
Copyright © 2003-2005, Peter Seibel

25. Practical: An ID3 Parser
With a library for parsing binary data, you're ready to write some
code for reading and writing an
actual binary format, that of ID3
tags. ID3 tags are used to embed metadata in MP3 audio files.
Dealing
with ID3 tags will be a good test of the binary data library because
the ID3 format is a
true real-world format--a mix of engineering
trade-offs and idiosyncratic design choices that
does, whatever else
might be said about it, get the job done. In case you missed the
file-sharing
revolution, here's a quick overview of what ID3 tags are
and how they relate to MP3 files.

MP3, also known as MPEG Audio Layer 3, is a format for storing
compressed audio data,
designed by researchers at Fraunhofer IIS and
standardized by the Moving Picture Experts
Group, a joint committee
of the International Organization for Standardization (ISO) and the
International Electrotechnical Commission (IEC). However, the MP3
format, by itself, defines
only how to store audio data. That's fine
as long as all your MP3 files are managed by a single
application
that can store metadata externally and keep track of which metadata
goes with which
files. However, when people started passing around
individual MP3 files on the Internet, via file-
sharing systems such
as Napster, they soon discovered they needed a way to embed metadata
in
the MP3 files themselves.

Because the MP3 standard was already codified and a fair bit of
software and hardware had
already been written that knew how to
decode the existing MP3 format, any scheme for
embedding information
in an MP3 file would have to be invisible to MP3 decoders. Enter ID3.

The original ID3 format, invented by programmer Eric Kemp, consisted
of 128 bytes stuck on
the end of an MP3 file where it'd be ignored by
most MP3 software. It consisted of four 30-
character fields, one each
for the song title, the album title, the artist name, and a comment;
a
four-byte year field; and a one-byte genre code. Kemp provided
standard meanings for the first
80 genre codes. Nullsoft, the makers
of Winamp, a popular MP3 player, later supplemented this
list with
another 60 or so genres.

This format was easy to parse but obviously quite limited. It had no
way to encode names longer
than 30 characters; it was limited to 256
genres, and the meaning of the genre codes had to be
agreed upon by
all users of ID3-aware software. There wasn't even a way to encode
the CD track
number of a particular MP3 file until another
programmer, Michael Mutschler, proposed
embedding the track number in
the comment field, separated from the rest of the comment by a
null
byte, so existing ID3 software, which tended to read up to the first
null in each of the text
fields, would ignore it. Kemp's version is
now called ID3v1, and Mutschler's is ID3v1.1.

Limited as they were, the version 1 proposals were at least a partial
solution to the metadata
problem, so they were adopted by many MP3
ripping programs (which had to put the ID3 tag
into the MP3 files)
and MP3 players (which would extract the information in the ID3 tag
to
display to the user).1

By 1998, however, the limitations were really becoming annoying, and
a new group, led by
Martin Nilsson, started work on a completely new
tagging scheme, which came to be called
ID3v2. The ID3v2 format is
extremely flexible, allowing for many kinds of information to be

included, with almost no length limitations. It also takes advantage
of certain details of the MP3
format to allow ID3v2 tags to be placed
at the beginning of an MP3 file.

ID3v2 tags are, however, more of a challenge to parse than version 1
tags. In this chapter, you'll
use the binary data parsing library
from the previous chapter to develop code that can read and
write
ID3v2 tags. Or at least you'll make a reasonable start--where ID3v1
was too simple, ID3v2
is baroque to the point of being completely
overengineered. Implementing every nook and
cranny of the
specification, especially if you want to support all three versions
that have been
specified, would be a fair bit of work. However, you
can ignore many of the features in those
specifications since they're
rarely used "in the wild." For starters, you can ignore, for now, a
whole version, 2.4, since it has not been widely adopted and mostly
just adds more needless
flexibility compared to version 2.3. I'll
focus on versions 2.2 and 2.3 because they're both widely
used and
are different enough from each other to keep things interesting.

Structure of an ID3v2 Tag

Before you can start cutting code, you'll need to be familiar with
the overall structure of an
ID3v2 tag. A tag starts with a header
containing information about the tag as a whole. The first
three
bytes of the header encode the string "ID3" in ISO-8859-1 characters.
In other words,
they're the bytes 73, 68, and 51. Then comes two
bytes that encode the major version and
revision of the ID3
specification to which the tag purports to conform. They're followed
by a
single byte whose individual bits are treated as flags. The
meanings of the individual flags
depend on the version of the spec.
Some of the flags can affect the way the rest of the tag is
parsed.
The "major version" is actually used to record the minor version of
the spec, while the
"revision" is the subminor version of the spec.
Thus, the "major version" field for a tag
conforming to the 2.3.0
spec is 3. The revision field is always zero since each new ID3v2
spec
has bumped the minor version, leaving the subminor version at
zero. The value stored in the
major version field of the tag has, as
you'll see, a dramatic effect on how you'll parse the rest of
the
tag.

The last field in the tag header is an integer, encoded in four bytes
but using only seven bits from
each byte, that gives the total size
of the tag, not counting the header. In version 2.3 tags, the
header
may be followed by several extended header fields; otherwise, the
remainder of the tag
data is divided into frames. Different types
of frames store different kinds of information, from
simple textual
information, such as the song name, to embedded images. Each frame
starts with
a header containing a string identifier and a size. In
version 2.3, the frame header also contains
two bytes worth of flags
and, depending on the value of one the flags, an optional one-byte
code
indicating how the rest of the frame is encrypted.

Frames are a perfect example of a tagged data structure--to know how
to parse the body of a
frame, you need to read the header and use the
identifier to determine what kind of frame you're
reading.

The ID3 tag header contains no direct indication of how many frames
are in a tag--the tag header
tells you how big the tag is, but since
many frames are variable length, the only way to find out
how many
frames the tag contains is to read the frame data. Also, the size
given in the tag header
may be larger than the actual number of bytes
of frame data; the frames may be followed with
enough null bytes to
pad the tag out to the specified size. This makes it possible for tag
editors to
modify a tag without having to rewrite the whole MP3
file.2

So, the main issues you have to deal with are reading the ID3 header;
determining whether
you're reading a version 2.2 or 2.3 tag; and
reading the frame data, stopping either when you've
read the complete
tag or when you've hit the padding bytes.

Defining a Package

Like the other libraries you've developed so far, the code you'll
write in this chapter is worth
putting in its own package. You'll
need to refer to functions from both the binary data and
pathname
libraries developed in Chapters 24 and 15 and will also want to
export the names of
the functions that make up the public API to this
package. The following package definition does
all that:

(defpackage :com.gigamonkeys.id3v2

 (:use :common-lisp

 :com.gigamonkeys.binary-data

 :com.gigamonkeys.pathnames)

 (:export
 :read-id3

 :mp3-p

 :id3-p

 :album

 :composer

 :genre

 :encoding-program

 :artist
 :part-of-set

 :track

 :song

 :year

 :size

 :translated-genre))

As usual, you can, and probably should, change the
com.gigamonkeys part of the package
name to your own domain.

Integer Types

You can start by defining binary types for reading and writing
several of the primitive types used
by the ID3 format, various sizes
of unsigned integers, and four kinds of strings.

