
Copyright © 2003-2005, Peter Seibel

23. Practical: A Spam Filter
In 2002 Paul Graham, having some time on his hands after selling
Viaweb to Yahoo, wrote the
essay "A Plan for Spam"1 that
launched a minor revolution in spam-filtering technology. Prior to
Graham's article, most spam filters were written in terms of
handcrafted rules: if a message has
XXX in the subject, it's
probably a spam; if a message has a more than three or more words in a
row in ALL CAPITAL LETTERS, it's probably a spam. Graham spent several
months trying to
write such a rule-based filter before realizing it
was fundamentally a soul-sucking task.

To recognize individual spam features you have to try to get into
the mind of the spammer, and
frankly I want to spend as little time
inside the minds of spammers as possible.

To avoid having to think like a spammer, Graham decided to try
distinguishing spam from
nonspam, a.k.a. ham, based on statistics
gathered about which words occur in which kinds of e-
mails. The
filter would keep track of how often specific words appear in both
spam and ham
messages and then use the frequencies associated with
the words in a new message to compute a
probability that it was
either spam or ham. He called his approach Bayesian filtering
after the
statistical technique that he used to combine the
individual word frequencies into an overall
probability.2

The Heart of a Spam Filter

In this chapter, you'll implement the core of a spam-filtering
engine. You won't write a soup-to-
nuts spam-filtering application;
rather, you'll focus on the functions for classifying new messages
and training the filter.

This application is going to be large enough that it's worth defining
a new package to avoid
name conflicts. For instance, in the source
code you can download from this book's Web site, I
use the package
name COM.GIGAMONKEYS.SPAM, defining a package that uses both
the
standard COMMON-LISP package and the
COM.GIGAMONKEYS.PATHNAMES package from
Chapter 15, like this:

(defpackage :com.gigamonkeys.spam

 (:use :common-lisp :com.gigamonkeys.pathnames))

Any file containing code for this application should start with this
line:

(in-package :com.gigamonkeys.spam)

You can use the same package name or replace com.gigamonkeys
with some domain you
control.3

You can also type this same form at the REPL to switch to this package
to test the functions you
write. In SLIME this will change the prompt
from CL-USER> to SPAM> like this:

CL-USER> (in-package :com.gigamonkeys.spam)

#<The COM.GIGAMONKEYS.SPAM package>

SPAM>

Once you have a package defined, you can start on the actual code.
The main function you'll
need to implement has a simple job--take the
text of a message as an argument and classify the
message as spam,
ham, or unsure. You can easily implement this basic function by
defining it in
terms of other functions that you'll write in a
moment.

(defun classify (text)

 (classification (score (extract-features text))))

Reading from the inside out, the first step in classifying a message
is to extract features to pass
to the score function. In
score you'll compute a value that can then be translated into
one of
three classifications--spam, ham, or unsure--by the function
classification. Of the three
functions, classification
is the simplest. You can assume score will return a value near
1 if the message is a spam, near 0 if it's a ham, and near .5 if it's
unclear.

Thus, you can implement classification like this:

(defparameter *max-ham-score* .4)

(defparameter *min-spam-score* .6)

(defun classification (score)

 (cond

 ((<= score *max-ham-score*) 'ham)

 ((>= score *min-spam-score*) 'spam)

 (t 'unsure)))

The extract-features function is almost as straightforward,
though it requires a bit more
code. For the moment, the features
you'll extract will be the words appearing in the text. For
each
word, you need to keep track of the number of times it has been seen
in a spam and the
number of times it has been seen in a ham. A
convenient way to keep those pieces of data
together with the word
itself is to define a class, word-feature, with three slots.

(defclass word-feature ()

 ((word

 :initarg :word

 :accessor word

 :initform (error "Must supply :word")

 :documentation "The word this feature represents.")

 (spam-count

 :initarg :spam-count

 :accessor spam-count

 :initform 0

 :documentation "Number of spams we have seen this feature in.")

 (ham-count

 :initarg :ham-count

 :accessor ham-count

 :initform 0

 :documentation "Number of hams we have seen this feature in.")))

You'll keep the database of features in a hash table so you can
easily find the object representing
a given feature. You can define a
special variable, *feature-database*, to hold a
reference to
this hash table.

(defvar *feature-database* (make-hash-table :test #'equal))

You should use DEFVAR rather than DEFPARAMETER because you
don't want
feature-database to be reset if you happen to
reload the file containing this definition
during development--you
might have data stored in *feature-database* that you don't
want to lose. Of course, that means if you do want to clear out
the feature database, you can't just
reevaluate the DEFVAR form.
So you should define a function clear-database.

(defun clear-database ()

 (setf *feature-database* (make-hash-table :test #'equal)))

To find the features present in a given message, the code will need
to extract the individual
words and then look up the corresponding
word-feature object in
feature-database. If
feature-database contains no such feature, it'll need to
create a new word-feature to represent the word. You can
encapsulate that bit of logic in a
function, intern-feature,
that takes a word and returns the appropriate feature, creating it
if
necessary.

(defun intern-feature (word)

 (or (gethash word *feature-database*)

 (setf (gethash word *feature-database*)

 (make-instance 'word-feature :word word))))

You can extract the individual words from the message text using a
regular expression. For
example, using the Common Lisp Portable
Perl-Compatible Regular Expression (CL-PPCRE)
library written by Edi
Weitz, you can write extract-words like this:4

(defun extract-words (text)

 (delete-duplicates

 (cl-ppcre:all-matches-as-strings "[a-zA-Z]{3,}" text)

 :test #'string=))

Now all that remains to implement extract-features is to put
extract-features and
intern-feature together. Since
extract-words returns a list of strings and you want a
list
with each string translated to the corresponding word-feature,
this is a perfect time to
use MAPCAR.

