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24. Practical: Parsing Binary Files
In this chapter I'll show you how to build a library that you can use to write code for reading and
writing binary files. You'll use this library in Chapter 25 to write a parser for ID3 tags, the
mechanism used to store metadata such as artist and album names in MP3 files. This library is
also an example of how to use macros to extend the language with new constructs, turning it into
a special-purpose language for solving a particular problem, in this case reading and writing
binary data. Because you'll develop the library a bit at a time, including several partial versions,
it may seem you're writing a lot of code. But when all is said and done, the whole library is
fewer than 150 lines of code, and the longest macro is only 20 lines long.

Binary Files
At a sufficiently low level of abstraction, all files are "binary" in the sense that they just contain
a bunch of numbers encoded in binary form. However, it's customary to distinguish between text
files, where all the numbers can be interpreted as characters representing human-readable text,
and binary files, which contain data that, if interpreted as characters, yields nonprintable
characters.1

Binary file formats are usually designed to be both compact and efficient to parse--that's their
main advantage over text-based formats. To meet both those criteria, they're usually composed
of on-disk structures that are easily mapped to data structures that a program might use to
represent the same data in memory.2

The library will give you an easy way to define the mapping between the on-disk structures
defined by a binary file format and in-memory Lisp objects. Using the library, it should be easy
to write a program that can read a binary file, translating it into Lisp objects that you can
manipulate, and then write back out to another properly formatted binary file.

Binary Format Basics

The starting point for reading and writing binary files is to open the file for reading or writing
individual bytes. As I discussed in Chapter 14, both OPEN and WITH-OPEN-FILE accept a
keyword argument, :element-type, that controls the basic unit of transfer for the stream.
When you're dealing with binary files, you'll specify (unsigned-byte 8). An input stream
opened with such an :element-type will return an integer between 0 and 255 each time it's



passed to READ-BYTE. Conversely, you can write bytes to an (unsigned-byte 8) output
stream by passing numbers between 0 and 255 to WRITE-BYTE.

Above the level of individual bytes, most binary formats use a smallish number of primitive data
types--numbers encoded in various ways, textual strings, bit fields, and so on--which are then
composed into more complex structures. So your first task is to define a framework for writing
code to read and write the primitive data types used by a given binary format.

To take a simple example, suppose you're dealing with a binary format that uses an unsigned 16-
bit integer as a primitive data type. To read such an integer, you need to read the two bytes and
then combine them into a single number by multiplying one byte by 256, a.k.a. 2^8, and adding
it to the other byte. For instance, assuming the binary format specifies that such 16-bit quantities
are stored in big-endian3 form, with the most significant byte first, you can read such a number
with this function:

(defun read-u2 (in) 
  (+ (* (read-byte in) 256) (read-byte in)))

However, Common Lisp provides a more convenient way to perform this kind of bit twiddling.
The function LDB, whose name stands for load byte, can be used to extract and set (with SETF)
any number of contiguous bits from an integer.4 The number of bits and their position within the
integer is specified with a byte specifier created with the BYTE function. BYTE takes two
arguments, the number of bits to extract (or set) and the position of the rightmost bit where the
least significant bit is at position zero. LDB takes a byte specifier and the integer from which to
extract the bits and returns the positive integer represented by the extracted bits. Thus, you can
extract the least significant octet of an integer like this:

(ldb (byte 8 0) #xabcd) ==> 205 ; 205 is #xcd

To get the next octet, you'd use a byte specifier of (byte 8 8) like this:

(ldb (byte 8 8) #xabcd) ==> 171 ; 171 is #xab

You can use LDB with SETF to set the specified bits of an integer stored in a SETFable place.

CL-USER> (defvar *num* 0) 
*NUM* 
CL-USER> (setf (ldb (byte 8 0) *num*) 128) 
128 
CL-USER> *num* 
128 
CL-USER> (setf (ldb (byte 8 8) *num*) 255) 
255 
CL-USER> *num* 
65408

Thus, you can also write read-u2 like this:5

(defun read-u2 (in) 
  (let ((u2 0)) 
    (setf (ldb (byte 8 8) u2) (read-byte in)) 



    (setf (ldb (byte 8 0) u2) (read-byte in)) 
    u2))

To write a number out as a 16-bit integer, you need to extract the individual 8-bit bytes and write
them one at a time. To extract the individual bytes, you just need to use LDB with the same byte
specifiers.

(defun write-u2 (out value) 
  (write-byte (ldb (byte 8 8) value) out) 
  (write-byte (ldb (byte 8 0) value) out))

Of course, you can also encode integers in many other ways--with different numbers of bytes,
with different endianness, and in signed and unsigned format.

Strings in Binary Files

Textual strings are another kind of primitive data type you'll find in many binary formats. When
you read files one byte at a time, you can't read and write strings directly--you need to decode
and encode them one byte at a time, just as you do with binary-encoded numbers. And just as
you can encode an integer in several ways, you can encode a string in many ways. To start with,
the binary format must specify how individual characters are encoded.

To translate bytes to characters, you need to know both what character code and what character
encoding you're using. A character code defines a mapping from positive integers to characters.
Each number in the mapping is called a code point. For instance, ASCII is a character code that
maps the numbers from 0-127 to particular characters used in the Latin alphabet. A character
encoding, on the other hand, defines how the code points are represented as a sequence of bytes
in a byte-oriented medium such as a file. For codes that use eight or fewer bits, such as ASCII
and ISO-8859-1, the encoding is trivial--each numeric value is encoded as a single byte.

Nearly as straightforward are pure double-byte encodings, such as UCS-2, which map between
16-bit values and characters. The only reason double-byte encodings can be more complex than
single-byte encodings is that you may also need to know whether the 16-bit values are supposed
to be encoded in big-endian or little-endian format.

Variable-width encodings use different numbers of octets for different numeric values, making
them more complex but allowing them to be more compact in many cases. For instance, UTF-8,
an encoding designed for use with the Unicode character code, uses a single octet to encode the
values 0-127 while using up to four octets to encode values up to 1,114,111.6

Since the code points from 0-127 map to the same characters in Unicode as they do in ASCII, a
UTF-8 encoding of text consisting only of characters also in ASCII is the same as the ASCII
encoding. On the other hand, texts consisting mostly of characters requiring four bytes in UTF-8
could be more compactly encoded in a straight double-byte encoding.



