavior. The soon-to-follow paradigm shift of modern per-
sonal computing, overlapping window interfaces, and object-oriented design came
from seeing the work of the sixties as something more than a “better old thing.”
This is, more than a better way: to do mainframe computing; for end-users to in-
voke functionality; to make data structures more abstract. Instead the promise of
exponential growth in computing volume demanded that the sixties be regarded
as “almost a new thing” and to find out what the actual “new things” might be.
For example, one would computer with a handheld “Dynabook” in a way that
would not be possible on a shared mainframe; millions of potential users meant that
the user interface would have to become a learning environment along the lines
of Montessori and Bruner; and needs for large scope, reduction in complexity, and
end-user literacy would require that data and control structures be done away with
in favor of a more biological scheme of protected universal cells interacting only
through messages that could mimic any desired behavior.

Early Smalltalk was the first complete realization of these new points of view as
parented by its many predecessors in hardware, language and user interface design.
It became the exemplar of the new computing, in part, because we were actually
trying for a qualitative shift in belief structures—a new Kuhnian paradigm in the
same spirit as the invention of the printing press-and thus took highly extreme
positions which almost forced these new styles to be invented.

Introduction

I’'m writing this introduction in an airplane at 35,000 feet. On my lap is a five pound
notebook computer—1992’s “Interim Dynabook”—by the end of the year it sold for un-
der $700. It has a flat, crisp, high-resolution bitmap screen, overlapping windows, icons,
a pointing device, considerable storage and computing capacity, and its best software is
object-oriented. It has advanced networking built-in and there are already options for
wireless networking. Smalltalk runs on this system, and is one of the main systems I use
for my current work with children. In some ways this is more than a Dynaboo (quanti-
tatively), and some ways not quite there yet (qualitatively). All in all, pretty much what
was in mind during the late sixties.

Smalltalk was part of this larger pursuit of ArpPA, and later of Xerox PARC, that I
called personal computing. There were so many people involved in each stage from the
research communities that the accurate allocation of credit for ideas in intractably diffi-
cult. Instead, as Bob Barton liked to quote Goethe, we should “share in the excitement
of discover without vain attempts to claim priority.”

I will try to show where most of the influences came from and how they were
transformed in the magnetic field formed by the new personal computing metaphor.
It was the attitudes as well as the great ideas of the pioneers that helped Smalltalk get
invented. Many of the people I admired most at this time—such as Ivan Sutherland, Mar-
vin Minsky, Seymour Papert, Gordon Moore, Bob Barton, Dave Evans, Butler Lampson,
Jerome Bruner, and others—seemed to have a splendid sense that their creations, though
wonderful by relative standards, were not near to the absolute thresholds that had to be
crossed. Small minds try to form religions, the great ones just want better routes up the
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mountain. Where Newton said he saw further by standing on the shoulders of giants,
computer scientists all too often stand on each other’s toes. Myopia is still a problem
where there are giants’ shoulders to stand on—"“outsight” is better than insight—but
it can be minimized by using glasses whose lenses are highly sensitive to esthetics and
criticism.

Programming languages can be categorized in a number of ways: imperative, applica-
tive, logic-based, problem-oriented, etc. But they all seem to be either an “agglutination
of features” or a “crystallization of style.” coBoL, PL/ 1, Ada, etc., belong to the first
kind; r1sP, Ap1— and Smalltalk—are the second kind. It is probably not an accident
that the agglutinative languages all seem to have been instigated by committees, and the
crystallization languages by a single person.

Smalltalk’s design—and existence—is due to the insight that everything we can de-
scribe can be represented by the recursive composition of a single kind of behavioral
building block that hides its combination of state and process inside itself and can be
dealt with only through the exchange of messages. Philosophically, Smalltalk’s objects
have much in common with the monads of Leibniz and the notions of 20th century
physics and biology. Its way of making objects is quite Platonic in that some of them
act as idealisations of concepts—Ideas—from which manifestations can be created. That
the Ideas are themselves manifestations (of the Idea-Idea) and that the Idea-Idea is a-
kind-of Manifestation-Idea—which is a-kind-of itself, so that the system is completely
self-describing— would have been appreciated by Plato as an extremely practical joke
[Plato].

In computer terms, Smalltalk is a recursion on the notion of computer itself. Instead
of dividing “computer stuff”” into things each less strong than the whole—like data
structures, procedures, and functions which are the usual paraphernalia of programming
languages—each Smalltalk object is a recursion on the entire possibilities of the com-
puter. Thus its semantics are a bit like having thousands and thousands of computer all
hooked together by a very fast network. Questions of concrete representation can thus
be postponed almost indefinitely because we are mainly concerned that the computers
behave appropriately, and are interested in particular strategies only if the results are oft
or come back too slowly.

Though it has noble ancestors indeed, Smalltalk’s contribution is anew design paradigm—
which I called object-oriented—for attacking large problems of the professional pro-
grammer, and making small ones possible for the novice user. Object-oriented design is
a successful attempt to qualitatively improve the efficiency of modeling the ever more
complex dynamic systems and user relationships made possible by the silicon explosion.

“We would know what they thought
when the did it.”
—NRichard Hamming

“Memory and imagination are but two
words for the same thing.”
—Thomas Hobbes

In this history I will try to be true to Hamming’s request as moderated by Hobbes” ob-
servation. I have had difficulty in previous attempts to write about Smalltalk because
my emotional involvement has always been centered on personal computing as an am-
plifier for human reach—rather than programming system design—and we haven’t got
there yet. Though I was the instigator and original designer of Smalltalk, it has always
belonged more to the people who make it work and got it out the door, especially Dan
Ingalls and Adele Goldberg. Each of the LR Gers contributed in deep and remarkable
ways to the project, and I wish there was enough space to do them all justice. But I
think all of us would agree that for most of the development of Smalltalk, Dan was the



central figure. Programming is at heart a practical art in which real things are built, and
a real implementation thus has to exist. In fact many if not most languages are in use
today not because they have any real merits but because of their existence on one or
more machines, their ability to be bootstrapped, etc. But Dan was far more than a great
implementer, he also became more and more of the designer, not just of the language
but also of the user interface as Smalltalk moved into the practical world.

Here, I will try to center focus on the events leading up to Smalltalk-72 and its
transition to its modern form as Smalltalk-76. Most of the ideas occurred here, and many
of the earliest stages of 00P are poorly documented in references almost impossible to
find.

This history is too long, but I was amazed at how many people and systems that had
an influence appear only as shadows or not at all. I am sorry not to be able to say more
about Bob Balzer, Bob Barton, Danny Bobrow, Steve Carr, Wes Clark, Barbara Deutsch,
Peter Deutsch, Bill Duvall, Bob Flegal, Laura Gould, Bruce Horn, Butler Lampson,
Dave Liddle, William Newman, Bill Paxton, Trygve Reenskaug, Dave Robson, Doug
Ross, Paul Rovner, Bob Sproull, Dan Swinehart, Bert Sutherland, Bob Taylor, Warren
Teitelman, Bonnie Tennenbaum, Chuck Thacker, and John Warnock. Worse, I have
omitted to mention many systems whose design I detested, but that generated consid-
erable useful ideas and attitudes in reaction. In other words, histories” should not be
believed very seriously but considered as “FEEBLE GESTURES PFF’ done long after the
actors have departed the stage.

Thanks to the numerous reviewers for enduring the many drafts they had to com-
ment on. Special thanks to Mike Mahoney for helping so gently that I heeded his
suggestions and so well that they greatly improved this essay—and to Jean Sammet, an
old old friend, who quite literally frightened me into finishing it—I did not want to
find out what would happen if I were late. Sherri McLoughlin and Kim Rose were of
great help in getting all the materials together.

I. 1960-66—Early oop and other formative ideas of the sixties

Though 00P came from many motivations, two were central. The large scale one was
to find a better module scheme for complex systems involving hiding of details, and the
small scale one was to find a more flexible version of assignment, and then to try to
eliminate it altogether. As with most new ideas, it originally happened in isolated fits
and starts.

New ideas go through stages of acceptance, both from within and without. From
within, the sequence moves from “barely seeing” a pattern several times, then noting
it but not perceiving its “cosmic” significance, then using it operationally in several
areas, then comes a “grand rotation” in which the pattern becomes the center of a
new way of thinking, and finally, it turns into the same kind of inflexible religion that
it originally broke away from. From without, as Schopenhauer noted, the new idea is
first denounced as the work of the insane, in a few years it is considered obvious and
mundane, and finally the original denouncers will claim to have invented it.

A
B220 Fils Format ca. 1961

True to the stages, I “barely saw” the idea several

times ca. 1961 while a programmer in the Air Force.

The first was on the Burroughs 220 in the form of a
style for transporting files from one Air Training Com-
mand installation to another. There were no standard
operating systems or file formats back then, so some
(t this day unknown) designer decided to finesse the
problem by taking each file and dividing it into three
parts. The third part was all of the actual data records
of arbitrary size and format. The second part contained



the B220 procedures that knew how to get at records and fields to copy and update the
third part. And the first part was an array or relative pointers into entry points of the
procedures in the second part (the initial pointers were in a standard order represent-
ing standard meanings). Needless to say, this was a great idea, and was used in many
subsequent systems until the enforced use of coBOL drove it out of existence.

The second barely-seeing of the idea came just a little later when ATc decided to
replace the 220 with a Bsooo. I didn’t have the perspective to really appreciate it at
the time, but I did take note of its segmented storage system, its efficiency of HLL
compilation and byte-coded execution, its automatic mechanisms for subroutine calling
and multiprocess switching, its pure code for sharing, its protected mechanisms, etc. And,
I saw that the access to its Program Reference Table corresponded to the 220 file system
scheme of providing a procedural interface to a module. However, my big hit from this
machine at this time was not the oop idea, but some insights into HLL translation and
evaluation. [Barton, 1961] [Burroughs, 1961]

After the Air Force, I worked my way through o0, or Tue wases or
the rest of college by programming mostly retrieval ) il - e L
systems for large collections of weather data for the 1938
National Center for Atmospheric Research. I got in- 19e2
terested in simulation in general—particularly of one E:‘sr:
machine by another—but aside from doing a one- g:m ™,
dimensional version of a bit-field block transfer (bit- e \
blt) on a cpc 6600 to simulate word sizes of vari- Eﬂ A
ous machines, most of my attention was distracted by 13
school, or I should say the theatre at school. While “ﬂGordonMonre's'L,aw'

in Chippewa Falls helping to debug the 6600, I read

an article by Gordon Moore which predicted that integrated silicon on chips was go-
ing to exponentially improve in density and cost over many years [Moore 65]. At the
time in 1965, standing next to the room-sized freon-cooled 10 M1P 6600, his astounding
predictions had little projection into my horizons.

Sketchpad and Simula

Through a series of flukes, I wound up in graduate school at the University of Utah
in the Fall of 1966, “knowing nothing.” That is to say, I had never heard of ArpPA or
its projects, or that Utah’s main goal in this community was to solve the “hidden line”
problem in 3D graphics, until I actually walked into Dave Evans’ office looking for a job
and a desk. On Dave’s desk was a foot-high stack of brown covered documents, one of
which he handed to me: “Take this and read it.”

Every newcomer got one. The title was “Sketchpad: A man-machine graphical com-
munication system” [Sutherland, 1963]. What it could do was quite remarkable, and
completely foreign to any use of a computer I had ever encountered. The three big
ideas that were easiest to grapple with were: it was the invention of modern interactive
computer graphics; things were described by making a “master drawing” that could
produce “instance drawings”; control and dynamics were supplied by “constraints,” also
in graphical form, that could be applied to the masters to shape an inter-related parts.
Its data structures were hard to understand—the only vaguely familiar construct was
the embedding of pointers to procedures and using a process called reverse indexing to
jump through them to routines, like the 22- file system [Ross, 1961]. It was the first to
have clipping and zooming windows—one “sketched” on a vitual sheet about 1/3 mile
square!
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Head whirling, I found my desk. ON it was a pile of tapes and listings, and a note:

“This is the Algol for the 1108. It doesn’t work. Please make it work.” The latest graduate
student gets the latest dirty task.

The documentation was incomprehensible. Supposedly, this was the Case-Western
Reserve 1107 Algol—but it had been doctored to make a language called Simula; the
documentation read like Norwegian transliterated into English, which in fact it was.
There were uses of words like activity and process that didn’t seem to coincide with
normal English usage.

Finally, another graduate student and I unrolled the program listing 8o feet down
the hall and crawled over it yelling discoveries to each other. The weirdest part was the
storage allocator, which did not obey a stack discipline as was usual for Algol. A few
days later, that provided the clue. What Simula was allocating were structures very much
like the instances of Sketchpad. There wee descriptions that acted like masters and they
could create instances, each of which was an independent entity. What Sketchpad called
masters and instances, Simula called activities and processes. Moreover, Simula was a pro-
cedural language for controlling Sketchpad-like objects, thus having considerably more
flexibility than constraints (though at some cost in elegance) [Nygaard, 1966, Nygaard,
1983].

This was the big hit, and I've not been the same since. I think the reason the hit had
such impact was that I had seen the idea enough times in enough different forms that the
final recognition was in such general terms to have the quality of an epiphany. My math
major had centered on abstract algebras with their few operations generally applying to
many structures. My biology manor had focused on both cell metabolism and larger scale
morphogenesis with its notions of simple mechanisms controlling complex processes and
one kind of building block able to differentiate into all needed building blocks. The 220
file system, the B5000, Sketchpad, and finally Simula, all used the same idea for different
purposes. Bob Barton, the main designer of the Bsooo and a professor at Utah had said
in one of his talks a few days earlier: “The basic principal of recursive design is to make
the parts have the same power as the whole.” For the first time I thought of the whole as
the entire computer and wondered why anyone would want to divide it up into weaker
things called data structures and procedures. Why not divide it up into little computers,
as time sharing was starting to? But not in dozens. Why not thousands of them, each
simulating a useful structure?



I recalled the monads of Leibniz, the “dividing nature at its joints” discourse of
Plato, and other attempts to parse complexity. Of course, philosophy is about opinion
and engineering is about deeds, with science the happy medium somewhere in between.
It is not too much of an exaggeration to say that most of my ideas from then on took
their roots from Simula—but not as an attempt to improve it. It was the promise of
an entirely new way to structure computations that took my fancy. As it turned out, it
would take quite a few years to understand how to use the insights and to devise efficient
mechanisms to execute them.

