
Copyright © 2003-2005, Peter Seibel

22. LOOP for Black Belts
In Chapter 7 I briefly discussed the extended LOOP macro. As I
mentioned then, LOOP provides
what is essentially a
special-purpose language just for writing iteration constructs.

This might seem like a lot of bother--inventing a whole language just
for writing loops. But if
you think about the ways loops are used in
programs, it actually makes a fair bit of sense. Any
program of any
size at all will contain quite a number of loops. And while they
won't all be the
same, they won't all be unique either; patterns will
emerge, particularly if you include the code
immediately preceding
and following the loops--patterns of how things are set up for the
loop,
patterns in what gets done in the loop proper, and patterns in
what gets done after the loop. The
LOOP language captures these
patterns so you can express them directly.

The LOOP macro has a lot of parts--one of the main complaints of
LOOP's detractors is that it's
too complex. In this chapter,
I'll tackle LOOP head on, giving you a systematic tour of the
various parts and how they fit together.

The Parts of a LOOP
You can do the following in a LOOP:

Step variables numerically and over various data structures
Collect, count, sum, minimize, and maximize values seen while looping
Execute arbitrary Lisp expressions
Decide when to terminate the loop
Conditionally do any of these

Additionally, LOOP provides syntax for the following:

Creating local variables for use within the loop
Specifying arbitrary Lisp expressions to run before and after
the loop proper

The basic structure of a LOOP is a set of clauses, each of which
begins with a loop keyword.1

How each clause is parsed by the
LOOP macro depends on the keyword. Some of the main
keywords,
which you saw in Chapter 7, are for, collecting,
summing, counting, do,
and finally.

Iteration Control
Most of the so-called iteration control clauses start with the loop
keyword for, or its synonym
as,2
followed by the name of a variable. What follows after the variable
name depends on the
type of for clause.

The subclauses of a for clause can iterate over the following:

Ranges of numbers, up or down, by specified intervals
The individual items of a list
The cons cells that make up a list
The elements of a vector, including subtypes such as strings and
bit vectors
The pairs of a hash table
The symbols in a package
The results of repeatedly evaluating a given form

A single loop can have multiple for clauses with each clause
naming its own variable. When a
loop has multiple for clauses,
the loop terminates as soon as any for clause reaches its end
condition. For instance, the following loop:

(loop

 for item in list

 for i from 1 to 10

 do (something))

will iterate at most ten times but may stop sooner if list
contains fewer than ten items.

Counting Loops
Arithmetic iteration clauses control the number of times the loop body
will be executed by
stepping a variable over a range of numbers,
executing the body once per step. These clauses
consist of from one to
three of the following prepositional phrases after the for
(or as): the
from where phrase, the to where phrase, and
the by how much phrase.

The from where phrase specifies the initial value of the clause's
variable. It consists of one of the
prepositions from,
downfrom, or upfrom followed by a form, which supplies
the initial
value (a number).

The to where phrase specifies a stopping point for the loop and
consists of one of the
prepositions to, upto,
below, downto, or above followed by a form,
which supplies the
stopping point. With upto and
downto, the loop body will be terminated (without executing
the body again) when the variable passes the stopping point; with
below and above, it stops
one iteration earlier.The
by how much phrase consists of the prepositions by and a
form, which

must evaluate to a positive number. The variable will be
stepped (up or down, as determined by
the other phrases) by this
amount on each iteration or by one if it's omitted.

