
Copyright © 2003-2005, Peter Seibel

27. Practical: An MP3 Database
In this chapter you'll revisit the idea first explored in Chapter 3 of building an in-memory
database out of basic Lisp data structures. This time your goal is to hold information that you'll
extract from a collection of MP3 files using the ID3v2 library from Chapter 25. You'll then use
this database in Chapters 28 and 29 as part of a Web-based streaming MP3 server. Of course, this
time around you can use some of the language features you've learned since Chapter 3 to build a
more sophisticated version.

The Database
The main problem with the database in Chapter 3 is that there's only one table, the list stored in
the variable *db*. Another is that the code doesn't know anything about what type of values are
stored in different columns. In Chapter 3 you got away with that by using the fairly general-
purpose EQUAL method to compare column values when selecting rows from the database, but
you would've been in trouble if you had wanted to store values that couldn't be compared with
EQUAL or if you had wanted to sort the rows in the database since there's no ordering function
that's as general as EQUAL.

This time you'll solve both problems by defining a class, table, to represent individual
database tables. Each table instance will consist of two slots--one to hold the table's data and
another to hold information about the columns in the table that database operations will be able
to use. The class looks like this:

(defclass table ()
 ((rows :accessor rows :initarg :rows :initform (make-rows))
 (schema :accessor schema :initarg :schema)))

As in Chapter 3, you can represent the individual rows with plists, but this time around you'll
create an abstraction that will make that an implementation detail you can change later without
too much trouble. And this time you'll store the rows in a vector rather than a list since certain
operations that you'll want to support, such as random access to rows by a numeric index and the
ability to sort a table, can be more efficiently implemented with vectors.

The function make-rows used to initialize the rows slot can be a simple wrapper around
MAKE-ARRAY that builds an empty, adjustable,vector with a fill pointer.

The Package

The package for the code you'll develop in this chapter looks like this:

(defpackage :com.gigamonkeys.mp3-database
 (:use :common-lisp
 :com.gigamonkeys.pathnames
 :com.gigamonkeys.macro-utilities

 :com.gigamonkeys.id3v2)
 (:export :*default-table-size*
 :*mp3-schema*
 :*mp3s*
 :column
 :column-value
 :delete-all-rows
 :delete-rows
 :do-rows
 :extract-schema
 :in
 :insert-row
 :load-database
 :make-column
 :make-schema
 :map-rows
 :matching
 :not-nullable
 :nth-row
 :random-selection
 :schema
 :select
 :shuffle-table
 :sort-rows
 :table
 :table-size
 :with-column-values))

The :use section gives you access to the functions and macros whose names are exported from the
packages defined in Chapter 15, 8, and 25 and the :export section exports the API this library will provide,
which you'll use in Chapter 29.

(defparameter *default-table-size* 100)

(defun make-rows (&optional (size *default-table-size*))
 (make-array size :adjustable t :fill-pointer 0))

To represent a table's schema, you need to define another class, column, each instance of which
will contain information about one column in the table: its name, how to compare values in the
column for equality and ordering, a default value, and a function that will be used to normalize
the column's values when inserting data into the table and when querying the table. The schema
slot will hold a list of column objects. The class definition looks like this:

(defclass column ()
 ((name
 :reader name
 :initarg :name)

 (equality-predicate
 :reader equality-predicate
 :initarg :equality-predicate)

 (comparator
 :reader comparator
 :initarg :comparator)

 (default-value
 :reader default-value
 :initarg :default-value
 :initform nil)

 (value-normalizer
 :reader value-normalizer
 :initarg :value-normalizer
 :initform #'(lambda (v column) (declare (ignore column)) v))))

The equality-predicate and comparator slots of a column object hold functions
used to compare values from the given column for equivalence and ordering. Thus, a column

containing string values might have STRING= as its equality-predicate and STRING<
as its comparator, while a column containing numbers might have = and <.