II. 1967-60—The FLEX Machine, a first attempt at an oopr-based
personal computer

Dave Evans was not a great believer in gradu-
ate school as an institution. As with many of
the ARPA °
to be doing “real things”; they should move
through graduate school as quickly as possible;
and their theses should advance the state of the
art. Dave would often get consulting jobs for

‘contracts” he wanted his students

his students, and in early 1967, he introduced
me to Ed Cheadle, a friendly hardware genius
at a local aerospace company who was work-
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ing on a “little machine.” It was not the first Wes Clark and the LINC, ca 1962

personal computer—that was the LINC of Wes

Clark—but Ed wanted it for noncomputer professionals, in particular, he wanted to pro-
gram it in a higher level language, like Basic. I said; “What about joss? It’s nicer.”” He
said: “Sure, whatever you think,” and that was the start of a very pleasant collaboration
we called the FLEX machine. As we jot deeper into the design, we realized that we
wanted to dynamically simulate and extend, neither of which joss (or any existing lan-
guage that [ knew of) was particularly good at. The machine was too small for Simula,
so that was out. The beauty of Joss was the extreme attention of its design to the end-
user—in this respect, it has not been surpassed [Joss 1964, Joss 1978]. Joss was too slow
for serious computing (but cf. Lampson 65), did not have real procedures, variable scope,
and so forth. A language that looked a little like joss but had considerably more poten-
tial power was Wirth’s EULER [Wirth 1966]. This was a generalization of Algol along
lines first set forth by van Wijngaarden [van Wijngaarden 1963] in which types were
discarded, different features consolidated, procedures were made into first class objects,
and so forth. Actually kind of LISPlike, but without the deeper insights of L1sP.

But EULER was enough of “an almost new thing” to suggest that the same techniques
be applied to simply Simula. The EULER compiler was a part of its formal definition
and made a simple conversion into 85000-like byte-codes. This was appealing because
it s suggested the Ed’s little machine could run byte-codes emulated in the longish
slow microcode that was then possible. The EULER compiler however, was tortuously
rendered in an “extended precedence” grammar that actually required concessions in

9

the language syntax (e.g. ) could only be used in one role because the precedence
scheme had no state space). I initially adopted a bottom-up Floyd-Evans parser (adapted
from Jerry Feldman’s original compiler-compiler [Feldman 1977]) and later went to
various top-down schemes, several of them related to Shorre’s META 11 [Shorre 1963]
that eventually put the translater in the name space of the language.

The semantics of what was now called the FLEx language needed to be influenced
more by Simula than by Algol or EULER. But it was not completely clear how. Nor was

it clear how the users should interact with the system. Ed had a display (for graphing,
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etc.) even on his first machine, and the Li1nc had a “glass teletype,” but a Sketchpad-like
system seemed far beyond the scope that we could accomplish with the maximum of
16k 16-bit words that our cost budget allowed.

Doug Engelbart and NLs

This was in early 1967, and while we were pondering
the FLEX machine, Utah was visited by Doug Engel-
bart. A prophet of Biblical dimensions, he was very
much one of the fathers of what on the FLEX ma-
chine I had started to call “personal computing.” He
actually traveled with his own 16mm projector with a
remote control for starting a and stopping it to show
what was going on (people were not used to seeing
and following cursors back then). His notion on the
ARPA dream was that the destiny of Online Systems
(MLs) was the “augmentation of human intellect” via
an interactive vehicle navigating through “thought
vectors in concept space.” What his system could do
then—even by today’s standards—was incredible. Not

just hypertext, but graphics, multiple panes, efficient ~~
. . . . . -
navigation and command input, interactive collabora- F* o e -
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tive work, etc. An entire conceptual world and world g R
view [Engelbart 68]. The impact of this vision was to o
produce in the minds of those who were “eager to
be augmented” a compelling metaphor of what inter-
active computing should be like, and I immediately
adopted many of the ideas for the FLEX machine.

In the midst of the ARPA context of human-computed
symbiosis and in the presence of Ed’s “little machine”,
Gordon Moore’s “Law” again came to mind, this time
with great impact. For the first time I made the leap
of putting the room-sized interactive TX-2 or even a
10 MIP 6600 on a desk. I was almost frightened by
the implications; computing as we knew it couldn’t _
survive—the actual meaning of the word changed— — e
it must have been the same kind of disorientation people had after reading Copernicus
and first looked up from a different Earth to a different Heaven.

Instead of at most a few thousand institutional mainframes in the world—even today
in 1992 it is estimated that there are only 4000 1BM mainframes in the entire world—
and at most a few thousand users trained for each application, there would be millions
of personal machines and users, mostly outside of direct institutional control. Where
would the applications and training come from? Why should we expect an applications
programmer to anticipate the specific needs of a particular one of the millions of poten-
tial users? An extensional system seemed to be called for in which the end-users would
do most of the tailoring (and even some of the direct constructions) of their tools. ARPA
had already figured this out in the context of their early successes in time-sharing. Their
larger metaphor of human-computer symbiosis helped the community avoid making a
religion of their subgoals and kept them focused on the abstract holy grail of “augmen-
tation.”

One of the interested features of NLs was that its user interface was a parametric and
could be supplied by the end user in the form of a “grammar of interaction given in
their compiler-compiler TreeMeta. This was similar to William Newman’s early “Re-



action Handler” [Newman 66| work in specifying interfaces by having the end-user
or developer construct through tablet and stylus an iconic regular expression grammar
with action procedures at the states (NLs allowed embeddings via its context free rules).
This was attractive in many ways, particularly William’s scheme, but to me there was
a monstrous bug in this approach. Namely, these grammars forced the user to be in a
system state which required getting out of before any new kind of interaction could be
done. In hierarchical menus or “screens” one would have to backtrack to a master state
in order to go somewhere else. What seemed to be required were states in which there
was a transition arrow to every other state—not a fruitful concept in formal grammar
theory. In other words, a much “flatter” interface seemed called for—but could such a
thing be made interesting and rich enough to be useful?

Again, the scope of the FLEX machine was too small for a miniNLS, and we were
forced to find alternate designs that would incorporate some of the power of the new
ideas, and in some cases to improve them. I decided that Sketchpad’s notion of a general
window that viewed a larger virtual world was a better idea than restricted horizontal
panes and with Ed came up with a clipping algorithm very similar to that under devel-
opment at the same time by Sutherland and his students at Harvard for the 3D “virtual
reality” helment project [Sutherland 1968].
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Object references were handled on the FLEX machine as a generalization of B§o00
descriptors. Instead of a few formats for referencing numbers, arrays, and procedures, a
FLEX descriptor contained two pointers: the first to the “master” of the object, and the
second to the object instances (later we realized that we should put the master pointer
in the instance to save space). A different method was taken for handling generalized
assignment. The Bso00 used l-values and r-values [Strachey*] which worked for some
cases but couldn’t handle more complex objects. For example: a[s5] := o if a was a sparse
array whose default element was—would still generate an element in the array because
:= is an “operator” and a[ss] is dereferenced into an l-value before anyone gets to see
that the r-value is the default element, regardless of whether a is an array or a procedure
fronting for an array. What is needed is something like: a(ss := o), which can look at
all relevant operands before any store is made. In other words, := is not an operator,
but a kind of a index that can select a behavior from a complex object. It took me a
remarkably long time to see this, partly I think because one has to invert the traditional
notion of operators and functions, etc., to see that objects need to privately own all



of their behaviors: that objects are a kind of mapping whose values are its behaviors. A book
on logic by Carnap [Ca *] helped by showing that “intentional” definitions covered
the same territory as the more traditional extensional technique and were often more
intuitive and convenient.

As in Simula, a coroutine control structure [Conway, 1963] was used as a way to
suspend and resume objects. Persistent objects like files and documents were treated
as suspended processes and were organized according to their Algol-like static variable
scopes. These were shown on the screen and could be opened by pointing at them.
Coroutining was also used as a control structure for looping. A single operator while
was used to test the generators which returned false when unable to furnish a new value.
Booleans were used to link multiple generators. So a “for-type” loop would be written
as:

while i <=1 to 30 by 2 © j <= 2 to k by 3 do j<-j * i;

where the ... to ... by ... was a kind of coroutine object. Many of these ideas were
reimplemented in a stronger style in Smalltalk later on.

Another control structure of interest in FLEX was a kind of event-driven “soft in-
terrupt” called when. Its boolean expression was compiled into a “tournement soft”
tree that cached all possible intermediate results. The relevant variables were threaded
through all of the sorting trees in all of the whens so that any change only had to
compute through the necessary parts of the booleans. The efficiency was very high and
was similar to the techniques now used for spreadsheets. This was an embarrassment of
riches with difficulties often encountered in event-driven systems. Namely, it was a com-
plex task to control the context of just when the whens should be sensitive. Part of the
boolean expression had to be used to check the contexts, where I felt that somehow the
structure of the program should be able to set and unset the event drivers. This turned
out to beyond the scope of the FLEX system and needed to wait for a better architecture.

Still, quite a few of the original FLEX ideas in their proto-object form did turn
out to be small enough to be feasible on the machine. I was writing the first compiler
when something unusual happened: the Utah graduate students got invited to the ARPA
contractors meeting held that year at Alta, Utah. Towards the end of the three days, Bob
Taylor, who had succeeded Ivan Sutherland as head of ARPA-1PTO asked the graduate
students (sitting in a ring around the outside of the 20 or so contractors) if they had
any comments. John Warnock raised his hand and pointed out that since the ArRPA grad
students would all soon be colleagues (and since we did all the real work anyway), ArRPA
should have a contractors-type meeting each user for the grad students. Taylor thought
this was a great idea and set it up for the next summer.

Another ski-lodge meeting happened in Park City later that spring. The general
topic was education and it was the first time I heard Marvin Minsky speak. He put forth a
terrific diatribe against traditional education methods, and from him I heard the ideas of
Piaget and Papert for the first time. Marvin’s talk was about how we think about complex
situations and why schools are really bad places to learn these skills. He didn’t have to
make any claims about computer+kids to make his point. It was clear that education and
learning had to be rethought in the light of 20th century cognitive psychology and how
good thinkers really think. Computing enters as a new representation system with new
and useful metaphors for dealing with complexity, especially of systems [Minsky 70].

For the summer 1968 ARPA grad students meeting at Allerton House in Illinois, I
boiled all the mechanisms in the FLEX machine down into one 2’x3’ chart. This included
all the “object structures.” the compiler, the byte-code interpreter, i/0 handlers, and
a simple display editor for text and graphics. The grad students were a distinguished
group that did indeed become colleagues in subsequent years. My FLEX machine talk
was a success, but the big whammy for me came during a tour of U of Illinois whee



[ saw a 1”7 square lump of class and neon gas in which individual spots would light
up on command—it was the first flat-panel display. I spent the rest of the conference
calculating just when the silicon of the FLEX machine could be put on the back of the
display. According to Gordon Moore’s “Law”, the answer seemed to be sometime in the
late seventies or early eighties. A long time off—it seemed to long to worry much about
it then.

But later that year at RAND 1 saw a truly beautiful system. This was GRAIL, the
graphical followin to joss. The first tablet (the famous RAND tablet) was invented by
Tom Ellis [Davvis 1964] in order to capture human gestures, and Gave Groner wrote a
program to eficiently recognize and respnd to them [Groner 1966]. Through everything
was fastned with bubble gum and the stem crashed often, I have never forgotton my
fist interactions with this system. It was direct manipulation, it was analogical, it was
modeless, it was beautiful. I reallized that the FLEX interface was all wrong, but how
could something like GrarOL be stuffed intosuch a tiny machine since it required all of
a stand-alone 360/44 to run in?

A month later, I finally visited Semour Papert, Wally Feurzig, Cynthia Solomon
and some of the other original reserachers who had built LoGo and were using it with
children in the Lexington schools. Here were children doing real pogramming with
a specially designed language and environment. As with Simulas leading to oop, this
enoucnter final hit me with what the destiny of personal computing really was going
to be. Not a personal dynamic vehicle, as in Engelbart’s metaphor opposed to the 18m
“railroads”, but something much more profound: a personal dynamic medium. With a
vehicle on could wait until high school and give “drivers ed”, but if it was a medium, it
had to extend into the world of childhood.

Now the collision of the FLEX machine, the flat-screen display, GraIir, Barton’s
“communications” talk, McLuhan, and Papert’s work with children all came together
to form an image of what a personal computer really should be. I remembered Aldus
Manutius who 40 years after the printing press put the book into its modern dimensions
by making it fit into saddlebags. It had to be no larger than a notebook, and needed
an interface as friendly as Joss’, GRAIL’s, and LOGO’s, but with the reach of Simula and
FLEX. A clear romantic vision has a marvelous ability to focus thought and will. Now
it was easy to know what to do next. I built a cardboard model of it to see what if
would look and feel like, and poured in lead pellets to see how light it would have to
be (less than two pounds). I put a keyboard on it as well as a stylus because, even if
handprinting and writing were recognized perfectly (and there was no reason to expect
that it would be), there still needed to be a blance between the lowspeed tactile degrees
of freedom offered by the stylus and the more limited but faster keyboard. Since ArpA
was starting to experiment with packet radio, I expected that the Dynabook when it
arrived a decade or so hence, wouldhave a wireless networking system.

Early next year (1969) there was a conference on Extensible Languages in which
alnost every famous name in the field attended. The debate was great and wighty—it
was a religious war of unimplemented poorly though out ideas. As Alan Perlis, one of
the great men in Computer Science, put it with characteristic wit:

It has been such a long time since al have seen so many familiar faces
shouting among so many familiar ideas. Discover of something new in pro-
gramming languages, like any discovery, has somewhat the same sequence
of emotions as falling in love. A sharp eleation followed by euphoria, a feel-
ing of uniugeness, and ultimately the wandering eye (the urge to generalize)
[acm 69].

But it was all talk—no one had done anything yet. In the midst of all this, Ned Irons
got up and presented IMP, a system that had already been working for several years that
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was more elegant than most of the nonworking proposals. The basic idea of 1MP was
that you coulduse any phrase in the grammar as a procedur heading and write a semantic
definition in terms of the language as extended so far [Irons 1970].

I had already made the first version of the FLEX machine syntax driven, but where
the meaning of a phrase was defned in the more usual way as the kind of code that
was emitted. This separated the compiiler-extensor part of the system from the end-
user. In Irons’ approach, every procedure in the system define dits own syntax in a
natural and useful manner. I cinorporated these ideas into the second verions of the
FLEX machine and started to experiment with the idea of a direct interpreter rather than
a syntax directed compiler. Somewhere in all of this, I realized that the bridge to an
object-based system could be in terms of each object as a syntax directed interpreter of
messages sent to it. In one fell swoop this would unify object-oriented semantics with
the ideal of a completely extensible language. The mental image was one of separate
computers sending requests to other computers that had to be accepted and understood
by the receivers beofre anything could happen. In todya’s terms every object would be a
server offering services whose deployment and discretion depended entirely on the server’s
notion of relationsip with the servee. As Liebniz said: “To get everything out of nothing,
you only need to find one principle.” This was not well thought out enough to do the
FLEX machine any good, but formed a good point of departure for my thesis [Kay 69],
which as Ivan Sutherland liked to say was “anything you can get three people to sign.”

