
Copyright © 2003-2005, Peter Seibel

31. Practical: An HTML Generation
Library, the Compiler
Now you're ready to look at how the FOO compiler works. The main
difference between a
compiler and an interpreter is that an
interpreter processes a program and directly generates
some
behavior--generating HTML in the case of a FOO interpreter--but a
compiler processes the
same program and generates code in some other
language that will exhibit the same behavior. In
FOO, the compiler is
a Common Lisp macro that translates FOO into Common Lisp so it can be
embedded in a Common Lisp program. Compilers, in general, have the
advantage over
interpreters that, because compilation happens in
advance, they can spend a bit of time
optimizing the code they
generate to make it more efficient. The FOO compiler does that,
merging literal text as much as possible in order to emit the same
HTML with a smaller number
of writes than the interpreter uses. When
the compiler is a Common Lisp macro, you also have
the advantage that
it's easy for the language understood by the compiler to contain
embedded
Common Lisp--the compiler just has to recognize it and embed
it in the right place in the
generated code. The FOO compiler will
take advantage of this capability.

The Compiler
The basic architecture of the compiler consists of three layers.
First you'll implement a class
html-compiler that has one slot
that holds an adjustable vector that's used to accumulate ops
representing the calls made to the generic functions in the backend
interface during the execution
of process.

You'll then implement methods on the generic functions in the backend
interface that will store
the sequence of actions in the vector. Each
op is represented by a list consisting of a keyword
naming the
operation and the arguments passed to the function that generated the
op. The
function sexp->ops implements the first phase of the
compiler, compiling a list of FOO forms
by calling process on
each form with an instance of html-compiler.

This vector of ops stored by the compiler is then passed to a
function that optimizes it, merging
consecutive raw-string ops
into a single op that emits the combined string in one go. The
optimization function can also, optionally, strip out ops that are
needed only for pretty printing,
which is mostly important because it
allows you to merge more raw-string ops.

Finally, the optimized ops vector is passed to a third function,
generate-code, that returns a
list of Common Lisp expressions
that will actually output the HTML. When *pretty* is true,
generate-code generates code that uses the methods specialized
on

html-pretty-printer to output pretty HTML. When
pretty is NIL, it generates
code that writes directly
to the stream *html-output*.

The macro html actually generates a body that contains two
expansions, one generated with
pretty bound to T and
one with *pretty* bound to NIL. Which expansion is used
is
determined by the runtime value of *pretty*. Thus, every
function that contains a call to
html will contain code to
generate both pretty and compact output.

The other significant difference between the compiler and the
interpreter is that the compiler can
embed Lisp forms in the code it
generates. To take advantage of that, you need to modify the
process function so it calls the embed-code and
embed-value functions when asked to
process an expression
that's not a FOO form. Since all self-evaluating objects are valid
FOO
forms, the only forms that won't be passed to
process-sexp-html are lists that don't match
the syntax for
FOO cons forms and non-keyword symbols, the only atoms that aren't
self-
evaluating. You can assume that any non-FOO cons is code to be
run inline and all symbols are
variables whose value you should
embed.

(defun process (processor form)

 (cond

 ((sexp-html-p form) (process-sexp-html processor form))

 ((consp form) (embed-code processor form))

 (t (embed-value processor form))))

Now let's look at the compiler code. First you should define two
functions that slightly abstract
the vector you'll use to save ops in
the first two phases of compilation.

(defun make-op-buffer () (make-array 10 :adjustable t :fill-pointer 0))

(defun push-op (op ops-buffer) (vector-push-extend op ops-buffer))

Next you can define the html-compiler class and the methods
specialized on it to
implement the backend interface.