The default-value and value-normalizer slots are used when inserting rows into the
database and, in the case of value-normalizer, when querying the database. When you
insert a row into the database, if no value is provided for a particular column, you can use the
value stored in the column's default-value slot. Then the value--defaulted or otherwise--
is normalized by passing it and the column object to the function stored in the
value-normalizer slot. You pass the column in case the value-normalizer function
needs to use some data associated with the column object. (You'll see an example of this in the
next section.) You should also normalize values passed in queries before comparing them with
values in the database.

Thus, the value-normalizer's responsibility is primarily to return a value that can be safely
and correctly passed to the equality-predicate and comparator functions. If the
value-normalizer can't figure out an appropriate value to return, it can signal an error.

The other reason to normalize values before you store them in the database is to save both
memory and CPU cycles. For instance, if you have a column that's going to contain string values
but the number of distinct strings that will be stored in the column is small--for instance, the
genre column in the MP3 database--you can save space and speed by using the
value-normalizer to intern the strings (translate all STRING= values to a single string
object). Thus, you'll need only as many strings as there are distinct values, regardless of how
many rows are in the table, and you can use EQL to compare column values rather than the
slower STRING=.1

Defining a Schema

Thus, to make an instance of table, you need to build a list of column objects. You could
build the list by hand, using LIST and MAKE-INSTANCE. But you'll soon notice that you're
frequently making a lot column objects with the same comparator and equality-predicate
combinations. This is because the combination of a comparator and equality predicate essentially
defines a column type. It'd be nice if there was a way to give those types names that would allow
you to say simply that a given column is a string column, rather than having to specify
STRING< as its comparator and STRING= as its equality predicate. One way is to define a
generic function, make-column, like this:

(defgeneric make-column (name type &optional default-value))

Now you can implement methods on this generic function that specialize on type with EQL
specializers and return column objects with the slots filled in with appropriate values. Here's
the generic function and methods that define column types for the type names string and
number:

(defmethod make-column (name (type (eql 'string)) &optional default-value)
 (make-instance
 'column
 :name name
 :comparator #'string<

 :equality-predicate #'string=
 :default-value default-value
 :value-normalizer #'not-nullable))

(defmethod make-column (name (type (eql 'number)) &optional default-value)
 (make-instance
 'column
 :name name
 :comparator #'<
 :equality-predicate #'=
 :default-value default-value))

The following function, not-nullable, used as the value-normalizer for string
columns, simply returns the value it's given unless the value is NIL, in which case it signals an
error:

(defun not-nullable (value column)
 (or value (error "Column ~a can't be null" (name column))))

This is important because STRING< and STRING= will signal an error if called on NIL; it's
better to catch bad values before they go into the table rather than when you try to use them.2

Another column type you'll need for the MP3 database is an interned-string whose values
are interned as discussed previously. Since you need a hash table in which to intern values, you
should define a subclass of column, interned-values-column, that adds a slot whose
value is the hash table you use to intern.

To implement the actual interning, you'll also need to provide an :initform for
value-normalizer of a function that interns the value in the column's
interned-values hash table. And because one of the main reasons to intern values is to
allow you to use EQL as the equality predicate, you should also add an :initform for the
equality-predicate of #'eql.

(defclass interned-values-column (column)
 ((interned-values
 :reader interned-values
 :initform (make-hash-table :test #'equal))
 (equality-predicate :initform #'eql)
 (value-normalizer :initform #'intern-for-column)))

(defun intern-for-column (value column)
 (let ((hash (interned-values column)))
 (or (gethash (not-nullable value column) hash)
 (setf (gethash value hash) value))))

You can then define a make-column method specialized on the name interned-string
that returns an instance of interned-values-column.

(defmethod make-column (name (type (eql 'interned-string)) &optional default-value)
 (make-instance
 'interned-values-column
 :name name
 :comparator #'string<
 :default-value default-value))

With these methods defined on make-column, you can now define a function,
make-schema, that builds a list of column objects from a list of column specifications
consisting of a column name, a column type name, and, optionally, a default value.