After three people signed it (Ivan was one oft them), I went to the Stanford Al
project and spent much more time thinking about notebook KiddyKomputers than Al
But there were two Al designs that were very intriguing. The first was Carl Hewitt’s
PLANNER, a programmable logic system that formed the deductive basis of Winograd’s
SHRDLU [Sussman 69, Hewitt 69] I designed several languages based on a combination
of the pattern matching schemes of FLEX and PLANNER [Kay 70]. The second design was
Pat Winston’s concept formation system, a scheme for building semantic networks and
comparing them to form analogies and learning processes [Winston 70]. It was kind of
“object-oriented”. One of its many good ieas was that the arcs of each net which served
as attributes in AoV triples should themsleves be modeled as nets. Thus, for example a
first order arc called LEFT-OF could be asked a higher order questions such as “What
isyour converse?” and its net could answer: RIGHT-OF. This point of view later formed
the basis for Minsky’s frame systems [Minsky 75]. A few years later I wished I had paid
more attention to this idea.

That fall, I heard a wonderful talk by Butler Lampson about CAL-TsSs, a capability-
based operating system that seemed very “object-oriented” [Lampson 69]. Unfogable
pointers (ala 85000) were extended by bit-masks that restriected access to the object’s
internal operations. This confirmed my “objects as server” metaphor. There was also
a very nice approach to exception handling which reminded me of the way failure
was often handled in pattern matching systems. The only problem— which the car
designers did not wsee as a problam at all—was that only certain (usually large and slow)
things were “objects”. Fast things and small things, etc., weren’t. This needed to be
fixed.

The biggest hit for me while at saIL in late ’69 was to really understand Lisp. Of
course, every student knew about car, cdr, and cons, but Utah was impoverished in that no
one there used L1sp and hence, no one had penetrated thye mysteries of eval and apply. I
could hardly believe how beautiful and wonderful the idea of L1sP was [McCarthy 1960].
I say it this way because L1sp had not only been around enough to get some honest
barnacles, but worse, there wee deep falws in its logical foundations. By this, I mean
that the pure language was supposed to be based on functions, but its most important
components—such as lambda expressions quotes, and conds—where not functions at
all, and insted ere called special forms. Landin and others had been able to get quotes
and cons in terms of lambda by tricks that were variously clever and useful, but the
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flaw remained in the jewel. In the practical language things were better. There were not
just EXPRs (which evaluated their argumentso, but FEXPRs (which did not). My next
questions was, why on earth call it a functional language? Why not just base everuything
on FEXPRs and force evaluation on the receiving side when needed? I could never get a
good answer, but the question was very helpful when it came time to invent Smalltalk,
because this started a line of thought that said “take the hardest and most profound
thing you need to do, make it great, an then build every easier thing out of it”. That
was the promise of LiSP and the lure of lambda—mneeded was a better “hardest and most
profound” thing. Objects should be it.

III. 1970-72—Xerox PARC: The KiddiKomp, miniCOM, and Smalltalk-
71

In July 1970, Xerox, at the urgin of its chief scientist Jack Goldman, decdided to set
up a long range reserach center in Palo Alo, California. In September, George Pake,
the former chancellor at Washington University where Wes Clark’s ARPA project was
sited, hired Bob Taylor (who had left the ArRpA office and was taling a sabbatical year at
Utah) to start a “Computer Science Laboratory.” Bob visited Palo Alto and we stayed
up all night talking about it. The mansfield Amendment was threatening to blinkdly
muzzle the most enlightened Arpa funding in favor of directly military reserach, and
this new opportunity looked like a promising alternative. But work for a company?
He wanted me to consult and I asked for a direction. He said: follow your instincts. I
immediately started working up a new versio of the KiddiKimp tha could be made in
enough quantity to do experiments leading to the user interface design for the eventual
notebook. Bob Barton liked to say that “good ideas don't often scale.”” He was certainly
right when applied to the FLEX machine. The Bso0o0 just didn’t directly scale down
into a tiny machine. Only the byte-codes did. and even these needed modification. I
decided to take another look at Wes Clark’s LINK X, and was ready to appreciate it much
more this time [Clark 1965].

I still liked pattern-directed approaches and ooP so I came up with a language design
called “Simulation LoG0” or sLoGo for short *(I had a feeling the first versions migh
run nice and slow). This was to be built into a SONY “tummy trinitron” and ould use a
coarse bit-map display and the FLEX machine rubber tablet as a pointing device.

Another beautiful system that I had come across was Petere Deutsch’s PDP-1 LISP
(implemented when he was only 15) [Deutsch 1966]. It used onl 2k (18-bit words) of
code and could run quite well in a 4k mahcine (it was its own operating system and
interface). It seemed that even more could be done if the system were byte-coded, run
by an architectural that was hoospitable to dynamic systems, and stuck into the ever
larger ROMs that were becoming available. One of the basic insights I had gotten from
Seymour was that you didn’t have to do a lot to make a computer an “object for thought”
for children, but what you did had to be done well and be able to apply deeply.

Right after New Years 1971, Bob Taylor scored an enourmous coup by attracting
most of the struggling Berkeley computer corp to parRc. This group included Butler
Lampson, Check Thacker, Peter Deutsch, Jim Mitchell, Dick Shoup, Willie Sue Hauge-
land, and Ed Fiala. Him Mitchell urged the group to hire Ed McCreight from CM and
he arrived soon after. Gar Starkweather was there already, having been thrown out of the
Xerox Rochester Labs for wanting to build a laser printer (which was against the local
religion). Not long after, many of Doug Englebart’s people joined up—part of the rea-
son was that they want to reimplement NLS as a distributed network system, and Doug
wanted to stay with time-sharing. The group included Bill English (the co-inventor of
the mouse), Jeff Rulifson, and Bill Paxton.

Almost immediately we got into trouble with Xerox when the group decided that
the new lab needed a pDP-10 for continuity with the ARPA community. Xerox (which
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has bought sps essentially sight unseend a few years before) was horrified at the idea
of their main compeititor’s computer being used in the lab. They balked. The newly
formed pARC group had a metting in which it was decided that it would take about
three years to do a good operating system for the XDs siGma-7 but that we could build
“our own PDP-10" in a year. My reactopn was “Holy cow!” In fact, they pullit it oft
with considerable pnache. MAXC was actually a microcoded emeulation of the ppp-10
that used for the first time the new integrated chip memeoris (1x bits!) instead of core
memory. Having practicalin house experience with both of these new technologies was
critical for the more radical systems to come.

One little incident of Lisp eauty happened when Allen Newell visited PARC with
his theory of hierarchical thinking and was challenged to prove it. He was given a
programming problem to solve while the protocol was collected. The problem was:
given a list of items, produce a list consisteing of all of the odd indexed items followed
by all of the even indexed items. Newel’s internal programming langage resembple 1pL-
v in which pointers are manipulated explicitly, and he got into quite a struggle to do
the program. In 2 seconds I wrote down:

oddsEvens(x) = append(odds(x), evens(x))

the statement of the problem in Landin’s L1sP syntax—and also the first part of the
solution. Then a few seconds later:

where odds(x) if null(x) v null(tl(x)) then x
else hd(x) & odds(ttl(x))
if null(x) v null(tl(x)) then nil

else odds(tl(x))

evens(x)

This characteristic of writing down many solutions in declarative form and have them
also be the programs is part of the appeal and beauty of this kind of language. Watching
a famous guy much smarter than I struggle for more than 30 minutes to not quite solve
the problem his way (there was a bug) made quite an impression. It brought home to
me once again that “point of view is worth 80 IQ points.” I wasn’t smarter but I had a
much better internal thinking tool to amplify my abilities. This incident and others like
it made paramount that any tool for children should have great thinking patterns and
deep beeauty “built-in.”

Right around this time we were involved in another conflict with Xerox manage-
ment, in particular with Don Pendery the head “planner”. He really didn’t understand
what we were talking about and instead was interested in “trends” and “what was the
future going to be like” and how could Xerox “defend against it.” I got so upset I said to
him, “Look. The best way to predict the future is to invent it. Don’t worry about what
all those other people might do, this is the century in which almost any clear vision can
be made!” He remained unconvinced, and that led to the famous “Pendery Papers for
PARC Planning Purposese,” a collection of essays on various aspects of the future. Mine
proposed a version of the notebook as a “Display Transducer.”” and Jim Mitchell’s was
entitled “NLS on a Minicomputer.”

Bill English took me under his wing and helped me start my group as I had always
been a lone wolf and had no idea how to do it. One of his suggestions was that I should
make a budget. 'm afraid that I really did ask Bill, “What’s a budget?”” I remembered
at Utag, in pre-Mansfield Amendment days, Dave Evans saying to me as hwent off on
a trip to ARPA, “We're almost out of money. Got to go get some more.” That seemed
about right to me. They give you some money. You spend it to find out what to do
next. You run out. They give you some more. And so on. PARC never quite made it to
that idyllic standard, but for the first half decade it came close. I needed a group because
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I had finally ralized that I did not have all of the temperaments required to completely
finish an idea. I called it the Learning Research Group (LRG) to be as vaue as possible
bout our charter. I only hired people that got stars in their eyes when they heard about
the notebook computer idea. I didn’t like meetings: didn’t believe brainstorming could
substitute for cool sustained thought. When anyone asked me what to do, and I didn’t
have a strong idea, I would point at the notebook nodel and say, “Advance that” LRrRG
members developed a very close relationship with each other—as Dan Ingalls was to

3

say later: “ ... the rest has enfolded through the love and energy of the whole Learning
Research Group.” A lot of daytime was spent outside of PARC, playing tennis, bikeriding,
drinking beer, eating chinese food, and constantly talking about the Dynabook and
its potential to amplify human reach and bring new ways of thinking to a faltering
civilization that desperately needed it (that kind of goal was common in California in
the afternath of the sixties).

In the summer of 71 I refined the KiddiKomp idea into a tighter design called
miniCOM. It used a bit-slice approach like the Nova 1200, had a bit-map display, a
pointing device, a choice of “secondary” (really tertiary) storages, and a language I now
called “Smalltalk”—as in “programming should be a matter of . . . ” and “children should
program in ... ”. The name was also a reaction against the “IndoEuropean god theory”
where systems were named Zeus, Odin, and Thor, and hardly did anything. I figured
that “Smalltalk” was so innocuous a label that if it ever did anything nice people would
be pleasantly surprised.

This Smalltalk language (today labeled -71) was very influenced by FLEX, PLANNER,
LOGO, META 11, and my own derivatives from them. It was a kind of parser with object-
attachment that executed tokens directly. (I think the awkward quoting conventions
come from META). I was less interested in programs as algebraic patterns than I was
in a clear scheme that could handle a variety of styles of programming. The patterned
front-end allowed simple extension, patterns as “data” to be retrieved, a simple way to
attach behaviors to objects, and a rudimentary but clear expression of its eval in terms
that I thought children could understand after a few years experience with simpler
programming.. Program storiage was sorted into a discrimintaion net and evalutaion
was strightforward pattern-matching.

Smalltalk-71 Programs
to T 'and' :y do 'y’
to F 'and' :y do F

to 'factorial' 0 is 1
to 'factorial' :n do 'n*factorial n-1'

to 'fact' :n do 'to 'fact' n do factorial n. ~ fact n'

to :e 'is-member-of' [] do F
to :e 'is-member-of' :group
do'if e = firstof group then T
else e is-member-of rest of group'

to 'cons' :x :y is self

to 'hd' ('cons' :a :b) do 'a'

to 'hd' ('cons' :a :b) '<-' :c do 'a <- c'
to 'tl' ('cons' :a :b) do 'b'

to '"tl' ('cons' :a :b) '<-' :c do 'b <- c'

to :robot 'pickup' :block
do 'robot clear-top-of block.
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robot hand move-to block.
robot hand 1lift block 50.
to 'height-of' block do 50°'

As I mentioned previously, it was annoying that the surface beauty of L1sP was
marred by some of its key parts having to be introduced as “special forms” rather than as
its supposed universal building block of functions. The actual beauty of L1sP came more
from the promise of its metastrcutures than its actual model. I spent a fair amount of
time thinking about how objects could be characterized as universal computers without
having to have any exceptions in the central metaphor. What seemed to be needed was
complete control over what was passed in a message send; in particular when and in what
environment did expressions get evaluted?

An elegant approach was suggested in a cMU thesis of Dave Fisher [Fisher 70] on the
syntheses of control structures. ALGOLG60 required a separate link for dynamic subroutine
linking and for access to static global state. Fisher showed ow a generalization of these
links could be used to simulate a wide variety of control environments. One of the ways
to solve the “funarg problem” of LiSP is to associate the proper global tate link with
expressions and functions that are to be evaluted later so that the free variables referenced
are the ones that were actually implied by the static form of the language. The notion
of “;azy evaluation” is anticipated here as well.

Nowadays this approach wouldbe called reflective design. Putting it together with the
FLEX models suggested that all that should be required for “doing r1sp right” or “doing
0o0P right” would be to handle the mechanics of invocations between modules without
having to worry about the details of the modules themselves. The difference between
Lisp and oopP (or any other system) would then be what the modules could dontain.
A universal module (object) referrence—ala Bsooo and L1sp—and a message holding
structure—which could be virutal if the senders and receivers were sympatico— that
could be used by all would do the job.

If all of the fields of a messenger struccture were enumerated according to this view,
we would have:

GLOBAL:  the environment of the parameter values
SENDER:  the sender of the message
RECEIVER:  the receiver of the message
REPLY-STYLE:  wiat, fork, ... ?
STATUS:  progress of the message
REPLY:  eventual result (if any)
OPERATION SELECTOR:  relative to the receiver
# OF PARAMETERS:
P1:

Pn:
This is a generalization of a stack frame, such as used by the Bs000, and very simiilar
to what a good intermodule scheme would require in an opeating system such as cAL-
Tss—a lot of state for every transactin, but useful to think about.

Much of the pondering during this state of grace (before any workable implemen-
tation) had to do with trying to understand what “beautiful” ight mean with reference
to object-oriented design. A subjective definition of a beautiful thing is fairly easy but
is not of much jelp: we think a thing beautfiul because it evokes certain emotions. The
cliche has it like “in the eye of the beholder” so that it is difficult to think of beauty

as other than a relation between subject and object in which the predispositions of the
subject are all important.
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If there are such a thing as universally appealing forms then we can perhaps look to
our shared biological heritage for the predispositions. But, for an object like LiSP, it is
almost certan that most of the basis of our judgement is leanred and has much to do
with other related areas that we think are beautiful, such as much of mathematics.

One part of theperceived beuty of mathematics has to do with a wondrous snery be-
tween parasimony, generality, enlightenment, and finesse. For example, the Pythagoriean
Theorem is expressable in a single line, is true for all of the infinite number of right tri-
angles, is incredibly uiseful in unerstanding many other relationships, and can be shown
be a few simple but profound steps.