ID3 uses unsigned integers encoded in one, two, three, and four
bytes. If you first write a general
unsigned-integer binary
type that takes the number of bytes to read as an argument, you
can
then use the short form of define-binary-type to define the
specific types. The
general unsigned-integer type looks like
this:

(define-binary-type unsigned-integer (bytes)

 (:reader (in)

 (loop with value = 0

 for low-bit downfrom (* 8 (1- bytes)) to 0 by 8 do

 (setf (ldb (byte 8 low-bit) value) (read-byte in))

 finally (return value)))

 (:writer (out value)

 (loop for low-bit downfrom (* 8 (1- bytes)) to 0 by 8

 do (write-byte (ldb (byte 8 low-bit) value) out))))

Now you can use the short form of define-binary-type to define
one type for each size of
integer used in the ID3 format like this:

(define-binary-type u1 () (unsigned-integer :bytes 1))

(define-binary-type u2 () (unsigned-integer :bytes 2))

(define-binary-type u3 () (unsigned-integer :bytes 3))

(define-binary-type u4 () (unsigned-integer :bytes 4))

Another type you'll need to be able to read and write is the 28-bit
value used in the header. This
size is encoded using 28 bits rather
than a multiple of 8, such as 32 bits, because an ID3 tag can't

contain the byte #xff followed by a byte with the top 3 bits
on because that pattern has a
special meaning to MP3 decoders. None
of the other fields in the ID3 header could possibly
contain such a
byte sequence, but if you encoded the tag size as a regular
unsigned-integer, it might. To avoid that possibility, the
size is encoded using only the
bottom seven bits of each byte, with
the top bit always zero.3

Thus, it can be read and written a lot like an
unsigned-integer except the size of the byte
specifier you
pass to LDB should be seven rather than eight. This similarity
suggests that if you
add a parameter, bits-per-byte, to the
existing unsigned-integer binary type, you
could then define a
new type, id3-tag-size, using a short-form
define-binary-type.
The new version of unsigned-integer
is just like the old version except with
bits-per-byte used
everywhere the old version hardwired the number eight. It looks like
this:

(define-binary-type unsigned-integer (bytes bits-per-byte)

 (:reader (in)

 (loop with value = 0

 for low-bit downfrom (* bits-per-byte (1- bytes)) to 0 by bits-per-byte do

 (setf (ldb (byte bits-per-byte low-bit) value) (read-byte in))

 finally (return value)))

 (:writer (out value)

 (loop for low-bit downfrom (* bits-per-byte (1- bytes)) to 0 by bits-per-byte

 do (write-byte (ldb (byte bits-per-byte low-bit) value) out))))

The definition of id3-tag-size is then trivial.

(define-binary-type id3-tag-size () (unsigned-integer :bytes 4 :bits-per-byte 7))

You'll also have to change the definitions of u1 through
u4 to specify eight bits per byte like
this:

(define-binary-type u1 () (unsigned-integer :bytes 1 :bits-per-byte 8))

(define-binary-type u2 () (unsigned-integer :bytes 2 :bits-per-byte 8))

(define-binary-type u3 () (unsigned-integer :bytes 3 :bits-per-byte 8))

(define-binary-type u4 () (unsigned-integer :bytes 4 :bits-per-byte 8))

String Types

The other kinds of primitive types that are ubiquitous in the ID3
format are strings. In the
previous chapter I discussed some of the
issues you have to consider when dealing with strings
in binary files,
such as the difference between character codes and character
encodings.

ID3 uses two different character codes, ISO 8859-1 and Unicode. ISO
8859-1, also known as
Latin-1, is an eight-bit character code that
extends ASCII with characters used by the languages
of Western
Europe. In other words, the code points from 0-127 map to the same
characters in
ASCII and ISO 8859-1, but ISO 8859-1 also provides
mappings for code points up to 255.
Unicode is a character code
designed to provide a code point for virtually every character of all
the world's languages. Unicode is a superset of ISO 8859-1 in the
same way that ISO 8859-1 is a
superset of ASCII--the code points from
0-255 map to the same characters in both ISO 8859-1
and Unicode.
(Thus, Unicode is also a superset of ASCII.)

Since ISO 8859-1 is an eight-bit character code, it's encoded using
one byte per character. For
Unicode strings, ID3 uses the UCS-2
encoding with a leading byte order mark.4 I'll discuss what
a byte order
mark is in a moment.

Reading and writing these two encodings isn't a problem--it's just a
question of reading and
writing unsigned integers in various formats,
and you just finished writing the code to do that.

The trick is how
you translate those numeric values to Lisp character objects.

The Lisp implementation you're using probably uses either Unicode or
ISO 8859-1 as its internal
character code. And since all the values
from 0-255 map to the same characters in both ISO
8859-1 and Unicode,
you can use Lisp's CODE-CHAR and CHAR-CODE functions to
translate
those values in both character codes. However, if your Lisp
supports only ISO 8859-1, then
you'll be able to represent only the
first 255 Unicode characters as Lisp characters. In other
words, in
such a Lisp implementation, if you try to process an ID3 tag that
uses Unicode strings
and if any of those strings contain characters
with code points higher than 255, you'll get an error
when you try to
translate the code point to a Lisp character. For now I'll assume
either you're
using a Unicode-based Lisp or you won't process any
files containing characters outside the ISO
8859-1 range.

The other issue with encoding strings is how to know how many bytes
to interpret as character
data. ID3 uses two strategies I mentioned
in the previous chapter--some strings are terminated
with a null
character, while other strings occur in positions where you can
determine the number
of bytes to read, either because the string at
that position is always the same length or because
the string is at
the end of a composite structure whose overall size you know. Note,
however, that
the number of bytes isn't necessarily the same as the
number of characters in the string.

Putting all these variations together, the ID3 format uses four ways
to read and write strings--two
characters crossed with two ways of
delimiting the string data.

Obviously, much of the logic of reading and writing strings will be
quite similar. So, you can
start by defining two binary types, one
for reading strings of a specific length (in characters) and
another
for reading terminated strings. Both types take advantage of that the
type argument to
read-value and write-value is just
another piece of data; you can make the type of
character to read a
parameter of these types. This is a technique you'll use quite a few
times in
this chapter.

(define-binary-type generic-string (length character-type)

 (:reader (in)

 (let ((string (make-string length)))

 (dotimes (i length)

 (setf (char string i) (read-value character-type in)))

 string))

 (:writer (out string)

 (dotimes (i length)

 (write-value character-type out (char string i)))))

(define-binary-type generic-terminated-string (terminator character-type)

 (:reader (in)

 (with-output-to-string (s)

 (loop for char = (read-value character-type in)

 until (char= char terminator) do (write-char char s))))

 (:writer (out string)

 (loop for char across string

 do (write-value character-type out char)

 finally (write-value character-type out terminator))))

With these types available, there's not much to reading ISO 8859-1
strings. Because the
character-type argument you pass to
read-value and write-value of a
generic-string
must be the name of a binary type, you need to define an
iso-8859-1-char binary type. This also gives you a good place
to put a bit of sanity
checking on the code points of characters you
read and write.

(define-binary-type iso-8859-1-char ()

 (:reader (in)

 (let ((code (read-byte in)))

 (or (code-char code)

 (error "Character code ~d not supported" code))))

 (:writer (out char)

 (let ((code (char-code char)))

 (if (<= 0 code #xff)

 (write-byte code out)

 (error "Illegal character for iso-8859-1 encoding: character: ~c with code: ~d" char

Now defining the ISO 8859-1 string types is trivial using the short
form of
define-binary-type as follows:

(define-binary-type iso-8859-1-string (length)

 (generic-string :length length :character-type 'iso-8859-1-char))

(define-binary-type iso-8859-1-terminated-string (terminator)

 (generic-terminated-string :terminator terminator :character-type 'iso-8859-1-char))

Reading UCS-2 strings is only slightly more complex. The complexity
arises because you can
encode a UCS-2 code point in two ways: most
significant byte first (big-endian) or least
significant byte first
(little-endian). UCS-2 strings therefore start with two extra bytes,
called the
byte order mark, made up of the numeric value
#xfeff encoded in either big-endian form or
little-endian
form. When reading a UCS-2 string, you read the byte order mark and
then,
depending on its value, read either big-endian or little-endian
characters. Thus, you'll need two
different UCS-2 character types.
But you need only one version of the sanity-checking code, so
you can
define a parameterized binary type like this:

(define-binary-type ucs-2-char (swap)

 (:reader (in)

 (let ((code (read-value 'u2 in)))

 (when swap (setf code (swap-bytes code)))

 (or (code-char code) (error "Character code ~d not supported" code))))

 (:writer (out char)

 (let ((code (char-code char)))

 (unless (<= 0 code #xffff)

 (error "Illegal character for ucs-2 encoding: ~c with char-code: ~d" char code))

 (when swap (setf code (swap-bytes code)))

 (write-value 'u2 out code))))

where the swap-bytes function can be defined as follows,
taking advantage of LDB being
SETFable and thus
ROTATEFable:

(defun swap-bytes (code)

 (assert (<= code #xffff))

 (rotatef (ldb (byte 8 0) code) (ldb (byte 8 8) code))

 code)

Using ucs-2-char, you can define two character types that will
be used as the
character-type arguments to the generic string
functions.