(defun make-schema (spec)
 (mapcar #'(lambda (column-spec) (apply #'make-column column-spec)) spec))

For instance, you can define the schema for the table you'll use to store data extracted from
MP3s like this:

(defparameter *mp3-schema*
 (make-schema
 '((:file string)
 (:genre interned-string "Unknown")
 (:artist interned-string "Unknown")
 (:album interned-string "Unknown")
 (:song string)
 (:track number 0)
 (:year number 0)
 (:id3-size number))))

To make an actual table for holding information about MP3s, you pass *mp3-schema* as the
:schema initarg to MAKE-INSTANCE.

(defparameter *mp3s* (make-instance 'table :schema *mp3-schema*))

Inserting Values

Now you're ready to define your first table operation, insert-row, which takes a plist of
names and values and a table and adds a row to the table containing the given values. The bulk
of the work is done in a helper function, normalize-row, that builds a plist with a defaulted,
normalized value for each column, using the values from names-and-values if available
and the default-value for the column if not.

(defun insert-row (names-and-values table)
 (vector-push-extend (normalize-row names-and-values (schema table)) (rows table)))

(defun normalize-row (names-and-values schema)
 (loop
 for column in schema
 for name = (name column)
 for value = (or (getf names-and-values name) (default-value column))
 collect name
 collect (normalize-for-column value column)))

It's worth defining a separate helper function, normalize-for-column, that takes a value
and a column object and returns the normalized value because you'll need to perform the same
normalization on query arguments.

(defun normalize-for-column (value column)
 (funcall (value-normalizer column) value column))

Now you're ready to combine this database code with code from previous chapters to build a
database of data extracted from MP3 files. You can define a function, file->row, that uses
read-id3 from the ID3v2 library to extract an ID3 tag from a file and turns it into a plist that
you can pass to insert-row.

(defun file->row (file)
 (let ((id3 (read-id3 file)))
 (list
 :file (namestring (truename file))
 :genre (translated-genre id3)
 :artist (artist id3)
 :album (album id3)
 :song (song id3)
 :track (parse-track (track id3))
 :year (parse-year (year id3))
 :id3-size (size id3))))

You don't have to worry about normalizing the values since insert-row takes care of that for
you. You do, however, have to convert the string values returned by the track and year into
numbers. The track number in an ID3 tag is sometimes stored as the ASCII representation of the
track number and sometimes as a number followed by a slash followed by the total number of
tracks on the album. Since you care only about the actual track number, you should use the
:end argument to PARSE-INTEGER to specify that it should parse only up to the slash, if any.3

(defun parse-track (track)
 (when track (parse-integer track :end (position #\/ track))))

(defun parse-year (year)
 (when year (parse-integer year)))

Finally, you can put all these functions together, along with walk-directory from the
portable pathnames library and mp3-p from the ID3v2 library, to define a function that loads an
MP3 database with data extracted from all the MP3 files it can find under a given directory.

(defun load-database (dir db)
 (let ((count 0))
 (walk-directory
 dir
 #'(lambda (file)
 (princ #\.)
 (incf count)
 (insert-row (file->row file) db))
 :test #'mp3-p)
 (format t "~&Loaded ~d files into database." count)))

Querying the Database

Once you've loaded your database with data, you'll need a way to query it. For the MP3
application you'll need a slightly more sophisticated query function than you wrote in Chapter 3.
This time around you want not only to be able to select rows matching particular criteria but also
to limit the results to particular columns, to limit the results to unique rows, and perhaps to sort
the rows by particular columns. In keeping with the spirit of relational database theory, the result
of a query will be a new table object containing the desired rows and columns.

The query function you'll write, select, is loosely modeled on the SELECT statement from
Structured Query Language (SQL). It'll take five keyword parameters: :from, :columns,
:where, :distinct, and :order-by. The :from argument is the table object you want
to query. The :columns argument specifies which columns should be included in the result.
The value should be a list of column names, a single column name, or a T, the default, meaning
return all columns. The :where argument, if provided, should be a function that accepts a row
and returns true if it should be included in the results. In a moment, you'll write two functions,
matching and in, that return functions appropriate for use as :where arguments. The
:order-by argument, if supplied, should be a list of column names; the results will be sorted
by the named columns. As with the :columns argument, you can specify a single column
using just the name, which is equivalent to a one-item list containing the same name. Finally, the
:distinct argument is a boolean that says whether to eliminate duplicate rows from the
results. The default value for :distinct is NIL.