You must specify at least one of these prepositional phrases. The
defaults are to start at zero,
increment the variable by one at each
iteration, and go forever or, more likely, until some other
clause
terminates the loop. You can modify any or all of these defaults by
adding the appropriate
prepositional phrases. The only wrinkle is
that if you want decremental stepping, there's no
default from
where value, so you must specify one with either from or
downfrom. So, the
following:

(loop for i upto 10 collect i)

collects the first eleven integers (zero to ten), but the behavior of
this:

(loop for i downto -10 collect i) ; wrong

is undefined. Instead, you need to write this:

(loop for i from 0 downto -10 collect i)

Also note that because LOOP is a macro, which runs at compile
time, it has to be able to
determine the direction to step the
variable based solely on the prepositions--not the values of
the
forms, which may not be known until runtime. So, the following:

(loop for i from 10 to 20 ...)

works fine since the default is incremental stepping. But this:

(loop for i from 20 to 10 ...)

won't know to count down from twenty to ten. Worse yet, it won't give
you an error--it will just
not execute the loop since i is
already greater than ten. Instead, you must write this:

(loop for i from 20 downto 10 ...)

or this:

(loop for i downfrom 20 to 10 ...)

Finally, if you just want a loop that repeats a certain number of
times, you can replace a clause of
the following form:

for i from 1 to number-form

with a repeat clause like this:

repeat number-form

These clauses are identical in effect except the repeat clause
doesn't create an explicit loop
variable.

Looping Over Collections and Packages
The for clauses for iterating over lists are much simpler than
the arithmetic clauses. They
support only two prepositional phrases,
in and on.

A phrase of this form:

for var in list-form

steps var over all the elements of the list produced by
evaluating list-form.

(loop for i in (list 10 20 30 40) collect i) ==> (10 20 30 40)

Occasionally this clause is supplemented with a by phrase,
which specifies a function to use to
move down the list. The default
is CDR but can be any function that takes a list and returns a
sublist. For instance, you could collect every other element of a
list with a loop like this:

(loop for i in (list 10 20 30 40) by #'cddr collect i) ==> (10 30)

An on prepositional phrase is used to step var over the
cons cells that make up a list.

(loop for x on (list 10 20 30) collect x) ==> ((10 20 30) (20 30) (30))

This phrase too can take a by preposition:

(loop for x on (list 10 20 30 40) by #'cddr collect x) ==> ((10 20 30 40) (30 40))

Looping over the elements of a vector (which includes strings and bit
vectors) is similar to
looping over the elements of a list except the
preposition across is used instead of in.3 For
instance:

(loop for x across "abcd" collect x) ==> (#\a #\b #\c #\d)

Iterating over a hash table or package is slightly more complicated
because hash tables and
packages have different sets of values you
might want to iterate over--the keys or values in a
hash table and
the different kinds of symbols in a package. Both kinds of iteration
follow the
same pattern. The basic pattern looks like this:

(loop for var being the things in hash-or-package ...)

For hash tables, the possible values for things are
hash-keys and hash-values, which
cause var to be
bound to successive values of either the keys or the values of the
hash table.
The hash-or-package form is evaluated once to
produce a value, which must be a hash table.

To iterate over a package, things can be symbols,
present-symbols, and
external-symbols, which cause
var to be bound to each of the symbols accessible in a
package,
each of the symbols present in a package (in other words, interned or
imported into that
package), or each of the symbols that have been
exported from the package. The hash-or-
package form is evaluated
to produce the name of a package, which is looked up as if by

FIND-PACKAGE or a package object. Synonyms are also available
for parts of the for clause.
In place of the, you can
use each; you can use of instead of in; and you
can write the things
in the singular (for example,
hash-key or symbol).

Finally, since you'll often want both the keys and the values when
iterating over a hash table, the
hash table clauses support a
using subclause at the end of the hash table clause.

(loop for k being the hash-keys in h using (hash-value v) ...)

(loop for v being the hash-values in h using (hash-key k) ...)

Both of these loops will bind k to each key in the hash table
and v to the corresponding value.
Note that the first element
of the using subclause must be in the singular
form.4

Equals-Then Iteration

If none of the other for clauses supports exactly the form of
variable stepping you need, you
can take complete control over
stepping with an equals-then clause. This clause is similar to
the
binding clauses in a DO loop but cast in a more Algolish
syntax. The template is as follows:

(loop for var = initial-value-form [then step-form] ...)

