
Copyright © 2003-2005, Peter Seibel

6. Variables
The next basic building block we need to look at are variables.
Common Lisp supports two kinds
of variables: lexical and
dynamic.1 These two
types correspond roughly to "local" and "global"
variables in other
languages. However, the correspondence is only approximate. On one
hand,
some languages' "local" variables are in fact much like Common
Lisp's dynamic variables.2 And
on the other,
some languages' local variables are lexically scoped without
providing all the
capabilities provided by Common Lisp's lexical
variables. In particular, not all languages that
provide lexically
scoped variables support closures.

To make matters a bit more confusing, many of the forms that deal
with variables can be used
with both lexical and dynamic variables.
So I'll start by discussing a few aspects of Lisp's
variables that
apply to both kinds and then cover the specific characteristics of
lexical and
dynamic variables. Then I'll discuss Common Lisp's
general-purpose assignment operator,
SETF, which is used to
assign new values to variables and just about every other place that
can
hold a value.

Variable Basics
As in other languages, in Common Lisp variables are named places that
can hold a value.
However, in Common Lisp, variables aren't typed the
way they are in languages such as Java or
C++. That is, you don't
need to declare the type of object that each variable can hold.
Instead, a
variable can hold values of any type and the values carry
type information that can be used to
check types at runtime. Thus,
Common Lisp is dynamically typed--type errors are detected
dynamically. For instance, if you pass something other than a number
to the + function,
Common Lisp will signal a type error. On the
other hand, Common Lisp is a strongly typed
language in the
sense that all type errors will be detected--there's no way to treat
an object as an
instance of a class that it's not.3

All values in Common Lisp are, conceptually at least, references to
objects.4
Consequently,
assigning a variable a new value changes what
object the variable refers to but has no effect on
the previously
referenced object. However, if a variable holds a reference to a
mutable object,
you can use that reference to modify the object, and
the modification will be visible to any code
that has a reference to
the same object.

One way to introduce new variables you've already used is to define
function parameters. As you
saw in the previous chapter, when you
define a function with DEFUN, the parameter list defines

the
variables that will hold the function's arguments when it's called.
For example, this function
defines three variables--x,
y, and z--to hold its arguments.

(defun foo (x y z) (+ x y z))

Each time a function is called, Lisp creates new bindings to hold
the arguments passed by the
function's caller. A binding is the
runtime manifestation of a variable. A single variable--the
thing
you can point to in the program's source code--can have many
different bindings during a
run of the program. A single variable can
even have multiple bindings at the same time;
parameters to a
recursive function, for example, are rebound for each call to the
function.

As with all Common Lisp variables, function parameters hold object
references.5 Thus, you
can
assign a new value to a function parameter within the body of the
function, and it will not affect
the bindings created for another
call to the same function. But if the object passed to a function
is
mutable and you change it in the function, the changes will be
visible to the caller since both
the caller and the callee will be
referencing the same object.

Another form that introduces new variables is the LET special
operator. The skeleton of a LET
form looks like this:

(let (variable*)

 body-form*)

where each variable is a variable initialization form. Each
initialization form is either a list
containing a variable name and
an initial value form or--as a shorthand for initializing the
variable to NIL--a plain variable name. The following LET
form, for example, binds the three
variables x, y, and
z with initial values 10, 20, and NIL:

(let ((x 10) (y 20) z)

 ...)

When the LET form is evaluated, all the initial value forms are
first evaluated. Then new
bindings are created and initialized to the
appropriate initial values before the body forms are
executed. Within
the body of the LET, the variable names refer to the newly
created bindings.
After the LET, the names refer to whatever, if
anything, they referred to before the LET.

The value of the last expression in the body is returned as the value
of the LET expression. Like
function parameters, variables
introduced with LET are rebound each time the LET is
entered.6

The scope of function parameters and LET variables--the area
of the program where the variable
name can be used to refer to the
variable's binding--is delimited by the form that introduces the
variable. This form--the function definition or the LET--is
called the binding form. As you'll see
in a bit, the two types of
variables--lexical and dynamic--use two slightly different scoping
mechanisms, but in both cases the scope is delimited by the binding
form.