Common Lisp provides two functions for translating between numeric character codes and
character objects: CODE-CHAR, which takes an numeric code and returns as a character, and
CHAR-CODE, which takes a character and returns its numeric code. The language standard
doesn't specify what character encoding an implementation must use, so there's no guarantee you
can represent every character that can possibly be encoded in a given file format as a Lisp
character. However, almost all contemporary Common Lisp implementations use ASCII, ISO-
8859-1, or Unicode as their native character code. Because Unicode is a superset ofISO-8859-1,
which is in turn a superset of ASCII, if you're using a Unicode Lisp, CODE-CHAR and
CHAR-CODE can be used directly for translating any of those three character codes.7

In addition to specifying a character encoding, a string encoding must also specify how to
encode the length of the string. Three techniques are typically used in binary file formats.

The simplest is to not encode it but to let it be implicit in the position of the string in some larger
structure: a particular element of a file may always be a string of a certain length, or a string may
be the last element of a variable-length data structure whose overall size determines how many
bytes are left to read as string data. Both these techniques are used in ID3 tags, as you'll see in
the next chapter.

The other two techniques can be used to encode variable-length strings without relying on
context. One is to encode the length of the string followed by the character data--the parser reads
an integer value (in some specified integer format) and then reads that number of characters.
Another is to write the character data followed by a delimiter that can't appear in the string such
as a null character.

The different representations have different advantages and disadvantages, but when you're
dealing with already specified binary formats, you won't have any control over which encoding
is used. However, none of the encodings is particularly more difficult to read and write than any
other. Here, as an example, is a function that reads a null-terminated ASCII string, assuming
your Lisp implementation uses ASCII or one of its supersets such as ISO-8859-1 or full Unicode
as its native character encoding:

(defconstant +null+ (code-char 0)) 
 
(defun read-null-terminated-ascii (in) 
  (with-output-to-string (s) 
    (loop for char = (code-char (read-byte in)) 
          until (char= char +null+) do (write-char char s))))

The WITH-OUTPUT-TO-STRING macro, which I mentioned in Chapter 14, is an easy way to
build up a string when you don't know how long it'll be. It creates a STRING-STREAM and
binds it to the variable name specified, s in this case. All characters written to the stream are
collected into a string, which is then returned as the value of the WITH-OUTPUT-TO-STRING
form.



To write a string back out, you just need to translate the characters back to numeric values that
can be written with WRITE-BYTE and then write the null terminator after the string contents.

(defun write-null-terminated-ascii (string out) 
  (loop for char across string 
        do (write-byte (char-code char) out)) 
  (write-byte (char-code +null+) out))

As these examples show, the main intellectual challenge--such as it is--of reading and writing
primitive elements of binary files is understanding how exactly to interpret the bytes that appear
in a file and to map them to Lisp data types. If a binary file format is well specified, this should
be a straightforward proposition. Actually writing functions to read and write a particular
encoding is, as they say, a simple matter of programming.

Now you can turn to the issue of reading and writing more complex on-disk structures and how
to map them to Lisp objects.

Composite Structures

Since binary formats are usually used to represent data in a way that makes it easy to map to in-
memory data structures, it should come as no surprise that composite on-disk structures are
usually defined in ways similar to the way programming languages define in-memory structures.
Usually a composite on-disk structure will consist of a number of named parts, each of which is
itself either a primitive type such as a number or a string, another composite structure, or
possibly a collection of such values.

For instance, an ID3 tag defined in the 2.2 version of the specification consists of a header made
up of a three-character ISO-8859-1 string, which is always "ID3"; two one-byte unsigned
integers that specify the major version and revision of the specification; eight bits worth of
boolean flags; and four bytes that encode the size of the tag in an encoding particular to the ID3
specification. Following the header is a list of frames, each of which has its own internal
structure. After the frames are as many null bytes as are necessary to pad the tag out to the size
specified in the header.

If you look at the world through the lens of object orientation, composite structures look a lot
like classes. For instance, you could write a class to represent an ID3 tag.

(defclass id3-tag () 
  ((identifier    :initarg :identifier    :accessor identifier) 
   (major-version :initarg :major-version :accessor major-version) 
   (revision      :initarg :revision      :accessor revision) 
   (flags         :initarg :flags         :accessor flags) 
   (size          :initarg :size          :accessor size) 
   (frames        :initarg :frames        :accessor frames)))

An instance of this class would make a perfect repository to hold the data needed to represent an
ID3 tag. You could then write functions to read and write instances of this class. For example,



assuming the existence of certain other functions for reading the appropriate primitive data
types, a read-id3-tag function might look like this:

(defun read-id3-tag (in) 
  (let ((tag (make-instance 'id3-tag))) 
    (with-slots (identifier major-version revision flags size frames) tag 
      (setf identifier    (read-iso-8859-1-string in :length 3)) 
      (setf major-version (read-u1 in)) 
      (setf revision      (read-u1 in)) 
      (setf flags         (read-u1 in)) 
      (setf size          (read-id3-encoded-size in)) 
      (setf frames        (read-id3-frames in :tag-size size))) 
    tag))

The write-id3-tag function would be structured similarly--you'd use the appropriate
write-* functions to write out the values stored in the slots of the id3-tag object.

It's not hard to see how you could write the appropriate classes to represent all the composite
data structures in a specification along with read-foo and write-foo functions for each
class and for necessary primitive types. But it's also easy to tell that all the reading and writing
functions are going to be pretty similar, differing only in the specifics of what types they read
and the names of the slots they store them in. It's particularly irksome when you consider that in
the ID3 specification it takes about four lines of text to specify the structure of an ID3 tag, while
you've already written eighteen lines of code and haven't even written write-id3-tag yet.

What you'd really like is a way to describe the structure of something like an ID3 tag in a form
that's as compressed as the specification's pseudocode yet that can also be expanded into code
that defines the id3-tag class and the functions that translate between bytes on disk and
instances of the class. Sounds like a job for a macro.

Designing the Macros

Since you already have a rough idea what code your macros will need to generate, the next step,
according to the process for writing a macro I outlined in Chapter 8, is to switch perspectives
and think about what a call to the macro should look like. Since the goal is to be able to write
something as compressed as the pseudocode in the ID3 specification, you can start there. The
header of an ID3 tag is specified like this:

ID3/file identifier      "ID3" 
ID3 version              $02 00 
ID3 flags                %xx000000 
ID3 size             4 * %0xxxxxxx

In the notation of the specification, this means the "file identifier" slot of an ID3 tag is the string
"ID3" in ISO-8859-1 encoding. The version consists of two bytes, the first of which--for this
version of the specification--has the value 2 and the second of which--again for this version of
the specification--is 0. The flags slot is eight bits, of which all but the first two are 0, and the size
consists of four bytes, each of which has a 0 in the most significant bit.