(defun extract-features (text)

 (mapcar #'intern-feature (extract-words text)))

You can test these functions at the REPL like this:

SPAM> (extract-words "foo bar baz")

("foo" "bar" "baz")

And you can make sure the DELETE-DUPLICATES is working like this:

SPAM> (extract-words "foo bar baz foo bar")

("baz" "foo" "bar")

You can also test extract-features.

SPAM> (extract-features "foo bar baz foo bar")

(#<WORD-FEATURE @ #x71ef28da> #<WORD-FEATURE @ #x71e3809a>

 #<WORD-FEATURE @ #x71ef28aa>)

However, as you can see, the default method for printing arbitrary
objects isn't very informative.
As you work on this program, it'll be
useful to be able to print word-feature objects in a less
opaque way. Luckily, as I mentioned in Chapter 17, the printing of
all objects is implemented in
terms of a generic function
PRINT-OBJECT, so to change the way word-feature objects
are printed, you just need to define a method on PRINT-OBJECT
that specializes on
word-feature. To make implementing such
methods easier, Common Lisp provides the
macro
PRINT-UNREADABLE-OBJECT.5

The basic form of PRINT-UNREADABLE-OBJECT is as follows:

(print-unreadable-object (object stream-variable &key type identity)

 body-form*)

The object argument is an expression that evaluates to the object
to be printed. Within the body
of PRINT-UNREADABLE-OBJECT,
stream-variable is bound to a stream to which you can
print
anything you want. Whatever you print to that stream will be output
by
PRINT-UNREADABLE-OBJECT and enclosed in the standard syntax
for unreadable objects,
#<>.6

PRINT-UNREADABLE-OBJECT also lets you include the type of the
object and an indication
of the object's identity via the keyword
parameters type and identity. If they're non-NIL, the
output will start with the name of the object's class and end with an
indication of the object's
identity similar to what's printed by the
default PRINT-OBJECT method for
STANDARD-OBJECTs. For
word-feature, you probably want to define a PRINT-OBJECT
method that includes the type but not the identity along with the
values of the word,
ham-count, and spam-count
slots. Such a method would look like this:

(defmethod print-object ((object word-feature) stream)

 (print-unreadable-object (object stream :type t)

 (with-slots (word ham-count spam-count) object

 (format stream "~s :hams ~d :spams ~d" word ham-count spam-count))))

Now when you test extract-features at the REPL, you can see
more clearly what features
are being extracted.

SPAM> (extract-features "foo bar baz foo bar")

(#<WORD-FEATURE "baz" :hams 0 :spams 0>

 #<WORD-FEATURE "foo" :hams 0 :spams 0>

 #<WORD-FEATURE "bar" :hams 0 :spams 0>)

Training the Filter
Now that you have a way to keep track of individual features, you're
almost ready to implement
score. But first you need to write
the code you'll use to train the spam filter so score will
have some data to use. You'll define a function, train, that
takes some text and a symbol
indicating what kind of message it
is--ham or spam--and that increments either the ham
count or
the spam count of all the features present in the text as
well as a global count of hams or spams
processed. Again, you can
take a top-down approach and implement it in terms of other
functions
that don't yet exist.

(defun train (text type)

 (dolist (feature (extract-features text))

 (increment-count feature type))

 (increment-total-count type))

You've already written extract-features, so next up is
increment-count, which
takes a word-feature and a
message type and increments the appropriate slot of the feature.
Since there's no reason to think that the logic of incrementing these
counts is going to change for
different kinds of objects, you can
write this as a regular function.7 Because you defined both
ham-count and
spam-count with an :accessor option, you can use
INCF and the
accessor functions created by DEFCLASS to
increment the appropriate slot.

(defun increment-count (feature type)

 (ecase type

 (ham (incf (ham-count feature)))

 (spam (incf (spam-count feature)))))

The ECASE construct is a variant of CASE, both of which are
similar to case statements in
Algol-derived languages (renamed
switch in C and its progeny). They both evaluate their first
argument--the key form--and then find the clause whose first
element--the key--is the same value
according to EQL. In
this case, that means the variable type is evaluated, yielding
whatever
value was passed as the second argument to
increment-count.

The keys aren't evaluated. In other words, the value of type
will be compared to the literal
objects read by the Lisp reader as
part of the ECASE form. In this function, that means the keys
are the symbols ham and spam, not the values of any
variables named ham and spam. So, if
increment-count is called like this:

(increment-count some-feature 'ham)

the value of type will be the symbol ham, and the first
branch of the ECASE will be evaluated
and the feature's ham
count incremented. On the other hand, if it's called like this:

(increment-count some-feature 'spam)

then the second branch will run, incrementing the spam count. Note
that the symbols ham and
spam are quoted when calling
increment-count since otherwise they'd be evaluated as the

names of variables. But they're not quoted when they appear in
ECASE since ECASE doesn't
evaluate the
keys.8

The E in ECASE stands for "exhaustive" or "error," meaning
ECASE should signal an error if the
key value is anything other
than one of the keys listed. The regular CASE is looser,
returning
NIL if no matching clause is found.