When we turn to the various languages for specifying computations we find many to
be general and a few to be parsimonious. For example, we can define universal machine
languages in just a few instructions that can speicfy anything that can be computed.
But most of these we would not call beautiful, in part because the amount and kiind
of code tha has to be written to do anything interesting is so contribed and turgid. A
simple and small system that can do interesing things also needs a “high slope”—that is
a good match between the degree of interestingness and the level of complexity needed
to express it.

A fertialized egg that can transform itself into the myriad of specializations needed
to make a complex organism has parsimony, gernerality, enlightenment, and finesse-in
short, beauty, and a beauty much more in line with my own esthetics. I mean by this
that Nature 1s wonderful both at elegance and practicality—the cell membrane is partly
there to allow useful evolutionary kludges to do their neccessary work and still be able
act as component by presenting a uniform interface to the world.

One of my continual worries at this time was about the size of the bit-map display.
Even if a mixed mode was used (between fine-grained generated characters and coarse-
grained general bit-mao for graphics) it would be hard to get enough information on
the screen. It occurred to me (ina shower, my favorite place to think) that FLEXtype
windows on a bit-map displahy could be made to appear as overlapping documents on
a desktop. When an overlapped one was refreshed it would appear to come to the top
of the stack. At the time, this did not appear as the wonderful solujtion to the problem
but it did have the effect of magnifying the effective area of the display anormously, so I
decided to go with it.

To investigate the use of video as a display medium, Bill english and Butler Lampson
specified an experimental character generator (built by Roger Bates) for the poros
(pARC OnLine Office System) terminals. Gary Starkweather had just gotten the first
laser printer to work and we ran a coax over to his lab to feed him some text to print.
The “sLoT machine” (Scanning Laser Output Terminal) was incredible. The only Xerox
copier Gary could get to work on went at 1 page a seocond and could not be slowed
down. So Gary just made the laser run at the rate with a resolution of 500 pixels to the
inch!

The character generator’s font memory turned out to be large enough to simulate
a bit-map display f one displayed a fixed “strike” and wrote into the font memory. Ben
Laws built a beautiful font editor and he and I spent several months learning about
the peculaiarities of the human visual system (it is decidedly non-linear). I was very
interested in high-quality text and graphical presentations because I thought it would be
easier to get the Dynabook into schools as a “trojan horse” by simply replacing school
books rahter than to try to explain to teachers and school boards what was really great
about personal computing.

Things were generally going well all over the lab until May of 72 when I tried to
get resources to build a few miniCOMs. A relatively new executive (“X”) did not want
to give them to me. I wrote a memo explaining why the system was a good idea (see
Appendix II), and then had a meeting to discuss it. “X” shot it down completely saying
amoung other things that we had used too many green stamps getting Xerox to fund
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the time-shared Maxc and this use of resources for personal machines would confuse
them. I was chocked. I crawled away back to the experimental character generator and
made a plan to get 4 more made and hooked to Novas for the initial kid experiments.

I got Steve Purcell, a summer student from Stanford, to build my design for bit-map
painting so the kids could sketch as well as display computer graphics. John Shoch built
a line drawing and gesture regognition system (based on Ledeen’s [Newman and Sproull
72]) that was integrated with the painting. Bill Duvall of poros built a miniNLS that
was quite remarkable in its speed and power. The first overlapping windows started to
appear. Bob Shur (with Steve Purcell’s help) built a 2 1/2 D animation system. Along
with Ben Laws’ font editor, we could give quite a smashing demo of what we intended
to build for real over the next few years. I remember giving one of these to a Xerox
executive, including doing a protrait of him in the new painting system, and wound it
up with a flourish declaring: “And what’ really great about this is that it only has a 20%
chance of success. We're taking risk just like you asked us to!” He looked me straigt
in the eye and said, “Boy, that’s great, but just make sure it works.” This was a typical
exeuctive notion about risk. He wanted us to be in the “20%” one hundred percent of
the time.

That summer while licking my wounds and getting the demo simnulations built and
going, Butler Lampson, Peter Deutsch, and I worked out a general scheme for emulated
HLL machine languages. I liked the Bsooo scheme, but Butler did not want to have to
decode bytes, and pointed out that since an 8-bit byte had 256 total possibilities, what
we should do is map different meanings onto different parts of the “instruction space.”
this would give us a “poor man’s Huffman code” that would be both flexible and simple.
All subsequent emulators at PARC used this general scheme.

I also took another pass at the language for the kids. Jeff Rulifson was a big fan
of Piaget (and semiotics) and we had many discussions about the “stages” and what
iconic thinking might be about. After reading Piaget and especially Jerome Bruner, I
was worried that the directly symbolic approach taken by FLEX , LOGO (and the current
Smalltalk) would be difficult for the kids to process since evidence existed that the
symbolic stage (or mentality) was just starting to switch on. In fact, all of the educators
that I admired (including Montessori, Holt, and Suzuki) all seemed to call for a more
figurative, more iconic approach. Rduolph Arnheim [Arnheim 69] had written a classic
book about visual thinking, and so had the eminent art critic Gomrich [Gombrich **].
It really seemed that something better needed to be done here. GRAIL wasn’t it, because
its use of imagery was to portray and edit flowcharts, which seemed like a great step
backwards. But Rovner’s AMBIT-G held considerably more promise [Rovner 68]. It was
kind of a visual sNoBoOL [Farber 63] and the pattern matching ideas looked like they
would work for the more PLANNERUIike scheme I was using.

Bill English was still encouraging me to do more reasonable appearing things to get
higher credibility, likemakin budgets, writing plans and milestone notes, so I wrote a
plan that proposed over the next few years that we would build a real system on the
character generators cum NoOvAs that would involve oop, windows, painting, music,
animation, and “iconic programming.” The latter was deemed to be hard and would be
handled by the usual method for hard problems, namely, give them to grad students.

IV. 1972-76—The first real Smalltalk (-72), its birth, applications,
and improvements

In Sept. within a few weeks of each other, two bets happened that changed most of
my plans. First, Butler and Chuck came over and asked: “Do you have any money?” 1
said, “Yes, about $230K for Novas and CGs. Why?” They said, “How would you like
us to build your little machine for you?” I said, “T'd like it fine. What is it?” Butler
said: “I want a ‘¢ 500 pDP-10’, Chuck wants a "10 times faster NOVA’, and you want a
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‘kiddicomp’. What do you need on it?” I told them most of the results we had gotten
from the fonts, painting, resolution, animation, and music studies. I aksed where this
had come from all of a sudden and Butler told me that they wanted to do it anyway, that
Executive “X” was away for a few months on a “task force” so maybe they could “Sneak
it in”, and that Chuck had a bet with Bill Vitic that he could do a whole machine in
just 3 months. “Oh,” I said.

The second bet had even more surprising results. I had expected that the new
Smalltalk would be an iconic language and would take at least two years to invent,
but fate intervened. One day, in a typical pARC hallway bullsession, Ted Kaeh;er, Dan
Ingalls, and I were standing around talking about programming languages. The subject
pf power came up and the two of them wondered how large a language one would have
to make to get great power. With as much panache as I could muster, I asserted that you
could define the “most powerful language in the world” in “a page of code.” They said,
“Put up or shut up.”

Ted went back to cmu but Can was still around egging me on. For the next two
weeks I got to PARC every morning at four o’clock and worked on the problem until
eight, when Dan, joined by Henry Fuchs, John Shoch, and Steve Prcell shoed up to
kibbitz the mroning’s work.

I had orignally made the boast because McCarthy’s self~describing L1sP interpreter
was written in itself. It was about “a page”, and as far as power goes, L1sP was the whole
nine-yards for functional languages. I was quite sure I could do the same for object-
oriented languages plus be able to do a resonable syntax for the code a loa some of the
FLEX machine techiques.

It turned out to be more difficult than I had first thought for three reasons. First,
I wanted the program to be more like McCarthy’s second non-recursive interpreter—
the one implemented as a loop that tried to resemble the original 709 implementation
of Steve Russell as much as possible. It was more “real”. Second, the intertwining of
the “parsing” with message receipt—the evaluation of paremters which was handled
separately in L1sP—required that my object-oriented interpreter re-enter itself “sooner”
(in fact, much sooner) than L1sP required. And, finally, I was still not clear how send and
receive should work with each other.

The first few versions had flaws tha wee soundly criticized by the group. But by
morning 8 or so, a version appeared that seemed to work (see Appendix III for a sketch
of how the interpreter was designed). The major differences from the official Smalltalk-
72 of a little bit later were that in the first version symbols were byte-coded and the
reeiving of return of return-values from a send was symmetric—i.e. reciept could be
like parameter binding—this was particular useful for the return of multiple values. for
various reasons, this was abandoned in favor of a more expression-oriented functional
return style.

Of course, I had gone to considerable pains to avoid doing any ‘“real work” for
the bet, but I felt I had proved my point. This had been an interesting holiday from
our official “iconic programming” pursuits, and I thought that would be the end of it.
Much to my surprise, ionly a few ays later, Dan Ingalls shoed me the scheme working on
the Nova. He had coded it up (in Basic!), added a lot of details, such as a token scanner,
a list maker, etc., and there it was—running. As he liked to say: “You just do it and it’s
done.”

It evaluted 3 = 4 very slowly (it was “glacial”, as Butler liked to say) but the
answer alwas came out 7. Well, there was nothing to do but keep going. Dan loved to
bootstrap on a system that “always ran,” and over the next ten years he made at least 80
major releases of various flavors of Smalltalk.

In November, I presented these ideas and a demonstration of the interpretation
scheme to the miT Al lab. This eventuall led to Carl Hewitt’s more formal “Actor” ap-
proach [Hewitt 73]. In the first Actor paper the resemblence to Smalltalk is at its closest.
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The paths later diverged, partly because we were much more interested in making things
than theorizing, and partly because we had something no one else had: Chuck Thacker’s
Interim Dynabook (later known as the “ALT0”).

Just before Check started work on the machine I gave a paper to the National Coun-
cil of Teachers of English [Kay 72¢] on the Dynabook and its potential as a learning and
thinking amplifier—the paper was an extensive rotogravure of “20 things to do with a
Dynabook” [Kay 72¢|. By the time I got back from Minnesota, Stewart Brand’s Rolling
Stone article about PARC [Brand 1972] and the surrounding hacker community had hit
the stands. To our enormous surprise it caused a major furor at Xerox headquarters in
STamford, Connectitcut. Though it was a wonderful article that really caught the spirit
of the whole culture, Xerox went berserk, forced us to wear badges (over the years
many were printed on t-shirts), and severely restricted the kinds of publications that
could be made. This was particular disastrous for LRG, since we were the “lunatic fringe”
(so-called by the other computer scientists), were planning to go out to the schools, and
needed to share our ideas (and programs) with our colleagues such as Seymour Papert
and Don Norman.

Executive “X” apparently heard some harsh words at Stamford about us, because
when he returned around Christmas and found out about the interim Dynabook, he
got even more angry and tried to kill it. Butler wound up writing a masterful defence
of the machine to hold him off, and he went back to his “task force.”

Check had started his “bet” on November 22, 1972. He and two tecnicians did all
of the machine except for the disk interface which was done by Ed McCreight. It had
a ~500,000 pixel (606x808) bitmap display, its microcode instruction rate was about 6
MIPS, it had a grand total of 128k, and the entire machine (exclusive of the memory)
ws rendered in 160 MsI chips distributed on two cards. It ws eautiful [Thacker 1972,
1986]. One of the wonderful features of the machine was “zero-over-head” tasking. It
had 16 program counters, one for each task. Condition falgs were tied to interesting
events (such as “horizontal retrace pulse”, and “disk sector pulse”, etc.). Lookaside logic
scanned the flags while the current instruction was executing and picked the highes
prioritity program counter to fetch from next. The machine never had to wait, and the
reuslt was that most hardware functions (particularly those that involved i/o0 (like feeding
the display and handling the disk) could be replaced by microcode. Even the refresh
of the MOs dynamic RAM was done by a task. In other words, this was a coroutine
architecture. Check claimed that he got the idea from a lecture I had given on coroutines
a few months before, but I remembered that Wes Clark’s Tx-2 (the Sketchpad machine)
had used the idea first, and I probably mentioned that in the talk.

In early April, just a little over three months fromthe start, the first Interim Dyn-
abook, known as ‘Bilbo, greeted the world and we had the first bit-map picture on
the screen within minutes; the Muppets’ Cookie Monster that I had sketched on our
painting system.

Soon Dan had bootstrapped Smalltalk across , and for many months it was the sole
software sytem to run on the Interim dynabook. Appendix I has an “acknowledgements”
dodcument I wrote from this time that is interesting it its allocation of credits and the
various priorities associated with them. My $230K was enough to get 15 of the original
projected 30 machines (over the years some 2000 Interim Dynabooks were actually
built. True to Schopenhauer’s observation, Executive “X” now decided that the Interim
Dynabook was a good idea and he wanted all but fwo for his lab (I was in the other lab).
I had to go to considerable lengths to get our machines back, but finally succeeded.

1. Everything is an object
2. Objects communicate by sending and receiving messages (in terms of objects)

3. Objects have their own memory (in terms of objects)
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4. Every object is an instance of a class (which must be an object)

s. The class holds the shared behavior for its instances (in the form of objects in a
pogram list

6. To eval a program list, control is passed to the first object and the remainder is treated as its
message

By this time most of Smalltalk’s schemes had been sorted out into six main ideas
that were in accord with the initial premises in designing the interpreter. The ist three
principales are what objects “are about”—how they are seen and used from “the outside.”
Thse did not require any modification over the years. The last three—objects from
the inside—were tinkered with in every version of Smalltalk (and in subsequent oop
designs). In this scheme (1 & 4) imply that classes are objects and that they must be
instances of themself. (6) implies a LiSPlike universal syntax, but with the reeiving object
as the first item followed by the message. Thus c¢; <— de (with subscripting rendered as
“0” and multiplication as “*”’) means:

receiver message

c 01 < d*e
The ¢ is bound to the receiving object, and all of o i — d*e is the message to

[TEL

it. The message is made up of literal token “.”, an expression to be evaluated in the
sender’s context (in this case 1), another literal token <-, followed by an expression to
be evaluated in the sender’s context (d*e). Since “L1SP” paris are made from 2 element
objets they can be indexed more simply: ¢ hd, ¢ tl, and ¢ hd <- foo, etc.
“Simple” expressions like a+b and 3+4 seemed more troublesome at first. Did it
really make sense to think of them as:
receiver message
a +b
3 t4
It seemed silly if only integers were considered, but there are many other metaphoric
readings of “+”, such as:

“kitty”+ “kat” — “kittykat”
[345678+4— [789101112]

This led to a style of finding generic behaviors for message symbols. “Polymorphism” is
the official term (I believe derived from Strachey), but it is not really apt as its original
meaning applied only to functions that could take more than one type of argument. An
example class of objects in Smalltalk-72, such as a model of CONS pairs, would look like:

Since control is passed to the class before any of the rest of the message is considered—
the class can decide not to receive at its discretion—complete protection is retained.
Smalltalk-72 objects are “shiny” and impervious to attack. Part of the environment is
the binding of the SENDER in the “messenger object” (a generalized activation record)
which allows the receiver to determine differential provileges (see Appendix II for more
details). This looked ahead to the eventualuse of Smalltalk as a network OS (See [Gold-
stein & Bobrow 1980]), and I don’t recall it being used very much in Smalltalk-72.