(defclass html-compiler ()

 ((ops :accessor ops :initform (make-op-buffer))))

(defmethod raw-string ((compiler html-compiler) string &optional newlines-p)
 (push-op `(:raw-string ,string ,newlines-p) (ops compiler)))

(defmethod newline ((compiler html-compiler))

 (push-op '(:newline) (ops compiler)))

(defmethod freshline ((compiler html-compiler))

 (push-op '(:freshline) (ops compiler)))

(defmethod indent ((compiler html-compiler))

 (push-op `(:indent) (ops compiler)))

(defmethod unindent ((compiler html-compiler))

 (push-op `(:unindent) (ops compiler)))

(defmethod toggle-indenting ((compiler html-compiler))

 (push-op `(:toggle-indenting) (ops compiler)))

(defmethod embed-value ((compiler html-compiler) value)

 (push-op `(:embed-value ,value ,*escapes*) (ops compiler)))

(defmethod embed-code ((compiler html-compiler) code)

 (push-op `(:embed-code ,code) (ops compiler)))

With those methods defined, you can implement the first phase of the
compiler, sexp->ops.

(defun sexp->ops (body)

 (loop with compiler = (make-instance 'html-compiler)

 for form in body do (process compiler form)

 finally (return (ops compiler))))

During this phase you don't need to worry about the value of
pretty: just record all the
functions called by
process. Here's what sexp->ops makes of a simple FOO
form:

HTML> (sexp->ops '((:p "Foo")))

#((:FRESHLINE) (:RAW-STRING "<p" NIL) (:RAW-STRING ">" NIL)

 (:RAW-STRING "Foo" T) (:RAW-STRING "</p>" NIL) (:FRESHLINE))

The next phase, optimize-static-output, takes a vector of ops
and returns a new vector
containing the optimized version. The
algorithm is simple--for each :raw-string op, it
writes the
string to a temporary string buffer. Thus, consecutive
:raw-string ops will build
up a single string containing the
concatenation of the strings that need to be emitted. Whenever
you
encounter an op other than a :raw-string op, you convert the
built-up string into a
sequence of alternating :raw-string and
:newline ops with the helper function
compile-buffer
and then add the next op. This function is also where you strip out
the
pretty printing ops if *pretty* is NIL.

(defun optimize-static-output (ops)

 (let ((new-ops (make-op-buffer)))

 (with-output-to-string (buf)

 (flet ((add-op (op)

 (compile-buffer buf new-ops)

 (push-op op new-ops)))

 (loop for op across ops do

 (ecase (first op)

 (:raw-string (write-sequence (second op) buf))

 ((:newline :embed-value :embed-code) (add-op op))

 ((:indent :unindent :freshline :toggle-indenting)

 (when *pretty* (add-op op)))))

 (compile-buffer buf new-ops)))

 new-ops))

(defun compile-buffer (buf ops)

 (loop with str = (get-output-stream-string buf)

 for start = 0 then (1+ pos)

 for pos = (position #\Newline str :start start)

 when (< start (length str))

 do (push-op `(:raw-string ,(subseq str start pos) nil) ops)

 when pos do (push-op '(:newline) ops)

 while pos))

The last step is to translate the ops into the corresponding Common
Lisp code. This phase also
pays attention to the value of
pretty. When *pretty* is true, it generates code that
invokes the backend generic functions on
html-pretty-printer, which will be bound
to an instance of
html-pretty-printer. When *pretty* is NIL, it
generates code that
writes directly to *html-output*, the
stream to which the pretty printer would send its
output.

The actual function, generate-code, is trivial.

(defun generate-code (ops)

 (loop for op across ops collect (apply #'op->code op)))

All the work is done by methods on the generic function
op->code specializing the op
argument with an EQL
specializer on the name of the op.

(defgeneric op->code (op &rest operands))

(defmethod op->code ((op (eql :raw-string)) &rest operands)

 (destructuring-bind (string check-for-newlines) operands

 (if *pretty*

 `(raw-string *html-pretty-printer* ,string ,check-for-newlines)

 `(write-sequence ,string *html-output*))))

(defmethod op->code ((op (eql :newline)) &rest operands)

 (if *pretty*

 `(newline *html-pretty-printer*)

 `(write-char #\Newline *html-output*)))

(defmethod op->code ((op (eql :freshline)) &rest operands)

 (if *pretty*

 `(freshline *html-pretty-printer*)

 (error "Bad op when not pretty-printing: ~a" op)))

(defmethod op->code ((op (eql :indent)) &rest operands)

 (if *pretty*

 `(indent *html-pretty-printer*)

 (error "Bad op when not pretty-printing: ~a" op)))

(defmethod op->code ((op (eql :unindent)) &rest operands)