To implement increment-total-count, you need to decide where
to store the counts; for
the moment, two more special variables,
total-spams and *total-hams*, will do fine.

(defvar *total-spams* 0)

(defvar *total-hams* 0)

(defun increment-total-count (type)

 (ecase type

 (ham (incf *total-hams*))

 (spam (incf *total-spams*))))

You should use DEFVAR to define these two variables for the same
reason you used it with
feature-database--they'll hold data
built up while you run the program that you don't
necessarily want to
throw away just because you happen to reload your code during
development. But you'll want to reset those variables if you ever
reset
feature-database, so you should add a few lines to
clear-database as shown
here:

(defun clear-database ()

 (setf

 feature-database (make-hash-table :test #'equal)

 total-spams 0

 total-hams 0))

Per-Word Statistics

The heart of a statistical spam filter is, of course, the functions
that compute statistics-based
probabilities. The mathematical
nuances9 of why exactly these computations work are beyond
the
scope of this book--interested readers may want to refer to several
papers by Gary
Robinson.10 I'll focus rather on how they're implemented.

The starting point for the statistical computations is the set of
measured values--the frequencies
stored in *feature-database*,
total-spams, and *total-hams*. Assuming that
the set
of messages trained on is statistically representative, you can treat
the observed
frequencies as probabilities of the same features showing up
in hams and spams in future
messages.

The basic plan is to classify a message by extracting the features it
contains, computing the
individual probability that a given message
containing the feature is a spam, and then combining
all the
individual probabilities into a total score for the message. Messages
with many "spammy"

features and few "hammy" features will receive a
score near 1, and messages with many hammy
features and few spammy
features will score near 0.

The first statistical function you need is one that computes the
basic probability that a message
containing a given feature is a
spam. By one point of view, the probability that a given message
containing the feature is a spam is the ratio of spam messages
containing the feature to all
messages containing the feature. Thus,
you could compute it this way:

(defun spam-probability (feature)

 (with-slots (spam-count ham-count) feature

 (/ spam-count (+ spam-count ham-count))))

The problem with the value computed by this function is that it's
strongly affected by the overall
probability that any message
will be a spam or a ham. For instance, suppose you get nine times
as
much ham as spam in general. A completely neutral feature will then
appear in one spam for
every nine hams, giving you a spam probability
of 1/10 according to this function.

But you're more interested in the probability that a given feature
will appear in a spam message,
independent of the overall probability
of getting a spam or ham. Thus, you need to divide the
spam count by
the total number of spams trained on and the ham count by the total
number of
hams. To avoid division-by-zero errors, if either of
total-spams or *total-hams* is
zero, you should treat
the corresponding frequency as zero. (Obviously, if the total number
of
either spams or hams is zero, then the corresponding per-feature
count will also be zero, so you
can treat the resulting frequency as
zero without ill effect.)

(defun spam-probability (feature)

 (with-slots (spam-count ham-count) feature

 (let ((spam-frequency (/ spam-count (max 1 *total-spams*)))

 (ham-frequency (/ ham-count (max 1 *total-hams*))))

 (/ spam-frequency (+ spam-frequency ham-frequency)))))

This version suffers from another problem--it doesn't take into
account the number of messages
analyzed to arrive at the per-word
probabilities. Suppose you've trained on 2,000 messages, half
spam
and half ham. Now consider two features that have appeared only in
spams. One has
appeared in all 1,000 spams, while the other appeared
only once. According to the current
definition of
spam-probability, the appearance of either feature predicts
that a message is
spam with equal probability, namely, 1.

However, it's still quite possible that the feature that has appeared
only once is actually a neutral
feature--it's obviously rare in
either spams or hams, appearing only once in 2,000 messages. If
you
trained on another 2,000 messages, it might very well appear one more
time, this time in a
ham, making it suddenly a neutral feature with a
spam probability of .5.

So it seems you might like to compute a probability that somehow
factors in the number of data
points that go into each feature's
probability. In his papers, Robinson suggested a function based
on
the Bayesian notion of incorporating observed data into prior
knowledge or assumptions.
Basically, you calculate a new probability
by starting with an assumed prior probability and a

weight to give
that assumed probability before adding new information. Robinson's
function is
this:

(defun bayesian-spam-probability (feature &optional

 (assumed-probability 1/2)

 (weight 1))

 (let ((basic-probability (spam-probability feature))

 (data-points (+ (spam-count feature) (ham-count feature))))

 (/ (+ (* weight assumed-probability)

 (* data-points basic-probability))

 (+ weight data-points))))

Robinson suggests values of 1/2 for assumed-probability and 1
for weight. Using
those values, a feature that has appeared in
one spam and no hams has a
bayesian-spam-probability of 0.75,
a feature that has appeared in 10 spams and no
hams has a
bayesian-spam-probability of approximately 0.955, and one that
has
matched in 1,000 spams and no hams has a spam probability of
approximately 0.9995.

Combining Probabilities

Now that you can compute the bayesian-spam-probability of each
individual feature
you find in a message, the last step in implementing
the score function is to find a way to
combine a bunch of
individual probabilities into a single value between 0 and 1.