Here are some examples of using select:

;; Select all rows where the :artist column is "Green Day"
(select :from *mp3s* :where (matching *mp3s* :artist "Green Day"))

;; Select a sorted list of artists with songs in the genre "Rock"
(select
 :columns :artist
 :from *mp3s*
 :where (matching *mp3s* :genre "Rock")
 :distinct t
 :order-by :artist)

The implementation of select with its immediate helper functions looks like this:

(defun select (&key (columns t) from where distinct order-by)
 (let ((rows (rows from))
 (schema (schema from)))

 (when where
 (setf rows (restrict-rows rows where)))

 (unless (eql columns 't)
 (setf schema (extract-schema (mklist columns) schema))
 (setf rows (project-columns rows schema)))

 (when distinct
 (setf rows (distinct-rows rows schema)))

 (when order-by
 (setf rows (sorted-rows rows schema (mklist order-by))))

 (make-instance 'table :rows rows :schema schema)))

(defun mklist (thing)
 (if (listp thing) thing (list thing)))

(defun extract-schema (column-names schema)
 (loop for c in column-names collect (find-column c schema)))

(defun find-column (column-name schema)
 (or (find column-name schema :key #'name)
 (error "No column: ~a in schema: ~a" column-name schema)))

(defun restrict-rows (rows where)
 (remove-if-not where rows))

(defun project-columns (rows schema)
 (map 'vector (extractor schema) rows))

(defun distinct-rows (rows schema)
 (remove-duplicates rows :test (row-equality-tester schema)))

(defun sorted-rows (rows schema order-by)
 (sort (copy-seq rows) (row-comparator order-by schema)))

Of course, the really interesting part of select is how you implement the functions
extractor, row-equality-tester, and row-comparator.

As you can tell by how they're used, each of these functions must return a function. For instance,
project-columns uses the value returned by extractor as the function argument to MAP.
Since the purpose of project-columns is to return a set of rows with only certain column
values, you can infer that extractor returns a function that takes a row as an argument and
returns a new row containing only the columns specified in the schema it's passed. Here's how
you can implement it:

(defun extractor (schema)
 (let ((names (mapcar #'name schema)))
 #'(lambda (row)
 (loop for c in names collect c collect (getf row c)))))

Note how you can do the work of extracting the names from the schema outside the body of the
closure: since the closure will be called many times, you want it to do as little work as possible
each time it's called.

The functions row-equality-tester and row-comparator are implemented in a
similar way. To decide whether two rows are equivalent, you need to apply the appropriate
equality predicate for each column to the appropriate column values. Recall from Chapter 22
that the LOOP clause always will return NIL as soon as a pair of values fails their test or will
cause the LOOP to return T.

(defun row-equality-tester (schema)
 (let ((names (mapcar #'name schema))
 (tests (mapcar #'equality-predicate schema)))
 #'(lambda (a b)
 (loop for name in names and test in tests
 always (funcall test (getf a name) (getf b name))))))

Ordering two rows is a bit more complex. In Lisp, comparator functions return true if their first
argument should be sorted ahead of the second and NIL otherwise. Thus, a NIL can mean that
the second argument should be sorted ahead of the first or that they're equivalent. You want your
row comparators to behave the same way: return T if the first row should be sorted ahead of the
second and NIL otherwise.

Thus, to compare two rows, you should compare the values from the columns you're sorting by,
in order, using the appropriate comparator for each column. First call the comparator with the
value from the first row as the first argument. If the comparator returns true, that means the first
row should definitely be sorted ahead of the second row, so you can immediately return T.