If you nest binding forms that introduce variables with the same
name, then the bindings of the
innermost variable shadows the
outer bindings. For instance, when the following function is
called,
a binding is created for the parameter x to hold the
function's argument. Then the first
LET creates a new binding
with the initial value 2, and the inner LET creates yet another
binding, this one with the initial value 3. The bars on the right
mark the scope of each binding.

(defun foo (x)

 (format t "Parameter: ~a~%" x) ; |<------ x is argument

 (let ((x 2)) ; |

 (format t "Outer LET: ~a~%" x) ; | |<---- x is 2

 (let ((x 3)) ; | |

 (format t "Inner LET: ~a~%" x)) ; | | |<-- x is 3

 (format t "Outer LET: ~a~%" x)) ; | |

 (format t "Parameter: ~a~%" x)) ; |

Each reference to x will refer to the binding with the
smallest enclosing scope. Once control
leaves the scope of one
binding form, the binding from the immediately enclosing scope is
unshadowed and x refers to it instead. Thus, calling
foo results in this output:

CL-USER> (foo 1)

Parameter: 1

Outer LET: 2

Inner LET: 3

Outer LET: 2

Parameter: 1

NIL

In future chapters I'll discuss other constructs that also serve as
binding forms--any construct that
introduces a new variable name
that's usable only within the construct is a binding form.

For instance, in Chapter 7 you'll meet the DOTIMES loop, a basic
counting loop. It introduces a
variable that holds the value of a
counter that's incremented each time through the loop. The
following
loop, for example, which prints the numbers from 0 to 9, binds the
variable x:

(dotimes (x 10) (format t "~d " x))

Another binding form is a variant of LET, LET*. The
difference is that in a LET, the variable
names can be used only
in the body of the LET--the part of the LET after the
variables list--but
in a LET*, the initial value forms for each
variable can refer to variables introduced earlier in the
variables
list. Thus, you can write the following:

(let* ((x 10)

 (y (+ x 10)))

 (list x y))

but not this:

(let ((x 10)

 (y (+ x 10)))

 (list x y))

However, you could achieve the same result with nested LETs.

(let ((x 10))

 (let ((y (+ x 10)))

 (list x y)))

Lexical Variables and Closures

By default all binding forms in Common Lisp introduce lexically
scoped variables. Lexically
scoped variables can be referred to only
by code that's textually within the binding form. Lexical
scoping
should be familiar to anyone who has programmed in Java, C, Perl, or
Python since they
all provide lexically scoped "local" variables. For
that matter, Algol programmers should also
feel right at home, as
Algol first introduced lexical scoping in the 1960s.

However, Common Lisp's lexical variables are lexical variables with a
twist, at least compared
to the original Algol model. The twist is
provided by the combination of lexical scoping with
nested functions.
By the rules of lexical scoping, only code textually within the
binding form can
refer to a lexical variable. But what happens when
an anonymous function contains a reference
to a lexical variable from
an enclosing scope? For instance, in this expression:

(let ((count 0)) #'(lambda () (setf count (1+ count))))

the reference to count inside the LAMBDA form should be
legal according to the rules of lexical
scoping. Yet the anonymous
function containing the reference will be returned as the value of
the
LET form and can be invoked, via FUNCALL, by code
that's not in the scope of the LET. So
what happens? As it
turns out, when count is a lexical variable, it just works.
The binding of
count created when the flow of control entered
the LET form will stick around for as long as
needed, in this
case for as long as someone holds onto a reference to the function
object returned
by the LET form. The anonymous function is
called a closure because it "closes over" the
binding created by
the LET.

The key thing to understand about closures is that it's the binding,
not the value of the variable,
that's captured. Thus, a closure can
not only access the value of the variables it closes over but
can
also assign new values that will persist between calls to the
closure. For instance, you can
capture the closure created by the
previous expression in a global variable like this:

(defparameter *fn* (let ((count 0)) #'(lambda () (setf count (1+ count)))))

Then each time you invoke it, the value of count will increase by
one.