If the individual feature probabilities were independent, then it'd
be mathematically sound to
multiply them together to get a combined
probability. But it's unlikely they actually are
independent--certain
features are likely to appear together, while others never
do.11

Robinson proposed using a method for combining probabilities invented
by the statistician R. A.
Fisher. Without going into the details of
exactly why his technique works, it's this: First you
combine the
probabilities by multiplying them together. This gives you a number
nearer to 0 the
more low probabilities there were in the original
set. Then take the log of that number and
multiply by -2. Fisher
showed in 1950 that if the individual probabilities were independent
and
drawn from a uniform distribution between 0 and 1, then the
resulting value would be on a chi-
square distribution. This value and
twice the number of probabilities can be fed into an inverse
chi-square function, and it'll return the probability that reflects
the likelihood of obtaining a
value that large or larger by combining
the same number of randomly selected probabilities.
When the inverse
chi-square function returns a low probability, it means there was a
disproportionate number of low probabilities (either a lot of
relatively low probabilities or a few
very low probabilities) in the
individual probabilities.

To use this probability in determining whether a given message is a
spam, you start with a null
hypothesis, a straw man you hope to
knock down. The null hypothesis is that the message being
classified
is in fact just a random collection of features. If it were, then the
individual
probabilities--the likelihood that each feature would
appear in a spam--would also be random.
That is, a random selection
of features would usually contain some features with a high

probability of appearing in spam and other features with a low
probability of appearing in spam.
If you were to combine these
randomly selected probabilities according to Fisher's method, you
should get a middling combined value, which the inverse chi-square
function will tell you is
quite likely to arise just by chance, as,
in fact, it would have. But if the inverse chi-square
function
returns a very low probability, it means it's unlikely the
probabilities that went into the
combined value were selected at
random; there were too many low probabilities for that to be
likely.
So you can reject the null hypothesis and instead adopt the
alternative hypothesis that the
features involved were drawn from a
biased sample--one with few high spam probability
features and many
low spam probability features. In other words, it must be a ham
message.

However, the Fisher method isn't symmetrical since the inverse
chi-square function returns the
probability that a given number of
randomly selected probabilities would combine to a value as
large or
larger than the one you got by combining the actual probabilities.
This asymmetry works
to your advantage because when you reject the
null hypothesis, you know what the more likely
hypothesis is. When
you combine the individual spam probabilities via the Fisher method,
and it
tells you there's a high probability that the null hypothesis
is wrong--that the message isn't a
random collection of words--then
it means it's likely the message is a ham. The number returned
is, if
not literally the probability that the message is a ham, at least a
good measure of its
"hamminess." Conversely, the Fisher combination
of the individual ham probabilities gives you
a measure of the
message's "spamminess."

To get a final score, you need to combine those two measures into a
single number that gives
you a combined hamminess-spamminess score
ranging from 0 to 1. The method recommended
by Robinson is to add
half the difference between the hamminess and spamminess scores to
1/2,
in other words, to average the spamminess and 1 minus the
hamminess. This has the nice effect
that when the two scores agree
(high spamminess and low hamminess, or vice versa) you'll end
up with
a strong indicator near either 0 or 1. But when the spamminess and
hamminess scores
are both high or both low, then you'll end up with a
final value near 1/2, which you can treat as
an "uncertain"
classification.

The score function that implements this scheme looks like this:

(defun score (features)

 (let ((spam-probs ()) (ham-probs ()) (number-of-probs 0))

 (dolist (feature features)

 (unless (untrained-p feature)

 (let ((spam-prob (float (bayesian-spam-probability feature) 0.0d0)))
 (push spam-prob spam-probs)

 (push (- 1.0d0 spam-prob) ham-probs)

 (incf number-of-probs))))

 (let ((h (- 1 (fisher spam-probs number-of-probs)))

 (s (- 1 (fisher ham-probs number-of-probs))))

 (/ (+ (- 1 h) s) 2.0d0))))

You take a list of features and loop over them, building up two lists
of probabilities, one listing
the probabilities that a message
containing each feature is a spam and the other that a message
containing each feature is a ham. As an optimization, you can also
count the number of

probabilities while looping over them and pass
the count to fisher to avoid having to count
them again in
fisher itself. The value returned by fisher will be low
if the individual
probabilities contained too many low probabilities
to have come from random text. Thus, a low
fisher score for
the spam probabilities means there were many hammy features;
subtracting
that score from 1 gives you a probability that the
message is a ham. Conversely, subtracting the
fisher score for
the ham probabilities gives you the probability that the message was
a spam.
Combining those two probabilities gives you an overall
spamminess score between 0 and 1.

Within the loop, you can use the function untrained-p to skip
features extracted from the
message that were never seen during
training. These features will have spam counts and ham
counts of
zero. The untrained-p function is trivial.

(defun untrained-p (feature)

 (with-slots (spam-count ham-count) feature

 (and (zerop spam-count) (zerop ham-count))))

The only other new function is fisher itself. Assuming you
already had an
inverse-chi-square function, fisher is
conceptually simple.

(defun fisher (probs number-of-probs)

 "The Fisher computation described by Robinson."

 (inverse-chi-square

 (* -2 (log (reduce #'* probs)))

 (* 2 number-of-probs)))

Unfortunately, there's a small problem with this straightforward
implementation. While using
REDUCE is a concise and idiomatic
way of multiplying a list of numbers, in this particular
application
there's a danger the product will be too small a number to be
represented as a
floating-point number. In that case, the result will
underflow to zero. And if the product of the
probabilities
underflows, all bets are off because taking the LOG of zero will
either signal an
error or, in some implementation, result in a
special negative-infinity value, which will render all
subsequent
calculations essentially meaningless. This is particularly
unfortunate in this function
because the Fisher method is most
sensitive when the input probabilities are low--near zero--and
therefore in the most danger of causing the multiplication to
underflow.