 (if *pretty*

 `(unindent *html-pretty-printer*)

 (error "Bad op when not pretty-printing: ~a" op)))

(defmethod op->code ((op (eql :toggle-indenting)) &rest operands)

 (if *pretty*

 `(toggle-indenting *html-pretty-printer*)

 (error "Bad op when not pretty-printing: ~a" op)))

The two most interesting op->code methods are the ones that
generate code for the
:embed-value and :embed-code ops.
In the :embed-value method, you can generate
slightly
different code depending on the value of the escapes operand
since if escapes is
NIL, you don't need to generate a
call to escape. And when both *pretty* and
escapes
are NIL, you can generate code that uses
PRINC to emit the value directly to the stream.

(defmethod op->code ((op (eql :embed-value)) &rest operands)

 (destructuring-bind (value escapes) operands

 (if *pretty*

 (if escapes

 `(raw-string *html-pretty-printer* (escape (princ-to-string ,value) ,escapes) t)

 `(raw-string *html-pretty-printer* (princ-to-string ,value) t))

 (if escapes

 `(write-sequence (escape (princ-to-string ,value) ,escapes) *html-output*)

 `(princ ,value *html-output*)))))

Thus, something like this:

HTML> (let ((x 10)) (html (:p x)))

<p>10</p>

NIL

works because html translates (:p x) into something
like this:

(progn

 (write-sequence "<p>" *html-output*)

 (write-sequence (escape (princ-to-string x) "<>&") *html-output*)

 (write-sequence "</p>" *html-output*))

When that code replaces the call to html in the context of the
LET, you get the following:

(let ((x 10))

 (progn

 (write-sequence "<p>" *html-output*)

 (write-sequence (escape (princ-to-string x) "<>&") *html-output*)

 (write-sequence "</p>" *html-output*)))

and the reference to x in the generated code turns into a
reference to the lexical variable from the
LET surrounding the
html form.

The :embed-code method, on the other hand, is interesting
because it's so trivial. Because
process passed the form to
embed-code, which stashed it in the :embed-code op, all
you
have to do is pull it out and return it.

(defmethod op->code ((op (eql :embed-code)) &rest operands)

 (first operands))

This allows code like this to work:

HTML> (html (:ul (dolist (x '(foo bar baz)) (html (:li x)))))

 FOO

 BAR

 BAZ

NIL

The outer call to html expands into code that does something
like this:

(progn

 (write-sequence "" *html-output*)

 (dolist (x '(foo bar baz)) (html (:li x)))

 (write-sequence "" *html-output*))))

Then if you expand the call to html in the body of the
DOLIST, you'll get something like this:

(progn

 (write-sequence "" *html-output*)

 (dolist (x '(foo bar baz))

 (progn

 (write-sequence "" *html-output*)

 (write-sequence (escape (princ-to-string x) "<>&") *html-output*)

 (write-sequence "" *html-output*)))

 (write-sequence "" *html-output*))

This code will, in fact, generate the output you saw.

FOO Special Operators

You could stop there; certainly the FOO language is expressive enough
to generate nearly any
HTML you'd care to. However, you can add two
features to the language, with just a bit more
code, that will make
it quite a bit more powerful: special operators and macros.

Special operators in FOO are analogous to special operators in Common
Lisp. Special operators
provide ways to express things in the
language that can't be expressed in the language supported
by the
basic evaluation rule. Or, another way to look at it is that special
operators provide access
to the primitive mechanisms used by the
language evaluator.1

To take a simple example, in the FOO compiler, the language evaluator
uses the embed-value
function to generate code that will embed
the value of a variable in the output HTML. However,
because only
symbols are passed to embed-value, there's no way, in the
language I've
described so far, to embed the value of an arbitrary
Common Lisp expression; the process
function passes cons cells
to embed-code rather than embed-value, so the values
returned
are ignored. Typically this is what you'd want, since the
main reason to embed Lisp code in a
FOO program is to use Lisp
control constructs. However, sometimes you'd like to embed
computed
values in the generated HTML. For example, you might like this FOO
program to
generate a paragraph tag containing a random number:

(:p (random 10))

But that doesn't work because the code is run and its value
discarded.

