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24. Practical: Parsing Binary Files
In this chapter I'll show you how to build a library that you can use
to write code for reading and
writing binary files. You'll use this
library in Chapter 25 to write a parser for ID3 tags, the
mechanism
used to store metadata such as artist and album names in MP3 files.
This library is
also an example of how to use macros to extend the
language with new constructs, turning it into
a special-purpose
language for solving a particular problem, in this case reading and
writing
binary data. Because you'll develop the library a bit at a
time, including several partial versions,
it may seem you're writing a
lot of code. But when all is said and done, the whole library is
fewer
than 150 lines of code, and the longest macro is only 20 lines long.

Binary Files
At a sufficiently low level of abstraction, all files are "binary" in
the sense that they just contain
a bunch of numbers encoded in binary
form. However, it's customary to distinguish between text
files,
where all the numbers can be interpreted as characters representing
human-readable text,
and binary files, which contain data that,
if interpreted as characters, yields nonprintable
characters.1

Binary file formats are usually designed to be both compact and
efficient to parse--that's their
main advantage over text-based
formats. To meet both those criteria, they're usually composed
of
on-disk structures that are easily mapped to data structures that a
program might use to
represent the same data in memory.2

The library will give you an easy way to define the mapping between
the on-disk structures
defined by a binary file format and in-memory
Lisp objects. Using the library, it should be easy
to write a program
that can read a binary file, translating it into Lisp objects that
you can
manipulate, and then write back out to another properly
formatted binary file.

Binary Format Basics

The starting point for reading and writing binary files is to open the
file for reading or writing
individual bytes. As I discussed in
Chapter 14, both OPEN and WITH-OPEN-FILE accept a
keyword
argument, :element-type, that controls the basic unit of
transfer for the stream.
When you're dealing with binary files,
you'll specify (unsigned-byte 8). An input stream
opened with
such an :element-type will return an integer between 0 and 255
each time it's



passed to READ-BYTE. Conversely, you can write
bytes to an (unsigned-byte 8) output
stream by passing numbers
between 0 and 255 to WRITE-BYTE.

Above the level of individual bytes, most binary formats use a
smallish number of primitive data
types--numbers encoded in various
ways, textual strings, bit fields, and so on--which are then
composed
into more complex structures. So your first task is to define a
framework for writing
code to read and write the primitive data types
used by a given binary format.

To take a simple example, suppose you're dealing with a binary format
that uses an unsigned 16-
bit integer as a primitive data type. To
read such an integer, you need to read the two bytes and
then combine
them into a single number by multiplying one byte by 256, a.k.a. 2^8,
and adding
it to the other byte. For instance, assuming the binary
format specifies that such 16-bit quantities
are stored in
big-endian3 form,
with the most significant byte first, you can read such a number
with
this function:

(defun read-u2 (in)

  (+ (* (read-byte in) 256) (read-byte in)))

However, Common Lisp provides a more convenient way to perform this
kind of bit twiddling.
The function LDB, whose name stands for
load byte, can be used to extract and set (with SETF)
any number
of contiguous bits from an integer.4 The number of bits and their position within the
integer is specified with a byte specifier created with the
BYTE function. BYTE takes two
arguments, the number of bits
to extract (or set) and the position of the rightmost bit where the
least significant bit is at position zero. LDB takes a byte
specifier and the integer from which to
extract the bits and returns
the positive integer represented by the extracted bits. Thus, you can
extract the least significant octet of an integer like this:

(ldb (byte 8 0) #xabcd) ==> 205 ; 205 is #xcd

To get the next octet, you'd use a byte specifier of (byte 8
8) like this:

(ldb (byte 8 8) #xabcd) ==> 171 ; 171 is #xab

You can use LDB with SETF to set the specified bits of an
integer stored in a SETFable place.

CL-USER> (defvar *num* 0)

*NUM*

CL-USER> (setf (ldb (byte 8 0) *num*) 128)

128

CL-USER> *num*

128

CL-USER> (setf (ldb (byte 8 8) *num*) 255)

255

CL-USER> *num*

65408

Thus, you can also write read-u2 like this:5

(defun read-u2 (in)

  (let ((u2 0))

    (setf (ldb (byte 8 8) u2) (read-byte in))




    (setf (ldb (byte 8 0) u2) (read-byte in))

    u2))

To write a number out as a 16-bit integer, you need to extract the
individual 8-bit bytes and write
them one at a time. To extract the
individual bytes, you just need to use LDB with the same byte
specifiers.

(defun write-u2 (out value)

  (write-byte (ldb (byte 8 8) value) out)

  (write-byte (ldb (byte 8 0) value) out))

Of course, you can also encode integers in many other ways--with
different numbers of bytes,
with different endianness, and in signed
and unsigned format.

Strings in Binary Files

Textual strings are another kind of primitive data type you'll find
in many binary formats. When
you read files one byte at a time, you
can't read and write strings directly--you need to decode
and encode
them one byte at a time, just as you do with binary-encoded numbers.
And just as
you can encode an integer in several ways, you can encode
a string in many ways. To start with,
the binary format must specify
how individual characters are encoded.

To translate bytes to characters, you need to know both what
character code and what character
encoding you're using. A
character code defines a mapping from positive integers to
characters.
Each number in the mapping is called a code point.
For instance, ASCII is a character code that
maps the numbers from
0-127 to particular characters used in the Latin alphabet. A
character
encoding, on the other hand, defines how the code points
are represented as a sequence of bytes
in a byte-oriented medium such
as a file. For codes that use eight or fewer bits, such as ASCII
and
ISO-8859-1, the encoding is trivial--each numeric value is encoded as
a single byte.

Nearly as straightforward are pure double-byte encodings, such as
UCS-2, which map between
16-bit values and characters. The only
reason double-byte encodings can be more complex than
single-byte
encodings is that you may also need to know whether the 16-bit values
are supposed
to be encoded in big-endian or little-endian format.

Variable-width encodings use different numbers of octets for
different numeric values, making
them more complex but allowing them
to be more compact in many cases. For instance, UTF-8,
an encoding
designed for use with the Unicode character code, uses a single octet
to encode the
values 0-127 while using up to four octets to encode
values up to 1,114,111.6

Since the code points from 0-127 map to the same characters in
Unicode as they do in ASCII, a
UTF-8 encoding of text consisting only
of characters also in ASCII is the same as the ASCII
encoding. On the
other hand, texts consisting mostly of characters requiring four
bytes in UTF-8
could be more compactly encoded in a straight
double-byte encoding.