One of the styles retained from Smalltalk-71 was the comingling of function and class
ideas. In other works, Smalltalk-72 classes looked like and could be used as functions,
but it was easy to produce an instance (a kind of closure) by using the object ISNEW.
Thus factorial could be written “extensionally” as:

to fact n ("if :n=o then 1 else n*fact n-1)
or “intensionally;” as part of class integer:

(...0l*("m=1)* (1) (n-1)))
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Proposed Smalltalk-72 Syntax

Pair :h :t
hd <- :h

hd =h

tl <- :t

tl =t

isPair = true

print = '( print. SELF mprint.

mprint = h print. if t isNil then ') print
else if t isPair then t mprint
else '* print. t print. ') print

length = 1 + if t isList then t length else O

Of course, the whole idea of Smalltalk (and ooP in general) is to define everything
intensionally. And this was the direction of movement as we learned how to progam in
the new style. I never liked this syntax (too many parentheses and nestings) and wanted
something flatter and more grammar-like as in Smalltalk-71. To the right is an example
syntax from the notes of a talk I gave around then. We will see something more like this a
few years later in Dan’s design for Smalltalk-76. I think something simlar happened with
L1sp—that the “reality” of the straightforward and practical syntax you could program
in prevailed against the flights of fancy that never quite got built.

Development of the Smalltalk-72 System and Applications

The advent of a real Smalltalk on a real machine started off an explosion of parallel
paths that are too difficult to intertwine in strict historical order. Let me first present
the genera development of the Smalltalk-72 system up to the transistion to Smalltalk-76,
and then follow that with the several years of work with children that were the primary
mnotivation for the prroject. The Smalltalk-72 interpreter on the Interim Dynabook
was not exactly a zippy (“majestic”’ was Butler’s pronouncement), but was easy to change
and quite fast enough for many real-time interactive systems to be built in it.

Overlapping windows were the first project tackled (With Diana Merry) after writ-
ing the code to read the keyboard and create a string of text. Diana built an early version
of a bit field block transfer (bitblt) for displaying variable pitch fonts and generally writ-
ing on the display. The first window versions were done as real 2 1/2 D draggable objects
that were just a little too slow to be useful. We decided to wait until Steve Purcell got
his animation system going to do it right, and opted for the style that is still in use today,
which is more like a “2 1/4 D”. Windows were perhaps the most redesigned and reimole-
mented class in Smalltalk because we didn’t quite have enough compute power to just
do the continual viewing to “world coordinates” and refereshgin that my former Utag
colleagues were starting to experiment with on the flight simulator projects at Evans &
Sutherland. This is a simple powerful model but it is difficult to do in real-time even in 2
1/2D. The first practical windows in Smalltalk used the GRAIL conventions of sensitive
corners for moving, resizing, cloning, and closing. Window scheduling used a simple
“loopless” control scheme that threaded all of the windows together.

One of the next classes to be implemented on the Interim Dynabook (after the basics
of numbers, strings, etc.) was an object-oriented version of the LOGO turtle implemented
by Ted. This could make many turtle instances that were used both for drawing and as a
kind of value for graphics transformations. Dan created a class of “commander” turtles
that could control a troop of turtles. Soon the tutles were made so they could be clipped
by the windows.

John Shoch built a mouse-driven structured editor for Smalltalk code.
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Larry Tesler (then working for poros) did not like the modiness and general ap-
praoch of Ntrs, and he wanted both show the former NLSers an alternative and to
conduct some user studies (almost unherard of in those days) about editing. This led
to his programming miniMOUSE in Smalltalk, the first real wysiwyc galley editor at
PARC. It was modeless (almost) and fun to use, not just for us but for the many people
he tested it on (I ran the camera for the movies we took and remember their delight and
enjoyment). miniMOUSE quickly became an alternate editor for Smalltalk code and
some of the best demos we ever gave used it.

One of the “small program” projects I tried on an adult class in the Spring of *74 was
a one-page paragraph editor. It turned out to be too complicated, but the example I did
to show them was completely modeless (it was in the air) and became the basis for much
of the Smalltalk text work over the next few years. Most of the improvements were
mde by Dan and Diana Merry. Of course, objects mean multi-media documents, you
almost get them for free. Early on we realised that in such a document, each component
object should handle its own editing chores. Steve Weyer built some of the earliest multi-
media documents, whose range was greatly and variously expanded over the years by
Bob Flegal, Diana Merry, Larry Tesler, Tim Mott, and Trygve Reenskaug.

Steve Weyer and I devised Findit, a “retrival by example” interface that used the
analogy of classes to their instances to form retrieval requests. This was used for many
years by the pARC library to control ciruculation.

The sampling synthese music I had developed on the Nova col generate 3 high-
quality real-time voices. Bob Shur and Chuck Thacker transfered the scheme to the
Interim Dynabook and achieved 12 voices in real-time. The 256 bit generalized input
that we had specified for low speed devices (used for the mouse and keyboard) made it
easy to connect 154 more to wire up two organ keyboards and a pedal. Effects such as
portamento and decay were programmed. Ted Kaehler wrote TWANG, a music capture
and editing system, using a tablature notation that we devised to make music clear to
children [Kay 1977a]. One of the things that was hard to do with sampling was the
voltage controlled operator (vco) effects that were popular on the “Well Tempered
Synthesizer”” A symmer later, Steve Saunders, another of our bright summer students,
was challenged to find a way to accomplish John Chowning’s very non-real-time FM
synthesis in real-time on the 1. He had to find a completely different way to think of it
than “FM”, and succeeded brilliantly with 8 real-time voices that were integrated into
TWANG [Saunders *].

Chris Jeffers (who was a musician and educator, not a computer scientist) knocked
us out with opus, the first real-time score capturing system. Unlike most systems today
it did not require metronomic playing but instead took a first pass lookng for string and
weak beats (the phrasing) to establish a local model of the likely temp fluctuations and
then used curve fitting and extrapolation to make judgements about just where in the
measure, and for what time value, a given note had been struck.

The animmations on the NOVA ran 3-5 objects at about 2-3 frames per second. Fast
enough for the phi phenomenon to work (if double buffering was used), but we wanted
“Disney rates” of 10-15 frames a second for 10 or more large objects and many more
smaller ones. This task was put into the engenious hands of Steve Purcell. By the fall
of ’73 he could demo 80 ping-pong balls and 10 flying horses running at 10 frames
per second in 2 1/2D. His next task was to make the demo into a general systems
facility from which we could construct animation systems. His cHAOS system started
working in May 74, just in time for summer visitors Ron Baecker, Tom Horseeley, and
professional animator Eric Martin to visit and build sHAZAM a marvelously capable and
simple animation system based on Ron’s GENEsYs thesis project on the TX-2 in the late
sixties [Baecker 69].

The main thesis project during this time was DAve Smith’s PYGMALION [Smith 75],
an essay into iconic programming (no, we hadn’t quite forgotton). One progammed by
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showing the system how hanges should be made, much as one would illustrate on a
balackboard with another programmer. This programm became the starting place from
which many subsequent programming by example” systems took off.

I should say something about the size of these programs. PYGMALION was the largest
program ever written in Smalltalk-72. It was about 20 pages of code—all that would
fit in the interim dynabook ALTO—and is given in full in Smith s thesis. All of the
other applications were smaller. For example, the sHAzZAM animation system was written
and revised several times in the summer of 1974, and finally woulnd up as a 5-6 page
application which included its icon-controlled multiwindowed user interface.

Given its roots in simulation languages, it was easy to write in a few pages Simpula, a
simple version of the SIMULA sequencing set approach to scheduling. By this time we
had decided that coroutines could be more cleanly be rendered by scheduling individual
methods as separate simulation phases. The generic sIMULA example was a job shop.
This could be genearlized into many useful forms such as a hospital with departments
of resources serving patients (see to the right). The children did not care for hosipitals
but saw th they could model amusement parks, like Disneyland, their schools, the stores
they and their parents shopped in, and so forth. Later this model formed the basis of the
Smalltalk Sim-Kit, a high-level end-user programming enviornment (described ahead).

(until Return or Delete do
('character <- display <- keyboard.
character = ret > (Return)
character = del > (Delete)

)

then case
Return: ('deal with this normal exit')
Delete: ('handle the abnormal exit'))

Many nice “computer sciency” constructs were easy to make in Smalltalk-72. For ex-
ample, one of the controversies of the day was whether to have gotos or not (we didn’t),
and if not, how could certain very useful control strcutres—such as multiple exits from
a loop—be specified? Chuck Zahn at

sLAC proposed an event-driven case structure in which a set of events could be
defined so that when an event is encountered, the loop will be exited and the event will
select a statement in a cas block [Zahn 1974, Knuth 1974]. Suppose we want to write
a simple loop that reads characters from the keyboard and outputs them to a display.
We want it to exit normally when the <return> key is struck and with an error if the
<delete> key is hit. Appendix IV shows how John Shoch defined this control structure.

The Evolution of Smalltalk-72

Smalltalk-74 (sometimes known as FastTalk) was a version of Smalltalk-72 incorporat-
ing major improvements which included providing a real “messenger” object, message
dictionaries for classes (a step towards real class objects), Diana Merry’s bitblt (the now
famous 2D graphics operator for bitmap graphics) redesigned by Dan and implmented in
microcode, and a better, more general window interface. Dave Robson while a student
at UC Irvine ha dheard of our project and made a pretty good stab at implementeing an
oorL. We invited him for a summer and never let him go back—he was a great help in
formulating an official semantics for Smalltalk.

The crowning addition was the 00zE (Object Oriented Zoned Environment) vir-
tual memory system tat served Samlltalk-74, and more importantly, Smalltalk-76 [Ing 78,
Kae *]. The ALTO was not ver large (128-256K), especially with its pageosized display
(64k), and even with small programs, we soon ran out of storage. The 2.4 megabyte
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model 30 desk drive was faster and larger than a floppy and slower and smaller than to-
day’s hard drives. It was quite similar to the HP direct contact disk of the FLEX machine
on which I had tried a fine-grain version of the Bsooo segment swapper. It had not
worked as well as I wanted, despite a few good ideas as to how to choose objects when
purging. When the gang wanted to adopt this baic scheme, I said: “But I never got it to
work well.” I remember Ted Kaehler saying, “Dont’ worry, we’ll make it work!”

The basic idea in all of these systems is to be able to gather the most comprehensive
possible working set of objects. This is most easily accomplished by swapping individual
objects. Now the problem becomes the overhead of purging non-working set objects
to make room for the ones that are needed. (Paging sometimes works better for this
part because you can get more than on object (00zE) in each disk touch.) Two ideas
help a lot. First, Butler’s insight in the GENTE 0s that it was worthwhile to expend a
small percentage of tie purging dirty objects to make core as clean as possible [Lampson
1966]. Thus crashes tend not to hurt as much and there is alwasy clean storage to fetch
pages or objects from the disk into. The other is one from the FLEX system in which I
set up a stochastic decision mechanism (based on the class of an object) that determined
during a purge whether or not to throw an object out. This had two benefits: important
objects tended not to go out, and a mistake would just bring it back in again with the
distribution insuring a low probability that the object would be purged again soon.

The other problem that had to be taken care of was object-pointer integrity (and
this is where I had failed in the FLEX machine to come up with a good enough solution).
Wht was needed really was a complete transaction, a brand new technique (thought up
by Butler?) that ensured recover regardless of when the system crashed. This was called
“cosmic ray protection” as the early ArT0os had a way of just crashing once or twice a
day for no discernable good reason. This, by the way did not particularly bother anyone
as it was fairly easy to come up with undo anbd replay mechanisms to get around the
cosmic rays. For pointer-based systems that had automatic storage management, this was
a bit more tricky.

Ted and Dan decided to control storage using a Resident Object Table that was the
only place machine addresses for objects would be found. Other useful information was
stashed there as well to help LrU aging. Purging was done in background by picking a
class, positioning the disk to its instances (all of a particular class were stored together),
then running through the ROT to find the dirty ones in storage and stream them out.
This was pretty efficient and, true to Butler’s insight, furnished a good sized pool of
clean storage that could be overwritten. The key to the design though (and the imple-
mentation of the transaction mechanism) was the checkpointing scheme they came up
with. This insured that there was a recoverable image no more than a few seconds old,
regardless of when a crash ight occur. 00ZzE swapped objects in just 8okb of working
storage and could handle about 65K objects (up to several megabytes worth, more than
enough for the entire system, its interface, and its applications).

“Object-oriented” Style

This is probably a good place to comment on the difference between what we thought
of as oor-style and the superficial encapsulation called “abstact data types” that was
just starting to be investigated in academic circles. Our early “LisP-pair” definition is
an example of an abstract data type because it preserves the “field access” and “field
rebinding” that is the hallmark of a data structure. Considerable work in the 60s was
concerned with generalizing such strcutures [Dsp *]. The “official” computer science
world started to regard Simula as a possible vehicle for defining abstract data types (even
by one of its inventors [Dahl 1970]), and it formed much of the later backbone of
ADA. This led to the ubiquitous stack data-type example in hundreds of papers. To put
it mildly, we were quite amazed at this, since to us, what Simula had whispered was
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something much stringer than simply reimplementing a weak and ad hoc idea. What I
got from Simula was that you could now replace bindings and assignment with goals. The
last thing you wanted any programmer to do is mess with internal state even if presented
figuratively. Instead, the objects should be presented as site of higher level behaviors more
appropriate for use as dynamic components.

Even the way we taught children (cf. ahead) reflected this way of looking at objects.
Not too surprisingly this approach has considerable bearing on the ease of programming,
the size of the code needed, the integrity of the design, etc. It is unfortunate that much
of what is called “object-oriented programming” today is simply old style programming
with fancier constructs. Many programs are loaded with “assignment-style” operations
now done by more expensive attached procedures.

Where does the special efficiency of object-oriented design come from? This is a
good question given that it can be viewed as a slightly different way to apply procedures
to data-structures. Part of the effect comes from a much clearer way to represent a
complex system. Here, the constraints are as useful as the generalities. Four techniques
used together—persistent state, polymorphism, instantiation, and methods-as-goals for
the object—account for much of the power. None of these require an “object-oriented
language” to be employed—ALGOL 68 can almost be turned to this style—and oorL
merely focuses the designer’s mind in a particular fruitful direction. However, doing
encapsulation right is a commitment not just to abstraction of state, but to eliminate
state oriented metaphors from programming.