HTML> (html (:p (random 10)))

<p></p>

NIL

In the language, as you've implemented it so far, you could work
around this limitation by
computing the value outside the call to
html and then embedding it via a variable.

HTML> (let ((x (random 10))) (html (:p x)))

<p>1</p>

NIL

But that's sort of annoying, particularly when you consider that if
you could arrange for the form
(random 10) to be passed to
embed-value instead of embed-code, it'd do exactly what
you want. So, you can define a special operator, :print,
that's processed by the FOO language
processor according to a
different rule than a normal FOO expression. Namely, instead of
generating a <print> element, it passes the form in its body
to embed-value. Thus, you can
generate a paragraph containing
a random number like this:

HTML> (html (:p (:print (random 10))))

<p>9</p>

NIL

Obviously, this special operator is useful only in compiled FOO code
since embed-value
doesn't work in the interpreter. Another
special operator that can be used in both interpreted and
compiled FOO
code is :format, which lets you generate output using the
FORMAT function.
The arguments to the :format special
operator are a string used as a format control string and
then any
arguments to be interpolated. When all the arguments to
:format are self-evaluating
objects, a string is generated by
passing them to FORMAT, and that string is then emitted like any
other string. This allows such :format forms to be used in FOO
passed to emit-html. In
compiled FOO, the arguments to
:format can be any Lisp expressions.

Other special operators provide control over what characters are
automatically escaped and to
explicitly emit newline characters: the
:noescape special operator causes all the forms in its
body to
be evaluated as regular FOO forms but with *escapes* bound to
NIL, while
:attribute evaluates the forms in its body
with *escapes* bound to
attribute-escapes. And
:newline is translated into code to emit an explicit newline.

So, how do you define special operators? There are two aspects to
processing special operators:
how does the language processor
recognize forms that use special operators, and how does it
know what
code to run to process each special operator?

You could hack process-sexp-html to recognize each special
operator and handle it in the
appropriate manner--special operators
are, logically, part of the implementation of the language,
and there
aren't going to be that many of them. However, it'd be nice to have a
slightly more
modular way to add new special operators--not because
users of FOO will be able to but just for
your own sanity.

Define a special form as any list whose CAR is a symbol
that's the name of a special operator.
You can mark the names of
special operators by adding a non-NIL value to the symbol's
property list under the key html-special-operator. So, you can
define a function that
tests whether a given form is a special form
like this:

(defun special-form-p (form)

 (and (consp form) (symbolp (car form)) (get (car form) 'html-special-operator)))

The code that implements each special operator is responsible for
taking apart the rest of the list
however it sees fit and doing
whatever the semantics of the special operator require. Assuming
you'll also define a function process-special-form, which will
take the language
processor and a special form and run the appropriate
code to generate a sequence of calls on the
processor object, you can
augment the top-level process function to handle special forms
like
this:

(defun process (processor form)

 (cond

 ((special-form-p form) (process-special-form processor form))

 ((sexp-html-p form) (process-sexp-html processor form))

 ((consp form) (embed-code processor form))

 (t (embed-value processor form))))

You must add the special-form-p clause first because special
forms can look, syntactically,
like regular FOO expressions just the
way Common Lisp's special forms can look like regular
function calls.

Now you just need to implement process-special-form. Rather
than define a single
monolithic function that implements all the
special operators, you should define a macro that
allows you to
define special operators much like regular functions and that also
takes care of
adding the html-special-operator entry to the
property list of the special operator's
name. In fact, the value you
store in the property list can be a function that implements the
special operator. Here's the macro:

(defmacro define-html-special-operator (name (processor &rest other-parameters) &body bod
 `(eval-when (:compile-toplevel :load-toplevel :execute)

 (setf (get ',name 'html-special-operator)

 (lambda (,processor ,@other-parameters) ,@body))))

This is a fairly advanced type of macro, but if you take it one line
at a time, there's nothing all
that tricky about it. To see how it
works, take a simple use of the macro, the definition of the
special
operator :noescape, and look at the macro expansion. If you
write this:

(define-html-special-operator :noescape (processor &rest body)

 (let ((*escapes* nil))

 (loop for exp in body do (process processor exp))))

it's as if you had written this:

(eval-when (:compile-toplevel :load-toplevel :execute)

 (setf (get ':noescape 'html-special-operator)

 (lambda (processor &rest body)

 (let ((*escapes* nil))

 (loop for exp in body do (process processor exp))))))

The EVAL-WHEN special operator, as I discussed in Chapter 20,
ensures that the effects of code
in its body will be made visible
during compilation when you compile with COMPILE-FILE.
This
matters if you want to use define-html-special-operator in a
file and then use
the just-defined special operator in that same file.