Common Lisp provides two functions for translating between numeric
character codes and
character objects: CODE-CHAR, which takes an
numeric code and returns as a character, and
CHAR-CODE, which
takes a character and returns its numeric code. The language standard
doesn't specify what character encoding an implementation must use,
so there's no guarantee you
can represent every character that can
possibly be encoded in a given file format as a Lisp
character.
However, almost all contemporary Common Lisp implementations use
ASCII, ISO-
8859-1, or Unicode as their native character code. Because
Unicode is a superset ofISO-8859-1,
which is in turn a superset of
ASCII, if you're using a Unicode Lisp, CODE-CHAR and
CHAR-CODE can be used directly for translating any of those
three character codes.7

In addition to specifying a character encoding, a string encoding
must also specify how to
encode the length of the string. Three
techniques are typically used in binary file formats.

The simplest is to not encode it but to let it be implicit in the
position of the string in some larger
structure: a particular element
of a file may always be a string of a certain length, or a string may
be the last element of a variable-length data structure whose overall
size determines how many
bytes are left to read as string data. Both
these techniques are used in ID3 tags, as you'll see in
the next
chapter.

The other two techniques can be used to encode variable-length
strings without relying on
context. One is to encode the length of
the string followed by the character data--the parser reads
an
integer value (in some specified integer format) and then reads that
number of characters.
Another is to write the character data followed
by a delimiter that can't appear in the string such
as a null
character.

The different representations have different advantages and
disadvantages, but when you're
dealing with already specified binary
formats, you won't have any control over which encoding
is used.
However, none of the encodings is particularly more difficult to read
and write than any
other. Here, as an example, is a function that
reads a null-terminated ASCII string, assuming
your Lisp
implementation uses ASCII or one of its supersets such as ISO-8859-1
or full Unicode
as its native character encoding:

(defconstant +null+ (code-char 0))



(defun read-null-terminated-ascii (in)

  (with-output-to-string (s)

    (loop for char = (code-char (read-byte in))

          until (char= char +null+) do (write-char char s))))

The WITH-OUTPUT-TO-STRING macro, which I mentioned in Chapter 14,
is an easy way to
build up a string when you don't know how long it'll
be. It creates a STRING-STREAM and
binds it to the variable name
specified, s in this case. All characters written to the stream
are
collected into a string, which is then returned as the value of
the WITH-OUTPUT-TO-STRING
form.



To write a string back out, you just need to translate the characters
back to numeric values that
can be written with WRITE-BYTE and
then write the null terminator after the string contents.

(defun write-null-terminated-ascii (string out)

  (loop for char across string

        do (write-byte (char-code char) out))

  (write-byte (char-code +null+) out))

As these examples show, the main intellectual challenge--such as it
is--of reading and writing
primitive elements of binary files is
understanding how exactly to interpret the bytes that appear
in a
file and to map them to Lisp data types. If a binary file format is
well specified, this should
be a straightforward proposition.
Actually writing functions to read and write a particular
encoding
is, as they say, a simple matter of programming.

Now you can turn to the issue of reading and writing more complex
on-disk structures and how
to map them to Lisp objects.

Composite Structures

Since binary formats are usually used to represent data in a way that
makes it easy to map to in-
memory data structures, it should come as
no surprise that composite on-disk structures are
usually defined in
ways similar to the way programming languages define in-memory
structures.
Usually a composite on-disk structure will consist of a
number of named parts, each of which is
itself either a primitive
type such as a number or a string, another composite structure, or
possibly a collection of such values.

For instance, an ID3 tag defined in the 2.2 version of the
specification consists of a header made
up of a three-character
ISO-8859-1 string, which is always "ID3"; two one-byte unsigned
integers that specify the major version and revision of the
specification; eight bits worth of
boolean flags; and four bytes that
encode the size of the tag in an encoding particular to the ID3
specification. Following the header is a list of frames, each of
which has its own internal
structure. After the frames are as many
null bytes as are necessary to pad the tag out to the size
specified
in the header.

If you look at the world through the lens of object orientation,
composite structures look a lot
like classes. For instance, you could
write a class to represent an ID3 tag.

(defclass id3-tag ()

  ((identifier    :initarg :identifier    :accessor identifier)

   (major-version :initarg :major-version :accessor major-version)

   (revision      :initarg :revision      :accessor revision)

   (flags         :initarg :flags         :accessor flags)

   (size          :initarg :size          :accessor size)

   (frames        :initarg :frames        :accessor frames)))

An instance of this class would make a perfect repository to hold the
data needed to represent an
ID3 tag. You could then write functions
to read and write instances of this class. For example,



assuming the
existence of certain other functions for reading the appropriate
primitive data
types, a read-id3-tag function might look like
this:

(defun read-id3-tag (in)

  (let ((tag (make-instance 'id3-tag)))

    (with-slots (identifier major-version revision flags size frames) tag

      (setf identifier    (read-iso-8859-1-string in :length 3))

      (setf major-version (read-u1 in))

      (setf revision      (read-u1 in))

      (setf flags         (read-u1 in))

      (setf size          (read-id3-encoded-size in))

      (setf frames        (read-id3-frames in :tag-size size)))

    tag))

The write-id3-tag function would be structured similarly--you'd
use the appropriate
write-* functions to write out the values
stored in the slots of the id3-tag object.

It's not hard to see how you could write the appropriate classes to
represent all the composite
data structures in a specification along
with read-foo and write-foo functions for each
class and
for necessary primitive types. But it's also easy to tell that all the
reading and writing
functions are going to be pretty similar,
differing only in the specifics of what types they read
and the names
of the slots they store them in. It's particularly irksome when you
consider that in
the ID3 specification it takes about four lines of
text to specify the structure of an ID3 tag, while
you've already
written eighteen lines of code and haven't even written
write-id3-tag yet.

What you'd really like is a way to describe the structure of
something like an ID3 tag in a form
that's as compressed as the
specification's pseudocode yet that can also be expanded into code
that defines the id3-tag class and the functions that
translate between bytes on disk and
instances of the class. Sounds
like a job for a macro.

Designing the Macros

Since you already have a rough idea what code your macros will need
to generate, the next step,
according to the process for writing a
macro I outlined in Chapter 8, is to switch perspectives
and think
about what a call to the macro should look like. Since the goal is to
be able to write
something as compressed as the pseudocode in the ID3
specification, you can start there. The
header of an ID3 tag is
specified like this:

ID3/file identifier      "ID3"

ID3 version              $02 00

ID3 flags                %xx000000

ID3 size             4 * %0xxxxxxx

In the notation of the specification, this means the "file
identifier" slot of an ID3 tag is the string
"ID3" in ISO-8859-1
encoding. The version consists of two bytes, the first of which--for
this
version of the specification--has the value 2 and the second of
which--again for this version of
the specification--is 0. The flags
slot is eight bits, of which all but the first two are 0, and the
size
consists of four bytes, each of which has a 0 in the most
significant bit.