Some information isn't captured by this pseudocode. For instance, exactly how the four bytes
that encode the size are to be interpreted is described in a few lines of prose. Likewise, the spec
describes in prose how the frame and subsequent padding is stored after this header. But most of
what you need to know to be able to write code to read and write an ID3 tag is specified by this
pseudocode. Thus, you ought to be able to write an s-expression version of this pseudocode and
have it expanded into the class and function definitions you'd otherwise have to write by hand--
something, perhaps, like this:

(define-binary-class id3-tag 
  ((file-identifier (iso-8859-1-string :length 3)) 
   (major-version   u1) 
   (revision        u1) 
   (flags           u1) 
   (size            id3-tag-size) 
   (frames          (id3-frames :tag-size size))))

The basic idea is that this form defines a class id3-tag similar to the way you could with
DEFCLASS, but instead of specifying things such as :initarg and :accessors, each slot
specification consists of the name of the slot--file-identifier, major-version, and so
on--and information about how that slot is represented on disk. Since this is just a bit of
fantasizing, you don't have to worry about exactly how the macro define-binary-class
will know what to do with expressions such as (iso-8859-1-string :length 3), u1,
id3-tag-size, and (id3-frames :tag-size size); as long as each expression
contains the information necessary to know how to read and write a particular data encoding,
you should be okay.

Making the Dream a Reality

Okay, enough fantasizing about good-looking code; now you need to get to work writing
define-binary-class--writing the code that will turn that concise expression of what an
ID3 tag looks like into code that can represent one in memory, read one off disk, and write it
back out.

To start with, you should define a package for this library. Here's the package file that comes
with the version you can download from the book's Web site:

(in-package :cl-user) 
 
(defpackage :com.gigamonkeys.binary-data 
  (:use :common-lisp :com.gigamonkeys.macro-utilities) 
  (:export :define-binary-class 
           :define-tagged-binary-class 
           :define-binary-type 
           :read-value 
           :write-value 
           :*in-progress-objects* 
           :parent-of-type 
           :current-binary-object 
           :+null+))



The COM.GIGAMONKEYS.MACRO-UTILITIES package contains the with-gensyms and
once-only macros from Chapter 8.

Since you already have a handwritten version of the code you want to generate, it shouldn't be
too hard to write such a macro. Just take it in small pieces, starting with a version of
define-binary-class that generates just the DEFCLASS form.

If you look back at the define-binary-class form, you'll see that it takes two arguments,
the name id3-tag and a list of slot specifiers, each of which is itself a two-item list. From
those pieces you need to build the appropriate DEFCLASS form. Clearly, the biggest difference
between the define-binary-class form and a proper DEFCLASS form is in the slot
specifiers. A single slot specifier from define-binary-class looks something like this:

(major-version u1)

But that's not a legal slot specifier for a DEFCLASS. Instead, you need something like this:

(major-version :initarg :major-version :accessor major-version)

Easy enough. First define a simple function to translate a symbol to the corresponding keyword
symbol.

(defun as-keyword (sym) (intern (string sym) :keyword))

Now define a function that takes a define-binary-class slot specifier and returns a
DEFCLASS slot specifier.

(defun slot->defclass-slot (spec) 
  (let ((name (first spec))) 
    `(,name :initarg ,(as-keyword name) :accessor ,name)))

You can test this function at the REPL after switching to your new package with a call to
IN-PACKAGE.

BINARY-DATA> (slot->defclass-slot '(major-version u1)) 
(MAJOR-VERSION :INITARG :MAJOR-VERSION :ACCESSOR MAJOR-VERSION)

Looks good. Now the first version of define-binary-class is trivial.

(defmacro define-binary-class (name slots) 
  `(defclass ,name () 
     ,(mapcar #'slot->defclass-slot slots)))

This is simple template-style macro--define-binary-class generates a DEFCLASS form
by interpolating the name of the class and a list of slot specifiers constructed by applying
slot->defclass-slot to each element of the list of slots specifiers from the
define-binary-class form.

To see exactly what code this macro generates, you can evaluate this expression at the REPL.



(macroexpand-1 '(define-binary-class id3-tag 
  ((identifier      (iso-8859-1-string :length 3)) 
   (major-version   u1) 
   (revision        u1) 
   (flags           u1) 
   (size            id3-tag-size) 
   (frames          (id3-frames :tag-size size)))))

The result, slightly reformatted here for better readability, should look familiar since it's exactly
the class definition you wrote by hand earlier:

(defclass id3-tag () 
  ((identifier      :initarg :identifier    :accessor identifier) 
   (major-version   :initarg :major-version :accessor major-version) 
   (revision        :initarg :revision      :accessor revision) 
   (flags           :initarg :flags         :accessor flags) 
   (size            :initarg :size          :accessor size) 
   (frames          :initarg :frames        :accessor frames)))

Reading Binary Objects

Next you need to make define-binary-class also generate a function that can read an
instance of the new class. Looking back at the read-id3-tag function you wrote before, this
seems a bit trickier, as the read-id3-tag wasn't quite so regular--to read each slot's value,
you had to call a different function. Not to mention, the name of the function, read-id3-tag,
while derived from the name of the class you're defining, isn't one of the arguments to
define-binary-class and thus isn't available to be interpolated into a template the way
the class name was.

You could deal with both of those problems by devising and following a naming convention so
the macro can figure out the name of the function to call based on the name of the type in the
slot specifier. However, this would require define-binary-class to generate the name
read-id3-tag, which is possible but a bad idea. Macros that create global definitions should
generally use only names passed to them by their callers; macros that generate names under the
covers can cause hard-to-predict--and hard-to-debug--name conflicts when the generated names
happen to be the same as names used elsewhere.8

You can avoid both these inconveniences by noticing that all the functions that read a particular
type of value have the same fundamental purpose, to read a value of a specific type from a
stream. Speaking colloquially, you might say they're all instances of a single generic operation.
And the colloquial use of the word generic should lead you directly to the solution to your
problem: instead of defining a bunch of independent functions, all with different names, you can
define a single generic function, read-value, with methods specialized to read different types
of values.

That is, instead of defining functions read-iso-8859-1-string and read-u1, you can
define read-value as a generic function taking two required arguments, a type and a stream,
and possibly some keyword arguments.



(defgeneric read-value (type stream &key) 
  (:documentation "Read a value of the given type from the stream."))

By specifying &key without any actual keyword parameters, you allow different methods to
define their own &key parameters without requiring them to do so. This does mean every
method specialized on read-value will have to include either &key or an &rest parameter
in its parameter list to be compatible with the generic function.

Then you'll define methods that use EQL specializers to specialize the type argument on the
name of the type you want to read.

(defmethod read-value ((type (eql 'iso-8859-1-string)) in &key length) ...) 
 
(defmethod read-value ((type (eql 'u1)) in &key) ...)