Then the SETF expression sets the property
html-special-operator on the symbol
:noescape to an
anonymous function with the same parameter list as was specified in
define-html-special-operator. By defining
define-html-special-operator to split the parameter list in two
parts, processor
and everything else, you ensure that all
special operators accept at least one argument.

The body of the anonymous function is then the body provided to
define-html-special-operator. The job of the anonymous
function is to implement
the special operator by making the
appropriate calls on the backend interface to generate the
correct
HTML or the code that will generate it. It can also use
process to evaluate an
expression as a FOO form.

The :noescape special operator is particularly simple--all it
does is pass the forms in its body
to process with
escapes bound to NIL. In other words, this special
operator disables the
normal character escaping preformed by
process-sexp-html.

With special operators defined this way, all
process-special-form has to do is look up
the anonymous
function in the property list of the special operator's name and
APPLY it to the
processor and rest of the form.

(defun process-special-form (processor form)

 (apply (get (car form) 'html-special-operator) processor (rest form)))

Now you're ready to define the five remaining FOO special operators.
Similar to :noescape is
:attribute, which evaluates the
forms in its body with *escapes* bound to
attribute-escapes. This special operator is useful if you
want to write helper functions
that output attribute values. If you
write a function like this:

(defun foo-value (something)

 (html (:print (frob something))))

the html macro is going to generate code that escapes the
characters in
element-escapes. But if you're planning to use
foo-value like this:

(html (:p :style (foo-value 42) "Foo"))

then you want it to generate code that uses
attribute-escapes. So, instead, you can
write it like
this:2

(defun foo-value (something)

 (html (:attribute (:print (frob something)))))

The definition of :attribute looks like this:

(define-html-special-operator :attribute (processor &rest body)

 (let ((*escapes* *attribute-escapes*))

 (loop for exp in body do (process processor exp))))

The next two special operators, :print and :format, are
used to output values. The :print
special operator, as I
discussed earlier, is used in compiled FOO programs to embed the value
of
an arbitrary Lisp expression. The :format special operator
is more or less equivalent to
generating a string with (format
nil ...) and then embedding it. The primary reason to
define
:format as a special operator is for convenience. This:

(:format "Foo: ~d" x)

is nicer than this:

(:print (format nil "Foo: ~d" x))

It also has the slight advantage that if you use :format with
arguments that are all self-
evaluating, FOO can evaluate the
:format at compile time rather than waiting until runtime.
The
definitions of :print and :format are as follows:

(define-html-special-operator :print (processor form)

 (cond

 ((self-evaluating-p form)

 (warn "Redundant :print of self-evaluating form ~s" form)

 (process-sexp-html processor form))

 (t

 (embed-value processor form))))

(define-html-special-operator :format (processor &rest args)

 (if (every #'self-evaluating-p args)

 (process-sexp-html processor (apply #'format nil args))

 (embed-value processor `(format nil ,@args))))

The :newline special operator forces an output of a literal
newline, which is occasionally
handy.

(define-html-special-operator :newline (processor)

 (newline processor))

Finally, the :progn special operator is analogous to the
PROGN special operator in Common
Lisp. It simply processes the
forms in its body in sequence.

(define-html-special-operator :progn (processor &rest body)

 (loop for exp in body do (process processor exp)))

In other words, the following:

(html (:p (:progn "Foo " (:i "bar") " baz")))

will generate the same code as this:

(html (:p "Foo " (:i "bar") " baz"))

This might seem like a strange thing to need since normal FOO
expressions can have any
number of forms in their body. However, this
special operator will come in quite handy in one
situation--when
writing FOO macros, which brings you to the last language feature you
need to
implement.