(define-binary-type ucs-2-char-big-endian () (ucs-2-char :swap nil))

(define-binary-type ucs-2-char-little-endian () (ucs-2-char :swap t))

Then you need a function that returns the name of the character type
to use based on the value of
the byte order mark.

(defun ucs-2-char-type (byte-order-mark)

 (ecase byte-order-mark

 (#xfeff 'ucs-2-char-big-endian)

 (#xfffe 'ucs-2-char-little-endian)))

Now you can define length- and terminator-delimited string types for
UCS-2-encoded strings
that read the byte order mark and use it to
determine which variant of UCS-2 character to pass as
the
character-type argument to read-value and
write-value. The only other
wrinkle is that you need to
translate the length argument, which is a number of bytes, to
the
number of characters to read, accounting for the byte order mark.

(define-binary-type ucs-2-string (length)

 (:reader (in)

 (let ((byte-order-mark (read-value 'u2 in))

 (characters (1- (/ length 2))))

 (read-value

 'generic-string in

 :length characters

 :character-type (ucs-2-char-type byte-order-mark))))

 (:writer (out string)

 (write-value 'u2 out #xfeff)

 (write-value

 'generic-string out string

 :length (length string)

 :character-type (ucs-2-char-type #xfeff))))

(define-binary-type ucs-2-terminated-string (terminator)

 (:reader (in)

 (let ((byte-order-mark (read-value 'u2 in)))

 (read-value

 'generic-terminated-string in

 :terminator terminator

 :character-type (ucs-2-char-type byte-order-mark))))

 (:writer (out string)

 (write-value 'u2 out #xfeff)

 (write-value

 'generic-terminated-string out string

 :terminator terminator

 :character-type (ucs-2-char-type #xfeff))))

ID3 Tag Header

With the basic primitive types done, you're ready to switch to a
high-level view and start
defining binary classes to represent first
the ID3 tag as a whole and then the individual frames.

If you turn first to the ID3v2.2 specification, you'll see that the
basic structure of the tag is this
header:

ID3/file identifier "ID3"

ID3 version $02 00

ID3 flags %xx000000

ID3 size 4 * %0xxxxxxx

followed by frame data and padding. Since you've already defined
binary types to read and write
all the fields in the header, defining
a class that can read the header of an ID3 tag is just a matter
of
putting them together.

(define-binary-class id3-tag ()

 ((identifier (iso-8859-1-string :length 3))

 (major-version u1)

 (revision u1)

 (flags u1)

 (size id3-tag-size)))

If you have some MP3 files lying around, you can test this much of
the code and also see what
version of ID3 tags your MP3s contain.
First you can write a function that reads an id3-tag,
as just
defined, from the beginning of a file. Be aware, however, that ID3
tags aren't required to
appear at the beginning of a file, though
these days they almost always do. To find an ID3 tag
elsewhere in a
file, you can scan the file looking for the sequence of bytes 73, 68,
51 (in other
words, the string "ID3").5 For now
you can probably get away with assuming the tags are the
first thing
in the file.

(defun read-id3 (file)

 (with-open-file (in file :element-type '(unsigned-byte 8))

 (read-value 'id3-tag in)))

On top of this function you can build a function that takes a
filename and prints the information
in the tag header along with the
name of the file.

(defun show-tag-header (file)

 (with-slots (identifier major-version revision flags size) (read-id3 file)

 (format t "~a ~d.~d ~8,'0b ~d bytes -- ~a~%"

 identifier major-version revision flags size (enough-namestring file))))

It prints output that looks like this:

ID3V2> (show-tag-header "/usr2/mp3/Kitka/Wintersongs/02 Byla Cesta.mp3")

ID3 2.0 00000000 2165 bytes -- Kitka/Wintersongs/02 Byla Cesta.mp3

NIL

Of course, to determine what versions of ID3 are most common in your
MP3 library, it'd be
handier to have a function that returns a
summary of all the MP3 files under a given directory.
You can write
one easily enough using the walk-directory function defined in
Chapter 15.
First define a helper function that tests whether a given
filename has an mp3 extension.

(defun mp3-p (file)

 (and

 (not (directory-pathname-p file))

 (string-equal "mp3" (pathname-type file))))

Then you can combine show-tag-header and mp3-p with
walk-directory to print a
summary of the ID3 header in each
file under a given directory.

(defun show-tag-headers (dir)

 (walk-directory dir #'show-tag-header :test #'mp3-p))

However, if you have a lot of MP3s, you may just want a count of how
many ID3 tags of each
version you have in your MP3 collection. To get
that information, you might write a function
like this:

(defun count-versions (dir)

 (let ((versions (mapcar #'(lambda (x) (cons x 0)) '(2 3 4))))

 (flet ((count-version (file)

 (incf (cdr (assoc (major-version (read-id3 file)) versions)))))

 (walk-directory dir #'count-version :test #'mp3-p))

 versions))

Another function you'll need in Chapter 29 is one that tests whether
a file actually starts with an
ID3 tag, which you can define like
this:

(defun id3-p (file)

 (with-open-file (in file :element-type '(unsigned-byte 8))

 (string= "ID3" (read-value 'iso-8859-1-string in :length 3))))

ID3 Frames

As I discussed earlier, the bulk of an ID3 tag is divided into
frames. Each frame has a structure
similar to that of the tag as a
whole. Each frame starts with a header indicating what kind of
frame
it is and the size of the frame in bytes. The structure of the frame
header changed slightly
between version 2.2 and version 2.3 of the
ID3 format, and eventually you'll have to deal with
both forms. To
start, you can focus on parsing version 2.2 frames.

The header of a 2.2 frame consists of three bytes that encode a
three-character ISO 8859-1 string
followed by a three-byte unsigned
integer, which specifies the size of the frame in bytes,
excluding
the six-byte header. The string identifies what type of frame it is,
which determines
how you parse the data following the size. This is
exactly the kind of situation for which you
defined the
define-tagged-binary-class macro. You can define a tagged
class that
reads the frame header and then dispatches to the
appropriate concrete class using a function that
maps IDs to a class
names.

(define-tagged-binary-class id3-frame ()

 ((id (iso-8859-1-string :length 3))

 (size u3))

 (:dispatch (find-frame-class id)))

Now you're ready to start implementing concrete frame classes.
However, the specification
defines quite a few--63 in version 2.2 and
even more in later specs. Even considering frame
types that share a
common structure to be equivalent, you'll still find 24 unique frame
types in
version 2.2. But only a few of these are used "in the wild."
So rather than immediately setting to
work defining classes for each
of the frame types, you can start by writing a generic frame class
that lets you read the frames in a tag without parsing the data
within the frames themselves. This
will give you a way to find out
what frames are actually present in the MP3s you want to
process.
You'll need this class eventually anyway because the specification
allows for
experimental frames that you'll need to be able to read
without parsing.

Since the size field of the frame header tells you exactly how many
bytes long the frame is, you
can define a generic-frame class
that extends id3-frame and adds a single field, data,
that will hold an array of bytes.

(define-binary-class generic-frame (id3-frame)

 ((data (raw-bytes :size size))))

The type of the data field, raw-bytes, just needs to hold an
array of bytes. You can define it
like this:

(define-binary-type raw-bytes (size)

 (:reader (in)

 (let ((buf (make-array size :element-type '(unsigned-byte 8))))

 (read-sequence buf in)

 buf))

 (:writer (out buf)

 (write-sequence buf out)))

For the time being, you'll want all frames to be read as
generic-frames, so you can define
the find-frame-class
function used in id3-frame's :dispatch expression to
always
return generic-frame, regardless of the frame's
id.