Then you can make define-binary-class generate a read-value method specialized
on the type name id3-tag, and that method can be implemented in terms of calls to
read-value with the appropriate slot types as the first argument. The code you want to
generate is going to look like this:

(defmethod read-value ((type (eql 'id3-tag)) in &key) 
  (let ((object (make-instance 'id3-tag))) 
    (with-slots (identifier major-version revision flags size frames) object
      (setf identifier    (read-value 'iso-8859-1-string in :length 3)) 
      (setf major-version (read-value 'u1 in)) 
      (setf revision      (read-value 'u1 in)) 
      (setf flags         (read-value 'u1 in)) 
      (setf size          (read-value 'id3-encoded-size in)) 
      (setf frames        (read-value 'id3-frames in :tag-size size))) 
    object))

So, just as you needed a function to translate a define-binary-class slot specifier to a
DEFCLASS slot specifier in order to generate the DEFCLASS form, now you need a function
that takes a define-binary-class slot specifier and generates the appropriate SETF form,
that is, something that takes this:

(identifier (iso-8859-1-string :length 3))

and returns this:

(setf identifier (read-value 'iso-8859-1-string in :length 3))

However, there's a difference between this code and the DEFCLASS slot specifier: it includes a
reference to a variable in--the method parameter from the read-value method--that wasn't
derived from the slot specifier. It doesn't have to be called in, but whatever name you use has to
be the same as the one used in the method's parameter list and in the other calls to
read-value. For now you can dodge the issue of where that name comes from by defining
slot->read-value to take a second argument of the name of the stream variable.

(defun slot->read-value (spec stream) 
  (destructuring-bind (name (type &rest args)) (normalize-slot-spec spec) 
    `(setf ,name (read-value ',type ,stream ,@args))))



The function normalize-slot-spec normalizes the second element of the slot specifier,
converting a symbol like u1 to the list (u1) so the DESTRUCTURING-BIND can parse it. It
looks like this:

(defun normalize-slot-spec (spec) 
  (list (first spec) (mklist (second spec)))) 
 
(defun mklist (x) (if (listp x) x (list x)))

You can test slot->read-value with each type of slot specifier.

BINARY-DATA> (slot->read-value '(major-version u1) 'stream) 
(SETF MAJOR-VERSION (READ-VALUE 'U1 STREAM)) 
BINARY-DATA> (slot->read-value '(identifier (iso-8859-1-string :length 3)) 'stream) 
(SETF IDENTIFIER (READ-VALUE 'ISO-8859-1-STRING STREAM :LENGTH 3))

With these functions you're ready to add read-value to define-binary-class. If you
take the handwritten read-value method and strip out anything that's tied to a particular
class, you're left with this skeleton:

(defmethod read-value ((type (eql ...)) stream &key) 
  (let ((object (make-instance ...))) 
    (with-slots (...) object 
      ... 
    object)))

All you need to do is add this skeleton to the define-binary-class template, replacing
ellipses with code that fills in the skeleton with the appropriate names and code. You'll also want
to replace the variables type, stream, and object with gensymed names to avoid potential
conflicts with slot names,9 which you can do with the with-gensyms macro from Chapter 8.

Also, because a macro must expand into a single form, you need to wrap some form around the
DEFCLASS and DEFMETHOD. PROGN is the customary form to use for macros that expand into
multiple definitions because of the special treatment it gets from the file compiler when
appearing at the top level of a file, as I discussed in Chapter 20.

So, you can change define-binary-class as follows:

(defmacro define-binary-class (name slots) 
  (with-gensyms (typevar objectvar streamvar) 
    `(progn 
       (defclass ,name () 
         ,(mapcar #'slot->defclass-slot slots)) 
 
       (defmethod read-value ((,typevar (eql ',name)) ,streamvar &key) 
         (let ((,objectvar (make-instance ',name))) 
           (with-slots ,(mapcar #'first slots) ,objectvar 
             ,@(mapcar #'(lambda (x) (slot->read-value x streamvar)) slots))
           ,objectvar)))))

Writing Binary Objects

Generating code to write out an instance of a binary class will proceed similarly. First you can
define a write-value generic function.



(defgeneric write-value (type stream value &key) 
  (:documentation "Write a value as the given type to the stream."))

Then you define a helper function that translates a define-binary-class slot specifier
into code that writes out the slot using write-value. As with the slot->read-value
function, this helper function needs to take the name of the stream variable as an argument.

(defun slot->write-value (spec stream) 
  (destructuring-bind (name (type &rest args)) (normalize-slot-spec spec) 
    `(write-value ',type ,stream ,name ,@args)))

Now you can add a write-value template to the define-binary-class macro.

(defmacro define-binary-class (name slots) 
  (with-gensyms (typevar objectvar streamvar) 
    `(progn 
       (defclass ,name () 
         ,(mapcar #'slot->defclass-slot slots)) 
 
       (defmethod read-value ((,typevar (eql ',name)) ,streamvar &key) 
         (let ((,objectvar (make-instance ',name))) 
           (with-slots ,(mapcar #'first slots) ,objectvar 
             ,@(mapcar #'(lambda (x) (slot->read-value x streamvar)) slots))
           ,objectvar)) 
 
       (defmethod write-value ((,typevar (eql ',name)) ,streamvar ,objectvar &key) 
         (with-slots ,(mapcar #'first slots) ,objectvar 
           ,@(mapcar #'(lambda (x) (slot->write-value x streamvar)) slots))))))

Adding Inheritance and Tagged Structures

While this version of define-binary-class will handle stand-alone structures, binary file
formats often define on-disk structures that would be natural to model with subclasses and
superclasses. So you might want to extend define-binary-class to support inheritance.

A related technique used in many binary formats is to have several on-disk structures whose
exact type can be determined only by reading some data that indicates how to parse the
following bytes. For instance, the frames that make up the bulk of an ID3 tag all share a common
header structure consisting of a string identifier and a length. To read a frame, you need to read
the identifier and use its value to determine what kind of frame you're looking at and thus how to
parse the body of the frame.

The current define-binary-class macro has no way to handle this kind of reading--you
could use define-binary-class to define a class to represent each kind of frame, but
you'd have no way to know what type of frame to read without reading at least the identifier.
And if other code reads the identifier in order to determine what type to pass to read-value,
then that will break read-value since it's expecting to read all the data that makes up the
instance of the class it instantiates.

You can solve this problem by adding inheritance to define-binary-class and then
writing another macro, define-tagged-binary-class, for defining "abstract" classes



that aren't instantiated directly but that can be specialized on by read-value methods that
know how to read enough data to determine what kind of class to create.

The first step to adding inheritance to define-binary-class is to add a parameter to the
macro to accept a list of superclasses.