CL-USER> (funcall *fn*)

1

CL-USER> (funcall *fn*)

2

CL-USER> (funcall *fn*)

3

A single closure can close over many variable bindings simply by
referring to them. Or multiple
closures can capture the same binding.
For instance, the following expression returns a list of

three
closures, one that increments the value of the closed over
count binding, one that
decrements it, and one that returns
the current value:

(let ((count 0))

 (list

 #'(lambda () (incf count))

 #'(lambda () (decf count))

 #'(lambda () count)))

Dynamic, a.k.a. Special, Variables

Lexically scoped bindings help keep code understandable by limiting
the scope, literally, in
which a given name has meaning. This is why
most modern languages use lexical scoping for
local variables.
Sometimes, however, you really want a global variable--a variable
that you can
refer to from anywhere in your program. While it's true
that indiscriminate use of global
variables can turn code into
spaghetti nearly as quickly as unrestrained use of goto,
global
variables do have legitimate uses and exist in one form or
another in almost every programming
language.7 And as you'll see
in a moment, Lisp's version of global variables, dynamic variables,
are both more useful and more manageable.

Common Lisp provides two ways to create global variables: DEFVAR
and DEFPARAMETER.
Both forms take a variable name, an initial
value, and an optional documentation string. After it
has been
DEFVARed or DEFPARAMETERed, the name can be used anywhere
to refer to the
current binding of the global variable. As you've
seen in previous chapters, global variables are
conventionally named
with names that start and end with *. You'll see later in this
section why
it's quite important to follow that naming convention.
Examples of DEFVAR and
DEFPARAMETER look like this:

(defvar *count* 0

 "Count of widgets made so far.")

(defparameter *gap-tolerance* 0.001

 "Tolerance to be allowed in widget gaps.")

The difference between the two forms is that DEFPARAMETER always
assigns the initial value
to the named variable while DEFVAR
does so only if the variable is undefined. A DEFVAR form
can
also be used with no initial value to define a global variable
without giving it a value. Such a
variable is said to be unbound.

Practically speaking, you should use DEFVAR to define variables
that will contain data you'd
want to keep even if you made a change
to the source code that uses the variable. For instance,
suppose the
two variables defined previously are part of an application for
controlling a widget
factory. It's appropriate to define the
count variable with DEFVAR because the number of
widgets made so far isn't invalidated just because you make some
changes to the widget-making
code.8

On the other hand, the variable *gap-tolerance* presumably has
some effect on the
behavior of the widget-making code itself. If you
decide you need a tighter or looser tolerance
and change the value in
the DEFPARAMETER form, you'd like the change to take effect when
you recompile and reload the file.

After defining a variable with DEFVAR or DEFPARAMETER, you
can refer to it from anywhere.
For instance, you might define this
function to increment the count of widgets made:

(defun increment-widget-count () (incf *count*))

The advantage of global variables is that you don't have to pass them
around. Most languages
store the standard input and output streams in
global variables for exactly this reason--you never
know when you're
going to want to print something to standard out, and you don't want
every
function to have to accept and pass on arguments containing
those streams just in case someone
further down the line needs them.

However, once a value, such as the standard output stream, is stored
in a global variable and you
have written code that references that
global variable, it's tempting to try to temporarily modify
the
behavior of that code by changing the variable's value.

For instance, suppose you're working on a program that contains some
low-level logging
functions that print to the stream in the global
variable *standard-output*. Now suppose
that in part of the
program you want to capture all the output generated by those
functions into a
file. You might open a file and assign the resulting
stream to *standard-output*. Now the
low-level functions will
send their output to the file.

This works fine until you forget to set *standard-output* back
to the original stream
when you're done. If you forget to reset
standard-output, all the other code in the
program that uses
standard-output will also send its output to the
file.9

What you really want, it seems, is a way to wrap a piece of code in
something that says, "All
code below here--all the functions it
calls, all the functions they call, and so on, down to the
lowest-level functions--should use this value for the global
variable *standard-output*."
Then when the high-level function
returns, the old value of *standard-output* should be
automatically restored.

It turns out that that's exactly what Common Lisp's other kind of
variable--dynamic variables--let
you do. When you bind a dynamic
variable--for example, with a LET variable or a function
parameter--the binding that's created on entry to the binding form
replaces the global binding for
the duration of the binding form.
Unlike a lexical binding, which can be referenced by code only
within
the lexical scope of the binding form, a dynamic binding can be
referenced by any code
that's invoked during the execution of the
binding form.10 And it
turns out that all global
variables are, in fact, dynamic variables.

Thus, if you want to temporarily redefine *standard-output*,
the way to do it is simply to
rebind it, say, with a LET.