FOO Macros

FOO macros are similar in spirit to Common Lisp's macros. A FOO macro
is a bit of code that
accepts a FOO expression as an argument and
returns a new FOO expression as the result, which
is then evaluated
according to the normal FOO evaluation rules. The actual
implementation is
quite similar to the implementation of special
operators.

As with special operators, you can define a predicate function to
test whether a given form is a
macro form.

(defun macro-form-p (form)

 (cons-form-p form #'(lambda (x) (and (symbolp x) (get x 'html-macro)))))

You use the previously defined function cons-form-p because
you want to allow macros to
be used in either of the syntaxes of
nonmacro FOO cons forms. However, you need to pass a
different
predicate function, one that tests whether the form name is a symbol
with a non-NIL
html-macro property. Also, as in the
implementation of special operators, you'll define a
macro for
defining FOO macros, which is responsible for storing a function in
the property list
of the macro's name, under the key
html-macro. However, defining a macro is a bit more
complicated because FOO supports two flavors of macro. Some macros
you'll define will behave
much like normal HTML elements and may want
to have easy access to a list of attributes. Other
macros will simply
want raw access to the elements of their body.

You can make the distinction between the two flavors of macros
implicit: when you define a
FOO macro, the parameter list can include
an &attributes parameter. If it does, the macro
form will be
parsed like a regular cons form, and the macro function will be
passed two values, a
plist of attributes and a list of expressions
that make up the body of the form. A macro form
without an
&attributes parameter won't be parsed for attributes, and the
macro function will
be invoked with a single argument, a list
containing the body expressions. The former is useful
for what are
essentially HTML templates. For example:

(define-html-macro :mytag (&attributes attrs &body body)

 `((:div :class "mytag" ,@attrs) ,@body))

HTML> (html (:mytag "Foo"))

<div class='mytag'>Foo</div>

NIL

HTML> (html (:mytag :id "bar" "Foo"))

<div class='mytag' id='bar'>Foo</div>

NIL

HTML> (html ((:mytag :id "bar") "Foo"))

<div class='mytag' id='bar'>Foo</div>

NIL

The latter kind of macro is more useful for writing macros that
manipulate the forms in their
body. This type of macro can function
as a kind of HTML control construct. As a trivial
example, consider
the following macro that implements an :if construct:

(define-html-macro :if (test then else)

 `(if ,test (html ,then) (html ,else)))

This macro allows you to write this:

(:p (:if (zerop (random 2)) "Heads" "Tails"))

instead of this slightly more verbose version:

(:p (if (zerop (random 2)) (html "Heads") (html "Tails")))

To determine which kind of macro you should generate, you need a
function that can parse the
parameter list given to
define-html-macro. This function returns two values, the name
of
the &attributes parameter, or NIL if there was none,
and a list containing all the elements
of args after removing
the &attributes marker and the subsequent list
element.3

(defun parse-html-macro-lambda-list (args)

 (let ((attr-cons (member '&attributes args)))

 (values

 (cadr attr-cons)

 (nconc (ldiff args attr-cons) (cddr attr-cons)))))

HTML> (parse-html-macro-lambda-list '(a b c))

NIL

(A B C)

HTML> (parse-html-macro-lambda-list '(&attributes attrs a b c))

ATTRS

(A B C)

HTML> (parse-html-macro-lambda-list '(a b c &attributes attrs))

ATTRS

(A B C)

The element following &attributes in the parameter list can
also be a destructuring
parameter list.

HTML> (parse-html-macro-lambda-list '(&attributes (&key x y) a b c))

(&KEY X Y)

(A B C)

Now you're ready to write define-html-macro. Depending on
whether there was an
&attributes parameter specified, you need
to generate one form or the other of HTML
macro so the main macro
simply determines which kind of HTML macro it's defining and then
calls out to a helper function to generate the right kind of code.