Some information isn't captured by this pseudocode. For instance,
exactly how the four bytes
that encode the size are to be interpreted
is described in a few lines of prose. Likewise, the spec
describes in
prose how the frame and subsequent padding is stored after this
header. But most of
what you need to know to be able to write code to
read and write an ID3 tag is specified by this
pseudocode. Thus, you
ought to be able to write an s-expression version of this pseudocode
and
have it expanded into the class and function definitions you'd
otherwise have to write by hand--
something, perhaps, like this:

(define-binary-class id3-tag

  ((file-identifier (iso-8859-1-string :length 3))

   (major-version   u1)

   (revision        u1)

   (flags           u1)

   (size            id3-tag-size)

   (frames          (id3-frames :tag-size size))))

The basic idea is that this form defines a class id3-tag
similar to the way you could with
DEFCLASS, but instead of
specifying things such as :initarg and :accessors, each
slot
specification consists of the name of the
slot--file-identifier, major-version, and so
on--and
information about how that slot is represented on disk. Since this is
just a bit of
fantasizing, you don't have to worry about exactly how
the macro define-binary-class
will know what to do with
expressions such as (iso-8859-1-string :length 3), u1,
id3-tag-size, and (id3-frames :tag-size size); as long
as each expression
contains the information necessary to know how to
read and write a particular data encoding,
you should be okay.

Making the Dream a Reality

Okay, enough fantasizing about good-looking code; now you need to get
to work writing
define-binary-class--writing the code that
will turn that concise expression of what an
ID3 tag looks like into
code that can represent one in memory, read one off disk, and write
it
back out.

To start with, you should define a package for this library. Here's
the package file that comes
with the version you can download from
the book's Web site:

(in-package :cl-user)



(defpackage :com.gigamonkeys.binary-data

  (:use :common-lisp :com.gigamonkeys.macro-utilities)

  (:export :define-binary-class

           :define-tagged-binary-class

           :define-binary-type

           :read-value

           :write-value

           :*in-progress-objects*

           :parent-of-type

           :current-binary-object

           :+null+))



The COM.GIGAMONKEYS.MACRO-UTILITIES package contains the
with-gensyms and
once-only macros from Chapter 8.

Since you already have a handwritten version of the code you want to
generate, it shouldn't be
too hard to write such a macro. Just take
it in small pieces, starting with a version of
define-binary-class that generates just the DEFCLASS
form.

If you look back at the define-binary-class form, you'll see
that it takes two arguments,
the name id3-tag and a list of
slot specifiers, each of which is itself a two-item list. From
those
pieces you need to build the appropriate DEFCLASS form. Clearly,
the biggest difference
between the define-binary-class form
and a proper DEFCLASS form is in the slot
specifiers. A single
slot specifier from define-binary-class looks something like
this:

(major-version u1)

But that's not a legal slot specifier for a DEFCLASS. Instead,
you need something like this:

(major-version :initarg :major-version :accessor major-version)

Easy enough. First define a simple function to translate a symbol to
the corresponding keyword
symbol.

(defun as-keyword (sym) (intern (string sym) :keyword))

Now define a function that takes a define-binary-class slot
specifier and returns a
DEFCLASS slot specifier.

(defun slot->defclass-slot (spec)

  (let ((name (first spec)))

    `(,name :initarg ,(as-keyword name) :accessor ,name)))

You can test this function at the REPL after switching to your new
package with a call to
IN-PACKAGE.

BINARY-DATA> (slot->defclass-slot '(major-version u1))

(MAJOR-VERSION :INITARG :MAJOR-VERSION :ACCESSOR MAJOR-VERSION)

Looks good. Now the first version of define-binary-class is
trivial.

(defmacro define-binary-class (name slots)

  `(defclass ,name ()

     ,(mapcar #'slot->defclass-slot slots)))

This is simple template-style macro--define-binary-class
generates a DEFCLASS form
by interpolating the name of the class
and a list of slot specifiers constructed by applying
slot->defclass-slot to each element of the list of slots
specifiers from the
define-binary-class form.

To see exactly what code this macro generates, you can evaluate this
expression at the REPL.



(macroexpand-1 '(define-binary-class id3-tag

  ((identifier      (iso-8859-1-string :length 3))

   (major-version   u1)

   (revision        u1)

   (flags           u1)

   (size            id3-tag-size)

   (frames          (id3-frames :tag-size size)))))

The result, slightly reformatted here for better readability, should
look familiar since it's exactly
the class definition you wrote by
hand earlier:

(defclass id3-tag ()

  ((identifier      :initarg :identifier    :accessor identifier)

   (major-version   :initarg :major-version :accessor major-version)

   (revision        :initarg :revision      :accessor revision)

   (flags           :initarg :flags         :accessor flags)

   (size            :initarg :size          :accessor size)

   (frames          :initarg :frames        :accessor frames)))

Reading Binary Objects

Next you need to make define-binary-class also generate a
function that can read an
instance of the new class. Looking back at
the read-id3-tag function you wrote before, this
seems a bit
trickier, as the read-id3-tag wasn't quite so regular--to read
each slot's value,
you had to call a different function. Not to
mention, the name of the function, read-id3-tag,
while derived
from the name of the class you're defining, isn't one of the
arguments to
define-binary-class and thus isn't available to
be interpolated into a template the way
the class name was.

You could deal with both of those problems by devising and following a
naming convention so
the macro can figure out the name of the function
to call based on the name of the type in the
slot specifier. However,
this would require define-binary-class to generate the name
read-id3-tag, which is possible but a bad idea. Macros that
create global definitions should
generally use only names passed to
them by their callers; macros that generate names under the
covers can
cause hard-to-predict--and hard-to-debug--name conflicts when the
generated names
happen to be the same as names used
elsewhere.8

You can avoid both these inconveniences by noticing that all the
functions that read a particular
type of value have the same
fundamental purpose, to read a value of a specific type from a
stream. Speaking colloquially, you might say they're all instances of
a single generic operation.
And the colloquial use of the word
generic should lead you directly to the solution to your
problem:
instead of defining a bunch of independent functions, all with
different names, you can
define a single generic function,
read-value, with methods specialized to read different types
of values.

That is, instead of defining functions read-iso-8859-1-string
and read-u1, you can
define read-value as a generic
function taking two required arguments, a type and a stream,
and
possibly some keyword arguments.



(defgeneric read-value (type stream &key)

  (:documentation "Read a value of the given type from the stream."))

By specifying &key without any actual keyword parameters, you
allow different methods to
define their own &key parameters
without requiring them to do so. This does mean every
method
specialized on read-value will have to include either
&key or an &rest parameter
in its parameter list to be
compatible with the generic function.

Then you'll define methods that use EQL specializers to
specialize the type argument on the
name of the type you want to
read.