(let ((*standard-output* *some-other-stream*))

 (stuff))

In any code that runs as a result of the call to stuff,
references to *standard-output*
will use the binding
established by the LET. And when stuff returns and
control leaves the
LET, the new binding of
standard-output will go away and subsequent references to
standard-output will see the binding that was current before
the LET. At any given
time, the most recently established
binding shadows all other bindings. Conceptually, each new
binding
for a given dynamic variable is pushed onto a stack of bindings for
that variable, and
references to the variable always use the most
recent binding. As binding forms return, the
bindings they created
are popped off the stack, exposing previous bindings.11

A simple example shows how this works.

(defvar *x* 10)

(defun foo () (format t "X: ~d~%" *x*))

The DEFVAR creates a global binding for the variable *x*
with the value 10. The reference to
x in foo will
look up the current binding dynamically. If you call foo from
the top level, the
global binding created by the DEFVAR is the
only binding available, so it prints 10.

CL-USER> (foo)

X: 10

NIL

But you can use LET to create a new binding that temporarily
shadows the global binding, and
foo will print a different
value.

CL-USER> (let ((*x* 20)) (foo))

X: 20

NIL

Now call foo again, with no LET, and it again sees the
global binding.

CL-USER> (foo)

X: 10

NIL

Now define another function.

(defun bar ()

 (foo)

 (let ((*x* 20)) (foo))

 (foo))

Note that the middle call to foo is wrapped in a LET that
binds *x* to the new value 20. When
you run bar, you
get this result:

CL-USER> (bar)

X: 10

X: 20

X: 10

NIL

As you can see, the first call to foo sees the global binding,
with its value of 10. The middle
call, however, sees the new binding,
with the value 20. But after the LET, foo once again sees
the global binding.

As with lexical bindings, assigning a new value affects only the
current binding. To see this, you
can redefine foo to include
an assignment to *x*.

(defun foo ()

 (format t "Before assignment~18tX: ~d~%" *x*)

 (setf *x* (+ 1 *x*))

 (format t "After assignment~18tX: ~d~%" *x*))

Now foo prints the value of *x*, increments it, and
prints it again. If you just run foo, you'll
see this:

CL-USER> (foo)

Before assignment X: 10

After assignment X: 11

NIL

Not too surprising. Now run bar.

CL-USER> (bar)

Before assignment X: 11

After assignment X: 12

Before assignment X: 20

After assignment X: 21

Before assignment X: 12

After assignment X: 13

NIL

Notice that *x* started at 11--the earlier call to foo
really did change the global value. The first
call to foo from
bar increments the global binding to 12. The middle call
doesn't see the global
binding because of the LET. Then the last
call can see the global binding again and increments it
from 12 to
13.

So how does this work? How does LET know that when it binds
x it's supposed to create a
dynamic binding rather than a
normal lexical binding? It knows because the name has been
declared
special.12 The name of every variable defined
with DEFVAR and DEFPARAMETER is
automatically declared
globally special. This means whenever you use such a name in a
binding
form--in a LET or as a function parameter or any other
construct that creates a new variable
binding--the binding that's
created will be a dynamic binding. This is why the *naming*
convention is so important--it'd be bad news if you used a
name for what you thought was
a lexical variable and that variable
happened to be globally special. On the one hand, code you
call could
change the value of the binding out from under you; on the other, you
might be
shadowing a binding established by code higher up on the
stack. If you always name global

variables according to the *
naming convention, you'll never accidentally use a dynamic binding
where you intend to establish a lexical binding.

It's also possible to declare a name locally special. If, in a
binding form, you declare a name
special, then the binding created
for that variable will be dynamic rather than lexical. Other code
can
locally declare a name special in order to refer to the dynamic
binding. However, locally
special variables are relatively rare, so
you needn't worry about them.13

Dynamic bindings make global variables much more manageable, but it's
important to notice
they still allow action at a distance. Binding a
global variable has two at a distance effects--it can
change the
behavior of downstream code, and it also opens the possibility that
downstream code
will assign a new value to a binding established
higher up on the stack. You should use dynamic
variables only when
you need to take advantage of one or both of these characteristics.

Constants

One other kind of variable I haven't mentioned at all is the
oxymoronic "constant variable." All
constants are global and are
defined with DEFCONSTANT. The basic form of DEFCONSTANT is
like DEFPARAMETER.