(defun find-frame-class (id)

 (declare (ignore id))

 'generic-frame)

Now you need to modify id3-tag so it'll read frames after the
header fields. There's only one
tricky bit to reading the frame data:
although the tag header tells you how many bytes long the
tag is,
that number includes the padding that can follow the frame data.
Since the tag header
doesn't tell you how many frames the tag
contains, the only way to tell when you've hit the
padding is to look
for a null byte where you'd expect a frame identifier.

To handle this, you can define a binary type, id3-frames, that
will be responsible for reading
the remainder of a tag, creating
frame objects to represent all the frames it finds, and then
skipping
over any padding. This type will take as a parameter the tag size,
which it can use to
avoid reading past the end of the tag. But the
reading code will also need to detect the beginning
of the padding
that can follow the tag's frame data. Rather than calling
read-value directly in
id3-frames :reader, you
should use a function read-frame, which you'll define to
return NIL when it detects padding, otherwise returning an
id3-frame object read using
read-value. Assuming you
define read-frame so it reads only one byte past the end of
the
last frame in order to detect the start of the padding, you can
define the id3-frames binary
type like this:

(define-binary-type id3-frames (tag-size)

 (:reader (in)

 (loop with to-read = tag-size

 while (plusp to-read)

 for frame = (read-frame in)

 while frame

 do (decf to-read (+ 6 (size frame)))

 collect frame

 finally (loop repeat (1- to-read) do (read-byte in))))

 (:writer (out frames)

 (loop with to-write = tag-size

 for frame in frames

 do (write-value 'id3-frame out frame)

 (decf to-write (+ 6 (size frame)))

 finally (loop repeat to-write do (write-byte 0 out)))))

You can use this type to add a frames slot to id3-tag.

(define-binary-class id3-tag ()

 ((identifier (iso-8859-1-string :length 3))

 (major-version u1)

 (revision u1)

 (flags u1)

 (size id3-tag-size)

 (frames (id3-frames :tag-size size))))

Detecting Tag Padding

Now all that remains is to implement read-frame. This is a bit
tricky since the code that
actually reads bytes from the stream is
several layers down from read-frame.

What you'd really like to do in read-frame is read one byte
and return NIL if it's a null and
otherwise read a frame with
read-value. Unfortunately, if you read the byte in
read-frame, then it won't be available to be read by
read-value.6

It turns out this is a perfect opportunity to use the condition
system--you can check for null bytes
in the low-level code that reads
from the stream and signal a condition when you read a null;
read-frame can then handle the condition by unwinding the
stack before more bytes are read.
In addition to turning out to be a
tidy solution to the problem of detecting the start of the tag's
padding, this is also an example of how you can use conditions for
purposes other than handling
errors.

You can start by defining a condition type to be signaled by the
low-level code and handled by
the high-level code. This condition
doesn't need any slots--you just need a distinct class of
condition
so you know no other code will be signaling or handling it.

(define-condition in-padding () ())

Next you need to define a binary type whose :reader reads a
given number of bytes, first
reading a single byte and signaling an
in-padding condition if the byte is null and otherwise
reading
the remaining bytes as an iso-8859-1-string and combining it
with the first byte
read.

(define-binary-type frame-id (length)

 (:reader (in)

 (let ((first-byte (read-byte in)))

 (when (= first-byte 0) (signal 'in-padding))

 (let ((rest (read-value 'iso-8859-1-string in :length (1- length))))

 (concatenate

 'string (string (code-char first-byte)) rest))))

 (:writer (out id)

 (write-value 'iso-8859-1-string out id :length length)))

If you redefine id3-frame to make the type of its id
slot frame-id instead of
iso-8859-1-string, the
condition will be signaled whenever id3-frame's
read-value method reads a null byte instead of the beginning
of a frame.

(define-tagged-binary-class id3-frame ()

 ((id (frame-id :length 3))

 (size u3))

 (:dispatch (find-frame-class id)))

Now all read-frame has to do is wrap a call to
read-value in a HANDLER-CASE that
handles the
in-padding condition by returning NIL.

(defun read-frame (in)

 (handler-case (read-value 'id3-frame in)

 (in-padding () nil)))

With read-frame defined, you can now read a complete version
2.2 ID3 tag, representing
frames with instances of
generic-frame. In the "What Frames Do You Actually Need?"
section, you'll do some experiments at the REPL to determine what
frame classes you need to
implement. But first let's add support for
version 2.3 ID3 tags.

Supporting Multiple Versions of ID3

Currently, id3-tag is defined using
define-binary-class, but if you want to support
multiple
versions of ID3, it makes more sense to use a
define-tagged-binary-class
that dispatches on the
major-version value. As it turns out, all versions of ID3v2
have the
same structure up to the size field. So, you can define a
tagged binary class like the following
that defines this basic
structure and then dispatches to the appropriate version-specific
subclass:

(define-tagged-binary-class id3-tag ()

 ((identifier (iso-8859-1-string :length 3))

 (major-version u1)

 (revision u1)

 (flags u1)

 (size id3-tag-size))

 (:dispatch

 (ecase major-version

 (2 'id3v2.2-tag)

 (3 'id3v2.3-tag))))

Version 2.2 and version 2.3 tags differ in two ways. First, the
header of a version 2.3 tag may be
extended with up to four optional
extended header fields, as determined by values in the flags
field.
Second, the frame format changed between version 2.2 and version 2.3,
which means
you'll have to use different classes to represent version
2.2 frames and the corresponding version
2.3 frames.

Since the new id3-tag class is based on the one you originally
wrote to represent version 2.2
tags, it's not surprising that the new
id3v2.2-tag class is trivial, inheriting most of its slots
from the new id3-tag class and adding the one missing slot,
frames. Because version 2.2
and version 2.3 tags use different
frame formats, you'll have to change the id3-frames type to
be
parameterized with the type of frame to read. For now, assume you'll
do that and add a
:frame-type argument to the
id3-frames type descriptor like this:

(define-binary-class id3v2.2-tag (id3-tag)

 ((frames (id3-frames :tag-size size :frame-type 'id3v2.2-frame))))

The id3v2.3-tag class is slightly more complex because of the
optional fields. The first
three of the four optional fields are
included when the sixth bit in flags is set. They're a four-
byte integer specifying the size of the extended header, two bytes
worth of flags, and another
four-byte integer specifying how many
bytes of padding are included in the tag.7 The fourth
optional field, included when
the fifteenth bit of the extended header flags is set, is a four-byte
cyclic redundancy check (CRC) of the rest of the tag.

The binary data library doesn't provide any special support for
optional fields in a binary class,
but it turns out that regular
parameterized binary types are sufficient. You can define a type

parameterized with the name of a type and a value that indicates
whether a value of that type
should actually be read or written.

(define-binary-type optional (type if)

 (:reader (in)

 (when if (read-value type in)))

 (:writer (out value)

 (when if (write-value type out value))))

Using if as the parameter name looks a bit strange in that
code, but it makes the optional
type descriptors quite
readable. For instance, here's the definition of id3v2.3-tag
using
optional slots:

(define-binary-class id3v2.3-tag (id3-tag)

 ((extended-header-size (optional :type 'u4 :if (extended-p flags)))

 (extra-flags (optional :type 'u2 :if (extended-p flags)))

 (padding-size (optional :type 'u4 :if (extended-p flags)))

 (crc (optional :type 'u4 :if (crc-p flags extra-flags)))

 (frames (id3-frames :tag-size size :frame-type 'id3v2.3-frame))))

where extended-p and crc-p are helper functions that
test the appropriate bit of the flags
value they're passed. To test
whether an individual bit of an integer is set, you can use
LOGBITP, another bit-twiddling function. It takes an index and
an integer and returns true if the
specified bit is set in the
integer.