(defmethod read-value ((type (eql 'iso-8859-1-string)) in &key length) ...)



(defmethod read-value ((type (eql 'u1)) in &key) ...)

Then you can make define-binary-class generate a
read-value method specialized
on the type name id3-tag,
and that method can be implemented in terms of calls to
read-value with the appropriate slot types as the first
argument. The code you want to
generate is going to look like this:

(defmethod read-value ((type (eql 'id3-tag)) in &key)

  (let ((object (make-instance 'id3-tag)))

    (with-slots (identifier major-version revision flags size frames) object
      (setf identifier    (read-value 'iso-8859-1-string in :length 3))

      (setf major-version (read-value 'u1 in))

      (setf revision      (read-value 'u1 in))

      (setf flags         (read-value 'u1 in))

      (setf size          (read-value 'id3-encoded-size in))

      (setf frames        (read-value 'id3-frames in :tag-size size)))

    object))

So, just as you needed a function to translate a
define-binary-class slot specifier to a
DEFCLASS slot
specifier in order to generate the DEFCLASS form, now you need a
function
that takes a define-binary-class slot specifier and
generates the appropriate SETF form,
that is, something that
takes this:

(identifier (iso-8859-1-string :length 3))

and returns this:

(setf identifier (read-value 'iso-8859-1-string in :length 3))

However, there's a difference between this code and the DEFCLASS
slot specifier: it includes a
reference to a variable in--the
method parameter from the read-value method--that wasn't
derived from the slot specifier. It doesn't have to be called
in, but whatever name you use has to
be the same as the one
used in the method's parameter list and in the other calls to
read-value. For now you can dodge the issue of where that name
comes from by defining
slot->read-value to take a second
argument of the name of the stream variable.

(defun slot->read-value (spec stream)

  (destructuring-bind (name (type &rest args)) (normalize-slot-spec spec)

    `(setf ,name (read-value ',type ,stream ,@args))))



The function normalize-slot-spec normalizes the second element
of the slot specifier,
converting a symbol like u1 to the list
(u1) so the DESTRUCTURING-BIND can parse it. It
looks like
this:

(defun normalize-slot-spec (spec)

  (list (first spec) (mklist (second spec))))



(defun mklist (x) (if (listp x) x (list x)))

You can test slot->read-value with each type of slot
specifier.

BINARY-DATA> (slot->read-value '(major-version u1) 'stream)

(SETF MAJOR-VERSION (READ-VALUE 'U1 STREAM))

BINARY-DATA> (slot->read-value '(identifier (iso-8859-1-string :length 3)) 'stream)

(SETF IDENTIFIER (READ-VALUE 'ISO-8859-1-STRING STREAM :LENGTH 3))

With these functions you're ready to add read-value to
define-binary-class. If you
take the handwritten
read-value method and strip out anything that's tied to a
particular
class, you're left with this skeleton:

(defmethod read-value ((type (eql ...)) stream &key)

  (let ((object (make-instance ...)))

    (with-slots (...) object

      ...

    object)))

All you need to do is add this skeleton to the
define-binary-class template, replacing
ellipses with code
that fills in the skeleton with the appropriate names and code.
You'll also want
to replace the variables type, stream,
and object with gensymed names to avoid potential
conflicts
with slot names,9 which you can do with the
with-gensyms macro from Chapter 8.

Also, because a macro must expand into a single form, you need to wrap
some form around the
DEFCLASS and DEFMETHOD. PROGN is
the customary form to use for macros that expand into
multiple
definitions because of the special treatment it gets from the file
compiler when
appearing at the top level of a file, as I discussed in
Chapter 20.

So, you can change define-binary-class as follows:

(defmacro define-binary-class (name slots)

  (with-gensyms (typevar objectvar streamvar)

    `(progn

       (defclass ,name ()

         ,(mapcar #'slot->defclass-slot slots))



       (defmethod read-value ((,typevar (eql ',name)) ,streamvar &key)

         (let ((,objectvar (make-instance ',name)))

           (with-slots ,(mapcar #'first slots) ,objectvar

             ,@(mapcar #'(lambda (x) (slot->read-value x streamvar)) slots))
           ,objectvar)))))

Writing Binary Objects

Generating code to write out an instance of a binary class will
proceed similarly. First you can
define a write-value generic
function.



(defgeneric write-value (type stream value &key)

  (:documentation "Write a value as the given type to the stream."))

Then you define a helper function that translates a
define-binary-class slot specifier
into code that writes out
the slot using write-value. As with the
slot->read-value
function, this helper function needs to take
the name of the stream variable as an argument.

(defun slot->write-value (spec stream)

  (destructuring-bind (name (type &rest args)) (normalize-slot-spec spec)

    `(write-value ',type ,stream ,name ,@args)))

Now you can add a write-value template to the
define-binary-class macro.

(defmacro define-binary-class (name slots)

  (with-gensyms (typevar objectvar streamvar)

    `(progn

       (defclass ,name ()

         ,(mapcar #'slot->defclass-slot slots))



       (defmethod read-value ((,typevar (eql ',name)) ,streamvar &key)

         (let ((,objectvar (make-instance ',name)))

           (with-slots ,(mapcar #'first slots) ,objectvar

             ,@(mapcar #'(lambda (x) (slot->read-value x streamvar)) slots))
           ,objectvar))



       (defmethod write-value ((,typevar (eql ',name)) ,streamvar ,objectvar &key)

         (with-slots ,(mapcar #'first slots) ,objectvar

           ,@(mapcar #'(lambda (x) (slot->write-value x streamvar)) slots))))))

Adding Inheritance and Tagged Structures

While this version of define-binary-class will handle
stand-alone structures, binary file
formats often define on-disk
structures that would be natural to model with subclasses and
superclasses. So you might want to extend define-binary-class
to support inheritance.

A related technique used in many binary formats is to have several
on-disk structures whose
exact type can be determined only by reading
some data that indicates how to parse the
following bytes. For
instance, the frames that make up the bulk of an ID3 tag all share a
common
header structure consisting of a string identifier and a
length. To read a frame, you need to read
the identifier and use its
value to determine what kind of frame you're looking at and thus how
to
parse the body of the frame.

The current define-binary-class macro has no way to handle
this kind of reading--you
could use define-binary-class to
define a class to represent each kind of frame, but
you'd have no way
to know what type of frame to read without reading at least the
identifier.
And if other code reads the identifier in order to
determine what type to pass to read-value,
then that will
break read-value since it's expecting to read all the data
that makes up the
instance of the class it instantiates.

You can solve this problem by adding inheritance to
define-binary-class and then
writing another macro,
define-tagged-binary-class, for defining "abstract" classes



that aren't instantiated directly but that can be specialized on by
read-value methods that
know how to read enough data to
determine what kind of class to create.

