
Copyright © 2003-2005, Peter Seibel

28. Practical: A Shoutcast Server
In this chapter you'll develop another important part of what will
eventually be a Web-based
application for streaming MP3s, namely, the
server that implements the Shoutcast protocol for
actually streaming
MP3s to clients such as iTunes, XMMS,1 or Winamp.

The Shoutcast Protocol
The Shoutcast protocol was invented by the folks at Nullsoft, the
makers of the Winamp MP3
software. It was designed to support
Internet audio broadcasting--Shoutcast DJs send audio data
from their
personal computers to a central Shoutcast server that then turns
around and streams it
out to any connected listeners.

The server you'll build is actually only half a true Shoutcast
server--you'll use the protocol that
Shoutcast servers use to stream
MP3s to listeners, but your server will be able to serve only
songs
already stored on the file system of the computer where the server is
running.

You need to worry about only two parts of the Shoutcast protocol: the
request that a client makes
in order to start receiving a stream and
the format of the response, including the mechanism by
which metadata
about what song is currently playing is embedded in the stream.

The initial request from the MP3 client to the Shoutcast server is
formatted as a normal HTTP
request. In response, the Shoutcast server
sends an ICY response that looks like an HTTP
response except with
the string "ICY"2 in place of the normal HTTP version string and with
different headers. After sending the headers and a blank line, the
server streams a potentially
endless amount of MP3 data.

The only tricky thing about the Shoutcast protocol is the way
metadata about the songs being
streamed is embedded in the data sent
to the client. The problem facing the Shoutcast designers
was to
provide a way for the Shoutcast server to communicate new title
information to the client
each time it started playing a new song so
the client could display it in its UI. (Recall from
Chapter 25 that
the MP3 format doesn't make any provision for encoding metadata.)
While one
of the design goals of ID3v2 had been to make it better
suited for use when streaming MP3s, the
Nullsoft folks decided to go
their own route and invent a new scheme that's fairly easy to
implement on both the client side and the server side. That, of
course, was ideal for them since
they were also the authors of their
own MP3 client.

Their scheme was to simply ignore the structure of MP3 data and embed
a chunk of self-
delimiting metadata every n bytes. The client
would then be responsible for stripping out this
metadata so it
wasn't treated as MP3 data. Since metadata sent to a client that
isn't ready for it
will cause glitches in the sound, the server is
supposed to send metadata only if the client's
original request
contains a special Icy-Metadata header. And in order for the client
to know how
often to expect metadata, the server must send back a
header Icy-Metaint whose value is the
number of bytes of MP3 data
that will be sent between each chunk of metadata.

The basic content of the metadata is a string of the form
"StreamTitle='title';" where title is the
title of the
current song and can't contain single quote marks. This payload is
encoded as a
length-delimited array of bytes: a single byte is sent
indicating how many 16-byte blocks follow,
and then that many blocks
are sent. They contain the string payload as an ASCII string, with
the
final block padded out with null bytes as necessary.

Thus, the smallest legal metadata chunk is a single byte, zero,
indicating zero subsequent blocks.
If the server doesn't need to
update the metadata, it can send such an empty chunk, but it must
send at least the one byte so the client doesn't throw away actual
MP3 data.

Song Sources

Because a Shoutcast server has to keep streaming songs to the client
for as long as it's connected,
you need to provide your server with a
source of songs to draw on. In the Web-based application,
each
connected client will have a playlist that can be manipulated via the
Web interface. But in
the interest of avoiding excessive coupling,
you should define an interface that the Shoutcast
server can use to
obtain songs to play. You can write a simple implementation of this
interface
now and then a more complex one as part of the Web
application you'll build in Chapter 29.

The Package

The package for the code you'll develop in this chapter looks
like this:

(defpackage :com.gigamonkeys.shoutcast

 (:use :common-lisp

 :net.aserve

 :com.gigamonkeys.id3v2)

 (:export :song

 :file

 :title

 :id3-size

 :find-song-source

 :current-song

 :still-current-p

 :maybe-move-to-next-song

 :*song-source-type*))

The idea behind the interface is that the Shoutcast server will find
a source of songs based on an
ID extracted from the AllegroServe
request object. It can then do three things with the song

source it's
given.