But if the column comparator returns NIL, then you need to determine whether that's because
the second value should sort ahead of the first value or because they're equivalent. So you should
call the comparator again with the arguments reversed. If the comparator returns true this time, it
means the second column value sorts ahead of the first and thus the second row ahead of the first
row, so you can return NIL immediately. Otherwise, the column values are equivalent, and you
need to move onto the next column. If you get through all the columns without one row's value
ever winning the comparison, then the rows are equivalent, and you return NIL. A function that
implements this algorithm looks like this:

(defun row-comparator (column-names schema)
 (let ((comparators (mapcar #'comparator (extract-schema column-names schema))))
 #'(lambda (a b)
 (loop
 for name in column-names
 for comparator in comparators
 for a-value = (getf a name)
 for b-value = (getf b name)
 when (funcall comparator a-value b-value) return t
 when (funcall comparator b-value a-value) return nil
 finally (return nil)))))

Matching Functions

The :where argument to select can be any function that takes a row object and returns true
if it should be included in the results. In practice, however, you'll rarely need the full power of
arbitrary code to express query criteria. So you should provide two functions, matching and

in, that will build query functions that allow you to express the common kinds of queries and
that take care of using the proper equality predicates and value normalizers for each column.

The workhouse query-function constructor will be matching, which returns a function that
will match rows with specific column values. You saw how it was used in the earlier examples of
select. For instance, this call to matching:

(matching *mp3s* :artist "Green Day")

returns a function that matches rows whose :artist value is "Green Day". You can also pass
multiple names and values; the returned function matches when all the columns match. For
example, the following returns a closure that matches rows where the artist is "Green Day" and
the album is "American Idiot":

(matching *mp3s* :artist "Green Day" :album "American Idiot")

You have to pass matching the table object because it needs access to the table's schema in
order to get at the equality predicates and value normalizer functions for the columns it matches
against.

You build up the function returned by matching out of smaller functions, each responsible for
matching one column's value. To build these functions, you should define a function,
column-matcher, that takes a column object and an unnormalized value you want to match
and returns a function that accepts a single row and returns true when the value of the given
column in the row matches the normalized version of the given value.

(defun column-matcher (column value)
 (let ((name (name column))
 (predicate (equality-predicate column))
 (normalized (normalize-for-column value column)))
 #'(lambda (row) (funcall predicate (getf row name) normalized))))

You then build a list of column-matching functions for the names and values you care about with
the following function, column-matchers:

(defun column-matchers (schema names-and-values)
 (loop for (name value) on names-and-values by #'cddr
 when value collect
 (column-matcher (find-column name schema) value)))

Now you can implement matching. Again, note that you do as much work as possible outside
the closure in order to do it only once rather than once per row in the table.

(defun matching (table &rest names-and-values)
 "Build a where function that matches rows with the given column values."
 (let ((matchers (column-matchers (schema table) names-and-values)))
 #'(lambda (row)
 (every #'(lambda (matcher) (funcall matcher row)) matchers))))

This function is a bit of a twisty maze of closures, but it's worth contemplating for a moment to
get a flavor of the possibilities of programming with functions as first-class objects.

The job of matching is to return a function that will be invoked on each row in a table to
determine whether it should be included in the new table. So, matching returns a closure with
one parameter, row.

Now recall that the function EVERY takes a predicate function as its first argument and returns
true if, and only if, that function returns true each time it's applied to an element of the list
passed as EVERY's second argument. However, in this case, the list you pass to EVERY is itself a
list of functions, the column matchers. What you want to know is that every column matcher,
when invoked on the row you're currently testing, returns true. So, as the predicate argument to
EVERY, you pass yet another closure that FUNCALLs the column matcher, passing it the row.

Another matching function that you'll occasionally find useful is in, which returns a function
that matches rows where a particular column is in a given set of values. You'll define in to take
two arguments: a column name and a table that contains the values you want to match. For
instance, suppose you wanted to find all the songs in the MP3 database that have names the same
as a song performed by the Dixie Chicks. You can write that where clause using in and a
subselect like this:4

(select
 :columns '(:artist :song)
 :from *mp3s*
 :where (in :song
 (select
 :columns :song
 :from *mp3s*
 :where (matching *mp3s* :artist "Dixie Chicks"))))

Although the queries are more complex, the definition of in is much simpler than that of
matching.