(defmacro define-html-macro (name (&rest args) &body body)

 (multiple-value-bind (attribute-var args)

 (parse-html-macro-lambda-list args)

 (if attribute-var

 (generate-macro-with-attributes name attribute-var args body)

 (generate-macro-no-attributes name args body))))

The functions that actually generate the expansion look like this:

(defun generate-macro-with-attributes (name attribute-args args body)

 (with-gensyms (attributes form-body)

 (if (symbolp attribute-args) (setf attribute-args `(&rest ,attribute-args)))

 `(eval-when (:compile-toplevel :load-toplevel :execute)

 (setf (get ',name 'html-macro-wants-attributes) t)

 (setf (get ',name 'html-macro)

 (lambda (,attributes ,form-body)

 (destructuring-bind (,@attribute-args) ,attributes

 (destructuring-bind (,@args) ,form-body

 ,@body)))))))

(defun generate-macro-no-attributes (name args body)

 (with-gensyms (form-body)

 `(eval-when (:compile-toplevel :load-toplevel :execute)

 (setf (get ',name 'html-macro-wants-attributes) nil)

 (setf (get ',name 'html-macro)

 (lambda (,form-body)

 (destructuring-bind (,@args) ,form-body ,@body)))))

The macro functions you'll define accept either one or two arguments
and then use
DESTRUCTURING-BIND to take them apart and bind them
to the parameters defined in the call
to define-html-macro. In
both expansions you need to save the macro function in the
name's
property list under html-macro and a boolean indicating
whether the macro takes an
&attributes parameter under the
property html-macro-wants-attributes. You use
that property in
the following function, expand-macro-form, to determine how
the macro
function should be invoked:

(defun expand-macro-form (form)

 (if (or (consp (first form))

 (get (first form) 'html-macro-wants-attributes))

 (multiple-value-bind (tag attributes body) (parse-cons-form form)

 (funcall (get tag 'html-macro) attributes body))

 (destructuring-bind (tag &body body) form

 (funcall (get tag 'html-macro) body))))

The last step is to integrate macros by adding a clause to the
dispatching COND in the top-level
process function.

(defun process (processor form)

 (cond

 ((special-form-p form) (process-special-form processor form))

 ((macro-form-p form) (process processor (expand-macro-form form)))

 ((sexp-html-p form) (process-sexp-html processor form))

 ((consp form) (embed-code processor form))

 (t (embed-value processor form))))

This is the final version of process.

The Public API

Now, at long last, you're ready to implement the html macro,
the main entry point to the FOO
compiler. The other parts of FOO's
public API are emit-html and with-html-output,
which I
discussed in the previous chapter, and define-html-macro,
which I discussed in
the previous section. The
define-html-macro macro needs to be part of the public API
because FOO's users will want to write their own HTML macros. On the
other hand,
define-html-special-operator isn't part of the
public API because it requires too
much knowledge of FOO's internals
to define a new special operator. And there should be very
little
that can't be done using the existing language and special
operators.4

One last element of the public API, before I get to html, is
another macro, in-html-style.
This macro controls whether FOO
generates XHTML or regular HTML by setting the *xhtml*
variable. The reason this needs to be a macro is because you'll want
to wrap the code that sets
xhtml in an EVAL-WHEN so you
can set it in a file and have it affect uses of the html
macro
later in that same file.

(defmacro in-html-style (syntax)

 (eval-when (:compile-toplevel :load-toplevel :execute)

 (case syntax

 (:html (setf *xhtml* nil))

 (:xhtml (setf *xhtml* t)))))

Finally let's look at html itself. The only tricky bit about
implementing html comes from the
need to generate code that
can be used to generate both pretty and compact output, depending on
the runtime value of the variable *pretty*. Thus, html
needs to generate an expansion that
contains an IF expression
and two versions of the code, one compiled with *pretty* bound
to true and one compiled with it bound to NIL. To further
complicate matters, it's common for
one html call to contain
embedded calls to html, like this:

(html (:ul (dolist (item stuff)) (html (:li item))))

If the outer html expands into an IF expression with two
versions of the code, one for when
pretty is true and one
for when it's false, it's silly for nested html forms to
expand into
two versions too. In fact, it'll lead to an exponential
explosion of code since the nested html is
already going to be
expanded twice--once in the *pretty*-is-true branch and once
in the
pretty-is-false branch. If each expansion generates
two versions, then you'll have four total
versions. And if the nested
html form contained another nested html form, you'd end
up with
eight versions of that code. If the compiler is smart, it'll
eventually realize that most of that
generated code is dead and will
eliminate it, but even figuring that out can take quite a bit of
time, slowing down compilation of any function that uses nested calls
to html.