Get the current song from the source
Tell the song source that it's done with the current song
Ask the source whether the song it was given earlier is still
the current song

The last operation is necessary because there may be ways--and will be
in Chapter 29--to
manipulate the songs source outside the Shoutcast
server. You can express the operations the
Shoutcast server needs with
the following generic functions:

(defgeneric current-song (source)

 (:documentation "Return the currently playing song or NIL."))

(defgeneric maybe-move-to-next-song (song source)

 (:documentation

 "If the given song is still the current one update the value

returned by current-song."))

(defgeneric still-current-p (song source)

 (:documentation

 "Return true if the song given is the same as the current-song."))

The function maybe-move-to-next-song is defined the way it is
so a single operation
checks whether the song is current and, if it
is, moves the song source to the next song. This will
be important in
the next chapter when you need to implement a song source that can be
safely
manipulated from two different threads.3

To represent the information about a song that the Shoutcast server
needs, you can define a class,
song, with slots to hold the
name of the MP3 file, the title to send in the Shoutcast metadata,
and the size of the ID3 tag so you can skip it when serving up the
file.

(defclass song ()

 ((file :reader file :initarg :file)

 (title :reader title :initarg :title)

 (id3-size :reader id3-size :initarg :id3-size)))

The value returned by current-song (and thus the first
argument to still-current-p
and
maybe-move-to-next-song) will be an instance of song.

In addition, you need to define a generic function that the server
can use to find a song source
based on the type of source desired and
the request object. Methods will specialize the type
parameter
in order to return different kinds of song source and will pull
whatever information
they need from the request object to determine
which source to return.

(defgeneric find-song-source (type request)

 (:documentation "Find the song-source of the given type for the given request."))

However, for the purposes of this chapter, you can use a trivial
implementation of this interface
that always uses the same object, a
simple queue of song objects that you can manipulate from
the REPL.
You can start by defining a class, simple-song-queue, and a
global variable,
songs, that holds an instance of this
class.

(defclass simple-song-queue ()

 ((songs :accessor songs :initform (make-array 10 :adjustable t :fill-pointer 0))

 (index :accessor index :initform 0)))

(defparameter *songs* (make-instance 'simple-song-queue))

Then you can define a method on find-song-source that
specializes type with an EQL
specializer on the symbol
singleton and returns the instance stored in *songs*.

(defmethod find-song-source ((type (eql 'singleton)) request)

 (declare (ignore request))

 songs)

Now you just need to implement methods on the three generic functions
that the Shoutcast
server will use.

(defmethod current-song ((source simple-song-queue))

 (when (array-in-bounds-p (songs source) (index source))

 (aref (songs source) (index source))))

(defmethod still-current-p (song (source simple-song-queue))

 (eql song (current-song source)))

(defmethod maybe-move-to-next-song (song (source simple-song-queue))

 (when (still-current-p song source)

 (incf (index source))))

And for testing purposes you should provide a way to add songs to
this queue.

(defun add-file-to-songs (file)

 (vector-push-extend (file->song file) (songs *songs*)))

(defun file->song (file)

 (let ((id3 (read-id3 file)))

 (make-instance

 'song

 :file (namestring (truename file))

 :title (format nil "~a by ~a from ~a" (song id3) (artist id3) (album id3))

 :id3-size (size id3))))

Implementing Shoutcast

Now you're ready to implement the Shoutcast server. Since the
Shoutcast protocol is loosely
based on HTTP, you can implement the
server as a function within AllegroServe. However,
since you need to
interact with some of the low-level features of AllegroServe, you
can't use the
define-url-function macro from Chapter 26.
Instead, you need to write a regular
function that looks like this:

(defun shoutcast (request entity)

 (with-http-response

 (request entity :content-type "audio/MP3" :timeout *timeout-seconds*)

 (prepare-icy-response request *metadata-interval*)

 (let ((wants-metadata-p (header-slot-value request :icy-metadata)))

 (with-http-body (request entity)

 (play-songs

 (request-socket request)

 (find-song-source *song-source-type* request)

 (if wants-metadata-p *metadata-interval*))))))

Then publish that function under the path /stream.mp3 like
this:4

(publish :path "/stream.mp3" :function 'shoutcast)

In the call to with-http-response, in addition to the usual
request and entity
arguments, you need to pass
:content-type and :timeout arguments. The
:content-type argument tells AllegroServe how to set the
Content-Type header it sends.
And the :timeout argument
specifies the number of seconds AllegroServe gives the function
to
generate its response. By default AllegroServe times out each request
after five minutes.
Because you're going to stream an essentially
endless sequence of MP3s, you need much more
time. There's no way to
tell AllegroServe to never time out the request, so you should
set it to the
value of *timeout-seconds*, which you can define
to some suitably large value such as the
number of seconds in ten
years.