The first step to adding inheritance to define-binary-class is
to add a parameter to the
macro to accept a list of superclasses.

(defmacro define-binary-class (name (&rest superclasses) slots) ...

Then, in the DEFCLASS template, interpolate that value instead
of the empty list.

(defclass ,name ,superclasses

  ...)

However, there's a bit more to it than that. You also need to change
the read-value and
write-value methods so the methods
generated when defining a superclass can be used by
the methods
generated as part of a subclass to read and write inherited slots.

The current way read-value works is particularly problematic
since it instantiates the object
before filling it in--obviously, you
can't have the method responsible for reading the superclass's
fields
instantiate one object while the subclass's method instantiates and
fills in a different
object.

You can fix that problem by splitting read-value into two
parts--one responsible for
instantiating the correct kind of object
and another responsible for filling slots in an existing
object. On
the writing side it's a bit simpler, but you can use the same
technique.

So you'll define two new generic functions, read-object and
write-object, that will
both take an existing object and a
stream. Methods on these generic functions will be responsible
for
reading or writing the slots specific to the class of the object on
which they're specialized.

(defgeneric read-object (object stream)

  (:method-combination progn :most-specific-last)

  (:documentation "Fill in the slots of object from stream."))



(defgeneric write-object (object stream)

  (:method-combination progn :most-specific-last)

  (:documentation "Write out the slots of object to the stream."))

Defining these generic functions to use the PROGN method
combination with the option
:most-specific-last allows you to
define methods that specialize object on each
binary class and
have them deal only with the slots actually defined in that class;
the PROGN
method combination will combine all the applicable
methods so the method specialized on the
least specific class in the
hierarchy runs first, reading or writing the slots defined in that
class,
then the method specialized on next least specific subclass,
and so on. And since all the heavy
lifting for a specific class is
now going to be done by read-object and write-object,
you don't even need to define specialized read-value and
write-value methods; you can
define default methods that
assume the type argument is the name of a binary class.



(defmethod read-value ((type symbol) stream &key)

  (let ((object (make-instance type)))

    (read-object object stream)

    object))



(defmethod write-value ((type symbol) stream value &key)

  (assert (typep value type))

  (write-object value stream))

Note how you can use MAKE-INSTANCE as a generic object
factory--while you normally call
MAKE-INSTANCE with a quoted
symbol as the first argument because you normally know
exactly what
class you want to instantiate, you can use any expression that
evaluates to a class
name such as, in this case, the type
parameter in the read-value method.

The actual changes to define-binary-class to define methods on
read-object and
write-object rather than
read-value and write-value are fairly minor.

(defmacro define-binary-class (name superclasses slots)

  (with-gensyms (objectvar streamvar)

    `(progn

       (defclass ,name ,superclasses

         ,(mapcar #'slot->defclass-slot slots))



       (defmethod read-object progn ((,objectvar ,name) ,streamvar)

         (with-slots ,(mapcar #'first slots) ,objectvar

           ,@(mapcar #'(lambda (x) (slot->read-value x streamvar)) slots)))



       (defmethod write-object progn ((,objectvar ,name) ,streamvar)

         (with-slots ,(mapcar #'first slots) ,objectvar

           ,@(mapcar #'(lambda (x) (slot->write-value x streamvar)) slots))))))

Keeping Track of Inherited Slots

This definition will work for many purposes. However, it doesn't
handle one fairly common
situation, namely, when you have a subclass
that needs to refer to inherited slots in its own slot
specifications. For instance, with the current definition of
define-binary-class, you can
define a single class like this:

(define-binary-class generic-frame ()

  ((id (iso-8859-1-string :length 3))

   (size u3)

   (data (raw-bytes :bytes size))))

The reference to size in the specification of data
works the way you'd expect because the
expressions that read and
write the data slot are wrapped in a WITH-SLOTS that
lists all the
object's slots. However, if you try to split that class
into two classes like this:

(define-binary-class frame ()

  ((id (iso-8859-1-string :length 3))

   (size u3)))



(define-binary-class generic-frame (frame)

  ((data (raw-bytes :bytes size))))

you'll get a compile-time warning when you compile the
generic-frame definition and a
runtime error when you try to
use it because there will be no lexically apparent variable
size in



the read-object and write-object methods
specialized on generic-frame.

What you need to do is keep track of the slots defined by each binary
class and then include
inherited slots in the WITH-SLOTS forms
in the read-object and write-object
methods.

The easiest way to keep track of information like this is to hang it
off the symbol that names the
class. As I discussed in Chapter 21,
every symbol object has an associated property list, which
can be
accessed via the functions SYMBOL-PLIST and GET. You can
associate arbitrary
key/value pairs with a symbol by adding them to
its property list with SETF of GET. For
instance, if the
binary class foo defines three slots--x, y, and
z--you can keep track of that fact
by adding a slots
key to the symbol foo's property list with the value (x
y z) with this
expression:

(setf (get 'foo 'slots) '(x y z))

You want this bookkeeping to happen as part of evaluating the
define-binary-class of
foo. However, it's not clear
where to put the expression. If you evaluate it when you compute
the
macro's expansion, it'll get evaluated when you compile the
define-binary-class
form but not if you later load a file that
contains the resulting compiled code. On the other hand,
if you
include the expression in the expansion, then it won't be
evaluated during compilation,
which means if you compile a file with
several define-binary-class forms, none of the
information
about what classes define what slots will be available until the
whole file is loaded,
which is too late.

This is what the special operator EVAL-WHEN I discussed in
Chapter 20 is for. By wrapping a
form in an EVAL-WHEN, you can
control whether it's evaluated at compile time, when the
compiled
code is loaded, or both. For cases like this where you want to
squirrel away some
information during the compilation of a macro form
that you also want to be available after the
compiled form is loaded,
you should wrap it in an EVAL-WHEN like this:

(eval-when (:compile-toplevel :load-toplevel :execute)

  (setf (get 'foo 'slots) '(x y z)))

and include the EVAL-WHEN in the expansion generated by the
macro. Thus, you can save both
the slots and the direct superclasses
of a binary class by adding this form to the expansion
generated by
define-binary-class:

(eval-when (:compile-toplevel :load-toplevel :execute)

  (setf (get ',name 'slots) ',(mapcar #'first slots))

  (setf (get ',name 'superclasses) ',superclasses))

Now you can define three helper functions for accessing this
information. The first simply
returns the slots directly defined by a
binary class. It's a good idea to return a copy of the list
since you
don't want other code to modify the list of slots after the binary
class has been defined.



(defun direct-slots (name)

  (copy-list (get name 'slots)))

The next function returns the slots inherited from other binary
classes.