As usual, var is the name of the variable to be stepped. Its
initial value is obtained by evaluating
initial-value-form once
before the first iteration. In each subsequent iteration,
step-form is
evaluated, and its value becomes the new value of
var. With no then part to the clause, the
initial-value-form is reevaluated on each iteration to provide
the new value. Note that this is
different from a DO binding
clause with no step form.

The step-form can refer to other loop variables, including
variables created by other for clauses
later in the loop. For
instance:

(loop repeat 5

 for x = 0 then y

 for y = 1 then (+ x y)

 collect y) ==> (1 2 4 8 16)

However, note that each for clause is evaluated separately in
the order it appears. So in the
previous loop, on the second
iteration x is set to the value of y before y
changes (in other words,
1). But y is then set to the
sum of its old value (still 1) and the new value of x.
If the order of the
for clauses is reversed, the results
change.

(loop repeat 5

 for y = 1 then (+ x y)

 for x = 0 then y

 collect y) ==> (1 1 2 4 8)

Often, however, you'll want the step forms for multiple variables to
be evaluated before any of
the variables is given its new value
(similar to how DO steps its variables). In that case, you can
join multiple for clauses by replacing all but the first
for with and. You saw this formulation

already in the
LOOP version of the Fibonacci computation in Chapter 7. Here's
another variant,
based on the two previous examples:

(loop repeat 5

 for x = 0 then y

 and y = 1 then (+ x y)

 collect y) ==> (1 1 2 3 5)

Local Variables

While the main variables needed within a loop are usually declared
implicitly in for clauses,
sometimes you'll need auxiliary
variables, which you can declare with with clauses.

with var [= value-form]

The name var becomes the name of a local variable that will cease
to exist when the loop
finishes. If the with clause contains
an = value-form part, the variable will be initialized,
before the first iteration of the loop, to the value of
value-form.

Multiple with clauses can appear in a loop; each clause is
evaluated independently in the order
it appears and the value is
assigned before proceeding to the next clause, allowing later
variables
to depend on the value of already declared variables.
Mutually independent variables can be
declared in one with
clause with an and between each declaration.

Destructuring Variables

One handy feature of LOOP I haven't mentioned yet is the ability
to destructure list values
assigned to loop variables. This lets you
take apart the value of lists that would otherwise be
assigned to a
loop variable, similar to the way DESTRUCTURING-BIND works but a
bit less
elaborate. Basically, you can replace any loop variable in a
for or with clause with a tree of
symbols, and the list
value that would have been assigned to the simple variable will
instead be
destructured into variables named by the symbols in the
tree. A simple example looks like this:

CL-USER> (loop for (a b) in '((1 2) (3 4) (5 6))

 do (format t "a: ~a; b: ~a~%" a b))

a: 1; b: 2

a: 3; b: 4

a: 5; b: 6

NIL

The tree can also include dotted lists, in which case the name after
the dot acts like a &rest
parameter, being bound to a list
containing any remaining elements of the list. This is
particularly
handy with for/on loops since the value is always a
list. For instance, this LOOP
(which I used in Chapter 18 to
emit a comma-delimited list):

(loop for cons on list

 do (format t "~a" (car cons))

 when (cdr cons) do (format t ", "))

could also be written like this:

(loop for (item . rest) on list

 do (format t "~a" item)

 when rest do (format t ", "))

If you want to ignore a value in the destructured list, you can use
NIL in place of a variable
name.

(loop for (a nil) in '((1 2) (3 4) (5 6)) collect a) ==> (1 3 5)

If the destructuring list contains more variables than there are
values in the list, the extra
variables are set to NIL, making
all the variables essentially like &optional parameters.
There
isn't, however, any equivalent to &key parameters.

Value Accumulation

The value accumulation clauses are perhaps the most powerful part of
LOOP. While the iteration
control clauses provide a concise
syntax for expressing the basic mechanics of looping, they
aren't
dramatically different from the equivalent mechanisms provided by
DO, DOLIST, and
DOTIMES.