(defmacro define-binary-class (name (&rest superclasses) slots) ...

Then, in the DEFCLASS template, interpolate that value instead of the empty list.

(defclass ,name ,superclasses 
  ...)

However, there's a bit more to it than that. You also need to change the read-value and
write-value methods so the methods generated when defining a superclass can be used by
the methods generated as part of a subclass to read and write inherited slots.

The current way read-value works is particularly problematic since it instantiates the object
before filling it in--obviously, you can't have the method responsible for reading the superclass's
fields instantiate one object while the subclass's method instantiates and fills in a different
object.

You can fix that problem by splitting read-value into two parts--one responsible for
instantiating the correct kind of object and another responsible for filling slots in an existing
object. On the writing side it's a bit simpler, but you can use the same technique.

So you'll define two new generic functions, read-object and write-object, that will
both take an existing object and a stream. Methods on these generic functions will be responsible
for reading or writing the slots specific to the class of the object on which they're specialized.

(defgeneric read-object (object stream) 
  (:method-combination progn :most-specific-last) 
  (:documentation "Fill in the slots of object from stream.")) 
 
(defgeneric write-object (object stream) 
  (:method-combination progn :most-specific-last) 
  (:documentation "Write out the slots of object to the stream."))

Defining these generic functions to use the PROGN method combination with the option
:most-specific-last allows you to define methods that specialize object on each
binary class and have them deal only with the slots actually defined in that class; the PROGN
method combination will combine all the applicable methods so the method specialized on the
least specific class in the hierarchy runs first, reading or writing the slots defined in that class,
then the method specialized on next least specific subclass, and so on. And since all the heavy
lifting for a specific class is now going to be done by read-object and write-object,
you don't even need to define specialized read-value and write-value methods; you can
define default methods that assume the type argument is the name of a binary class.



(defmethod read-value ((type symbol) stream &key) 
  (let ((object (make-instance type))) 
    (read-object object stream) 
    object)) 
 
(defmethod write-value ((type symbol) stream value &key) 
  (assert (typep value type)) 
  (write-object value stream))

Note how you can use MAKE-INSTANCE as a generic object factory--while you normally call
MAKE-INSTANCE with a quoted symbol as the first argument because you normally know
exactly what class you want to instantiate, you can use any expression that evaluates to a class
name such as, in this case, the type parameter in the read-value method.

The actual changes to define-binary-class to define methods on read-object and
write-object rather than read-value and write-value are fairly minor.

(defmacro define-binary-class (name superclasses slots) 
  (with-gensyms (objectvar streamvar) 
    `(progn 
       (defclass ,name ,superclasses 
         ,(mapcar #'slot->defclass-slot slots)) 
 
       (defmethod read-object progn ((,objectvar ,name) ,streamvar) 
         (with-slots ,(mapcar #'first slots) ,objectvar 
           ,@(mapcar #'(lambda (x) (slot->read-value x streamvar)) slots))) 
 
       (defmethod write-object progn ((,objectvar ,name) ,streamvar) 
         (with-slots ,(mapcar #'first slots) ,objectvar 
           ,@(mapcar #'(lambda (x) (slot->write-value x streamvar)) slots))))))

Keeping Track of Inherited Slots

This definition will work for many purposes. However, it doesn't handle one fairly common
situation, namely, when you have a subclass that needs to refer to inherited slots in its own slot
specifications. For instance, with the current definition of define-binary-class, you can
define a single class like this:

(define-binary-class generic-frame () 
  ((id (iso-8859-1-string :length 3)) 
   (size u3) 
   (data (raw-bytes :bytes size))))

The reference to size in the specification of data works the way you'd expect because the
expressions that read and write the data slot are wrapped in a WITH-SLOTS that lists all the
object's slots. However, if you try to split that class into two classes like this:

(define-binary-class frame () 
  ((id (iso-8859-1-string :length 3)) 
   (size u3))) 
 
(define-binary-class generic-frame (frame) 
  ((data (raw-bytes :bytes size))))

you'll get a compile-time warning when you compile the generic-frame definition and a
runtime error when you try to use it because there will be no lexically apparent variable size in



the read-object and write-object methods specialized on generic-frame.

What you need to do is keep track of the slots defined by each binary class and then include
inherited slots in the WITH-SLOTS forms in the read-object and write-object
methods.

The easiest way to keep track of information like this is to hang it off the symbol that names the
class. As I discussed in Chapter 21, every symbol object has an associated property list, which
can be accessed via the functions SYMBOL-PLIST and GET. You can associate arbitrary
key/value pairs with a symbol by adding them to its property list with SETF of GET. For
instance, if the binary class foo defines three slots--x, y, and z--you can keep track of that fact
by adding a slots key to the symbol foo's property list with the value (x y z) with this
expression:

(setf (get 'foo 'slots) '(x y z))

You want this bookkeeping to happen as part of evaluating the define-binary-class of
foo. However, it's not clear where to put the expression. If you evaluate it when you compute
the macro's expansion, it'll get evaluated when you compile the define-binary-class
form but not if you later load a file that contains the resulting compiled code. On the other hand,
if you include the expression in the expansion, then it won't be evaluated during compilation,
which means if you compile a file with several define-binary-class forms, none of the
information about what classes define what slots will be available until the whole file is loaded,
which is too late.

This is what the special operator EVAL-WHEN I discussed in Chapter 20 is for. By wrapping a
form in an EVAL-WHEN, you can control whether it's evaluated at compile time, when the
compiled code is loaded, or both. For cases like this where you want to squirrel away some
information during the compilation of a macro form that you also want to be available after the
compiled form is loaded, you should wrap it in an EVAL-WHEN like this:

(eval-when (:compile-toplevel :load-toplevel :execute) 
  (setf (get 'foo 'slots) '(x y z)))

and include the EVAL-WHEN in the expansion generated by the macro. Thus, you can save both
the slots and the direct superclasses of a binary class by adding this form to the expansion
generated by define-binary-class:

(eval-when (:compile-toplevel :load-toplevel :execute) 
  (setf (get ',name 'slots) ',(mapcar #'first slots)) 
  (setf (get ',name 'superclasses) ',superclasses))

Now you can define three helper functions for accessing this information. The first simply
returns the slots directly defined by a binary class. It's a good idea to return a copy of the list
since you don't want other code to modify the list of slots after the binary class has been defined.



(defun direct-slots (name) 
  (copy-list (get name 'slots)))

The next function returns the slots inherited from other binary classes.

(defun inherited-slots (name) 
  (loop for super in (get name 'superclasses) 
        nconc (direct-slots super) 
        nconc (inherited-slots super)))

Finally, you can define a function that returns a list containing the names of all directly defined
and inherited slots.