(defparameter *timeout-seconds* (* 60 60 24 7 52 10))

Then, within the body of the with-http-response and before the
call to
with-http-body that will cause the response headers to
be sent, you need to manipulate the
reply that AllegroServe will
send. The function prepare-icy-response encapsulates the
necessary manipulations: changing the protocol string from the
default of "HTTP" to "ICY" and
adding the Shoutcast-specific
headers.5 You also need,
in order to work around a bug in iTunes,
to tell AllegroServe not to
use chunked transfer-encoding.6 The functions
request-reply-protocol-string,
request-uri, and
reply-header-slot-value are all part
of AllegroServe.

(defun prepare-icy-response (request metadata-interval)

 (setf (request-reply-protocol-string request) "ICY")

 (loop for (k v) in (reverse

 `((:|icy-metaint| ,(princ-to-string metadata-interval))

 (:|icy-notice1| "
This stream blah blah blah
")

 (:|icy-notice2| "More blah")

 (:|icy-name| "MyLispShoutcastServer")

 (:|icy-genre| "Unknown")

 (:|icy-url| ,(request-uri request))

 (:|icy-pub| "1")))

 do (setf (reply-header-slot-value request k) v))

 ;; iTunes, despite claiming to speak HTTP/1.1, doesn't understand

 ;; chunked Transfer-encoding. Grrr. So we just turn it off.

 (turn-off-chunked-transfer-encoding request))

(defun turn-off-chunked-transfer-encoding (request)

 (setf (request-reply-strategy request)

 (remove :chunked (request-reply-strategy request))))

Within the with-http-body of shoutcast, you actually
stream the MP3 data. The
function play-songs takes the stream
to which it should write the data, the song source, and
the metadata
interval it should use or NIL if the client doesn't want
metadata. The stream is the
socket obtained from the request object,
the song source is obtained by calling
find-song-source, and
the metadata interval comes from the global variable
metadata-interval. The type of song source is controlled by
the variable

song-source-type, which for now you can set to
singleton in order to use the
simple-song-queue you
implemented previously.

(defparameter *metadata-interval* (expt 2 12))

(defparameter *song-source-type* 'singleton)

The function play-songs itself doesn't do much--it loops
calling the function
play-current, which does all the heavy
lifting of sending the contents of a single MP3 file,
skipping the ID3
tag and embedding ICY metadata. The only wrinkle is that you need to
keep
track of when to send the metadata.

Since you must send metadata chunks at a fixed intervals, regardless
of when you happen to
switch from one MP3 file to the next, each time
you call play-current you need to tell it
when the next
metadata is due, and when it returns, it must tell you the same thing
so you can
pass the information to the next call to
play-current. If play-current gets NIL from
the
song source, it returns NIL, which allows the play-songs
LOOP to end.

In addition to handling the looping, play-songs also provides
a HANDLER-CASE to trap the
error that will be signaled when the
MP3 client disconnects from the server and one of the writes
to the
socket, down in play-current, fails. Since the
HANDLER-CASE is outside the LOOP,
handling the error will
break out of the loop, allowing play-songs to return.

(defun play-songs (stream song-source metadata-interval)

 (handler-case

 (loop

 for next-metadata = metadata-interval

 then (play-current

 stream

 song-source

 next-metadata

 metadata-interval)

 while next-metadata)

 (error (e) (format *trace-output* "Caught error in play-songs: ~a" e))))

Finally, you're ready to implement play-current, which
actually sends the Shoutcast data.
The basic idea is that you get the
current song from the song source, open the song's file, and
then
loop reading data from the file and writing it to the socket until
either you reach the end of
the file or the current song is no longer
the current song.