(defun extended-p (flags) (logbitp 6 flags))

(defun crc-p (flags extra-flags)

 (and (extended-p flags) (logbitp 15 extra-flags)))

As in the version 2.2 tag class, the frames slot is defined to be of
type id3-frames, passing
the name of the frame type as a
parameter. You do, however, need to make a few small changes
to
id3-frames and read-frame to support the extra
frame-type parameter.

(define-binary-type id3-frames (tag-size frame-type)

 (:reader (in)

 (loop with to-read = tag-size

 while (plusp to-read)

 for frame = (read-frame frame-type in)

 while frame

 do (decf to-read (+ (frame-header-size frame) (size frame)))

 collect frame

 finally (loop repeat (1- to-read) do (read-byte in))))

 (:writer (out frames)

 (loop with to-write = tag-size

 for frame in frames

 do (write-value frame-type out frame)

 (decf to-write (+ (frame-header-size frame) (size frame)))

 finally (loop repeat to-write do (write-byte 0 out)))))

(defun read-frame (frame-type in)

 (handler-case (read-value frame-type in)

 (in-padding () nil)))

The changes are in the calls to read-frame and
write-value, where you need to pass the
frame-type
argument and, in computing the size of the frame, where you need to
use a
function frame-header-size instead of the literal value
6 since the frame header changed
size between version 2.2 and
version 2.3. Since the difference in the result of this function is
based on the class of the frame, it makes sense to define it as a
generic function like this:

(defgeneric frame-header-size (frame))

You'll define the necessary methods on that generic function in the
next section after you define
the new frame classes.

Versioned Frame Base Classes

Where before you defined a single base class for all frames, you'll
now have two classes,
id3v2.2-frame and id3v2.3-frame.
The id3v2.2-frame class will be essentially the
same as the
original id3-frame class.

(define-tagged-binary-class id3v2.2-frame ()

 ((id (frame-id :length 3))

 (size u3))

 (:dispatch (find-frame-class id)))

The id3v2.3-frame, on the other hand, requires more changes.
The frame identifier and size
fields were extended in version 2.3
from three to four bytes each, and two bytes worth of flags
were
added. Additionally, the frame, like the version 2.3 tag, can contain
optional fields,
controlled by the values of three of the frame's
flags.8 With those changes in
mind, you can
define the version 2.3 frame base class, along with
some helper functions, like this:

(define-tagged-binary-class id3v2.3-frame ()

 ((id (frame-id :length 4))

 (size u4)

 (flags u2)

 (decompressed-size (optional :type 'u4 :if (frame-compressed-p flags)))

 (encryption-scheme (optional :type 'u1 :if (frame-encrypted-p flags)))

 (grouping-identity (optional :type 'u1 :if (frame-grouped-p flags))))

 (:dispatch (find-frame-class id)))

(defun frame-compressed-p (flags) (logbitp 7 flags))

(defun frame-encrypted-p (flags) (logbitp 6 flags))

(defun frame-grouped-p (flags) (logbitp 5 flags))

With these two classes defined, you can now implement the methods on
the generic function
frame-header-size.

(defmethod frame-header-size ((frame id3v2.2-frame)) 6)

(defmethod frame-header-size ((frame id3v2.3-frame)) 10)

The optional fields in a version 2.3 frame aren't counted as part of
the header for this
computation since they're already included in the
value of the frame's size.

Versioned Concrete Frame Classes

In the original definition, generic-frame subclassed
id3-frame. But now id3-frame
has been replaced with the
two version-specific base classes, id3v2.2-frame and
id3v2.3-frame. So, you need to define two new versions of
generic-frame, one for
each base class. One way to define this
classes would be like this:

(define-binary-class generic-frame-v2.2 (id3v2.2-frame)

 ((data (raw-bytes :size size))))

(define-binary-class generic-frame-v2.3 (id3v2.3-frame)

 ((data (raw-bytes :size size))))

However, it's a bit annoying that these two classes are the same
except for their superclass. It's
not too bad in this case since
there's only one additional field. But if you take this approach for
other concrete frame classes, ones that have a more complex internal
structure that's identical
between the two ID3 versions, the
duplication will be more irksome.

Another approach, and the one you should actually use, is to define a
class generic-frame
as a mixin: a class intended to be
used as a superclass along with one of the version-specific base
classes to produce a concrete, version-specific frame class. The only
tricky bit about this
approach is that if generic-frame
doesn't extend either of the frame base classes, then you

can't refer
to the size slot in its definition. Instead, you must use the
current-binary-object function I discussed at the end of the
previous chapter to access
the object you're in the midst of reading
or writing and pass it to size. And you need to account
for
the difference in the number of bytes of the total frame size that
will be left over, in the case
of a version 2.3 frame, if any of the
optional fields are included in the frame. So, you should
define a
generic function data-bytes with methods that do the right
thing for both version
2.2 and version 2.3 frames.

(define-binary-class generic-frame ()

 ((data (raw-bytes :size (data-bytes (current-binary-object))))))

(defgeneric data-bytes (frame))

(defmethod data-bytes ((frame id3v2.2-frame))

 (size frame))

(defmethod data-bytes ((frame id3v2.3-frame))

 (let ((flags (flags frame)))

 (- (size frame)

 (if (frame-compressed-p flags) 4 0)

 (if (frame-encrypted-p flags) 1 0)

 (if (frame-grouped-p flags) 1 0))))

Then you can define concrete classes that extend one of the
version-specific base classes and
generic-frame to define
version-specific generic frame classes.

(define-binary-class generic-frame-v2.2 (id3v2.2-frame generic-frame) ())

(define-binary-class generic-frame-v2.3 (id3v2.3-frame generic-frame) ())

With these classes defined, you can redefine the
find-frame-class function to return the
right versioned class
based on the length of the identifier.

(defun find-frame-class (id)

 (ecase (length id)

 (3 'generic-frame-v2.2)

 (4 'generic-frame-v2.3)))

What Frames Do You Actually Need?

With the ability to read both version 2.2 and version 2.3 tags using
generic frames, you're ready
to start implementing classes to
represent the specific frames you care about. However, before
you
dive in, you should take a breather and figure out what frames you
actually care about since,
as I mentioned earlier, the ID3 spec
specifies many frames that are almost never used. Of course,
what
frames you care about depends on what kinds of applications you're
interested in writing. If
you're mostly interested in extracting
information from existing ID3 tags, then you need
implement only the
classes representing the frames containing the information you care
about.
On the other hand, if you want to write an ID3 tag editor, you
may need to support all the
frames.

Rather than guessing which frames will be most useful, you can use
the code you've already
written to poke around a bit at the REPL and
see what frames are actually used in your own
MP3s. To start, you
need an instance of id3-tag, which you can get with the
read-id3
function.

ID3V2> (read-id3 "/usr2/mp3/Kitka/Wintersongs/02 Byla Cesta.mp3")

#<ID3V2.2-TAG @ #x727b2912>

Since you'll want to play with this object a bit, you should save it
in a variable.

ID3V2> (defparameter *id3* (read-id3 "/usr2/mp3/Kitka/Wintersongs/02 Byla Cesta.mp3"))

ID3

Now you can see, for example, how many frames it has.

ID3V2> (length (frames *id3*))

11

Not too many--let's take a look at what they are.