Luckily, you can use a bit of high-school math to avoid this problem.
Recall that the log of a
product is the same as the sum of the logs
of the factors. So instead of multiplying all the
probabilities and
then taking the log, you can sum the logs of each probability. And
since
REDUCE takes a :key keyword parameter, you can use
it to perform the whole calculation.
Instead of this:

(log (reduce #'* probs))

write this:

(reduce #'+ probs :key #'log)

Inverse Chi Square

The implementation of inverse-chi-square in this section is a
fairly straightforward
translation of a version written in Python by
Robinson. The exact mathematical meaning of this
function is beyond
the scope of this book, but you can get an intuitive sense of what it
does by
thinking about how the values you pass to fisher will
affect the result: the more low
probabilities you pass to
fisher, the smaller the product of the probabilities will be.
The log of
a small product will be a negative number with a large
absolute value, which is then multiplied
by -2, making it an even
larger positive number. Thus, the more low probabilities were passed
to
fisher, the larger the value it'll pass to
inverse-chi-square. Of course, the number of
probabilities
involved also affects the value passed to inverse-chi-square.
Since
probabilities are, by definition, less than or equal to 1, the
more probabilities that go into a
product, the smaller it'll be and
the larger the value passed to inverse-chi-square. Thus,
inverse-chi-square should return a low probability when the
Fisher combined value is
abnormally large for the number of
probabilities that went into it. The following function does
exactly
that:

(defun inverse-chi-square (value degrees-of-freedom)

 (assert (evenp degrees-of-freedom))

 (min

 (loop with m = (/ value 2)

 for i below (/ degrees-of-freedom 2)

 for prob = (exp (- m)) then (* prob (/ m i))

 summing prob)

 1.0))

Recall from Chapter 10 that EXP raises e to the argument
given. Thus, the larger value is, the
smaller the initial
value of prob will be. But that initial value will then be
adjusted upward
slightly for each degree of freedom as long as
m is greater than the number of degrees of
freedom. Since the
value returned by inverse-chi-square is supposed to be another
probability, it's important to clamp the value returned with MIN
since rounding errors in the
multiplication and exponentiation may
cause the LOOP to return a sum just a shade over 1.

Training the Filter

Since you wrote classify and train to take a string
argument, you can test them easily at
the REPL. If you haven't yet,
you should switch to the package in which you've been writing this
code by evaluating an IN-PACKAGE form at the REPL or using the
SLIME shortcut
change-package. To use the SLIME shortcut, type
a comma at the REPL and then type the
name at the prompt. Pressing
Tab while typing the package name will autocomplete based on the
packages your Lisp knows about. Now you can invoke any of the
functions that are part of the
spam application. You should first
make sure the database is empty.

SPAM> (clear-database)

Now you can train the filter with some text.

SPAM> (train "Make money fast" 'spam)

And then see what the classifier thinks.

SPAM> (classify "Make money fast")

SPAM

SPAM> (classify "Want to go to the movies?")

UNSURE

While ultimately all you care about is the classification, it'd be nice
to be able to see the raw
score too. The easiest way to get both
values without disturbing any other code is to change
classification to return multiple values.

(defun classification (score)

 (values

 (cond

 ((<= score *max-ham-score*) 'ham)

 ((>= score *min-spam-score*) 'spam)

 (t 'unsure))

 score))

You can make this change and then recompile just this one function.
Because classify
returns whatever classification
returns, it'll also now return two values. But since the
primary
return value is the same, callers of either function who expect only
one value won't be
affected. Now when you test classify, you
can see exactly what score went into the
classification.

SPAM> (classify "Make money fast")

SPAM

0.863677101854273D0

SPAM> (classify "Want to go to the movies?")

UNSURE

0.5D0

And now you can see what happens if you train the filter with some
more ham text.

SPAM> (train "Do you have any money for the movies?" 'ham)

1

SPAM> (classify "Make money fast")

SPAM

0.7685351219857626D0

It's still spam but a bit less certain since money was seen in
ham text.

SPAM> (classify "Want to go to the movies?")

HAM

0.17482223132078922D0

And now this is clearly recognizable ham thanks to the presence of
the word movies, now a
hammy feature.

However, you don't really want to train the filter by hand. What
you'd really like is an easy way
to point it at a bunch of files and
train it on them. And if you want to test how well the filter
actually works, you'd like to then use it to classify another set of
files of known types and see
how it does. So the last bit of code
you'll write in this chapter will be a test harness that tests the
filter on a corpus of messages of known types, using a certain
fraction for training and then
measuring how accurate the filter is
when classifying the remainder.