(defun all-slots (name) 
  (nconc (direct-slots name) (inherited-slots name)))

When you're computing the expansion of a define-generic-binary-class form, you
want to generate a WITH-SLOTS form that contains the names of all the slots defined in the
new class and all its superclasses. However, you can't use all-slots while you're generating
the expansion since the information won't be available until after the expansion is compiled.
Instead, you should use the following function, which takes the list of slot specifiers and
superclasses passed to define-generic-binary-class and uses them to compute the
list of all the new class's slots:

(defun new-class-all-slots (slots superclasses) 
  (nconc (mapcan #'all-slots superclasses) (mapcar #'first slots)))

With these functions defined, you can change define-binary-class to store the
information about the class currently being defined and to use the already stored information
about the superclasses' slots to generate the WITH-SLOTS forms you want like this:

(defmacro define-binary-class (name (&rest superclasses) slots) 
  (with-gensyms (objectvar streamvar) 
    `(progn 
       (eval-when (:compile-toplevel :load-toplevel :execute) 
         (setf (get ',name 'slots) ',(mapcar #'first slots)) 
         (setf (get ',name 'superclasses) ',superclasses)) 
 
       (defclass ,name ,superclasses 
         ,(mapcar #'slot->defclass-slot slots)) 
 
       (defmethod read-object progn ((,objectvar ,name) ,streamvar) 
         (with-slots ,(new-class-all-slots slots superclasses) ,objectvar 
           ,@(mapcar #'(lambda (x) (slot->read-value x streamvar)) slots))) 
 
       (defmethod write-object progn ((,objectvar ,name) ,streamvar) 
         (with-slots ,(new-class-all-slots slots superclasses) ,objectvar 
           ,@(mapcar #'(lambda (x) (slot->write-value x streamvar)) slots))))))

Tagged Structures

With the ability to define binary classes that extend other binary classes, you're ready to define a
new macro for defining classes to represent "tagged" structures. The strategy for reading tagged
structures will be to define a specialized read-value method that knows how to read the
values that make up the start of the structure and then use those values to determine what



subclass to instantiate. It'll then make an instance of that class with MAKE-INSTANCE, passing
the already read values as initargs, and pass the object to read-object, allowing the actual
class of the object to determine how the rest of the structure is read.

The new macro, define-tagged-binary-class, will look like
define-binary-class with the addition of a :dispatch option used to specify a form
that should evaluate to the name of a binary class. The :dispatch form will be evaluated in a
context where the names of the slots defined by the tagged class are bound to variables that hold
the values read from the file. The class whose name it returns must accept initargs corresponding
to the slot names defined by the tagged class. This is easily ensured if the :dispatch form
always evaluates to the name of a class that subclasses the tagged class.

For instance, supposing you have a function, find-frame-class, that will map a string
identifier to a binary class representing a particular kind of ID3 frame, you might define a tagged
binary class, id3-frame, like this:

(define-tagged-binary-class id3-frame () 
  ((id   (iso-8859-1-string :length 3)) 
   (size u3)) 
  (:dispatch (find-frame-class id)))

The expansion of a define-tagged-binary-class will contain a DEFCLASS and a
write-object method just like the expansion of define-binary-class, but instead of
a read-object method it'll contain a read-value method that looks like this:

(defmethod read-value ((type (eql 'id3-frame)) stream &key) 
  (let ((id (read-value 'iso-8859-1-string stream :length 3)) 
        (size (read-value 'u3 stream))) 
    (let ((object (make-instance (find-frame-class id) :id id :size size))) 
      (read-object object stream) 
      object)))

Since the expansions of define-tagged-binary-class and define-binary-class
are going to be identical except for the read method, you can factor out the common bits into a
helper macro, define-generic-binary-class, that accepts the read method as a
parameter and interpolates it.

(defmacro define-generic-binary-class (name (&rest superclasses) slots read-method) 
  (with-gensyms (objectvar streamvar) 
    `(progn 
       (eval-when (:compile-toplevel :load-toplevel :execute) 
         (setf (get ',name 'slots) ',(mapcar #'first slots)) 
         (setf (get ',name 'superclasses) ',superclasses)) 
 
       (defclass ,name ,superclasses 
         ,(mapcar #'slot->defclass-slot slots)) 
 
       ,read-method 
 
       (defmethod write-object progn ((,objectvar ,name) ,streamvar) 
         (declare (ignorable ,streamvar)) 
         (with-slots ,(new-class-all-slots slots superclasses) ,objectvar 
           ,@(mapcar #'(lambda (x) (slot->write-value x streamvar)) slots))))))



Now you can define both define-binary-class and
define-tagged-binary-class to expand into a call to
define-generic-binary-class. Here's a new version of define-binary-class
that generates the same code as the earlier version when it's fully expanded:

(defmacro define-binary-class (name (&rest superclasses) slots) 
  (with-gensyms (objectvar streamvar) 
    `(define-generic-binary-class ,name ,superclasses ,slots 
       (defmethod read-object progn ((,objectvar ,name) ,streamvar) 
         (declare (ignorable ,streamvar)) 
         (with-slots ,(new-class-all-slots slots superclasses) ,objectvar 
           ,@(mapcar #'(lambda (x) (slot->read-value x streamvar)) slots))))))

And here's define-tagged-binary-class along with two new helper functions it uses:

(defmacro define-tagged-binary-class (name (&rest superclasses) slots &rest options) 
  (with-gensyms (typevar objectvar streamvar) 
    `(define-generic-binary-class ,name ,superclasses ,slots 
      (defmethod read-value ((,typevar (eql ',name)) ,streamvar &key) 
        (let* ,(mapcar #'(lambda (x) (slot->binding x streamvar)) slots) 
          (let ((,objectvar 
                 (make-instance  
                  ,@(or (cdr (assoc :dispatch options)) 
                        (error "Must supply :dispatch form.")) 
                  ,@(mapcan #'slot->keyword-arg slots)))) 
            (read-object ,objectvar ,streamvar) 
            ,objectvar)))))) 
 
(defun slot->binding (spec stream) 
  (destructuring-bind (name (type &rest args)) (normalize-slot-spec spec) 
    `(,name (read-value ',type ,stream ,@args)))) 
 
(defun slot->keyword-arg (spec) 
  (let ((name (first spec))) 
    `(,(as-keyword name) ,name)))

Primitive Binary Types

While define-binary-class and define-tagged-binary-class make it easy to
define composite structures, you still have to write read-value and write-value methods
for primitive data types by hand. You could decide to live with that, specifying that users of the
library need to write appropriate methods on read-value and write-value to support the
primitive types used by their binary classes.