ID3V2> (frames *id3*)

(#<GENERIC-FRAME-V2.2 @ #x72dabdda> #<GENERIC-FRAME-V2.2 @ #x72dabec2>

 #<GENERIC-FRAME-V2.2 @ #x72dabfa2> #<GENERIC-FRAME-V2.2 @ #x72dac08a>

 #<GENERIC-FRAME-V2.2 @ #x72dac16a> #<GENERIC-FRAME-V2.2 @ #x72dac24a>

 #<GENERIC-FRAME-V2.2 @ #x72dac32a> #<GENERIC-FRAME-V2.2 @ #x72dac40a>

 #<GENERIC-FRAME-V2.2 @ #x72dac4f2> #<GENERIC-FRAME-V2.2 @ #x72dac632>

 #<GENERIC-FRAME-V2.2 @ #x72dac7b2>)

Okay, that's not too informative. What you really want to know are
what kinds of frames are in
there. In other words, you want to know
the ids of those frames, which you can get with a
simple
MAPCAR like this:

ID3V2> (mapcar #'id (frames *id3*))

("TT2" "TP1" "TAL" "TRK" "TPA" "TYE" "TCO" "TEN" "COM" "COM" "COM")

If you look up these identifiers in the ID3v2.2 spec, you'll discover
that all the frames with
identifiers starting with T are text
information frames and have a similar structure. And COM is
the
identifier for comment frames, which have a structure similar to that
of text information
frames. The particular text information frames
identified here turn out to be the frames for
representing the song
title, artist, album, track, part of set, year, genre, and encoding
program.

Of course, this is just one MP3 file. Maybe other frames are used in
other files. It's easy enough
to discover. First define a function
that combines the previous MAPCAR expression with a call to
read-id3 and wraps the whole thing in a DELETE-DUPLICATES
to keep things tidy. You'll
have to use a :test argument of
#'string= to DELETE-DUPLICATES to specify that you
want
two elements considered the same if they're the same string.

(defun frame-types (file)

 (delete-duplicates (mapcar #'id (frames (read-id3 file))) :test #'string=))

This should give the same answer except with only one of each
identifier when passed the same
filename.

ID3V2> (frame-types "/usr2/mp3/Kitka/Wintersongs/02 Byla Cesta.mp3")

("TT2" "TP1" "TAL" "TRK" "TPA" "TYE" "TCO" "TEN" "COM")

Then you can use Chapter 15's walk-directory function along
with mp3-p to find every
MP3 file under a directory and
combine the results of calling frame-types on each file.
Recall that NUNION is the recycling version of the UNION
function; since frame-types
makes a new list for each file,
this is safe.

(defun frame-types-in-dir (dir)

 (let ((ids ()))

 (flet ((collect (file)

 (setf ids (nunion ids (frame-types file) :test #'string=))))

 (walk-directory dir #'collect :test #'mp3-p))

 ids))

Now pass it the name of a directory, and it'll tell you the set of
identifiers used in all the MP3
files under that directory. It may
take a few seconds depending how many MP3 files you have,
but you'll
probably get something similar to this:

ID3V2> (frame-types-in-dir "/usr2/mp3/")

("TCON" "COMM" "TRCK" "TIT2" "TPE1" "TALB" "TCP" "TT2" "TP1" "TCM"

 "TAL" "TRK" "TPA" "TYE" "TCO" "TEN" "COM")

The four-letter identifiers are the version 2.3 equivalents of the
version 2.2 identifiers I discussed
previously. Since the information
stored in those frames is exactly the information you'll need in
Chapter 27, it makes sense to implement classes only for the frames
actually used, namely, text
information and comment frames, which
you'll do in the next two sections. If you decide later
that you want
to support other frame types, it's mostly a matter of translating the
ID3
specifications into the appropriate binary class definitions.

Text Information Frames

All text information frames consist of two fields: a single byte
indicating which string encoding
is used in the frame and a string
encoded in the remaining bytes of the frame. If the encoding
byte is
zero, the string is encoded in ISO 8859-1; if the encoding is one,
the string is a UCS-2
string.

You've already defined binary types representing the four different
kinds of strings--two different
encodings each with two different
methods of delimiting the string. However,
define-binary-class
provides no direct facility for determining the type of value to read
based on other values in the object. Instead, you can define a binary
type that you pass the value
of the encoding byte and that then reads
or writes the appropriate kind of string.

As long as you're defining such a type, you can also define it to
take two parameters, :length
and :terminator, and pick
the right type of string based on which argument is supplied. To
implement this new type, you must first define some helper functions.
The first two return the
name of the appropriate string type based on
the encoding byte.

(defun non-terminated-type (encoding)

 (ecase encoding

 (0 'iso-8859-1-string)

 (1 'ucs-2-string)))

(defun terminated-type (encoding)

 (ecase encoding

 (0 'iso-8859-1-terminated-string)

 (1 'ucs-2-terminated-string)))

Then string-args uses the encoding byte, the length, and the
terminator to determine
several of the arguments to be passed to
read-value and write-value by the :reader
and
:writer of id3-encoded-string. One of the length and
terminator arguments to
string-args should always be NIL.

(defun string-args (encoding length terminator)

 (cond

 (length

 (values (non-terminated-type encoding) :length length))

 (terminator

 (values (terminated-type encoding) :terminator terminator))))

With those helpers, the definition of id3-encoded-string is
simple. One detail to note is
that the keyword--either :length
or :terminator--used in the call to read-value and
write-value is just another piece of data returned by
string-args. Although keywords
in arguments lists are almost
always literal keywords, they don't have to be.

(define-binary-type id3-encoded-string (encoding length terminator)

 (:reader (in)

 (multiple-value-bind (type keyword arg)

 (string-args encoding length terminator)

 (read-value type in keyword arg)))

 (:writer (out string)

 (multiple-value-bind (type keyword arg)

 (string-args encoding length terminator)

 (write-value type out string keyword arg))))

Now you can define a text-info mixin class, much the way you
defined generic-frame
earlier.

(define-binary-class text-info-frame ()

 ((encoding u1)

 (information (id3-encoded-string :encoding encoding :length (bytes-left 1)))))

As when you defined generic-frame, you need access to the size
of the frame, in this case
to compute the :length argument to
pass to id3-encoded-string. Because you'll need
to do a similar
computation in the next class you define, you can go ahead and define
a helper
function, bytes-left, that uses
current-binary-object to get at the size of the frame.

(defun bytes-left (bytes-read)

 (- (size (current-binary-object)) bytes-read))

Now, as you did with the generic-frame mixin, you can define
two version-specific
concrete classes with a minimum of duplicated
code.

(define-binary-class text-info-frame-v2.2 (id3v2.2-frame text-info-frame) ())

(define-binary-class text-info-frame-v2.3 (id3v2.3-frame text-info-frame) ())

To wire these classes in, you need to modify find-frame-class
to return the appropriate
class name when the ID indicates the frame
is a text information frame, namely, whenever the ID
starts with
T and isn't TXX or TXXX.

(defun find-frame-class (name)

 (cond

 ((and (char= (char name 0) #\T)

 (not (member name '("TXX" "TXXX") :test #'string=)))

 (ecase (length name)

 (3 'text-info-frame-v2.2)

 (4 'text-info-frame-v2.3)))

 (t

 (ecase (length name)

 (3 'generic-frame-v2.2)

 (4 'generic-frame-v2.3)))))

Comment Frames

Another commonly used frame type is the comment frame, which is like a
text information
frame with a few extra fields. Like a text
information frame, it starts with a single byte indicating
the string
encoding used in the frame. That byte is followed by a three-character
ISO 8859-1
string (regardless of the value of the string encoding
byte), which indicates what language the
comment is in using an
ISO-639-2 code, for example, "eng" for English or "jpn" for Japanese.
That field is followed by two strings encoded as indicated by the
first byte. The first is a null-
terminated string containing a
description of the comment. The second, which takes up the
remainder
of the frame, is the comment text itself.

(define-binary-class comment-frame ()

 ((encoding u1)

 (language (iso-8859-1-string :length 3))

 (description (id3-encoded-string :encoding encoding :terminator +null+))

 (text (id3-encoded-string

 :encoding encoding

 :length (bytes-left

 (+ 1 ; encoding

 3 ; language

 (encoded-string-length description encoding t)))))))

As in the definition of the text-info mixin, you can use
bytes-left to compute the size
of the final string. However,
since the description field is a variable-length string, the
number of bytes read prior to the start of text isn't a
constant. To make matters worse, the
number of bytes used to encode
description is dependent on the encoding. So, you should

define a helper function that returns the number of bytes used to
encode a string given the string,
the encoding code, and a boolean
indicating whether the string is terminated with an extra
character.