Luckily, you can easily avoid this explosion of dead code by
generating an expansion that locally
redefines the html macro,
using MACROLET, to generate only the right kind of code. First
you
define a helper function that takes the vector of ops returned by
sexp->ops and runs it through
optimize-static-output
and generate-code--the two phases that are affected by
the
value of *pretty*--with *pretty* bound to a specified
value and that interpolates the
resulting code into a PROGN.
(The PROGN returns NIL just to keep things tidy.).

(defun codegen-html (ops pretty)

 (let ((*pretty* pretty))

 `(progn ,@(generate-code (optimize-static-output ops)) nil)))

With that function, you can then define html like this:

(defmacro html (&whole whole &body body)

 (declare (ignore body))

 `(if *pretty*

 (macrolet ((html (&body body) (codegen-html (sexp->ops body) t)))

 (let ((*html-pretty-printer* (get-pretty-printer))) ,whole))

 (macrolet ((html (&body body) (codegen-html (sexp->ops body) nil)))

 ,whole)))

The &whole parameter represents the original html form,
and because it's interpolated into the
expansion in the bodies of the
two MACROLETs, it will be reprocessed with each of the new
definitions of html, the one that generates pretty-printing
code and the other that generates non-
pretty-printing code. Note that
the variable *pretty* is used both during macro expansion
and
when the resulting code is run. It's used at macro expansion
time by codegen-html to cause
generate-code to generate
one kind of code or the other. And it's used at runtime, in the
IF
generated by the top-level html macro, to determine
whether the pretty-printing or non-pretty-
printing code should
actually run.

The End of the Line

As usual, you could keep working with this code to enhance it in
various ways. One interesting
avenue to pursue is to use the
underlying output generation framework to emit other kinds of
output.
In the version of FOO you can download from the book's Web site,
you'll find some code
that implements CSS output that can be
integrated into HTML output in both the interpreter and
compiler.
That's an interesting case because CSS's syntax can't be mapped to
s-expressions in
such a trivial way as HTML's can. However, if you
look at that code, you'll see it's still possible
to define an
s-expression syntax for representing the various constructs available
in CSS.

A more ambitious undertaking would be to add support for generating
embedded JavaScript.
Done right, adding JavaScript support to FOO
could yield two big wins. One is that after you
define an
s-expression syntax that you can map to JavaScript syntax, then you
can start writing
macros, in Common Lisp, to add new constructs to
the language you use to write client-side
code, which will then be
compiled to JavaScript. The other is that, as part of the FOO
s-
expression JavaScript to regular JavaScript translation, you could
deal with the subtle but
annoying differences between JavaScript
implementations in different browsers. That is, the
JavaScript code
that FOO generates could either contain the appropriate conditional
code to do
one thing in one browser and another in a different
browser or could generate different code
depending on which browser
you wanted to support. Then if you use FOO in dynamically
generated
pages, it could use information about the User-Agent making the
request to generate
the right flavor of JavaScript for that browser.

But if that interests you, you'll have to implement it yourself since
this is the end of the last
practical chapter of this book. In the
next chapter I'll wrap things up, discussing briefly some
topics that
I haven't touched on elsewhere in the book such as how to find
libraries, how to
optimize Common Lisp code, and how to deliver Lisp
applications.

1The analogy between FOO's special operators,
and macros, which I'll discuss in the next section, and Lisp's own is
fairly sound.
In fact, understanding how FOO's special operators and
macros work may give you some insight into why Common Lisp is put
together the way it is.

2The :noescape and :attribute special
operators must be defined as special operators because FOO determines
what
escapes to use at compile time, not at runtime. This allows FOO
to escape literal values at compile time, which is much more
efficient than having to scan all output at runtime.

3Note that &attributes is just another symbol;
there's nothing intrinsically special about names that start with
&.

4The one element of the underlying language-processing
infrastructure that's not currently exposed through special operators
is the
indentation. If you wanted to make FOO more flexible, albeit
at the cost of making its API that much more complex, you could
add
special operators for manipulating the underlying indenting printer.
But it seems like the cost of having to explain the extra
special
operators would outweigh the rather small gain in expressiveness.