(defun in (column-name table)
 (let ((test (equality-predicate (find-column column-name (schema table))))
 (values (map 'list #'(lambda (r) (getf r column-name)) (rows table))))
 #'(lambda (row)
 (member (getf row column-name) values :test test))))

Getting at the Results

Since select returns another table, you need to think a bit about how you want to get at the
individual row and column values in a table. If you're sure you'll never want to change the way
you represent the data in a table, you can just make the structure of a table part of the API--that
table has a slot rows that's a vector of plists--and use all the normal Common Lisp functions
for manipulating vectors and plists to get at the values in the table. But that representation is
really an internal detail that you might want to change. Also, you don't necessarily want other
code manipulating the data structures directly--for instance, you don't want anyone to use SETF
to put an unnormalized column value into a row. So it might be a good idea to define a few
abstractions that provide the operations you want to support. Then if you decide to change the
internal representation later, you'll need to change only the implementation of these functions
and macros. And while Common Lisp doesn't enable you to absolutely prevent folks from
getting at "internal" data, by providing an official API you at least make it clear where the
boundary is.

Probably the most common thing you'll need to do with the results of a query is to iterate over
the individual rows and extract specific column values. So you need to provide a way to do both
those things without touching the rows vector directly or using GETF to get at the column
values within a row.

For now these operations are trivial to implement; they're merely wrappers around the code
you'd write if you didn't have these abstractions. You can provide two ways to iterate over the
rows of a table: a macro do-rows, which provides a basic looping construct, and a function
map-rows, which builds a list containing the results of applying a function to each row in the
table.5

(defmacro do-rows ((row table) &body body)
 `(loop for ,row across (rows ,table) do ,@body))

(defun map-rows (fn table)
 (loop for row across (rows table) collect (funcall fn row)))

To get at individual column values within a row, you should provide a function,
column-value, that takes a row and a column name and returns the appropriate value. Again,
it's a trivial wrapper around the code you'd write otherwise. But if you change the internal
representation of a table later, users of column-value needn't be any the wiser.

(defun column-value (row column-name)
 (getf row column-name))

While column-value is a sufficient abstraction for getting at column values, you'll often want
to get at the values of multiple columns at once. So you can provide a bit of syntactic sugar, a
macro, with-column-values, that binds a set of variables to the values extracted from a
row using the corresponding keyword names. Thus, instead of writing this:

 (do-rows (row table)
 (let ((song (column-value row :song))
 (artist (column-value row :artist))
 (album (column-value row :album)))
 (format t "~a by ~a from ~a~%" song artist album)))

you can simply write the following:

(do-rows (row table)
 (with-column-values (song artist album) row
 (format t "~a by ~a from ~a~%" song artist album)))

Again, the actual implementation isn't complicated if you use the once-only macro from
Chapter 8.

(defmacro with-column-values ((&rest vars) row &body body)
 (once-only (row)
 `(let ,(column-bindings vars row) ,@body)))

(defun column-bindings (vars row)
 (loop for v in vars collect `(,v (column-value ,row ,(as-keyword v)))))

(defun as-keyword (symbol)
 (intern (symbol-name symbol) :keyword))

Finally, you should provide abstractions for getting at the number of rows in a table and for
accessing a specific row by numeric index.

(defun table-size (table)
 (length (rows table)))

(defun nth-row (n table)
 (aref (rows table) n))

Other Database Operations

Finally, you'll implement a few other database operations that you'll need in Chapter 29. The first
two are analogs of the SQL DELETE statement. The function delete-rows is used to delete
rows from a table that match particular criteria. Like select, it takes :from and :where
keyword arguments. Unlike select, it doesn't return a new table--it actually modifies the table
passed as the :from argument.

(defun delete-rows (&key from where)
 (loop
 with rows = (rows from)
 with store-idx = 0
 for read-idx from 0
 for row across rows
 do (setf (aref rows read-idx) nil)
 unless (funcall where row) do
 (setf (aref rows store-idx) row)
 (incf store-idx)
 finally (setf (fill-pointer rows) store-idx)))

In the interest of efficiency, you might want to provide a separate function for deleting all the
rows from a table.