(defun encoded-string-length (string encoding terminated)

 (let ((characters (+ (length string) (if terminated 1 0))))

 (* characters (ecase encoding (0 1) (1 2)))))

And, as before, you can define the concrete version-specific comment
frame classes and wire
them into find-frame-class.

(define-binary-class comment-frame-v2.2 (id3v2.2-frame comment-frame) ())

(define-binary-class comment-frame-v2.3 (id3v2.3-frame comment-frame) ())

(defun find-frame-class (name)

 (cond

 ((and (char= (char name 0) #\T)

 (not (member name '("TXX" "TXXX") :test #'string=)))

 (ecase (length name)

 (3 'text-info-frame-v2.2)

 (4 'text-info-frame-v2.3)))

 ((string= name "COM") 'comment-frame-v2.2)

 ((string= name "COMM") 'comment-frame-v2.3)

 (t

 (ecase (length name)

 (3 'generic-frame-v2.2)

 (4 'generic-frame-v2.3)))))

Extracting Information from an ID3 Tag

Now that you have the basic ability to read and write ID3 tags, you
have a lot of directions you
could take this code. If you want to
develop a complete ID3 tag editor, you'll need to implement
specific
classes for all the frame types. You'd also need to define methods
for manipulating the
tag and frame objects in a consistent way (for
instance, if you change the value of a string in a
text-info-frame, you'll likely need to adjust the size); as
the code stands, there's nothing to
make sure that
happens.9

Or, if you just need to extract certain pieces of information about
an MP3 file from its ID3 tag--
as you will when you develop a
streaming MP3 server in Chapters 27, 28, and 29--you'll need to
write
functions that find the appropriate frames and extract the
information you want.

Finally, to make this production-quality code, you'd have to pore
over the ID3 specs and deal
with the details I skipped over in the
interest of space. In particular, some of the flags in both the
tag
and the frame can affect the way the contents of the tag or frame is
read; unless you write
some code that does the right thing when those
flags are set, there may be ID3 tags that this code
won't be able to
parse correctly. But the code from this chapter should be capable of
parsing
nearly all the MP3s you actually encounter.

For now you can finish with a few functions to extract individual
pieces of information from an
id3-tag. You'll need these
functions in Chapter 27 and probably in other code that uses this
library. They belong in this library because they depend on details
of the ID3 format that the
users of this library shouldn't have to
worry about.

To get, say, the name of the song of the MP3 from which an
id3-tag was extracted, you need
to find the ID3 frame with a
specific identifier and then extract the information field. And some
pieces of information, such as the genre, can require further
decoding. Luckily, all the frames
that contain the information you'll
care about are text information frames, so extracting a
particular
piece of information mostly boils down to using the right identifier
to look up the

appropriate frame. Of course, the ID3 authors decided
to change all the identifiers between
ID3v2.2 and ID3v2.3, so you'll
have to account for that.

Nothing too complex--you just need to figure out the right path to
get to the various pieces of
information. This is a perfect bit of
code to develop interactively, much the way you figured out
what
frame classes you needed to implement. To start, you need an
id3-tag object to play
with. Assuming you have an MP3 laying
around, you can use read-id3 like this:

ID3V2> (defparameter *id3* (read-id3 "Kitka/Wintersongs/02 Byla Cesta.mp3"))

ID3
ID3V2> *id3*

#<ID3V2.2-TAG @ #x73d04c1a>

replacing Kitka/Wintersongs/02 Byla Cesta.mp3 with the
filename of your MP3.
Once you have your id3-tag object, you
can start poking around. For instance, you can check
out the list of
frame objects with the frames function.

ID3V2> (frames *id3*)

(#<TEXT-INFO-FRAME-V2.2 @ #x73d04cca>

 #<TEXT-INFO-FRAME-V2.2 @ #x73d04dba>

 #<TEXT-INFO-FRAME-V2.2 @ #x73d04ea2>

 #<TEXT-INFO-FRAME-V2.2 @ #x73d04f9a>

 #<TEXT-INFO-FRAME-V2.2 @ #x73d05082>

 #<TEXT-INFO-FRAME-V2.2 @ #x73d0516a>

 #<TEXT-INFO-FRAME-V2.2 @ #x73d05252>

 #<TEXT-INFO-FRAME-V2.2 @ #x73d0533a>

 #<COMMENT-FRAME-V2.2 @ #x73d0543a>

 #<COMMENT-FRAME-V2.2 @ #x73d05612>

 #<COMMENT-FRAME-V2.2 @ #x73d0586a>)

Now suppose you want to extract the song title. It's probably in one
of those frames, but to find
it, you need to find the frame with the
"TT2" identifier. Well, you can check easily enough to see
if the tag
contains such a frame by extracting all the identifiers like this:

ID3V2> (mapcar #'id (frames *id3*))

("TT2" "TP1" "TAL" "TRK" "TPA" "TYE" "TCO" "TEN" "COM" "COM" "COM")

There it is, the first frame. However, there's no guarantee it'll
always be the first frame, so you
should probably look it up by
identifier rather than position. That's also straightforward using
the
FIND function.

ID3V2> (find "TT2" (frames *id3*) :test #'string= :key #'id)

#<TEXT-INFO-FRAME-V2.2 @ #x73d04cca>

Now, to get at the actual information in the frame, do this:

ID3V2> (information (find "TT2" (frames *id3*) :test #'string= :key #'id))

"Byla Cesta^@"

Whoops. That ^@ is how Emacs prints a null character. In a
maneuver reminiscent of the kludge
that turned ID3v1 into ID3v1.1,
the information slot of a text information frame, though not
officially a null-terminated string, can contain a null, and ID3
readers are supposed to ignore any
characters after the null. So, you
need a function that takes a string and returns the contents up to
the first null character, if any. That's easy enough using the
+null+ constant from the binary
data library.

(defun upto-null (string)

 (subseq string 0 (position +null+ string)))

Now you can get just the title.

ID3V2> (upto-null (information (find "TT2" (frames *id3*) :test #'string= :key #'id)))

"Byla Cesta"

You could just wrap that code in a function named song that
takes an id3-tag as an
argument, and you'd be done. However,
the only difference between this code and the code you'll
use to
extract the other pieces of information you'll need (such as the
album name, the artist, and
the genre) is the identifier. So, it's
better to split up the code a bit. For starters, you can write a
function that just finds a frame given an id3-tag and an
identifier like this:

(defun find-frame (id3 id)

 (find id (frames id3) :test #'string= :key #'id))

ID3V2> (find-frame *id3* "TT2")

#<TEXT-INFO-FRAME-V2.2 @ #x73d04cca>

Then the other bit of code, the part that extracts the information
from a text-info-frame,
can go in another function.

(defun get-text-info (id3 id)

 (let ((frame (find-frame id3 id)))

 (when frame (upto-null (information frame)))))

ID3V2> (get-text-info *id3* "TT2")

"Byla Cesta"

Now the definition of song is just a matter of passing the
right identifier.

(defun song (id3) (get-text-info id3 "TT2"))

ID3V2> (song *id3*)

"Byla Cesta"

However, this definition of song works only with version 2.2
tags since the identifier changed
from "TT2" to "TIT2" between
version 2.2 and version 2.3. And all the other tags changed too.
Since the user of this library shouldn't have to know about different
versions of the ID3 format to
do something as simple as get the song
title, you should probably handle those details for them.
A simple
way is to change find-frame to take not just a single
identifier but a list of
identifiers like this:

(defun find-frame (id3 ids)

 (find-if #'(lambda (x) (find (id x) ids :test #'string=)) (frames id3)))

Then change get-text-info slightly so it can take one or more
identifiers using a &rest
parameter.

(defun get-text-info (id3 &rest ids)

 (let ((frame (find-frame id3 ids)))

 (when frame (upto-null (information frame)))))

Then the change needed to allow song to support both version
2.2 and version 2.3 tags is just a
matter of adding the version 2.3
identifier.