The value accumulation clauses, on the other hand, provide a concise
notation for a handful of
common loop idioms having to do with
accumulating values while looping. Each accumulation
clause starts
with a verb and follows this pattern:

verb form [into var]

Each time through the loop, an accumulation clause evaluates form
and saves the value in a
manner determined by the verb. With an
into subclause, the value is saved into the variable
named by
var. The variable is local to the loop, as if it'd been declared
in a with clause. With
no into subclause, the
accumulation clause instead accumulates a default value for the whole
loop expression.

The possible verbs are collect, append, nconc,
count, sum, maximize, and
minimize. Also
available as synonyms are the present participle forms:
collecting,
appending, nconcing,
counting, summing, maximizing, and
minimizing.

A collect clause builds up a list containing all the values of
form in the order they're seen.
This is a particularly useful
construct because the code you'd have to write to collect a list in
order as efficiently as LOOP does is more painful than you'd
normally write by hand.5 Related to
collect are the verbs append and
nconc. These verbs also accumulate values into a list, but
they
join the values, which must be lists, into a single list as if by the
functions APPEND or
NCONC. 6

The remaining accumulation clauses are used to accumulate numeric
values. The verb count
counts the number of times form is
true, sum collects a running total of the values of form,
maximize collects the largest value seen for form, and
minimize collects the smallest. For
instance, suppose you
define a variable *random* that contains a list of random
numbers.

(defparameter *random* (loop repeat 100 collect (random 10000)))

Then the following loop will return a list containing various summary
information about the
numbers:

(loop for i in *random*

 counting (evenp i) into evens

 counting (oddp i) into odds

 summing i into total

 maximizing i into max

 minimizing i into min

 finally (return (list min max total evens odds)))

Unconditional Execution

As useful as the value accumulation constructs are, LOOP wouldn't
be a very good general-
purpose iteration facility if there wasn't a
way to execute arbitrary Lisp code in the loop body.

The simplest way to execute arbitrary code within a loop body is with
a do clause. Compared to
the clauses I've described so far,
with their prepositions and subclauses, do is a model of
Yodaesque simplicity.7 A do clause
consists of the word do (or doing) followed by one or
more Lisp forms that are all evaluated when the do clause is.
The do clause ends at the closing
parenthesis of the loop or
the next loop keyword.

For instance, to print the numbers from one to ten, you could write
this:

(loop for i from 1 to 10 do (print i))

Another, more dramatic, form of immediate execution is a return
clause. This clause consists
of the word return followed by a
single Lisp form, which is evaluated, with the resulting
value
immediately returned as the value of the loop.

You can also break out of a loop in a do clause using any of
Lisp's normal control flow
operators, such as RETURN and
RETURN-FROM. Note that a return clause always returns
from the immediately enclosing LOOP expression, while a
RETURN or RETURN-FROM in a do
clause can return from
any enclosing expression. For instance, compare the following:

(block outer

 (loop for i from 0 return 100) ; 100 returned from LOOP

 (print "This will print")

 200) ==> 200

to this:

(block outer

 (loop for i from 0 do (return-from outer 100)) ; 100 returned from BLOCK

 (print "This won't print")

 200) ==> 100

The do and return clauses are collectively called the
unconditional execution clauses.

Conditional Execution

Because a do clause can contain arbitrary Lisp forms, you can
use any Lisp expressions you
want, including control constructs such
as IF and WHEN. So, the following is one way to write a
loop that prints only the even numbers between one and ten:

(loop for i from 1 to 10 do (when (evenp i) (print i)))

However, sometimes you'll want conditional control at the level of
loop clauses. For instance,
suppose you wanted to sum only the even
numbers between one and ten using a summing
clause. You
couldn't write such a loop with a do clause because there'd be
no way to "call" the
sum i in the middle of a regular Lisp
form. In cases like this, you need to use one of LOOP's
own
conditional expressions like this:

(loop for i from 1 to 10 when (evenp i) sum i) ==> 30

LOOP provides three conditional constructs, and they all follow
this basic pattern:

conditional test-form loop-clause

The conditional can be if, when, or unless.
The test-form is any regular Lisp form, and loop-
clause can
be a value accumulation clause (count, collect,
and so on), an unconditional
execution clause, or another
conditional execution clause. Multiple loop clauses can be attached
to a single conditional by joining them with and.