(defconstant name initial-value-form [documentation-string])

As with DEFVAR and DEFPARAMETER, DEFCONSTANT has a
global effect on the name used--
thereafter the name can be used only
to refer to the constant; it can't be used as a function
parameter or
rebound with any other binding form. Thus, many Lisp programmers
follow a
naming convention of using names starting and ending with
+ for constants. This convention is
somewhat less universally
followed than the *-naming convention for globally special
names
but is a good idea for the same reason.14

Another thing to note about DEFCONSTANT is that while the
language allows you to redefine a
constant by reevaluating a
DEFCONSTANT with a different initial-value-form, what exactly
happens after the redefinition isn't defined. In practice, most
implementations will require you to
reevaluate any code that refers
to the constant in order to see the new value since the old value
may
well have been inlined. Consequently, it's a good idea to use
DEFCONSTANT only to define
things that are really constant,
such as the value of NIL. For things you might ever want to
change,
you should use DEFPARAMETER instead.

Assignment

Once you've created a binding, you can do two things with it: get the
current value and set it to a
new value. As you saw in Chapter 4, a
symbol evaluates to the value of the variable it names, so
you can
get the current value simply by referring to the variable. To assign
a new value to a

binding, you use the SETF macro, Common Lisp's
general-purpose assignment operator. The
basic form of SETF is
as follows:

(setf place value)

Because SETF is a macro, it can examine the form of the
place it's assigning to and expand into
appropriate lower-level
operations to manipulate that place. When the place is a variable, it
expands into a call to the special operator SETQ, which, as a
special operator, has access to both
lexical and dynamic
bindings.15 For instance, to assign the value 10 to the variable
x, you can
write this:

(setf x 10)

As I discussed earlier, assigning a new value to a binding has no
effect on any other bindings of
that variable. And it doesn't have
any effect on the value that was stored in the binding prior to
the
assignment. Thus, the SETF in this function:

(defun foo (x) (setf x 10))

will have no effect on any value outside of foo. The binding
that was created when foo was
called is set to 10, immediately
replacing whatever value was passed as an argument. In
particular, a
form such as the following:

(let ((y 20))

 (foo y)

 (print y))

will print 20, not 10, as it's the value of y that's passed to
foo where it's briefly the value of the
variable x
before the SETF gives x a new value.

SETF can also assign to multiple places in sequence. For
instance, instead of the following:

(setf x 1)

(setf y 2)

you can write this:

(setf x 1 y 2)

SETF returns the newly assigned value, so you can also nest
calls to SETF as in the following
expression, which assigns both
x and y the same random value:

(setf x (setf y (random 10)))

Generalized Assignment

Variable bindings, of course, aren't the only places that can hold
values. Common Lisp supports
composite data structures such as
arrays, hash tables, and lists, as well as user-defined data
structures, all of which consist of multiple places that can each
hold a value.

I'll cover those data structures in future chapters, but while we're
on the topic of assignment, you
should note that SETF can assign
any place a value. As I cover the different composite data
structures, I'll point out which functions can serve as
"SETFable places." The short version,
however, is if you need to
assign a value to a place, SETF is almost certainly the tool to
use. It's
even possible to extend SETF to allow it to assign to
user-defined places though I won't cover
that.16

In this regard SETF is no different from the = assignment
operator in most C-derived languages.
In those languages, the
= operator assigns new values to variables, array elements,
and fields of
classes. In languages such as Perl and Python that
support hash tables as a built-in data type, =
can also set
the values of individual hash table entries. Table 6-1 summarizes the
various ways =
is used in those languages.