There are only two complications: One is that you need to make sure
you send the metadata at
the correct interval. The other is that if
the file starts with an ID3 tag, you want to skip it. If you
don't
worry too much about I/O efficiency, you can implement
play-current like this:

(defun play-current (out song-source next-metadata metadata-interval)

 (let ((song (current-song song-source)))

 (when song

 (let ((metadata (make-icy-metadata (title song))))

 (with-open-file (mp3 (file song))

 (unless (file-position mp3 (id3-size song))

 (error "Can't skip to position ~d in ~a" (id3-size song) (file song)))

 (loop for byte = (read-byte mp3 nil nil)

 while (and byte (still-current-p song song-source)) do

 (write-byte byte out)

 (decf next-metadata)

 when (and (zerop next-metadata) metadata-interval) do

 (write-sequence metadata out)

 (setf next-metadata metadata-interval))

 (maybe-move-to-next-song song song-source)))

 next-metadata)))

This function gets the current song from the song source and gets a
buffer containing the
metadata it'll need to send by passing the
title to make-icy-metadata. Then it opens the file
and skips
past the ID3 tag using the two-argument form of FILE-POSITION.
Then it
commences reading bytes from the file and writing them to the
request stream.7

It'll break out of the loop either when it reaches the end of the
file or when the song source's
current song changes out from under
it. In the meantime, whenever next-metadata gets to
zero (if
you're supposed to send metadata at all), it writes metadata
to the stream and resets
next-metadata. Once it finishes the
loop, it checks to see if the song is still the song source's
current
song; if it is, that means it broke out of the loop because it read
the whole file, in which
case it tells the song source to move to the
next song. Otherwise, it broke out of the loop because
someone
changed the current song out from under it, and it just returns. In
either case, it returns
the number of bytes left before the next
metadata is due so it can be passed in the next call to
play-current.8

The function make-icy-metadata, which takes the title of the
current song and generates an
array of bytes containing a properly
formatted chunk of ICY metadata, is also straightforward.9

(defun make-icy-metadata (title)

 (let* ((text (format nil "StreamTitle='~a';" (substitute #\Space #\' title)))

 (blocks (ceiling (length text) 16))

 (buffer (make-array (1+ (* blocks 16))

 :element-type '(unsigned-byte 8)

 :initial-element 0)))

 (setf (aref buffer 0) blocks)

 (loop

 for char across text

 for i from 1

 do (setf (aref buffer i) (char-code char)))

 buffer))

Depending on how your particular Lisp implementation handles its
streams, and also how many
MP3 clients you want to serve at once, the
simple version of play-current may or may not
be efficient
enough.

The potential problem with the simple implementation is that you have
to call READ-BYTE and
WRITE-BYTE for every byte you
transfer. It's possible that each call may result in a relatively
expensive system call to read or write one byte. And even if Lisp
implements its own streams
with internal buffering so not every call
to READ-BYTE or WRITE-BYTE results in a system
call,
function calls still aren't free. In particular, in implementations
that provide user-extensible
streams using so-called Gray Streams,
READ-BYTE and WRITE-BYTE may result in a generic
function
call under the covers to dispatch on the class of the stream
argument. While generic

function dispatch is normally speedy enough
that you don't have to worry about it, it's a bit more
expensive than
a nongeneric function call and thus not something you necessarily
want to do
several million times in a few minutes if you can avoid
it.

A more efficient, if slightly more complex, way to implement
play-current is to read and
write multiple bytes at a time
using the functions READ-SEQUENCE and WRITE-SEQUENCE.
This
also gives you a chance to match your file reads with the natural
block size of the file
system, which will likely give you the best
disk throughput. Of course, no matter what buffer
size you use,
keeping track of when to send the metadata becomes a bit more
complicated. A
more efficient version of play-current that
uses READ-SEQUENCE and
WRITE-SEQUENCE might look like this:

(defun play-current (out song-source next-metadata metadata-interval)

 (let ((song (current-song song-source)))

 (when song

 (let ((metadata (make-icy-metadata (title song)))

 (buffer (make-array size :element-type '(unsigned-byte 8))))

 (with-open-file (mp3 (file song))

 (labels ((write-buffer (start end)