Perhaps the most important principle—again derived from operating system architectures—
is that when you give someone a structure, rarely do you want them to have unlimited
priviledges with it. Just doing type-matching isn’t even close to what’s needed. Nor is it
terribly useful to have some objects protected and others not. Make them all first class
citizens and protect all.

[ believe that the much smaller size of a2 good 00P system comes not just by being
gently forced to come up with a more thought out design. I think it also has to do
with the “bang per line of code” you can get with oop. The object carries with it a
lot of significance and intention, its methods suggest the strongest kinds of goals it can
carry out, its superclasses can add up to much more code-frunctionality being invoked
than most procedures-on-data-structures. Assignment statements—even abstract ones—
express very low-level goals, and more of them will be needed to get anything done.
Generally, we don’t want the programmer to be messing around with state, whether
simulated or not. The ability to instantiate an object has a considerable effect on code
size as well. Another way to think of all this is: though the late-binding of automatic
storage allocations doesn’t do anything a programmer can’t do, its presence leads both
to simpler and more powerful code. 0OP is a late binding strategy for many things and
all of them together hold off fragility and size explosion much longer than the older
methodologies. In other words, human programmers aren’t Turing machines—and the
lesss their programming systems require Turing machine techniques the better.

Smalltalk and Children

Now that I have summarized the “adult” activities (we were actually only semiadults) in
Smalltalk up to 1976, let me return to the summer of ’73, when we were ready to start
experiments with children. None of us knew anything about working with children,
but we knew that Adele Goldberg and Steve Weyer who were then with Pat Suppes at
Standford had done quite a bit and we were able to entice them to join us.

Since we had no idea how to teach object-oriented programming to children (or
anyone else), the first experiments Adele did mimicked LoGo turtle graphics, and she
got what appeared to be very similar results. That is to say, the children could get the
turtle to draw pictures on the screen, but there seemed to be little happening beyond
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surface effects. At that time I felt that since the content of personal computering was
interactive tools, that the content of this new kind of authoring literacy should be the
creation of interactive fools by the children. Procedural turtle graphics just wasn't it.

The Adele came up with a breillian approach to teaching Smalltalk as an object-
oriented language: the “Joe Book.” I believe this was partly influneced by Minsky’s idea
that you should teach a programming language holistically from working examples of
serious programs.

Several instances of the class box are created and sent messages, culminating with a
simple multiprocess animation. After getting kids to guess what a box might be like—
they could come surprisingly close—they would be shown:

to box | x y size tilt

(odraw = (@place x y turn tilt. square size.

oundraw = (@ white, SELF draw, @black)

oturn = (SELF undraw. 'tilt <- tilt + :. SELF draw)
ogrow = (SELF undraw. 'size <- size + :. SELF draw)
ISNEW = (SELF undraw. 'size <- size + :. SELF draw)

What was so wonderful about this idea were the myriad of children’s projects that could
spring off the humble boxes. And some of the earliest were tools! This was when we
got really excited. For example, Marion Goldeen’s (12 yrs old) painting system was a
full-fledged tool. A few yuears later, so was Susan Hamet’s (12 yrs old) oop illustration
system (with a design that was like the MacDraw to come). Two more were Bruce
Horn’s (15 yrs old) music score capture system and Steve Ptz’s (15 yrs old) circuit design
system. Looking back, this could be called another example in computer science of
the “early success syndrome.” The successes were real, but they weren't as general as we
thought. They wouldn’t extend into the future as stringly as we hoped. The children
were chosen from the Palo Alto schools (hardly an average background) and we tended
to be much more excited about the successes than the difficulties. In part, that we were
seeing was the “hack phenomenon,” that, for any given pursuit, a particular §% of the
population will jump into it naturally, while the 80% or so who can learn it in time do
not find it at all natural.

We had a dim sense of this, but we kept on having relative successes. We could
definitely see that learning the mechanics of the system was not a major problem the
children could get mose of it themsleves by swarming over the ArTos with Adele’s JoE
book. The problem seemed more to be that of design.

It started to hit home in the Spring of ’74 after I taught Smalltalk to 20 pARC
nonprogrammer adults. They were able to get through the initial material faster than
the children, but just as it looked like an overwhelming success was at hand, they started
to crash on problems that didn’t look to me to be much harder than the ones they had
just been doing well on. One of them was a project thought up by one of the adults,
which was to make a little database system that could act like a card file or rolodex. They
couldn’t even come close to programming it. I was very surprised because I “klnew” that
such a project was well below the mythical “two pages” for end-users we were working
within. That night I worote it out, and the next day I showed all of them how to do it.
Still, none of them were able to do it by themsleves. Later, I sat in the room poindering
the board from my talk. Finally, I counted the number of nonobvious ideas in this little
program. They came to 17. And some of them were like the concept of the arch in
building design: very hard to discover, if you don’t already know them.

The connection to literacy was painfully clear. It isn’t enough to just learn to read
and write. There is also a literature that renders ideas. Language is used to read and
write about them, but at some point the organization of ideas starts to dominate mre
language abilities. And it help greatly to have some powerful ideas under one’s belt to
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better acquire more powerful ideas [Papert 70s]. So, we decided we should teach design.
And Adele came up with another brillian stroke to deal with this. She decided that what
was needed was in intermediary between the vague ideas about the problem and the
very detailed writing and debugging that had to be done to get it to run in Smalltalk.
She called the intermediary forms design templates.

Using these the children could look at a situation they wanted to simulate, and
decompose it into classes and messages without having to worry just how a method
would work. The method planning could then be done informally in English, and these
notes would later serve as commentaries and guides to the writing of the actual code.
This was a terrific idea, and it worked very well.

But not enough to satisfy us. As Adele liked to point out, it is hard to claim success
if only some of the children are successful—and if a mximum effort of both children
and teachers was required to get the successes to happen. Real pedagogy has to work
in much less idealistic settings and be consderably more robust. Still, some successes are
qualitatively different from no successes. We wanted more, and started to push on the
inheritence idea as a way to let novices build on frameworks that could only be de-
signed by experts. We had good reason to believe that this could work because we had
been impressed by Lisa vanStone’s ability to make significant changes to sHAZAM (the
fix or six page Smalltalk animation tool done by relatively expert adults). Unfortunately,
inerhitence—though an incredibly powerful technique—has turned out to be very diffi-
cult for novices (and even professionals) to deal with.

At this point, let me do a look back from the vantage point of today. 'm now
pretty much convinced that our design template approach was a good one after all.
We just didn’t apply it longitudinally enough. I mean by this that there is now a large
accumulation of results from many attempts to teach novices programming [Soloway
1989]. They all have similar stories that seem to have little to do with the various features
of the programming languages used, and everything to do with the difficulties novices
have thinking the special way that good programmers think. Even with a much better
interface than we had then (and have today), it is likely that this rea is actually more
like writing than we wanted it to be. Namely, for the “80%”, it really has to be learned
gradually over a period of years in order to build up the structures that need to be there
for design and solution look-ahead.

The problem is not to get the kids to do stuff—they love to do, even when they are
not sure exactly what they are doing. This correlates well with studies of early learning
of language, when much rehearsal is done regardless of whether content is involved. Just
doing seems to help. What is difficult is to detrmine what ideas to put forth and how
deeply they should penetrate at a given child’s developmental level. This is a confusion
still persists for reading and writing of natural language—and for mathematics—despite
centuries of experience. And it is the main hurdle for teaching children programming.
When, in what order and depth, and how should the powerful ideas be taught?

Should we even try to teach programming? I have met hundreds of programmers in
the last 30 years and can see no discernable influence of programming on their general
abiltity to think well or to take an enlightened stance on human knowledge. If any-
thing, the opposite is true. Expert knowledge often remains rooted in the environments
in which it was first learned—and most metaphorical extensions result in misleading
analogies. A remarkable number off artists, scientists, philosophers are quite dull outside
of their specialty (and one suspects within it as well). The first siren’s song we need to
be wary of is the one that promises a connection between an interesting pursuit and
interesting thoughts. The music is not in the piano, and it is possible to graduate Julliard
wiothout finding or feeling it.

I have also met a few people for whom computing provides an important new
mataphor for thinkingg about human knowledge and reach. But something else was
needed besides computing for enlightenment to happen.
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Tools provide a path, a context, and almost an excuse for developing enlightenment,
but no tool ever contained it or can dispense it. Ceasare Pavese observed: to know the
world we must construct it. In other words, we make not just to have, but to know. but
the having can happen without most of the knowing taking place.

Another way to look at this is that knowledge is in it s least ineresting state when
it is first being learned. the representations—whether marking, allutions, or phisical
control—get in the way (almost take over as goals) and must be laboriously and painfully
interpreted. From here there are several useful paths, two of which are important and
intertwined.

The first is fluency, which in part is the process of building mental structures that dis-
appear the interpretation of the representations. The letters and words of a sentence are
experienced as meaning rather than markings, the tennis reaquet or keyuboard becomes
an extension of one’s body, and so forth. If carried further one eventually becomes a
kind of expert—but without deep knwledge in other areas, attenpts to generalize are
usually too crisp and ill formed.

The second path is towards taking the knowledge as a metaphor than can illuminate
other areas. But without fluency it is more likely that prior knowledge will hld sway and
the matphors from this side will be fuzzy and misleading.

The “trick,” and I think that this is waht liberal arts educations is supposed to be
about, is to get fluent and deep while building realtionships with other fluent deep
knowledge. Our society has lowered its aims so far that it is happy with “increases in
scores” without daring to inquire whether any important threshold has been crossed.
Being able to read a warning on a pill bottle or write about a summer vacation is not
literacy and our society should nbot treat it so. Literacy, for example is being able to
fluently read and follow the 50 oage argument in Paine’s Common Sense and being able
(and happy) to fluently write a critique or defence of it. Another kind of 20th century
literacy is being able to hear about a new fatal contagious incurable disease and instantly
know that a disastrous exponential relationship holds and early action is of the highest
priority. Another kind of literacy would take citizens to their personal computers where
they can fluently and without pain build a systems simulation of the disease to use as a
comparison against further information.

At the liberal arts level we would expect that connections between each of the
fluencies would form truly powerful metaphors for considering ideas on the light of
others.

The reason, therefore, that many of us want children to understand computing
deeply and fluently is that like literature, matematics, science, music, and art, it car-
ries special ways of thinking about situations that in contra=st with other knowledge
and other wasy of thinking critically boost our ability to understand our world.

We did not know then, and I’'m sorry to say from 15 years later, that these critical
questions still do not yet have really useful answers. But there are some indications. Even
very young children can understand and use interactive transformational tools. The first
ones are their hands! The can readily extend these experiences to cimputer objects and
making changes to them. They can often imagine what a proposed change will do
and not be surprised at the result. Two and three year olds can use the Smalltalk-style
interface and manipulate object-oriented graphics. Third graders can (in a few days)
learn more than so features—most of these are transformational tools—of a new system
includeing its user interface. They can answer any question whose answer requires the
application of just one of these tools. But it is extremely difficult for them to answer any
question that requires fwo or more transformations. Yet they have no problem applying
sequenes of transformations, exploring “forward.” It is for conceiving and achieving
even modest goals requiring several changes that they almost completly lack navigation
abilities.

It seems that what needs to be learned and taught is now to package up transforma-
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tions in twos and threes in a manner similar to learning a strategic game like checkers.
The vague sense of a “threesome” pointing twoards one’s goal can be a set up for the
more detailed work that is needed to accomplish it. This art is possible for a large per-
centage of the population, but for most, it will need to be learned gradually over several
years.

V. 1976-80—The first modern Smalltalk (-76), its birth, applications,
and improvements

By the end of 1975 1 felt that we were losing our balance—that the “Dynabook for
children” idea was slowily dimming out—or perhaps starting to be overwhelmed by
professional needs. In January 1976, I took the whole group to Pajaro Dunes for a three
day offsite to bring up the issues and try to reset the compass. It was called “Let’s Burn
Our Disk Packs.” There were no shouting matches, the group liked (I would go so far to
say: loved) each other too much for that. But we were troubled. I used the old aphorism
that “no biological organism can live in its own waste products” to please for a really
fresh start: a hw-sw system very different from the ALTO and Smalltalk, One thing we
all did agree on was that the current Smalltalk’s power did not match our various levels
of aspiration. I thought we needed something different, as I did not see how oor by
itself was going to solve our end-user problems. Others, particularly some of the grad
students, really wanted a better Smalltalk that was faster and could be used for bigger
problems. I think Dan felt that a better Smalltalk could be the vehicle for the different
system [ wanted, but could not describe clearly. The meeting was not a disaster, and we
went back to PARC still friends and colleagues, but the absolute cohesiveness of the first
four years never rejelled. I started designing a new small machine and language I called
the Note'laker and dan started to design Smalltalk-76.

The reason I wanted to “burn the disk packs” is that I had a very McLuhanish
feeling about media and environments: that once we’ve shaped tools, in his words, they
hum around and “reshape us.” Of course this is a great idea if the tools are really good
and aimed squarey at the issues in question. But the other edge of the sword cuts as
deep—that inadquate tools and environments still reshape our thinking in spite of their
problems, in part, because we want paradigms to guide our goals. Strong paradigms like
L1sP and Smalltalk are so compelling that they eat their young: when you look at an
application in either of these two systems, they resemble the systems themselves, not a
new idea. When I looked at Smalltalk in 1975, I was looking at something great, but
I did not see an enduser language, I did not see a solution to the original goal of a
“reading” and “writing” computer medium for children. I wanted to stop, dynamite
everything and start from scratch again.

The NoteTaker was to be a “laptop” that could be built in a few years using the
(almost) available 16K RAMS (a vast improvement over the 1K RAMS that the ALTO
employed). A laptop couldn’t use a mouse (which I hated anyway) and a table seemed
awkward (not a lot of room and the stylus could flop out of reach when let go), so I came
up with an embedded pointing device I called a “tabmouse.” It was a relative pointer
and had an up sensor so it could be stroked like a mouse and would also stay where
you left it, but it felt like a stylus and used a pantograph mechanism that eliminated the
annoying hysteresis bias in the x and y directions that made it hard to use a mouse as a
pen. I planned to use a multiprocessor architecture of slow but highly integrated chips
as originally specified for the Dynabook and wanted a new bytecoded interpreter for a
friendlier and simpler system than Smalltalk-72.