However, rather than having to document how to write a suitable
read-value/write-value pair, you can provide a macro to do it automatically. This also
has the advantage of making the abstraction created by define-binary-class less leaky.
Currently, define-binary-class depends on having methods on read-value and
write-value defined in a particular way, but that's really just an implementation detail. By
defining a macro that generates the read-value and write-value methods for primitive
types, you hide those details behind an abstraction you control. If you decide later to change the
implementation of define-binary-class, you can change your primitive-type-defining



macro to meet the new requirements without requiring any changes to code that uses the binary
data library.

So you should define one last macro, define-binary-type, that will generate
read-value and write-value methods for reading values represented by instances of
existing classes, rather than by classes defined with define-binary-class.

For a concrete example, consider a type used in the id3-tag class, a fixed-length string
encoded in ISO-8859-1 characters. I'll assume, as I did earlier, that the native character encoding
of your Lisp is ISO-8859-1 or a superset, so you can use CODE-CHAR and CHAR-CODE to
translate bytes to characters and back.

As always, your goal is to write a macro that allows you to express only the essential
information needed to generate the required code. In this case, there are four pieces of essential
information: the name of the type, iso-8859-1-string; the &key parameters that should
be accepted by the read-value and write-value methods, length in this case; the code
for reading from a stream; and the code for writing to a stream. Here's an expression that
contains those four pieces of information:

(define-binary-type iso-8859-1-string (length) 
  (:reader (in) 
    (let ((string (make-string length))) 
      (dotimes (i length) 
        (setf (char string i) (code-char (read-byte in)))) 
      string)) 
  (:writer (out string) 
    (dotimes (i length) 
      (write-byte (char-code (char string i)) out))))

Now you just need a macro that can take apart this form and put it back together in the form of
two DEFMETHODs wrapped in a PROGN. If you define the parameter list to
define-binary-type like this:

 (defmacro define-binary-type (name (&rest args) &body spec) ...

then within the macro the parameter spec will be a list containing the reader and writer
definitions. You can then use ASSOC to extract the elements of spec using the tags :reader
and :writer and then use DESTRUCTURING-BIND to take apart the REST of each
element.10

From there it's just a matter of interpolating the extracted values into the backquoted templates
of the read-value and write-value methods.

(defmacro define-binary-type (name (&rest args) &body spec) 
  (with-gensyms (type) 
    `(progn 
      ,(destructuring-bind ((in) &body body) (rest (assoc :reader spec)) 
        `(defmethod read-value ((,type (eql ',name)) ,in &key ,@args) 
          ,@body)) 
      ,(destructuring-bind ((out value) &body body) (rest (assoc :writer spec)) 



        `(defmethod write-value ((,type (eql ',name)) ,out ,value &key ,@args) 
          ,@body)))))

Note how the backquoted templates are nested: the outermost template starts with the
backquoted PROGN form. That template consists of the symbol PROGN and two comma-
unquoted DESTRUCTURING-BIND expressions. Thus, the outer template is filled in by
evaluating the DESTRUCTURING-BIND expressions and interpolating their values. Each
DESTRUCTURING-BIND expression in turn contains another backquoted template, which is
used to generate one of the method definitions to be interpolated in the outer template.

With this macro defined, the define-binary-type form given previously expands to this
code:

(progn 
  (defmethod read-value ((#:g1618 (eql 'iso-8859-1-string)) in &key length) 
    (let ((string (make-string length))) 
      (dotimes (i length) 
        (setf (char string i) (code-char (read-byte in)))) 
      string)) 
  (defmethod write-value ((#:g1618 (eql 'iso-8859-1-string)) out string &key length) 
    (dotimes (i length) 
      (write-byte (char-code (char string i)) out))))

Of course, now that you've got this nice macro for defining binary types, it's tempting to make it
do a bit more work. For now you should just make one small enhancement that will turn out to
be pretty handy when you start using this library to deal with actual formats such as ID3 tags.

ID3 tags, like many other binary formats, use lots of primitive types that are minor variations on
a theme, such as unsigned integers in one-, two-, three-, and four-byte varieties. You could
certainly define each of those types with define-binary-type as it stands. Or you could
factor out the common algorithm for reading and writing n-byte unsigned integers into helper
functions.

But suppose you had already defined a binary type, unsigned-integer, that accepts a
:bytes parameter to specify how many bytes to read and write. Using that type, you could
specify a slot representing a one-byte unsigned integer with a type specifier of
(unsigned-integer :bytes 1). But if a particular binary format specifies lots of slots
of that type, it'd be nice to be able to easily define a new type--say, u1--that means the same
thing. As it turns out, it's easy to change define-binary-type to support two forms, a long
form consisting of a :reader and :writer pair and a short form that defines a new binary
type in terms of an existing type. Using a short form define-binary-type, you can define
u1 like this:

(define-binary-type u1 () (unsigned-integer :bytes 1))

which will expand to this:

(progn 
  (defmethod read-value ((#:g161887 (eql 'u1)) #:g161888 &key) 
    (read-value 'unsigned-integer #:g161888 :bytes 1)) 



  (defmethod write-value ((#:g161887 (eql 'u1)) #:g161888 #:g161889 &key) 
    (write-value 'unsigned-integer #:g161888 #:g161889 :bytes 1)))

To support both long- and short-form define-binary-type calls, you need to differentiate
based on the value of the spec argument. If spec is two items long, it represents a long-form
call, and the two items should be the :reader and :writer specifications, which you extract
as before. On the other hand, if it's only one item long, the one item should be a type specifier,
which needs to be parsed differently. You can use ECASE to switch on the LENGTH of spec
and then parse spec and generate an appropriate expansion for either the long form or the short
form.

(defmacro define-binary-type (name (&rest args) &body spec) 
  (ecase (length spec) 
    (1 
     (with-gensyms (type stream value) 
       (destructuring-bind (derived-from &rest derived-args) (mklist (first spec)) 
         `(progn 
            (defmethod read-value ((,type (eql ',name)) ,stream &key ,@args)
              (read-value ',derived-from ,stream ,@derived-args)) 
            (defmethod write-value ((,type (eql ',name)) ,stream ,value &key ,@args) 
              (write-value ',derived-from ,stream ,value ,@derived-args)))))) 
    (2 
     (with-gensyms (type) 
       `(progn 
          ,(destructuring-bind ((in) &body body) (rest (assoc :reader spec))
             `(defmethod read-value ((,type (eql ',name)) ,in &key ,@args) 
                ,@body)) 
          ,(destructuring-bind ((out value) &body body) (rest (assoc :writer spec)) 
             `(defmethod write-value ((,type (eql ',name)) ,out ,value &key ,@args) 
                ,@body)))))))

The Current Object Stack

One last bit of functionality you'll need in the next chapter is a way to get at the binary object
being read or written while reading and writing. More generally, when reading or writing nested
composite objects, it's useful to be able to get at any of the objects currently being read or
written. Thanks to dynamic variables and :around methods, you can add this enhancement
with about a dozen lines of code. To start, you should define a dynamic variable that will hold a
stack of objects currently being read or written.