(defun inherited-slots (name)

  (loop for super in (get name 'superclasses)

        nconc (direct-slots super)

        nconc (inherited-slots super)))

Finally, you can define a function that returns a list containing the
names of all directly defined
and inherited slots.

(defun all-slots (name)

  (nconc (direct-slots name) (inherited-slots name)))

When you're computing the expansion of a
define-generic-binary-class form, you
want to generate a
WITH-SLOTS form that contains the names of all the slots defined
in the
new class and all its superclasses. However, you can't use
all-slots while you're generating
the expansion since the
information won't be available until after the expansion is compiled.
Instead, you should use the following function, which takes the list
of slot specifiers and
superclasses passed to
define-generic-binary-class and uses them to compute the
list
of all the new class's slots:

(defun new-class-all-slots (slots superclasses)

  (nconc (mapcan #'all-slots superclasses) (mapcar #'first slots)))

With these functions defined, you can change
define-binary-class to store the
information about the class
currently being defined and to use the already stored information
about the superclasses' slots to generate the WITH-SLOTS forms
you want like this:

(defmacro define-binary-class (name (&rest superclasses) slots)

  (with-gensyms (objectvar streamvar)

    `(progn

       (eval-when (:compile-toplevel :load-toplevel :execute)

         (setf (get ',name 'slots) ',(mapcar #'first slots))

         (setf (get ',name 'superclasses) ',superclasses))



       (defclass ,name ,superclasses

         ,(mapcar #'slot->defclass-slot slots))



       (defmethod read-object progn ((,objectvar ,name) ,streamvar)

         (with-slots ,(new-class-all-slots slots superclasses) ,objectvar

           ,@(mapcar #'(lambda (x) (slot->read-value x streamvar)) slots)))



       (defmethod write-object progn ((,objectvar ,name) ,streamvar)

         (with-slots ,(new-class-all-slots slots superclasses) ,objectvar

           ,@(mapcar #'(lambda (x) (slot->write-value x streamvar)) slots))))))

Tagged Structures

With the ability to define binary classes that extend other binary
classes, you're ready to define a
new macro for defining classes to
represent "tagged" structures. The strategy for reading tagged
structures will be to define a specialized read-value method
that knows how to read the
values that make up the start of the
structure and then use those values to determine what



subclass to
instantiate. It'll then make an instance of that class with
MAKE-INSTANCE, passing
the already read values as initargs, and
pass the object to read-object, allowing the actual
class of
the object to determine how the rest of the structure is read.

The new macro, define-tagged-binary-class, will look like
define-binary-class with the addition of a :dispatch
option used to specify a form
that should evaluate to the name of a
binary class. The :dispatch form will be evaluated in a
context
where the names of the slots defined by the tagged class are bound to
variables that hold
the values read from the file. The class whose
name it returns must accept initargs corresponding
to the slot names
defined by the tagged class. This is easily ensured if the
:dispatch form
always evaluates to the name of a class that
subclasses the tagged class.

For instance, supposing you have a function, find-frame-class,
that will map a string
identifier to a binary class representing a
particular kind of ID3 frame, you might define a tagged
binary class,
id3-frame, like this:

(define-tagged-binary-class id3-frame ()

  ((id   (iso-8859-1-string :length 3))

   (size u3))

  (:dispatch (find-frame-class id)))

The expansion of a define-tagged-binary-class will contain a
DEFCLASS and a
write-object method just like the expansion
of define-binary-class, but instead of
a read-object
method it'll contain a read-value method that looks like this:

(defmethod read-value ((type (eql 'id3-frame)) stream &key)

  (let ((id (read-value 'iso-8859-1-string stream :length 3))

        (size (read-value 'u3 stream)))

    (let ((object (make-instance (find-frame-class id) :id id :size size)))

      (read-object object stream)

      object)))

Since the expansions of define-tagged-binary-class and
define-binary-class
are going to be identical except for the
read method, you can factor out the common bits into a
helper macro,
define-generic-binary-class, that accepts the read method as a
parameter and interpolates it.

(defmacro define-generic-binary-class (name (&rest superclasses) slots read-method)

  (with-gensyms (objectvar streamvar)

    `(progn

       (eval-when (:compile-toplevel :load-toplevel :execute)

         (setf (get ',name 'slots) ',(mapcar #'first slots))

         (setf (get ',name 'superclasses) ',superclasses))



       (defclass ,name ,superclasses

         ,(mapcar #'slot->defclass-slot slots))



       ,read-method



       (defmethod write-object progn ((,objectvar ,name) ,streamvar)

         (declare (ignorable ,streamvar))

         (with-slots ,(new-class-all-slots slots superclasses) ,objectvar

           ,@(mapcar #'(lambda (x) (slot->write-value x streamvar)) slots))))))



Now you can define both define-binary-class and
define-tagged-binary-class to expand into a call to
define-generic-binary-class. Here's a new version of
define-binary-class
that generates the same code as the earlier
version when it's fully expanded:

(defmacro define-binary-class (name (&rest superclasses) slots)

  (with-gensyms (objectvar streamvar)

    `(define-generic-binary-class ,name ,superclasses ,slots

       (defmethod read-object progn ((,objectvar ,name) ,streamvar)

         (declare (ignorable ,streamvar))

         (with-slots ,(new-class-all-slots slots superclasses) ,objectvar

           ,@(mapcar #'(lambda (x) (slot->read-value x streamvar)) slots))))))

And here's define-tagged-binary-class along with two new
helper functions it uses:

(defmacro define-tagged-binary-class (name (&rest superclasses) slots &rest options)

  (with-gensyms (typevar objectvar streamvar)

    `(define-generic-binary-class ,name ,superclasses ,slots

      (defmethod read-value ((,typevar (eql ',name)) ,streamvar &key)

        (let* ,(mapcar #'(lambda (x) (slot->binding x streamvar)) slots)

          (let ((,objectvar

                 (make-instance 

                  ,@(or (cdr (assoc :dispatch options))

                        (error "Must supply :dispatch form."))

                  ,@(mapcan #'slot->keyword-arg slots))))

            (read-object ,objectvar ,streamvar)

            ,objectvar))))))



(defun slot->binding (spec stream)

  (destructuring-bind (name (type &rest args)) (normalize-slot-spec spec)

    `(,name (read-value ',type ,stream ,@args))))



(defun slot->keyword-arg (spec)

  (let ((name (first spec)))

    `(,(as-keyword name) ,name)))

Primitive Binary Types

While define-binary-class and
define-tagged-binary-class make it easy to
define composite
structures, you still have to write read-value and
write-value methods
for primitive data types by hand. You
could decide to live with that, specifying that users of the
library
need to write appropriate methods on read-value and
write-value to support the
primitive types used by their
binary classes.