Testing the Filter
To test the filter, you need a corpus of messages of known types. You
can use messages lying
around in your inbox, or you can grab one of
the corpora available on the Web. For instance, the
SpamAssassin
corpus12
contains several thousand messages hand classified as spam, easy ham,
and hard ham. To make it easy to use whatever files you have, you can
define a test rig that's
driven off an array of file/type pairs. You
can define a function that takes a filename and a type
and adds it to
the corpus like this:

(defun add-file-to-corpus (filename type corpus)

 (vector-push-extend (list filename type) corpus))

The value of corpus should be an adjustable vector with a fill
pointer. For instance, you can
make a new corpus like this:

(defparameter *corpus* (make-array 1000 :adjustable t :fill-pointer 0))

If you have the hams and spams already segregated into separate
directories, you might want to
add all the files in a directory as
the same type. This function, which uses the
list-directory
function from Chapter 15, will do the trick:

(defun add-directory-to-corpus (dir type corpus)

 (dolist (filename (list-directory dir))

 (add-file-to-corpus filename type corpus)))

For instance, suppose you have a directory mail containing two
subdirectories, spam and ham,
each containing messages
of the indicated type; you can add all the files in those two
directories
to *corpus* like this:

SPAM> (add-directory-to-corpus "mail/spam/" 'spam *corpus*)

NIL

SPAM> (add-directory-to-corpus "mail/ham/" 'ham *corpus*)

NIL

Now you need a function to test the classifier. The basic strategy
will be to select a random
chunk of the corpus to train on and then
test the corpus by classifying the remainder of the
corpus, comparing
the classification returned by the classify function to the
known
classification. The main thing you want to know is how accurate
the classifier is--what
percentage of the messages are classified
correctly? But you'll probably also be interested in
what messages
were misclassified and in what direction--were there more false
positives or more
false negatives? To make it easy to perform
different analyses of the classifier's behavior, you
should define the
testing functions to build a list of raw results, which you can then
analyze
however you like.

The main testing function might look like this:

(defun test-classifier (corpus testing-fraction)

 (clear-database)

 (let* ((shuffled (shuffle-vector corpus))

 (size (length corpus))

 (train-on (floor (* size (- 1 testing-fraction)))))

 (train-from-corpus shuffled :start 0 :end train-on)

 (test-from-corpus shuffled :start train-on)))

This function starts by clearing out the feature database.13
Then it shuffles the corpus, using a
function you'll implement in a
moment, and figures out, based on the testing-fraction
parameter, how many messages it'll train on and how many it'll
reserve for testing. The two
helper functions
train-from-corpus and test-from-corpus will both take
:start
and :end keyword parameters, allowing them to
operate on a subsequence of the given corpus.

The train-from-corpus function is quite simple--simply loop
over the appropriate part of
the corpus, use DESTRUCTURING-BIND
to extract the filename and type from the list found in
each element,
and then pass the text of the named file and the type to
train. Since some mail
messages, such as those with
attachments, are quite large, you should limit the number of
characters it'll take from the message. It'll obtain the text with a
function start-of-file,
which you'll implement in a moment,
that takes a filename and a maximum number of characters
to return.
train-from-corpus looks like this:

(defparameter *max-chars* (* 10 1024))

(defun train-from-corpus (corpus &key (start 0) end)

 (loop for idx from start below (or end (length corpus)) do

 (destructuring-bind (file type) (aref corpus idx)

 (train (start-of-file file *max-chars*) type))))

The test-from-corpus function is similar except you want to
return a list containing the
results of each classification so you
can analyze them after the fact. Thus, you should capture
both the
classification and score returned by classify and then collect
a list of the filename,
the actual type, the type returned by
classify, and the score. To make the results more human
readable, you can include keywords in the list to indicate which
values are which.

(defun test-from-corpus (corpus &key (start 0) end)

 (loop for idx from start below (or end (length corpus)) collect

 (destructuring-bind (file type) (aref corpus idx)

 (multiple-value-bind (classification score)

 (classify (start-of-file file *max-chars*))

 (list

 :file file

 :type type

 :classification classification

 :score score)))))

A Couple of Utility Functions

To finish the implementation of test-classifier, you need to
write the two utility
functions that don't really have anything
particularly to do with spam filtering,
shuffle-vector and
start-of-file.

An easy and efficient way to implement shuffle-vector is using
the Fisher-Yates
algorithm.14 You can start by implementing a
function, nshuffle-vector, that shuffles a

vector in place.
This name follows the same naming convention of other destructive
functions
such as NCONC and NREVERSE. It looks like this:

(defun nshuffle-vector (vector)

 (loop for idx downfrom (1- (length vector)) to 1

 for other = (random (1+ idx))

 do (unless (= idx other)

 (rotatef (aref vector idx) (aref vector other))))

 vector)

The nondestructive version simply makes a copy of the original vector
and passes it to the
destructive version.

(defun shuffle-vector (vector)

 (nshuffle-vector (copy-seq vector)))

The other utility function, start-of-file, is almost as
straightforward with just one
wrinkle. The most efficient way to read
the contents of a file into memory is to create an array of
the
appropriate size and use READ-SEQUENCE to fill it in. So it
might seem you could make a
character array that's either the size of
the file or the maximum number of characters you want to
read,
whichever is smaller. Unfortunately, as I mentioned in Chapter 14,
the function
FILE-LENGTH isn't entirely well defined when
dealing with character streams since the
number of characters encoded
in a file can depend on both the character encoding used and the
particular text in the file. In the worst case, the only way to get
an accurate measure of the
number of characters in a file is to
actually read the whole file. Thus, it's ambiguous what
FILE-LENGTH should do when passed a character stream; in most
implementations,
FILE-LENGTH always returns the number of octets
in the file, which may be greater than the
number of characters that
can be read from the file.

However, READ-SEQUENCE returns the number of characters actually
read. So, you can
attempt to read the number of characters reported
by FILE-LENGTH and return a substring if
the actual number of
characters read was smaller.