Meanwhile Dan was proceeding with his total revamp of Smalltalk and along some-
what similar lines [In 78]. The first major thing that needed to be done was to get rid
of the function/class dualism in favor of a completely intensional definition with every
piece of code as an intrinisc method. We had wanted that from the beginning, (and
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most of the code was already written that way). There were a variety of strong desires
for a real intheriteance mechanism from Adele and me, from Larry Tesler, who was
working on desktop publishing, and from the grad students. Dan had to find a better
way than simula’s ver rigid compile-time concpetion. It was time to make good on the
idea that “everything was an object,” which included all the internal “systems” objects
like “activation records,” etc. We were all agreed that the flexible syntax of the earlier
Smalltalks was foo flexible, and this level of extensibility was not desireable. All of the
extensions we liked used various keyword schemes, so Dan came up with a combina-
tion keyword/operator syntax that was very flexible, but allowed the language to be read
unambiguously by both humans and the machine. This allowed a FLEX machine-like
byte-code compiler and efficient interpreter to be defined that ran up to 180 times as
fast as the previous direct interpreter. The 00ZE vM system could be modified to handle
the new objects and its capactiy was well matched to the ALTO’s RAM and disk.

Inheritance

A word about inheritance. Simula-I had neither classes as objects nor inheritance. Simula-
67 added the latter as a generalization to the ALGoL-60 <block> structure. This was a
great idea. But it did have some drawbacks: minor ones like name clashes in multiple
threaded lists (no on uses threaded lists anymore), and major ones like rigidity in the
extended type structures, need to qualify types, only a single path of inheritance, and
difficulty in adopting to an interactive development system with incremental cmpiling
and other needs for instant changes. Then there were a host of problems that were really
outside the scope of Simula’s goals: having to do with various kinds of modeling and
inferencing that were of interest in the world of artifical intelligence. For example, not all
useful questions could be answered by following a static chain. Some of them required a
kind of “inhertance” or “inferencing” through dynamcically bound “parts” (ie. instance
variables). Multiple inerheritance also looked important but the corresponding possible
clashes between methods of the same name in different superclases looked difficult to
handle, and so forth.

On the other hand, since things can be done with a dynamic language that the
difficult with a statically compiled one, I just decided to leave inhertance out as a fea-
ture in Smalltalk-72, knowing that we could simulate it back using Smalltalk’s LISPlike
flexibility. The biggest contributer to these Al ideas was Larry Tesler who used what is
now called “slot inheritance” extensively in his various versions of early desktop pub-
lishing systems. Nowadays, this would be called a “delgation-style” inheritance scheme
[Liberman 84]. Danny Bobrow and Terry Winograd during this period were designing
a “frame-based” Al language called xRL which was “object-oriented” and I beleive was
influenced by early Smalltalk. It had a kind of multiple inheritance—called perspectives—
which permitted an object to play multiple roles in a very clean way. Many of these
ideas a few years later went into PIE, an interesting extension of Smalltalk to networks
andhigher level descriptions by Ira Goldstein and Bobrow [Goldstein & Bobrow 1980].

By the time Smalltalk-76 cam along, Dan Ingalis had come up with a scheme that
was Simula-like in its semantics but could be incrementally changed on the fly to be in
accord with our goals of close interaction. I was not completly thrilled with it because it
seemed that we needed a better theory about ineritance entirely (and still do). For exam-
ple, inheritance and instancing (which is a kind of inheritance) muddles both pragmatics
(suc as factoring code to save space) and semantics (used for way too many tasks such as:
specialization, generalization, speciation, etc.) Alan Borning employed a multiple inheri-
tance scheme in Thinglab [Borning 1977] which was implemented in Smalltalk-76. But
no comprehensive and clean multiple inerhitance scheme appeared that was compelling
enough to surmount Dan’s original Simula-like design.

Meanwhile, the running battle with Xerox continued. there were now about 500
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ALTOs linked with Ethernets to each other and to Laserprinter and file servers, that used
ALTOs as controllers. I wrote many memos to the Xerox planners trying to get them to
make plans that included personal computing as one of their main directions. Here is an
example:

A Simple Vision of the Future

A Brief Update Of My 1971 Pendery Paper

In the 1990’ there will be millions of personal computers. They will be
the size of notebooks of today, have high-resolution flat-screen reflective

display.s, wigh less than ten pounds, have ten to twenty times the computing
and storage capacity of an Alto. Let’s call them Dynabooks.

The purchase price will be about that of a color television set of the era, al-
though most of the machines will be given away by manufacturers who will
be marketing the content rather than the container of personal computing.

Though the Dynabook will have considerable local storage and will do most
computing locally, it will spend a large percentage of its time hooked to
various large, global information utilities which will permit communication
with others of ideas, data, working models, as well as the daily chit-chat that
orgnizations need in order to function. The communications link will be
by private and public wire and by packet radio, Dynabooks will also by used
as servers in the information utilties. They will have enough power to be
entirely shaped by solftware.

The Main Points Of This Vision

* There need only be a few hardware types to handle almost all of the
processing activity of a system.

¢ Personal Computers, Communications Link, and Information Utili~
ties are the three critical components of a Xerox future.

In other words, the material of a computer system is the computer irself, all
of the content and function is fashioned in software.

There are two important guidelines to be drawn from this:

e Material: If the design and development of the hardware computer
material is done as carefully and completely as Xerox’s development
of special light-sensitve alloys, then only one or two computer designs
need to be built ... Extra investment in devleopment here will be
vastly repaid by simplifying the manufacturing process and providing
lower costs through increased volume.

* Content: Aside from the wonderful generality of being able to contin-
uously shape new content from the same material, soffware has three
important characteristics:

— the replication time and cost of a content-function is zero
— the development time and cost for a content-function is high

— the change time and cost for a content-function is low

Xerox must take these several points seriously if it is to survive and prosper
in its new business are of information media. If it does, the company has an
excellent chance for several reasons:
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e Xerox has the financial base to cover the large development costs of’
a small number of very powerful computer-types and a large number
of software functions.

» Xerox has the marketing base tosell these functions on a wide enough
scale to garner back to itself an incredible profit.

» Xerox has working for it an impressively large percentage of the best
software designers in the world.

In 1976, Check Thacker designed the ArTo 111 that would use the new 16k chips and
be able to fit on a desktop. It could be marketed for about what the large cumbersome
special purpose “word-processors” cost, yet could do so much more. Nevertheless, in
august of 1976, Xerox made a fateful decision: not to bring the ALTo 111 to market. This
was a huge blow to many of us—even I, who had never really, really thought of the
ALTO as anything but a stepping stone to the “real thing.” In 1992, the world market for
personal computers and workstations was $90 million—twice as much as the mainframe
and mni market, and many times Xerox’s 1992 gross. The most successful company of
this era—Microsoft—is not a hardware company, but a software company.

The Smalltalk User Interface

I have been asked by several of the reviewers to say more about the development of the
“Smalltalk-style” overlapping window user interface since thee are now more than 20
million computers in the workld that use its descendents. A decent history would be as
long as this chapter, and none has been written so far. There is a summary of some of
the ideas in [Kay 89]—let me add a few more points.

All of the elements eventually use in the Smalltalk user interface were already to be
found in the sixties—as different ways to access and invoke the functionality provided
by an interactive system. The two major centers of icads were Lincoln Labs and RAND
corp—both ArRPA funded. The big shift that consolidated these ideas into a powerful
theory and long-lived examples came because the LRG focus was on children. Hence,we
were thinking about learning as being one of the main effects we wanted to have hap-
pen. EArly on, this led to a 9o degree rotation of the purposed of the user interface
from”access to functionality” to “environment in which users learn by doing.” This
new stance could now respond to the echos of Montessori and Dewey, particularly
the former, and got me, on rereading Jerome Bruner, to think beyond the children’s
curriculum to a “curriculum of the user interface.”

The particular aim of LRG was to find the equivalent of writing—that is learning and
thinking by doing in a medium—our new “pocket universe.” For various reasons I had
settled on “iconic programming” as the way to achieve this, drawing on the iconic rep-
resentations used by many ARPA projects in the sixties. My friend Nicholas Negroponte,
an architect, was extremely interested in how environments affected peoples’ work and
creativity. He was interested in embedding the new computer majic in familiar surround-
ings. I had quite a bit of theatrical experience in a past life, and remembered Coleridge’s
adage that “people attend ‘bad theatre’ hoping to forget, people attend ‘good theatre’
aching to remember.” In other words, it is the ability to evoke the audience’s own intelli-
gence and experiences that makes theatre work.

Putting all this together, we want an apparently free environment in which explo-
ration causes desired sequences to happen (Montessori); one that allows kinesthetic,
iconic, and symbolic learning—*“doing with images makes symbols” (Piaget & Bruner);
the user is never trapped in a mode (GRAIL); tha magic is embedded in the familiar
(negroponte); and which acts as a magnifying mirror for the user’s own intelligence (Co-
leridge). It would be a great finish to ths story to say that having articulated this we were
able to move straightforwardly to the design as we know it today. In fact, the UI design
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work happened in fits and starts in between feeding Smalltalk itself, designing children’s
experiments, trying to understand iconic construction, and ust playing around. In spite
of this meandering, the context almost forced a good design to turn out anyway. Just
about everyone at PARC at this time had opinions about the UI, ours and theirs. It is
impossible to give detailed credit for the hundreds of ideas and discussions. However,
the consolidation can certainly be attributed to Dan Ingalls, for listening to everyone,
contributing original ideas, and constantly building a design for user testing. I had a
flar amount to do with setting the context, invetning overlapping windows, etc., and
Adele and I designed most of the experiments. Beyond that, Ted Kaeh;er, and vistor
Ron Baecker made highly valuable contrubutions. Dave Smith designed, SmallStar, the
protype iconic interface for the Xerox Star product [Smith 83].

Meanwhile, I had gotton Doug Fairbairn interested in the Notetaker. He designed
a wonderful “smart bus” that could efficiently handle slow multiple processors and the
system looked very promising, even though most of the rest of PARC thought I was
nuts to abandon the fast bipolar hw of the arto. But I couldn’t see that bipolar was
ever going to make it into a laptop or Dynabook. On the other hand I hated the 8-
bit micros that were just starting to appear, because of the silliness and naivete of their
designs—there was no hint that anyone who had ever designed software was involved.

Smalltalk-76

Dan finished the Smalltalk-76 design November, and he, Dave Robson, Ted Kaehler,
and Diana Merry, successfully implemented the system from scratch (which included
rewriting all of the existing class definition) in just seven months. this was such a won-
derful achievement that I was bowled over in spite of my wanting to start over. It was fast,
lively, could handle “big” problems, and was great fun. The system consisted of about
5o classes descibed in about 180 pages of source code. This included all of the OS func-
tions, files, printing and other Ethernet services, the window interface, editors, graphics
and painting systems, and two new contributions by Larry Tesler, the famous browsers
for static methods in the inheritance heirarchy and dynamic contexts for debuging in
the runtime environment. In every way it was the consolidation of all of our ideas and
yearning about Smalltalk in one integrated package. Al Smalltalks since have resmbled
this conception very closely. In many ways, as Tony Hoare once remakred about Algol,
Dan’s Smalltalk-76 was a great improvement on its successors!
Here are two stylish sT-76 classes written by Dan.

Class new title: “Window’;
fields: ‘frame’;
asFollows!
This is a superclass for presenting windows on the display. It holds control until the stylus is
depressed outside. While it holds control, it distributes messages to itself based on user actions.
Scheduling
startup
[frame contains; stylus =>
self enter.
repeat:
[frame contains: stylus =>
[keyboard active => [ self keyboard |
stylus down => [ self pendown ||
self outside => ]
stylus down => [ “self leave ]]]
“false]
Default Event Responses
enter [self show]
leave
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outside [ “false|
pendown
keyboard [ keyboard next. frame flash |
Image
show
[frame outline: 2.
titleframe put: self title at: frame origina + title loc.
titleframe complement|
. etc.

Class new title: ‘DocWindow’;
subclassOf: Window;
fields: ‘document scrollbar editMenu’;
asFollows!
User events are passed on to the document while the window is active. If the stylus goes out
of the window, scrollbar and the editMenu are each given a chance to gain control. Event
Responses
enter [ self show. edit Menu show. scrollbar show |
leave | document hideselection. editMenu hide. scrollbar hide |
outside
[editMenu startup => []
scrollbar startup => [self showdoc]
“false]
pendown [ document pendown |
keyboard [ document keyboard |
Image
show [ super show. self showDoc |
showDoc [ document showin; frame at: scrollbar position |
title ["document title]

Notice, particularly in class Window, how the code is expressed as goals for other ob-
jects (or itself) to achieve. The superclass Windpow’s main job is to notice events and
distribute them as messages to its subclasses. In the example, a document window (a sub-
class of DocWindow) is going to deal with the effects of user interactions. The Window
class will notice that the keyboard is actie and send a message to itself which will be
intercepted by the subclass method. If there is no method the character will be thrown
away and the window will flash. In this case, it find DocWindow method: keyboard,
which tells the held document to check it out.

In January of 1978 Smalltalk-76 had its first real test. csL had invited the top ten
executives of Xerox to PARC for a two day seminar on software, with a special emphasis
on complexity and what could be done about it. LRG got asked to give them a hands-on
experience in end-user programming so “they could do ‘something real’ over two 1
1/2 hour sessions.”” We immediately decided not to teach them Smalltalk-76 (my “burn
our disk packs” point in spades), but to create in two months in Smalltalk-76 a rich
system especially tailored for adult nonexpert users (Dan’s point in trumps). We took
our “Simpula” job shop simulation model as a starting point and decided to build a
user interface for a generalized job shop simulation tool that the executives could make
into specific dynamic simulations that would act out their changing states by animating
graphics on the screen. We called it the Smalltalk SimKit. This was a maximum effort
and everyone pitched in. Adele became the design leader in spite of the very recent
appearence of a new baby. I have a priceless memory of her debugging away on the
SimKit while simultaneously nursing Rachell.

There were many interesting problems to be solved. The system itself was straight-
forward but it had to be completely sealed off from Smalltalk proper, particularly with
regard to error messages. Dave Robson came up with a nice scheme (almost an expert
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system) to capture complaints from the bowels of Smalltalk and translated them into
meaningful SimKit terms. There were many user interface details—some workaday, like
making new browsers that could only look at the four SimKit classes (Station, Worker,
Job, Report), and some more surprising as when we tried it on ten PARC nontechnical
adults of about the same age and found that they couldn’t read the screen very well.
The small fonts our thirtysomething year-old eyes were used to didn’t work for those
in their sos. This led to a nice introduction to the system in which the executives were
encouraged to customize the screen by choosing amoung different fonts and sizes with
the side effect that they learned how to use the mouse unselfconsciously.