(defvar *in-progress-objects* nil)

Then you can define :around methods on read-object and write-object that push the
object being read or written onto this variable before invoking CALL-NEXT-METHOD.

(defmethod read-object :around (object stream) 
  (declare (ignore stream)) 
  (let ((*in-progress-objects* (cons object *in-progress-objects*))) 
    (call-next-method))) 
 
(defmethod write-object :around (object stream) 
  (declare (ignore stream)) 
  (let ((*in-progress-objects* (cons object *in-progress-objects*))) 
    (call-next-method)))



Note how you rebind *in-progress-objects* to a list with a new item on the front rather
than assigning it a new value. This way, at the end of the LET, after CALL-NEXT-METHOD
returns, the old value of *in-progress-objects* will be restored, effectively popping the
object of the stack.

With those two methods defined, you can provide two convenience functions for getting at
specific objects in the in-progress stack. The function current-binary-object will return
the head of the stack, the object whose read-object or write-object method was
invoked most recently. The other, parent-of-type, takes an argument that should be the
name of a binary object class and returns the most recently pushed object of that type, using the
TYPEP function that tests whether a given object is an instance of a particular type.

(defun current-binary-object () (first *in-progress-objects*)) 
 
(defun parent-of-type (type) 
  (find-if #'(lambda (x) (typep x type)) *in-progress-objects*))

These two functions can be used in any code that will be called within the dynamic extent of a
read-object or write-object call. You'll see one example of how
current-binary-object can be used in the next chapter.11

Now you have all the tools you need to tackle an ID3 parsing library, so you're ready to move
onto the next chapter where you'll do just that.

1In ASCII, the first 32 characters are nonprinting control characters originally used to control the behavior of a Teletype machine,
causing it to do such things as sound the bell, back up one character, move to a new line, and move the carriage to the beginning of
the line. Of these 32 control characters, only three, the newline, carriage return, and horizontal tab, are typically found in text files.

2Some binary file formats are in-memory data structures--on many operating systems it's possible to map a file into memory, and
low-level languages such as C can then treat the region of memory containing the contents of the file just like any other memory;
data written to that area of memory is saved to the underlying file when it's unmapped. However, these formats are platform-
dependent since the in-memory representation of even such simple data types as integers depends on the hardware on which the
program is running. Thus, any file format that's intended to be portable must define a canonical representation for all the data types
it uses that can be mapped to the actual in-memory data representation on a particular kind of machine or in a particular language.

3The term big-endian and its opposite, little-endian, borrowed from Jonathan Swift's Gulliver's Travels, refer to the way a
multibyte number is represented in an ordered sequence of bytes such as in memory or in a file. For instance, the number 43981, or
abcd in hex, represented as a 16-bit quantity, consists of two bytes, ab and cd. It doesn't matter to a computer in what order these
two bytes are stored as long as everybody agrees. Of course, whenever there's an arbitrary choice to be made between two equally
good options, the one thing you can be sure of is that everybody is not going to agree. For more than you ever wanted to know
about it, and to see where the terms big-endian and little-endian were first applied in this fashion, read "On Holy Wars and a Plea
for Peace" by Danny Cohen, available at http://khavrinen.lcs.mit.edu/wollman/ien-137.txt.

4LDB and DPB, a related function, were named after the DEC PDP-10 assembly functions that did essentially the same thing. Both
functions operate on integers as if they were represented using twos-complement format, regardless of the internal representation
used by a particular Common Lisp implementation.

5Common Lisp also provides functions for shifting and masking the bits of integers in a way that may be more familiar to C and
Java programmers. For instance, you could write read-u2 yet a third way, using those functions, like this:



(defun read-u2 (in) 
  (logior (ash (read-byte in) 8) (read-byte in)))

which would be roughly equivalent to this Java method:

public int readU2 (InputStream in) throws IOException { 
  return (in.read() << 8) | (in.read()); 
}

The names LOGIOR and ASH are short for LOGical Inclusive OR and Arithmetic SHift. ASH shifts an integer a given number of
bits to the left when its second argument is positive or to the right if the second argument is negative. LOGIOR combines integers
by logically oring each bit. Another function, LOGAND, performs a bitwise and, which can be used to mask off certain bits.
However, for the kinds of bit twiddling you'll need to do in this chapter and the next, LDB and BYTE will be both more convenient
and more idiomatic Common Lisp style.

6Originally, UTF-8 was designed to represent a 31-bit character code and used up to six bytes per code point. However, the
maximum Unicode code point is #x10ffff, so a UTF-8 encoding of Unicode requires at most four bytes per code point.

7If you need to parse a file format that uses other character codes, or if you need to parse files containing arbitrary Unicode strings
using a non-Unicode-Common-Lisp implementation, you can always represent such strings in memory as vectors of integer code
points. They won't be Lisp strings, so you won't be able to manipulate or compare them with the string functions, but you'll still be
able to do anything with them that you can with arbitrary vectors.

8Unfortunately, the language itself doesn't always provide a good model in this respect: the macro DEFSTRUCT, which I don't
discuss since it has largely been superseded by DEFCLASS, generates functions with names that it generates based on the name of
the structure it's given. DEFSTRUCT's bad example leads many new macro writers astray.

9Technically there's no possibility of type or object conflicting with slot names--at worst they'd be shadowed within the
WITH-SLOTS form. But it doesn't hurt anything to simply GENSYM all local variable names used within a macro template.

10Using ASSOC to extract the :reader and :writer elements of spec allows users of define-binary-type to include
the elements in either order; if you required the :reader element to be always be first, you could then have used
(rest (first spec)) to extract the reader and (rest (second spec)) to extract the writer. However, as long as you
require the :reader and :writer keywords to improve the readability of define-binary-type forms, you might as well
use them to extract the correct data.

11The ID3 format doesn't require the parent-of-type function since it's a relatively flat structure. This function comes into its
own when you need to parse a format made up of many deeply nested structures whose parsing depends on information stored in
higher-level structures. For example, in the Java class file format, the top-level class file structure contains a constant pool that
maps numeric values used in other substructures within the class file to constant values that are needed while parsing those
substructures. If you were writing a class file parser, you could use parent-of-type in the code that reads and writes those
substructures to get at the top-level class file object and from there to the constant pool.