Table 6-1. Assignment with = in Other Languages

Assigning to ... Java, C, C++ Perl Python

... variable x = 10; $x = 10; x = 10

... array element a[0] = 10; $a[0] = 10; a[0] = 10

... hash table entry -- $hash{'key'} = 10; hash['key'] = 10

... field in object o.field = 10; $o->{'field'} = 10; o.field = 10

SETF works the same way--the first "argument" to SETF is a
place to store the value, and the
second argument provides the value.
As with the = operator in these languages, you use the same
form to express the place as you'd normally use to fetch the
value.17 Thus, the Lisp equivalents
of the assignments in Table
6-1--given that AREF is the array access function, GETHASH
does a
hash table lookup, and field might be a function that
accesses a slot named field of a user-
defined object--are as
follows:

Simple variable: (setf x 10)

Array: (setf (aref a 0) 10)

Hash table: (setf (gethash 'key hash) 10)

Slot named 'field': (setf (field o) 10)

Note that SETFing a place that's part of a larger object has the
same semantics as SETFing a
variable: the place is modified
without any effect on the object that was previously stored in the
place. Again, this is similar to how = behaves in Java, Perl,
and Python.18

Other Ways to Modify Places

While all assignments can be expressed with SETF, certain
patterns involving assigning a new
value based on the current value
are sufficiently common to warrant their own operators. For
instance,
while you could increment a number with SETF, like this:

(setf x (+ x 1))

or decrement it with this:

(setf x (- x 1))

it's a bit tedious, compared to the C-style ++x and
--x. Instead, you can use the macros INCF
and DECF,
which increment and decrement a place by a certain amount that
defaults to 1.

(incf x) === (setf x (+ x 1))

(decf x) === (setf x (- x 1))

(incf x 10) === (setf x (+ x 10))

INCF and DECF are examples of a kind of macro called
modify macros. Modify macros are
macros built on top of SETF
that modify places by assigning a new value based on the current
value of the place. The main benefit of modify macros is that they're
more concise than the same
modification written out using SETF.
Additionally, modify macros are defined in a way that
makes them safe
to use with places where the place expression must be evaluated only
once. A
silly example is this expression, which increments the value
of an arbitrary element of an array:

(incf (aref *array* (random (length *array*))))

A naive translation of that into a SETF expression might look
like this:

(setf (aref *array* (random (length *array*)))

 (1+ (aref *array* (random (length *array*)))))

However, that doesn't work because the two calls to RANDOM won't
necessarily return the same
value--this expression will likely grab
the value of one element of the array, increment it, and
then store
it back as the new value of a different element. The INCF
expression, however, does
the right thing because it knows how to
take apart this expression:

(aref *array* (random (length *array*)))

to pull out the parts that could possibly have side effects to make
sure they're evaluated only
once. In this case, it would probably
expand into something more or less equivalent to this:

(let ((tmp (random (length *array*))))

 (setf (aref *array* tmp) (1+ (aref *array* tmp))))

In general, modify macros are guaranteed to evaluate both their
arguments and the subforms of
the place form exactly once each, in
left-to-right order.

The macro PUSH, which you used in the mini-database to add
elements to the *db* variable, is
another modify macro. You'll
take a closer look at how it and its counterparts POP and
PUSHNEW work in Chapter 12 when I talk about how lists are
represented in Lisp.

Finally, two slightly esoteric but useful modify macros are
ROTATEF and SHIFTF. ROTATEF
rotates values between
places. For instance, if you have two variables, a and
b, this call:

(rotatef a b)

swaps the values of the two variables and returns NIL. Since
a and b are variables and you don't
have to worry about
side effects, the previous ROTATEF expression is equivalent to
this:

(let ((tmp a)) (setf a b b tmp) nil)

With other kinds of places, the equivalent expression using SETF
would be quite a bit more
complex.

SHIFTF is similar except instead of rotating values it shifts
them to the left--the last argument
provides a value that's moved to
the second-to-last argument while the rest of the values are
moved
one to the left. The original value of the first argument is simply
returned. Thus, the
following:

(shiftf a b 10)

is equivalent--again, since you don't have to worry about side
effects--to this:

(let ((tmp a)) (setf a b b 10) tmp)

Both ROTATEF and SHIFTF can be used with any number of
arguments and, like all modify
macros, are guaranteed to evaluate
them exactly once, in left to right order.

With the basics of Common Lisp's functions and variables under your
belt, now you're ready to
move onto the feature that continues to
differentiate Lisp from other languages: macros.

1Dynamic variables are also sometimes called special
variables for reasons you'll see later in this chapter. It's
important to be
aware of this synonym, as some folks (and Lisp
implementations) use one term while others use the other.