(defun start-of-file (file max-chars)

 (with-open-file (in file)

 (let* ((length (min (file-length in) max-chars))

 (text (make-string length))

 (read (read-sequence text in)))

 (if (< read length)

 (subseq text 0 read)

 text))))

Analyzing the Results

Now you're ready to write some code to analyze the results generated
by test-classifier.
Recall that test-classifier returns
the list returned by test-from-corpus in which
each element is
a plist representing the result of classifying one file. This plist
contains the name
of the file, the actual type of the file, the
classification, and the score returned by classify.
The first
bit of analytical code you should write is a function that returns a
symbol indicating

whether a given result was correct, a false
positive, a false negative, a missed ham, or a missed
spam. You can
use DESTRUCTURING-BIND to pull out the :type and
:classification
elements of an individual result list (using
&allow-other-keys to tell
DESTRUCTURING-BIND to ignore any
other key/value pairs it sees) and then use nested
ECASE to
translate the different pairings into a single symbol.

(defun result-type (result)

 (destructuring-bind (&key type classification &allow-other-keys) result

 (ecase type

 (ham

 (ecase classification

 (ham 'correct)

 (spam 'false-positive)

 (unsure 'missed-ham)))

 (spam

 (ecase classification

 (ham 'false-negative)

 (spam 'correct)

 (unsure 'missed-spam))))))

You can test out this function at the REPL.

SPAM> (result-type '(:FILE #p"foo" :type ham :classification ham :score 0))

CORRECT

SPAM> (result-type '(:FILE #p"foo" :type spam :classification spam :score 0))

CORRECT

SPAM> (result-type '(:FILE #p"foo" :type ham :classification spam :score 0))
FALSE-POSITIVE

SPAM> (result-type '(:FILE #p"foo" :type spam :classification ham :score 0))
FALSE-NEGATIVE

SPAM> (result-type '(:FILE #p"foo" :type ham :classification unsure :score 0))

MISSED-HAM

SPAM> (result-type '(:FILE #p"foo" :type spam :classification unsure :score 0))

MISSED-SPAM

Having this function makes it easy to slice and dice the results of
test-classifier in a
variety of ways. For instance, you can
start by defining predicate functions for each type of
result.

(defun false-positive-p (result)

 (eql (result-type result) 'false-positive))

(defun false-negative-p (result)

 (eql (result-type result) 'false-negative))

(defun missed-ham-p (result)

 (eql (result-type result) 'missed-ham))

(defun missed-spam-p (result)

 (eql (result-type result) 'missed-spam))

(defun correct-p (result)

 (eql (result-type result) 'correct))

With those functions, you can easily use the list and sequence
manipulation functions I discussed
in Chapter 11 to extract and count
particular kinds of results.

SPAM> (count-if #'false-positive-p *results*)

6

SPAM> (remove-if-not #'false-positive-p *results*)

((:FILE #p"ham/5349" :TYPE HAM :CLASSIFICATION SPAM :SCORE 0.9999983107355541d0)

 (:FILE #p"ham/2746" :TYPE HAM :CLASSIFICATION SPAM :SCORE 0.6286468956619795d0)

 (:FILE #p"ham/3427" :TYPE HAM :CLASSIFICATION SPAM :SCORE 0.9833753501352983d0)

 (:FILE #p"ham/7785" :TYPE HAM :CLASSIFICATION SPAM :SCORE 0.9542788587998488d0)

 (:FILE #p"ham/1728" :TYPE HAM :CLASSIFICATION SPAM :SCORE 0.684339162891261d0)

 (:FILE #p"ham/10581" :TYPE HAM :CLASSIFICATION SPAM :SCORE 0.9999924537959615d0))

You can also use the symbols returned by result-type as keys
into a hash table or an alist.
For instance, you can write a function
to print a summary of the counts and percentages of each
type of
result using an alist that maps each type plus the extra symbol
total to a count.

(defun analyze-results (results)

 (let* ((keys '(total correct false-positive

 false-negative missed-ham missed-spam))

 (counts (loop for x in keys collect (cons x 0))))

 (dolist (item results)

 (incf (cdr (assoc 'total counts)))

 (incf (cdr (assoc (result-type item) counts))))

 (loop with total = (cdr (assoc 'total counts))

 for (label . count) in counts

 do (format t "~&~@(~a~):~20t~5d~,5t: ~6,2f%~%"

 label count (* 100 (/ count total))))))

This function will give output like this when passed a list of results
generated by
test-classifier:

SPAM> (analyze-results *results*)

Total: 3761 : 100.00%

Correct: 3689 : 98.09%

False-positive: 4 : 0.11%

False-negative: 9 : 0.24%

Missed-ham: 19 : 0.51%

Missed-spam: 40 : 1.06%

NIL

And as a last bit of analysis you might want to look at why an
individual message was classified
the way it was. The following
functions will show you:

(defun explain-classification (file)

 (let* ((text (start-of-file file *max-chars*))

 (features (extract-features text))

 (score (score features))

 (classification (classification score)))

 (show-summary file text classification score)

 (dolist (feature (sorted-interesting features))

 (show-feature feature))))

(defun show-summary (file text classification score)

 (format t "~&~a" file)

 (format t "~2%~a~2%" text)

 (format t "Classified as ~a with score of ~,5f~%" classification score))

(defun show-feature (feature)

 (with-slots (word ham-count spam-count) feature

 (format

 t "~&~2t~a~30thams: ~5d; spams: ~5d;~,10tprob: ~,f~%"

 word ham-count spam-count (bayesian-spam-probability feature))))