However, rather than having to document how to write a suitable
read-value/write-value pair, you can provide a macro to
do it automatically. This also
has the advantage of making the
abstraction created by define-binary-class less leaky.
Currently, define-binary-class depends on having methods on
read-value and
write-value defined in a particular way,
but that's really just an implementation detail. By
defining a macro
that generates the read-value and write-value methods
for primitive
types, you hide those details behind an abstraction you
control. If you decide later to change the
implementation of
define-binary-class, you can change your
primitive-type-defining



macro to meet the new requirements without
requiring any changes to code that uses the binary
data library.

So you should define one last macro, define-binary-type, that
will generate
read-value and write-value methods for
reading values represented by instances of
existing classes, rather
than by classes defined with define-binary-class.

For a concrete example, consider a type used in the id3-tag
class, a fixed-length string
encoded in ISO-8859-1 characters. I'll
assume, as I did earlier, that the native character encoding
of your
Lisp is ISO-8859-1 or a superset, so you can use CODE-CHAR and
CHAR-CODE to
translate bytes to characters and back.

As always, your goal is to write a macro that allows you to express
only the essential
information needed to generate the required code.
In this case, there are four pieces of essential
information: the
name of the type, iso-8859-1-string; the &key parameters
that should
be accepted by the read-value and
write-value methods, length in this case; the code
for
reading from a stream; and the code for writing to a stream. Here's
an expression that
contains those four pieces of information:

(define-binary-type iso-8859-1-string (length)

  (:reader (in)

    (let ((string (make-string length)))

      (dotimes (i length)

        (setf (char string i) (code-char (read-byte in))))

      string))

  (:writer (out string)

    (dotimes (i length)

      (write-byte (char-code (char string i)) out))))

Now you just need a macro that can take apart this form and put it
back together in the form of
two DEFMETHODs wrapped in a
PROGN. If you define the parameter list to
define-binary-type like this:

 (defmacro define-binary-type (name (&rest args) &body spec) ...

then within the macro the parameter spec will be a list
containing the reader and writer
definitions. You can then use
ASSOC to extract the elements of spec using the tags
:reader
and :writer and then use
DESTRUCTURING-BIND to take apart the REST of each
element.10

From there it's just a matter of interpolating the extracted values
into the backquoted templates
of the read-value and
write-value methods.

(defmacro define-binary-type (name (&rest args) &body spec)

  (with-gensyms (type)

    `(progn

      ,(destructuring-bind ((in) &body body) (rest (assoc :reader spec))

        `(defmethod read-value ((,type (eql ',name)) ,in &key ,@args)

          ,@body))

      ,(destructuring-bind ((out value) &body body) (rest (assoc :writer spec))




        `(defmethod write-value ((,type (eql ',name)) ,out ,value &key ,@args)

          ,@body)))))

Note how the backquoted templates are nested: the outermost template
starts with the
backquoted PROGN form. That template consists of
the symbol PROGN and two comma-
unquoted DESTRUCTURING-BIND
expressions. Thus, the outer template is filled in by
evaluating the
DESTRUCTURING-BIND expressions and interpolating their values.
Each
DESTRUCTURING-BIND expression in turn contains another
backquoted template, which is
used to generate one of the method
definitions to be interpolated in the outer template.

With this macro defined, the define-binary-type form given
previously expands to this
code:

(progn

  (defmethod read-value ((#:g1618 (eql 'iso-8859-1-string)) in &key length)

    (let ((string (make-string length)))

      (dotimes (i length)

        (setf (char string i) (code-char (read-byte in))))

      string))

  (defmethod write-value ((#:g1618 (eql 'iso-8859-1-string)) out string &key length)

    (dotimes (i length)

      (write-byte (char-code (char string i)) out))))

Of course, now that you've got this nice macro for defining binary
types, it's tempting to make it
do a bit more work. For now you
should just make one small enhancement that will turn out to
be
pretty handy when you start using this library to deal with actual
formats such as ID3 tags.

ID3 tags, like many other binary formats, use lots of primitive types
that are minor variations on
a theme, such as unsigned integers in
one-, two-, three-, and four-byte varieties. You could
certainly
define each of those types with define-binary-type as it
stands. Or you could
factor out the common algorithm for reading and
writing n-byte unsigned integers into helper
functions.

But suppose you had already defined a binary type,
unsigned-integer, that accepts a
:bytes parameter to
specify how many bytes to read and write. Using that type, you could
specify a slot representing a one-byte unsigned integer with a type
specifier of
(unsigned-integer :bytes 1). But if a particular
binary format specifies lots of slots
of that type, it'd be nice to
be able to easily define a new type--say, u1--that means the
same
thing. As it turns out, it's easy to change
define-binary-type to support two forms, a long
form
consisting of a :reader and :writer pair and a short
form that defines a new binary
type in terms of an existing type.
Using a short form define-binary-type, you can define
u1 like this:

(define-binary-type u1 () (unsigned-integer :bytes 1))

which will expand to this:

(progn

  (defmethod read-value ((#:g161887 (eql 'u1)) #:g161888 &key)

    (read-value 'unsigned-integer #:g161888 :bytes 1))




  (defmethod write-value ((#:g161887 (eql 'u1)) #:g161888 #:g161889 &key)

    (write-value 'unsigned-integer #:g161888 #:g161889 :bytes 1)))

To support both long- and short-form define-binary-type calls,
you need to differentiate
based on the value of the spec
argument. If spec is two items long, it represents a long-form
call, and the two items should be the :reader and
:writer specifications, which you extract
as before. On the
other hand, if it's only one item long, the one item should be a type
specifier,
which needs to be parsed differently. You can use
ECASE to switch on the LENGTH of spec
and then parse
spec and generate an appropriate expansion for either the long
form or the short
form.

(defmacro define-binary-type (name (&rest args) &body spec)

  (ecase (length spec)

    (1

     (with-gensyms (type stream value)

       (destructuring-bind (derived-from &rest derived-args) (mklist (first spec))

         `(progn

            (defmethod read-value ((,type (eql ',name)) ,stream &key ,@args)
              (read-value ',derived-from ,stream ,@derived-args))

            (defmethod write-value ((,type (eql ',name)) ,stream ,value &key ,@args)

              (write-value ',derived-from ,stream ,value ,@derived-args))))))

    (2

     (with-gensyms (type)

       `(progn

          ,(destructuring-bind ((in) &body body) (rest (assoc :reader spec))
             `(defmethod read-value ((,type (eql ',name)) ,in &key ,@args)

                ,@body))

          ,(destructuring-bind ((out value) &body body) (rest (assoc :writer spec))

             `(defmethod write-value ((,type (eql ',name)) ,out ,value &key ,@args)

                ,@body)))))))

The Current Object Stack

One last bit of functionality you'll need in the next chapter is a
way to get at the binary object
being read or written while reading
and writing. More generally, when reading or writing nested
composite
objects, it's useful to be able to get at any of the objects
currently being read or
written. Thanks to dynamic variables and
:around methods, you can add this enhancement
with about a
dozen lines of code. To start, you should define a dynamic variable
that will hold a
stack of objects currently being read or written.