 (if metadata-interval

 (write-buffer-with-metadata start end)

 (write-sequence buffer out :start start :end end)))

 (write-buffer-with-metadata (start end)

 (cond

 ((> next-metadata (- end start))

 (write-sequence buffer out :start start :end end)

 (decf next-metadata (- end start)))

 (t

 (let ((middle (+ start next-metadata)))

 (write-sequence buffer out :start start :end middle)

 (write-sequence metadata out)

 (setf next-metadata metadata-interval)

 (write-buffer-with-metadata middle end))))))

 (multiple-value-bind (skip-blocks skip-bytes)

 (floor (id3-size song) (length buffer))

 (unless (file-position mp3 (* skip-blocks (length buffer)))

 (error "Couldn't skip over ~d ~d byte blocks."

 skip-blocks (length buffer)))

 (loop for end = (read-sequence buffer mp3)

 for start = skip-bytes then 0

 do (write-buffer start end)

 while (and (= end (length buffer))

 (still-current-p song song-source)))

 (maybe-move-to-next-song song song-source)))))

 next-metadata)))

Now you're ready to put all the pieces together. In the next chapter
you'll write a Web interface
to the Shoutcast server developed in
this chapter, using the MP3 database from Chapter 27 as the
source of
songs.

1The version of XMMS shipped
with Red Hat 8.0 and 9.0 and Fedora no longer knows how to play MP3s
because the folks at Red
Hat were worried about the licensing issues
related to the MP3 codec. To get an XMMS with MP3 support on these
versions of

Linux, you can grab the source from
http://www.xmms.org and build it yourself. Or, see
http://www.fedorafaq.org/#xmms-mp3 for information about other
possibilities.

2To further confuse matters, there's a different
streaming protocol called Icecast. There seems to be no
connection between the
ICY header used by Shoutcast and the Icecast
protocol.

3Technically, the
implementation in this chapter will also be manipulated from two
threads--the AllegroServe thread running the
Shoutcast server and the
REPL thread. But you can live with the race condition for now. I'll
discuss how to use locking to make
code thread safe in the next
chapter.

4Another thing you may want to do while working on this
code is to evaluate the form
(net.aserve::debug-on :notrap).
This tells AllegroServe to not trap errors signaled by your code,
which will allow
you to debug them in the normal Lisp debugger. In
SLIME this will pop up a SLIME debugger buffer just like any other
error.

5Shoutcast headers are usually sent in lowercase, so you
need to escape the names of the keyword symbols used to identify them
to AllegroServe to keep the Lisp reader from converting them to all
uppercase. Thus, you'd write :|icy-metaint| rather than
:icy-metaint. You could also write
:\i\c\y-\m\e\t\a\i\n\t, but that'd be silly.

6The function
turn-off-chunked-transfer-encoding is a bit of a kludge.
There's no way to turn off chunked transfer
encoding via
AllegroServe's official APIs without specifying a content length
because any client that advertises itself as an
HTTP/1.1 client,
which iTunes does, is supposed to understand it. But this does the
trick.

7Most MP3-playing software will display the
metadata somewhere in the user interface. However, the XMMS program
on Linux
by default doesn't. To get XMMS to display Shoutcast
metadata, press Ctrl+P to see the Preferences pane. Then in the Audio
I/O
Plugins tab (the leftmost tab in version 1.2.10), select the MPEG
Layer 1/2/3 Player (libmpg123.so) and hit the Configure
button. Then select the Streaming tab on the configuration window,
and at the bottom of the tab in the SHOUTCAST/Icecast
section, check
the "Enable SHOUTCAST/Icecast title streaming" box.

8Folks coming to Common Lisp from Scheme
might wonder why play-current can't just call itself
recursively. In Scheme
that would work fine since Scheme
implementations are required by the Scheme specification to support
"an unbounded number of
active tail calls." Common Lisp
implementations are allowed to have this property, but it isn't
required by the language standard.
Thus, in Common Lisp the idiomatic
way to write loops is with a looping construct, not with recursion.

9This
function assumes, as has other code you've written, that your Lisp
implementation's internal character encoding is ASCII or
a superset
of ASCII, so you can use CHAR-CODE to translate Lisp
CHARACTER objects to bytes of ASCII data.