(defun sorted-interesting (features)

 (sort (remove-if #'untrained-p features) #'< :key #'bayesian-spam-probability))

What's Next

Obviously, you could do a lot more with this code. To turn it into a
real spam-filtering
application, you'd need to find a way to
integrate it into your normal e-mail infrastructure. One
approach
that would make it easy to integrate with almost any e-mail client is
to write a bit of
code to act as a POP3 proxy--that's the protocol
most e-mail clients use to fetch mail from mail
servers. Such a proxy
would fetch mail from your real POP3 server and serve it to your mail
client after either tagging spam with a header that your e-mail
client's filters can easily recognize
or simply putting it aside. Of
course, you'd also need a way to communicate with the filter about
misclassifications--as long as you're setting it up as a server, you
could also provide a Web
interface. I'll talk about how to write Web
interfaces in Chapter 26, and you'll build one, for a
different
application, in Chapter 29.

Or you might want to work on improving the basic classification--a
likely place to start is to
make extract-features more
sophisticated. In particular, you could make the tokenizer
smarter
about the internal structure of e-mail--you could extract different
kinds of features for
words appearing in the body versus the message
headers. And you could decode various kinds of
message encoding such
as base 64 and quoted printable since spammers often try to obfuscate
their message with those encodings.

But I'll leave those improvements to you. Now you're ready to head
down the path of building a
streaming MP3 server, starting by writing
a general-purpose library for parsing binary files.

1Available at
http://www.paulgraham.com/spam.html and also in Hackers &
Painters: Big Ideas from the Computer
Age (O'Reilly, 2004)

2There
has since been some disagreement over whether the technique Graham
described was actually "Bayesian." However, the
name has stuck and is
well on its way to becoming a synonym for "statistical" when talking
about spam filters.

3It would, however, be poor form to
distribute a version of this application using a package starting
with com.gigamonkeys
since you don't control that domain.

4A version
of CL-PPCRE is included with the book's source code available from
the book's Web site. Or you can download it from
Weitz's site at
http://www.weitz.de/cl-ppcre/.

5The main reason to use
PRINT-UNREADABLE-OBJECT is that it takes care of signaling the
appropriate error if someone tries
to print your object readably,
such as with the ~S FORMAT directive.

6PRINT-UNREADABLE-OBJECT
also signals an error if it's used when the printer control variable
PRINT-READABLY is
true. Thus, a PRINT-OBJECT method
consisting solely of a PRINT-UNREADABLE-OBJECT form will
correctly implement the
PRINT-OBJECT contract with regard to
PRINT-READABLY.

7If you decide later that you
do need to have different versions of increment-feature for
different classes, you can redefine
increment-count as a
generic function and this function as a method specialized on
word-feature.

8Technically, the key in each clause of a CASE or
ECASE is interpreted as a list designator, an object that
designates a list of
objects. A single nonlist object, treated as a
list designator, designates a list containing just that one object,
while a list designates
itself. Thus, each clause can have multiple
keys; CASE and ECASE will select the clause whose list of
keys contains the value of
the key form. For example, if you wanted
to make good a synonym for ham and bad a synonym
for spam, you could write
increment-count like this:

(defun increment-count (feature type)

 (ecase type

 ((ham good) (incf (ham-count feature)))

 ((spam bad) (incf (spam-count feature)))))

9Speaking of mathematical nuances, hard-core statisticians
may be offended by the sometimes loose use of the word probability
in
this chapter. However, since even the pros, who are divided between
the Bayesians and the frequentists, can't agree on what a
probability
is, I'm not going to worry about it. This is a book about programming,
not statistics.

10Robinson's articles that directly
informed this chapter are "A Statistical Approach to the Spam Problem"
(published in the Linux
Journal and available at
http://www.linuxjournal.com/ article.php?sid=6467 and in a
shorter form on
Robinson's blog at http://radio.weblogs.com/
0101454/stories/2002/09/16/spamDetection.html) and
"Why Chi?
Motivations for the Use of Fisher's Inverse Chi-Square Procedure in
Spam Classification" (available at
http://garyrob.blogs.com/
whychi93.pdf). Another article that may be useful is "Handling
Redundancy in Email
Token Probabilities" (available at
http://garyrob.blogs.com//handlingtokenredundancy94.pdf). The
archived mailing lists of the SpamBayes project
(http://spambayes.sourceforge.net/) also contain a lot of
useful
information about different algorithms and approaches to
testing spam filters.

11Techniques that combine nonindependent probabilities as
though they were, in fact, independent, are called naive
Bayesian.
Graham's original proposal was essentially a naive
Bayesian classifier with some "empirically derived" constant factors
thrown in.

12Several spam corpora including the SpamAssassin corpus
are linked to from
http://nexp.cs.pdx.edu/~psam/cgi-bin/view/PSAM/CorpusSets.

13If
you wanted to conduct a test without disturbing the existing
database, you could bind *feature-database*,
total-spams, and *total-hams* with a LET, but
then you'd have no way of looking at the database after the
fact--unless
you returned the values you used within the function.

14This algorithm is named for the same
Fisher who invented the method used for combining probabilities and
for Frank Yates, his
coauthor of the book Statistical Tables for
Biological, Agricultural and Medical Research (Oliver & Boyd, 1938)
in which,
according to Knuth, they provided the first published
description of the algorithm.