(defun song (id3) (get-text-info id3 "TT2" "TIT2"))

Then you just need to look up the appropriate version 2.2 and version
2.3 frame identifiers for
any fields for which you want to provide an
accessor function. Here are the ones you'll need in
Chapter 27:

(defun album (id3) (get-text-info id3 "TAL" "TALB"))

(defun artist (id3) (get-text-info id3 "TP1" "TPE1"))

(defun track (id3) (get-text-info id3 "TRK" "TRCK"))

(defun year (id3) (get-text-info id3 "TYE" "TYER" "TDRC"))

(defun genre (id3) (get-text-info id3 "TCO" "TCON"))

The last wrinkle is that the way the genre is stored in the
TCO or TCON frames isn't always
human readable. Recall that in ID3v1,
genres were stored as a single byte that encoded a
particular genre
from a fixed list. Unfortunately, those codes live on in ID3v2--if
the text of the
genre frame is a number in parentheses, the number is
supposed to be interpreted as an ID3v1
genre code. But, again, users
of this library probably won't care about that ancient history. So,
you should provide a function that automatically translates the
genre. The following function
uses the genre function just
defined to extract the actual genre text and then checks whether it
starts with a left parenthesis, decoding the version 1 genre code
with a function you'll define in a
moment if it does:

(defun translated-genre (id3)

 (let ((genre (genre id3)))

 (if (and genre (char= #\((char genre 0)))

 (translate-v1-genre genre)

 genre)))

Since a version 1 genre code is effectively just an index into an
array of standard names, the
easiest way to implement
translate-v1-genre is to extract the number from the genre
string and use it as an index into an actual array.

(defun translate-v1-genre (genre)

 (aref *id3-v1-genres* (parse-integer genre :start 1 :junk-allowed t)))

Then all you need to do is to define the array of names. The
following array of names includes
the 80 official version 1 genres
plus the genres created by the authors of Winamp:

(defparameter *id3-v1-genres*

 #(

 ;; These are the official ID3v1 genres.

 "Blues" "Classic Rock" "Country" "Dance" "Disco" "Funk" "Grunge"

 "Hip-Hop" "Jazz" "Metal" "New Age" "Oldies" "Other" "Pop" "R&B" "Rap"

 "Reggae" "Rock" "Techno" "Industrial" "Alternative" "Ska"

 "Death Metal" "Pranks" "Soundtrack" "Euro-Techno" "Ambient"

 "Trip-Hop" "Vocal" "Jazz+Funk" "Fusion" "Trance" "Classical"

 "Instrumental" "Acid" "House" "Game" "Sound Clip" "Gospel" "Noise"

 "AlternRock" "Bass" "Soul" "Punk" "Space" "Meditative"

 "Instrumental Pop" "Instrumental Rock" "Ethnic" "Gothic" "Darkwave"

 "Techno-Industrial" "Electronic" "Pop-Folk" "Eurodance" "Dream"

 "Southern Rock" "Comedy" "Cult" "Gangsta" "Top 40" "Christian Rap"

 "Pop/Funk" "Jungle" "Native American" "Cabaret" "New Wave"

 "Psychadelic" "Rave" "Showtunes" "Trailer" "Lo-Fi" "Tribal"

 "Acid Punk" "Acid Jazz" "Polka" "Retro" "Musical" "Rock & Roll"

 "Hard Rock"

 ;; These were made up by the authors of Winamp but backported into

 ;; the ID3 spec.

 "Folk" "Folk-Rock" "National Folk" "Swing" "Fast Fusion"

 "Bebob" "Latin" "Revival" "Celtic" "Bluegrass" "Avantgarde"

 "Gothic Rock" "Progressive Rock" "Psychedelic Rock" "Symphonic Rock"

 "Slow Rock" "Big Band" "Chorus" "Easy Listening" "Acoustic" "Humour"

 "Speech" "Chanson" "Opera" "Chamber Music" "Sonata" "Symphony"

 "Booty Bass" "Primus" "Porn Groove" "Satire" "Slow Jam" "Club"

 "Tango" "Samba" "Folklore" "Ballad" "Power Ballad" "Rhythmic Soul"

 "Freestyle" "Duet" "Punk Rock" "Drum Solo" "A capella" "Euro-House"

 "Dance Hall"

 ;; These were also invented by the Winamp folks but ignored by the

 ;; ID3 authors.

 "Goa" "Drum & Bass" "Club-House" "Hardcore" "Terror" "Indie"

 "BritPop" "Negerpunk" "Polsk Punk" "Beat" "Christian Gangsta Rap"

 "Heavy Metal" "Black Metal" "Crossover" "Contemporary Christian"

 "Christian Rock" "Merengue" "Salsa" "Thrash Metal" "Anime" "Jpop"

 "Synthpop"))

Once again, it probably feels like you wrote a ton of code in this
chapter. But if you put it all in a
file, or if you download the
version from this book's Web site, you'll see it's just not that many
lines--most of the pain of writing this library stems from having to
understand the intricacies of
the ID3 format itself. Anyway, now you
have a major piece of what you'll turn into a streaming

MP3 server in
Chapters 27, 28, and 29. The other major bit of infrastructure you'll
need is a way
to write server-side Web software, the topic of the
next chapter.

1Ripping is the process by which a
song on an audio CD is converted to an MP3 file on your hard drive.
These days most ripping
software also automatically retrieves
information about the songs being ripped from online databases such
as Gracenote (n�e the
Compact Disc Database [CDDB]) or FreeDB, which
it then embeds in the MP3 files as ID3 tags.

2Almost all file systems provide the ability to overwrite
existing bytes of a file, but few, if any, provide a way to add or
remove
data at the beginning or middle of a file without having to
rewrite the rest of the file. Since ID3 tags are typically stored at
the
beginning of a file, to rewrite an ID3 tag without disturbing the
rest of the file you must replace the old tag with a new tag of
exactly the same length. By writing ID3 tags with a certain amount of
padding, you have a better chance of being able to do so--if
the new
tag has more data than the original tag, you use less padding, and if
it's shorter, you use more.

3The frame data following the ID3 header
could also potentially contain the illegal sequence. That's prevented
using a different
scheme that's turned on via one of the flags in the
tag header. The code in this chapter doesn't account for the
possibility that this
flag might be set; in practice it's rarely
used.

4In ID3v2.4, UCS-2
is replaced by the virtually identical UTF-16, and UTF-16BE and UTF-8
are added as additional encodings.

5The 2.4 version of the
ID3 format also supports placing a footer at the end of a tag, which
makes it easier to find a tag appended
to the end of a file.

6Character streams support two functions,
PEEK-CHAR and UNREAD-CHAR, either of which would be a
perfect solution to this
problem, but binary streams support no
equivalent functions.

7If a tag had an
extended header, you could use this value to determine where the
frame data should end. However, if the extended
header isn't used,
you'd have to use the old algorithm anyway, so it's not worth adding
code to do it another way.

8These flags, in addition to controlling whether the
optional fields are included, can affect the parsing of the rest of
the tag. In
particular, if the seventh bit of the flags is set, then
the actual frame data is compressed using the zlib algorithm, and if
the sixth bit
is set, the data is encrypted. In practice these
options are rarely, if ever, used, so you can get away with ignoring
them for now. But
that would be an area you'd have to address to make
this a production-quality ID3 library. One simple half solution would
be to
change find-frame-class to accept a second argument and
pass it the flags; if the frame is compressed or encrypted, you
could
instantiate a generic frame to hold the data.

9Ensuring that kind of interfield consistency would be a
fine application for :after methods on the accessor generic
functions.
For instance, you could define this :after method
to keep size in sync with the information string:

(defmethod (setf information) :after (value (frame text-info-frame))

 (declare (ignore value))

 (with-slots (encoding size information) frame

 (setf size (encoded-string-length information encoding nil))))