On the morning of the “big day” Ted Kaehler decided to make a change in the
virtual memory system OOZE to speed it up a little. We all held our breaths, but such
was the clarity of the design and the confidence of the implementers that it did work,
and the executive hands-on was a howling success. About an hour into the first session
one of the vps (who had written a few programs in FORTRAN 15 years before) finally
realized he was programming and mused “so it’s finally come to this.” Nine out of the ten
executives were able to finish a simulation problem that related to their specific interests.
One of the most interesting and sophisticated was a PC board production line done by
the head of a Xerox owned company using actual figures (that he carried around in his
head) to prime a model that could not be solved easily by closed form mathematics—it
revealed a seriousl flaw in the dispoition of workers given the line’s average probability
of manufacturing defects.

Another important system done at this time was Alan Borning’s Thinglab [Borning
1979]—the first serious attempt to go beyond Ivan Sutherland’s Sketchpad. Alan devised
a very nice approach for dealing with constraints that did not require the solver to be
omnicient (or able to solve Fermat’s last theorem).

Meanwhile, the NoteTaker was getting realler, bigger, and slower. By this time the
Western Digital emulation-style chips I hoped to used showed signs of being “diffusion-
ware,” and did not look like they would really show up. We started looking around for
something that we could count on, even if it didn’t have a good architecture. In 1978,
the best candidate was the Intel 8086, a 16-bit chip (with many unfortunate remnants
of the 8008 and 8080), but with (barely) enough capacity to do the job—we would
need three of them to make up for the ALTO, one for the interpreter, one for bitmapped
graphics, and one for i/0 (networking, etc).

Dan had been interested in the NoteTaker all along and wanted to see if the could
make a version of Smalltalk-76 that could be the NoteTaker system. IN order for this
to happen it would have to run in 256K (the maximum amount of RaM that we had
planned for the machine. None of the Nova-like emulated “machine-code” from the
ALTO could be brought over, and it had to fit in memory as well-Ithere would only be
floppies, no swapping memory existed. This challenge led to some excellent improve-
ments in the system design. Ted Kaehler’s system tracer (which could write out new
virual memories from old ones) was used to clone Smalltalk-76 into the NoteTaker. The
indexed object table (as was used in early Smalltalk-80) first appeared here to simplify
object access. An experiment in stacking contexts contiguously was tried: to save space
and gain speed. Most of the old machine code was rewritten in Smalltalk and the total
machine kernal was reduced to 6k bytes of (the not very strong) 8086 code.

All of the re-engineering had an interesting effect. Through the 8086 was not as
good at bitblt as the ALTO (and much of the former machine code to assist graphics was
now in Smalltalk), the overall interpreter was about twice as fast as the ALTO version
(because not all the Smalltalk byte-code interpreer would fit into the g4k microcode
memory on the ALTO). With various kinds of tricks and tuning, graphics display was
“largely compensated” (in Dan’s words). This was mainly because the ALTo did not have
enough microcode memory to take in all of the Smalltalk emulation code—some of it
had to be rendered in emulated “Nova” code which forced two layers of interpretation.
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In fact, the Notetaker worked extreemely well, though it would have crushed any lap.
It had hopped back on the desk, and looked suspiciously like miniCOM (and several
computers that would appear a few years later). It really did run on batteries and several
of us had the pleasure of taking NoteTaker on a plane and running an object-oriented
system with a windowed interface at 35,000 feet.

We eventually built about 10 of the machines, and though in many senses an engi-
neering success, what had to be done to make them had once again squeezed out the
real end-users for whom it was originally aimed. If Xerox (and PARC) as a whole had be-
lievved in these smaller scale ideas, we could have put much more silicon muscle behind
the dreams and successfully built them in the 70’s when they were first possible. It was a
bitter disappointment to have to get the wrong kind of cpu from Intel and the wrong
kind of display from HP because there was not enough corporate will to take advantage
of internal technological expertise.

By now it was already 1979, and we found ourselves doing one of our many demos,
but this time for a very interested audience: Steve Jobs, JeffRaskin, and other technical
people from Apple. They had started a project called Lisa but weren’t quite sure what
it shouldbe like, until Jeft said to Steve, “You should really come over to pARC and see
what they ae doing.” Thus, more than eight years after overlapping windows had been
invented and more than six years after the ALTO started running, the people who could
really do something about the ideas, finally to to see them. The machine used was the
Dorado, a very fast “big brother” of the ArTo, whose Smalltalk microcode had been
largely written by Bruce Horn, one of our original “Smalltalk kids” who was still only a
teen-ager. Larry Tesler gave the main part of the demo with Dan sitting in the copilot’s
chair and Adele and I watched from the rear. One of the best parts of the demo was
when Steve Jobs said he didn’t like the blt-style scrolling we were using and asked if we
cold do it in a smooth continuous style. In less than a minute Dan found the methods
involved, made the (relatively major) changes and scrolling was now continuous! This
shocked the visitors, espeicially the programmers among them, as they had never seen a
really powerful incremental system before.

Steve tried to get and/or buy the technology from Xerox (which was one of Apple’s
minority venture captialists), but Xerox would neither part with it nor would come up
with the resources to continue to develop it in house by funding a better NoteTaker cum
Smalltalk.

VI. 1980-83—The release version of Smalltalk (-80)

The greatest sin in Art is not Boredom,
as 1s commonly supposed, but lack of
Proportion”

—Paul Hindemith

As Dan said “the decision not to continue the Notelaker project added motivation
to release Smalltalk widely”” But not for me. By this time I was both happy about the
cleanliness and elegance of the Smalltalk conception as realized by Dan and theothers,
and sad that it was farther away than ever from Children—it came to me as a shock that
no child had programmed in any Smalltalk since Smalltalk-76 made its debut. Xerox
(and PARC) were now into “workstations” as things in themselves—but I still wanted
“playstations”. The romance of the Dynabook seemed less within grasp, paradoxically
just when the various needed technologies were starting to be commercially feasible—
some of them, unfortunately, like the flat-screen display, abandoned to the Japanese by
the Us companies who had invented them. This was a major case of “snatching defeat
from the jaws of victory.” Larry Tesler decided that Xerox was never going to “get it”
and was hired by Steve Jobs in May 1980 to be principal designer of the Lisa I agreed,
had a sabbatical coming, and took it.

36



Adele decided to drive the documentation and release process for a new Smalltalk
that could be distributed widely almost regardless of the target hardware. ONly a few
changes had to be made to the NoteTaker Smalltalk-78 to make a releasable sysstem. Per-
haps the change that was most ironic was to turn the custom fonts that made Smalltalk
more readable (and were a hallmark of the entire PARC culture) back into standard pedes-
trian ASCII characters. According to Peter Deutsch this “met with heated opposition
within the group at the time, but has turned out to be essential for the acceptance of the
system in the world.” Another change was to make blocks more like lambda expressions
which, as Peter Deutsch was to observe nine yeas later: “In retrospect, this proliferation
of different kinds of instantiations and scoping was probably a bad idea.” The most puz-
zling strange idea—at least to me as a new outsider—was the introduction of metaclasses
(really just to make instance initialization a little easier—a very minor improvement
over what Smalltalk-76 did quite reasonably already). Peter’s 1989 comment is typical
and true: “metaclasses have proven confusing to many users, and perhaps in the bal-
ance more confusing than valuable.” In fact, in their PIE system, Goldstein and Bobrow
had already implemented in Smalltalk on “observer language”, somewhat following the
view-oriented approach IThad been advocating and in some ways like the “perspectives”
proposed in KRL [Goldstein *]. Once one can view an instance via multiple perspectives
even “‘sem-metaclasses” like Class Class and Class Object are not really necessary since
the object-role and instance-of-a-class-role are just different views and it is easy to deal
with life-history issues includeding instantiation. This was there for the taking (along
with quite a few other good ideas), but it wsn’t adopted. My guess is that Smalltalk had
moved into the final phase I memntioned at the beginning of this story, in which a way
of doing things finally gets canonized into an inflexible belief structure.

Coda

One final comment. Hardware is really just software crystallized early. It is there to make
program schemes run as efficiently as possible. But far too often the hardware has been
presented as a given and it is up to software designers to make it appear reasonable. This
has caused low-level techniques and excessive optimization to hold back progress in
program design. As Bob Barton used to say: “Systems programmers are high priests of a
low cult.”

One way to think about progress in software is that a lot of it has been about find-
ing ways to late-bind, then waging campaigns to convince manufacturers to build the
ideas into hardware. Early hardware had wired programs and parameters; random access
memory was a scheme to late-bind them. Looping and indexing used to be done by
address modification in storiage; index registers were a way to late-bind. Over the years
software designers have found ways to late-bind the locations of computations—this led
to base/bounds registers, segment relocation, page MMUSs, migratory processes, and so
forth. Time-sharing was held back for years because it was “inefficient”— but the man-
ufacturers wouldn’t put MMUs on the machines, universities had to do it themselves!
Recursion late-binds parameters to procedures, but it took years to get even rudimen-
tary stack mechanisms into cpus. Most machines still have no support for dynamic
allocation and garbage collection and so forth. In short, most hardware designs today are
just re-optimizations of moribund architectures.

From the late-binding perspective, 00OP an be viewed as a comprehensive technique
for late-binding as many things as possible: the mix of state and process in a set of
behaviors, where they are located, what they are called, when and why the are invoked,
which JW is used, etc., and more subtle, the strategies used in the ooP scheme itself. The
art of the wrap is the art of the trap.

Consider the two ases that must be handled efficiently in order to completely wrap
objects. It would be terrible if a + b incurred any overhead if a and b were bound, say, to
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3”7 and “4” ina form that could be handled by the aru. The operations should occur
full speed using look-aside logic (in the simplest scheme a single and gate) to trap if the
operands aren’t compatible with the Aru. Now all elementary operations that have to
happen fast have been wrapped without slowind down the machine.

The second case happens if the trap has determined the objects in questions are
too complicated for the ALu. Now the HW has to dynamically find a method that can
handled the objects. This is very simiilar to indexing—the class of one of the objects
is “indexed” by the desired method-selector in a slightly more general way. In other
words the virtual-address of a method is <class><selector>. Since most HW today does
a virtual address translation of some kind to find the real address—a trap—it is quite
possible to hide the overhead of the oop dispatch in the MMU overhead that has already
been rationalized.

Again, the whole point of 0oP is not to have to worry about what is inside an
object. Objects made on different machines and with different languages should be able
to talk to each other—and will have-fo in the future. Late-binding here involves trapping
incmpatibilities into recompatibility methods—a good discussion of some of the issues is
found in [Popek 1984].

Staying with the metaphor of late-binding, what further late-binding schemes might
we expect to see? One of the nicest late-binding schemes that is being experimented
with is the metaobject protocol work at Xerox parc [Kiczales 1991]. The notion is that
the language designer’s choice for the internal representation of instances, variables, etc.,
may not cover wht the implementer needs, so within a fixed semantics they allow the
implmenter to give the system strategies—for example, using a hashed lookup for slots
in an instance instead of direct indexing. These are then efficiently compiled and extend
the base implemenation of the sustem. This is a direct descendant of similar directions
from the past of Simula, FLEX, c¢DL, Smalltalk, and Actors.

Another late-binding scheme that is already necessary is to get away from directo
protocol matching when a new object shows up in a system of objects. In other words,
if someone sends you an object from halfway around the world it will be unusual if it
conforms to your local protocols. At some point it will be easier to have it carry even
more information about itself—enough so its speicifications can be “understood” and
its confiugration into your mix done by the more subtle mathcing of inference.

A look beyond ooP as we know it today can also be done by thinking about late-
binding. Prolog’s great idea is that it doesn’t need binding to values in order to carry
out computations [Col **]. The variable is an object and a web of partial results can
be built to be filled in when a binding is finally found. Eurisko [Lenat **| constructs
its methods—and modifies its basic strategies—as it tries to solve a problem. Instead of
a problem looking for methods, the methods look for problems—and Eurisko looks
for the methods of the methods. This has been called “opportunistic programming”—I
think of it as a drive for more enlightenment, in which problems get resolved as part of
the process.

This higher computational finesse will be needed as the next paradigm shift—that
of pervasive networking—takes place over the next five years. Objects will gradually
become active agents and will travel the networks in search of useful information and
tools for their managers. Objects brought back into a computational environment from
halfway around the world will not be able to configure themselves by direct protocol
matching as do objects today. Intead, the objects will carry much more informration
about themselves in a form that permits inferential docking. Some of the ongoing work
in specificaion can be turned to this task [Guttag **][Goguen **].

Toungue in cheek, I once characterized progress in programming languages as kind
of “sunspot” theory, in which major advances took place about every 11 years. We
started with machine code in 1950, then in 1956 FORTRAN came along as a “better old
thing” which if looked at as “almost a new thing” became the precursor of ALGOL-60
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in 1961. IN 1966, stmuLA was the “better old thing,” which if looked at as “almost a
new thing” became the precursor to Smalltalk in 1972.

Everything seemed set up to confirm the “theory” once more: in 1978 Eurisko was
in place as the “better old thing” that was “almost a new thing”. But 1983—and the
whole decade—came and went without the “new thing”. Of course, such a theory is
silly anyway—and yet, I think the enormous commercialization of personal computering
has smothered much of the kind of work that used to go on in universities and research
labs, by sucking the talented kids towards practical applications. With companies so
risk-adverse towards doing their own HW, and the HW companies betraying no real
understanding of SW/, the result has been a great step backwards in most respects.

A twentieth century problem is that technology has become too “easy”. When it
was hard to do anything whether good or bad, enough time was taken so that the result
was usually good. Now we can make things almost trivially, especially in software, but
most of the designs are trivial as well. This is inverse vandalism: the making of things
because you can. Couple this to even less sophisticated buyers and you have generated
an exploitation marketplace similar to that set up for teenagers. A counter to this is to
generate enormous disatisfaction with one’s designs using the entire history of human
art as a standard and goal. Then the trick is to decouple the disatisfaction from self
worth—otherwise it is either too depressing or one stops too soon with trivial results.

I will leave the story of early Smalltalk in 1981 when an extensive series of articles on
Smalltalk-80 was published in Byte magazine, [Byte 1981] followed by Adele’s and Dave
Robsons books [Goldberg 1983] and the official release of the system in 1983. Now
programmers could easily implement the virtual machine without having to reinvent
it, and, in several cases, groups were able to roll their own image of basic classes. In
spite of having to run almost everywhere on moribund HW architectures, Smalltalk
has proliferated amazingly well (in part because of tremendous optimization efforts on
these machines) [Deutsch 83]. As far as I can tell, it still seems to be the most wiidely
used system that claims to be object-oriented. It is incredible to me that no one since
has come up with a qualitatively better idea that is as simple, elegant, easy to program,
practical, and comprehensive. (It’s a pity that we didn’t know about PROLOG then or vice
versa, the combinations of the two languages done subsequently are quite intriguing).

While justly applauding Dan, Adele and the others that made Smalltalk possible, we
must wonder at the same time: where are the Dans and the Adeles of the ’8os and ’gos
that will take us to the next stage?
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