2Early Lisps tended to use dynamic
variables for local variables, at least when interpreted. Elisp, the
Lisp dialect used in Emacs, is
a bit of a throwback in this respect,
continuing to support only dynamic variables. Other languages have
recapitulated this
transition from dynamic to lexical
variables--Perl's local variables, for instance, are dynamic
while its my variables, introduced
in Perl 5, are lexical.
Python never had true dynamic variables but only introduced true
lexical scoping in version 2.2. (Python's
lexical variables are still
somewhat limited compared to Lisp's because of the conflation of
assignment and binding in the
language's syntax.)

3Actually,
it's not quite true to say that all type errors will always be
detected--it's possible to use optional declarations to tell the
compiler that certain variables will always contain objects of a
particular type and to turn off runtime type checking in certain
regions of code. However, declarations of this sort are used to
optimize code after it has been developed and debugged, not during
normal development.

4As an optimization certain kinds of objects, such as
integers below a certain size and characters, may be represented
directly in
memory where other objects would be represented by a
pointer to the actual object. However, since integers and characters
are
immutable, it doesn't matter that there may be multiple copies of
"the same" object in different variables. This is the root of the
difference between EQ and EQL discussed in Chapter 4.

5In compiler-writer terms Common Lisp functions are
"pass-by-value." However, the values that are passed are references
to
objects. This is similar to how Java and Python work.

6The variables in LET forms and function parameters
are created by exactly the same mechanism. In fact, in some Lisp
dialects--
though not Common Lisp--LET is simply a macro that
expands into a call to an anonymous function. That is, in those
dialects, the
following:

(let ((x 10)) (format t "~a" x))

is a macro form that expands into this:

((lambda (x) (format t "~a" x)) 10)

7Java disguises
global variables as public static fields, C uses extern
variables, and Python's module-level and Perl's package-
level
variables can likewise be accessed from anywhere.

8If you specifically want to
reset a DEFVARed variable, you can either set it directly with
SETF or make it unbound using
MAKUNBOUND and then
reevaluate the DEFVAR form.

9The strategy of temporarily reassigning *standard-output*
also breaks if the system is multithreaded--if there are multiple
threads
of control trying to print to different streams at the same
time, they'll all try to set the global variable to the stream they
want to
use, stomping all over each other. You could use a lock to
control access to the global variable, but then you're not really
getting
the benefit of multiple concurrent threads, since whatever
thread is printing has to lock out all the other threads until it's
done even
if they want to print to a different stream.

10The technical term for the interval during which
references may be made to a binding is its extent. Thus,
scope and extent are
complementary notions--scope refers to
space while extent refers to time. Lexical variables have lexical
scope but indefinite
extent, meaning they stick around for an
indefinite interval, determined by how long they're needed. Dynamic
variables, by
contrast, have indefinite scope since they can be
referred to from anywhere but dynamic extent. To further confuse
matters, the
combination of indefinite scope and dynamic extent is
frequently referred to by the misnomer dynamic scope.

11Though the
standard doesn't specify how to incorporate multithreading into
Common Lisp, implementations that provide
multithreading follow the
practice established on the Lisp machines and create dynamic bindings
on a per-thread basis. A
reference to a global variable will find the
binding most recently established in the current thread, or the
global binding.

12This is why dynamic variables are also sometimes
called special variables.

13If you must know, you can look up
DECLARE, SPECIAL, and LOCALLY in the HyperSpec.

14Several key
constants defined by the language itself don't follow this
convention--not least of which are T and NIL. This is
occasionally annoying when one wants to use t as a local
variable name. Another is PI, which holds the best long-float
approximation of the mathematical constant pi.

15Some old-school Lispers prefer to use SETQ with
variables, but modern style tends to use SETF for all
assignments.

16Look up
DEFSETF, DEFINE-SETF-EXPANDER for more information.

17The prevalence of Algol-derived syntax for assignment
with the "place" on the left side of the = and the new value
on the right
side has spawned the terminology lvalue, short for
"left value," meaning something that can be assigned to, and
rvalue, meaning
something that provides a value. A compiler
hacker would say, "SETF treats its first argument as an
lvalue."

18C programmers may want to think of variables and
other places as holding a pointer to the real object; assigning to a
variable
simply changes what object it points to while assigning to a
part of a composite object is similar to indirecting through the
pointer
to the actual object. C++ programmers should note that the
behavior of = in C++ when dealing with objects--namely, a
memberwise copy--is quite idiosyncratic.