(defvar *in-progress-objects* nil)

Then you can define :around methods on read-object and
write-object that push the
object being read or written onto
this variable before invoking CALL-NEXT-METHOD.

(defmethod read-object :around (object stream)

  (declare (ignore stream))

  (let ((*in-progress-objects* (cons object *in-progress-objects*)))

    (call-next-method)))



(defmethod write-object :around (object stream)

  (declare (ignore stream))

  (let ((*in-progress-objects* (cons object *in-progress-objects*)))

    (call-next-method)))



Note how you rebind *in-progress-objects* to a list with a new
item on the front rather
than assigning it a new value. This way, at
the end of the LET, after CALL-NEXT-METHOD
returns, the old
value of *in-progress-objects* will be restored, effectively
popping the
object of the stack.

With those two methods defined, you can provide two convenience
functions for getting at
specific objects in the in-progress stack.
The function current-binary-object will return
the head of the
stack, the object whose read-object or write-object
method was
invoked most recently. The other, parent-of-type,
takes an argument that should be the
name of a binary object class
and returns the most recently pushed object of that type, using the
TYPEP function that tests whether a given object is an instance
of a particular type.

(defun current-binary-object () (first *in-progress-objects*))



(defun parent-of-type (type)

  (find-if #'(lambda (x) (typep x type)) *in-progress-objects*))

These two functions can be used in any code that will be called
within the dynamic extent of a
read-object or
write-object call. You'll see one example of how
current-binary-object can be used in the next
chapter.11

Now you have all the tools you need to tackle an ID3 parsing library,
so you're ready to move
onto the next chapter where you'll do just
that.

1In
ASCII, the first 32 characters are nonprinting control characters
originally used to control the behavior of a Teletype machine,
causing it to do such things as sound the bell, back up one
character, move to a new line, and move the carriage to the beginning
of
the line. Of these 32 control characters, only three, the newline,
carriage return, and horizontal tab, are typically found in text
files.

2Some
binary file formats are in-memory data structures--on many
operating systems it's possible to map a file into memory, and
low-level languages such as C can then treat the region of memory
containing the contents of the file just like any other memory;
data
written to that area of memory is saved to the underlying file when
it's unmapped. However, these formats are platform-
dependent since
the in-memory representation of even such simple data types as
integers depends on the hardware on which the
program is running.
Thus, any file format that's intended to be portable must define a
canonical representation for all the data types
it uses that can be
mapped to the actual in-memory data representation on a particular
kind of machine or in a particular language.

3The term big-endian and its opposite,
little-endian, borrowed from Jonathan Swift's Gulliver's
Travels, refer to the way a
multibyte number is represented in an
ordered sequence of bytes such as in memory or in a file. For
instance, the number 43981, or
abcd in hex, represented as a
16-bit quantity, consists of two bytes, ab and cd. It
doesn't matter to a computer in what order these
two bytes are stored
as long as everybody agrees. Of course, whenever there's an arbitrary
choice to be made between two equally
good options, the one thing you
can be sure of is that everybody is not going to agree. For more than
you ever wanted to know
about it, and to see where the terms
big-endian and little-endian were first applied in this
fashion, read "On Holy Wars and a Plea
for Peace" by Danny Cohen,
available at
http://khavrinen.lcs.mit.edu/wollman/ien-137.txt.

4LDB and DPB, a
related function, were named after the DEC PDP-10 assembly functions
that did essentially the same thing. Both
functions operate on
integers as if they were represented using twos-complement format,
regardless of the internal representation
used by a particular Common
Lisp implementation.

5Common Lisp
also provides functions for shifting and masking the bits of integers
in a way that may be more familiar to C and
Java programmers. For
instance, you could write read-u2 yet a third way, using those
functions, like this:



(defun read-u2 (in)

  (logior (ash (read-byte in) 8) (read-byte in)))

which would be roughly equivalent to this Java method:

public int readU2 (InputStream in) throws IOException {

  return (in.read() << 8) | (in.read());

}

The names LOGIOR and ASH are short for LOGical Inclusive
OR and Arithmetic SHift. ASH shifts an integer a given
number of
bits to the left when its second argument is positive or to
the right if the second argument is negative. LOGIOR combines
integers
by logically oring each bit. Another function,
LOGAND, performs a bitwise and, which can be used to mask off
certain bits.
However, for the kinds of bit twiddling you'll need to
do in this chapter and the next, LDB and BYTE will be both
more convenient
and more idiomatic Common Lisp style.

6Originally, UTF-8 was designed to
represent a 31-bit character code and used up to six bytes per code
point. However, the
maximum Unicode code point is #x10ffff, so
a UTF-8 encoding of Unicode requires at most four bytes per code
point.

7If you need to parse a file format that
uses other character codes, or if you need to parse files containing
arbitrary Unicode strings
using a non-Unicode-Common-Lisp
implementation, you can always represent such strings in memory as
vectors of integer code
points. They won't be Lisp strings, so you
won't be able to manipulate or compare them with the string
functions, but you'll still be
able to do anything with them that you
can with arbitrary vectors.

8Unfortunately, the language itself doesn't always
provide a good model in this respect: the macro DEFSTRUCT, which
I don't
discuss since it has largely been superseded by DEFCLASS,
generates functions with names that it generates based on the name of
the structure it's given. DEFSTRUCT's bad example leads many new
macro writers astray.

9Technically there's no possibility of
type or object conflicting with slot names--at worst
they'd be shadowed within the
WITH-SLOTS form. But it doesn't
hurt anything to simply GENSYM all local variable names used
within a macro template.

10Using ASSOC to extract the :reader and
:writer elements of spec allows users of
define-binary-type to include
the elements in either order; if
you required the :reader element to be always be first, you
could then have used
(rest (first spec)) to extract the reader
and (rest (second spec)) to extract the writer. However, as
long as you
require the :reader and :writer keywords to
improve the readability of define-binary-type forms, you might
as well
use them to extract the correct data.

11The ID3 format doesn't require the
parent-of-type function since it's a relatively flat
structure. This function comes into its
own when you need to parse a
format made up of many deeply nested structures whose parsing depends
on information stored in
higher-level structures. For example, in the
Java class file format, the top-level class file structure contains a
constant pool that
maps numeric values used in other
substructures within the class file to constant values that are
needed while parsing those
substructures. If you were writing a class
file parser, you could use parent-of-type in the code that
reads and writes those
substructures to get at the top-level class
file object and from there to the constant pool.