(defun delete-all-rows (table)
 (setf (rows table) (make-rows *default-table-size*)))

The remaining table operations don't really map to normal relational database operations but will
be useful in the MP3 browser application. The first is a function to sort the rows of a table in
place.

(defun sort-rows (table &rest column-names)
 (setf (rows table) (sort (rows table) (row-comparator column-names (schema table))))
 table)

On the flip side, in the MP3 browser application, you'll need a function that shuffles a table's
rows in place using the function nshuffle-vector from Chapter 23.

(defun shuffle-table (table)
 (nshuffle-vector (rows table))
 table)

And finally, again for the purposes of the MP3 browser, you should provide a function that
selects n random rows, returning the results as a new table. It also uses nshuffle-vector
along with a version of random-sample based on Algorithm S from Donald Knuth's The Art
of Computer Programming, Volume 2: Seminumerical Algorithms, Third Edition (Addison-
Wesley, 1998) that I discussed in Chapter 20.

(defun random-selection (table n)
 (make-instance
 'table
 :schema (schema table)
 :rows (nshuffle-vector (random-sample (rows table) n))))

(defun random-sample (vector n)
 "Based on Algorithm S from Knuth. TAOCP, vol. 2. p. 142"
 (loop with selected = (make-array n :fill-pointer 0)
 for idx from 0
 do
 (loop
 with to-select = (- n (length selected))
 for remaining = (- (length vector) idx)
 while (>= (* remaining (random 1.0)) to-select)
 do (incf idx))
 (vector-push (aref vector idx) selected)
 when (= (length selected) n) return selected))

With this code you'll be ready, in Chapter 29, to build a Web interface for browsing a collection
of MP3 files. But before you get to that, you need to implement the part of the server that
streams MP3s using the Shoutcast protocol, which is the topic of the next chapter.

1The general theory behind interning objects is that if you're going to compare a particular value many times, it's worth it to pay
the cost of interning it. The value-normalizer runs once when you insert a value into the table and, as you'll see, once at the
beginning of each query. Since a query can involve invoking the equality-predicate once per row in the table, the
amortized cost of interning the values will quickly approach zero.

2As always, the first causality of concise exposition in programming books is proper error handling; in production code you'd
probably want to define your own error type, such as the following, and signal it instead:

(error 'illegal-column-value :value value :column column)

Then you'd want to think about where you can add restarts that might be able to recover from this condition. And, finally, in any
given application you could establish condition handlers that would choose from among those restarts.

3If any MP3 files have malformed data in the track and year frames, PARSE-INTEGER could signal an error. One way to deal
with that is to pass PARSE-INTEGER the :junk-allowed argument of T, which will cause it to ignore any non-numeric junk
following the number and to return NIL if no number can be found in the string. Or, if you want practice at using the condition
system, you could define an error and signal it from these functions when the data is malformed and also establish a few restarts to
allow these functions to recover.

4This query will also return all the songs performed by the Dixie Chicks. If you want to limit it to songs by artists other than the
Dixie Chicks, you need a more complex :where function. Since the :where argument can be any function, it's certainly
possible; you could remove the Dixie Chicks' own songs with this query:

(let* ((dixie-chicks (matching *mp3s* :artist "Dixie Chicks"))
 (same-song (in :song (select :columns :song :from *mp3s* :where dixie-chicks)))
 (query #'(lambda (row) (and (not (funcall dixie-chicks row)) (funcall same-song row)
 (select :columns '(:artist :song) :from *mp3s* :where query))

This obviously isn't quite as convenient. If you were going to write an application that needed to do lots of complex queries, you
might want to consider coming up with a more expressive query language.

5The version of LOOP implemented at M.I.T. before Common Lisp was standardized included a mechanism for extending the
LOOP grammar to support iteration over new data structures. Some Common Lisp implementations that inherited their LOOP
implementation from that code base may still support that facility, which would make do-rows and map-rows less necessary.