As an extra bit of syntactic sugar, within the first loop clause,
after the test form, you can use the
variable it to refer to
the value returned by the test form. For instance, the following loop
collects the non-NIL values found in some-hash when
looking up the keys in some-list:

(loop for key in some-list when (gethash key some-hash) collect it)

A conditional clause is executed each time through the loop. An
if or when clause executes its
loop-clause if
test-form evaluates to true. An unless reverses the test,
executing loop-clause
only when test-form is NIL. Unlike
their Common Lisp namesakes, LOOP's if and when
are
merely synonyms--there's no difference in their behavior.

All three conditional clauses can also take an else branch,
which is followed by another loop
clause or multiple clauses joined by
and. When conditional clauses are nested, the set of clauses
connected to an inner conditional clause can be closed with the word
end. The end is optional

when not needed to disambiguate
a nested conditional--the end of a conditional clause will be
inferred
from the end of the loop or the start of another clause not joined by
and.

The following rather silly loop demonstrates the various forms of
LOOP conditionals. The
update-analysis function will be
called each time through the loop with the latest values
of the
various variables accumulated by the clauses within the conditionals.

(loop for i from 1 to 100

 if (evenp i)

 minimize i into min-even and

 maximize i into max-even and

 unless (zerop (mod i 4))

 sum i into even-not-fours-total

 end

 and sum i into even-total

 else

 minimize i into min-odd and

 maximize i into max-odd and

 when (zerop (mod i 5))

 sum i into fives-total

 end

 and sum i into odd-total

 do (update-analysis min-even

 max-even

 min-odd

 max-odd

 even-total

 odd-total

 fives-total

 even-not-fours-total))

Setting Up and Tearing Down

One of the key insights the designers of the LOOP language had
about actual loops "in the wild"
is that the loop proper is often
preceded by a bit of code to set things up and then followed by
some
more code that does something with the values computed by the loop. A
trivial example, in
Perl,8 might look like this:

my $evens_sum = 0;

my $odds_sum = 0;

foreach my $i (@list_of_numbers) {

 if ($i % 2) {

 $odds_sum += $i;

 } else {

 $evens_sum += $i;

 }

}

if ($evens_sum > $odds_sum) {

 print "Sum of evens greater\n";

} else {

 print "Sum of odds greater\n";

}

The loop proper in this code is the foreach statement. But the
foreach loop doesn't stand on
its own: the code in the loop
body refers to variables declared in the two lines before the
loop.9

And
the work the loop does is all for naught without the if
statement after the loop that actually
reports the results. In Common
Lisp, of course, the LOOP construct is an expression that
returns

a value, so there's even more often a need to do something
after the loop proper, namely,
generate the return value.

So, said the LOOP designers, let's give a way to include the
code that's really part of the loop in
the loop itself. Thus,
LOOP provides two keywords, initially and finally,
that introduce
code to be run outside the loop's main body.

After the initially or finally, these clauses consist
of all the Lisp forms up to the start of
the next loop clause or the
end of the loop. All the initially forms are combined into a
single prologue, which runs once, immediately after all the local
loop variables are initialized
and before the body of the loop. The
finally forms are similarly combined into a epilogue to
be
run after the last iteration of the loop body. Both the prologue and
epilogue code can refer to
local loop variables.

The prologue is always run, even if the loop body iterates zero
times. The loop can return
without running the epilogue if any of the
following happens:

A return clause executes.
RETURN , RETURN-FROM, or another transfer of control
construct is called from within a
Lisp form within the body.10

The loop is terminated by an always, never, or
thereis clause, as I'll discuss in the
next section.

Within the epilogue code, RETURN or RETURN-FROM can be used
to explicitly provide a return
value for the loop. Such an explicit
return value will take precedence over any value that might
otherwise
be provided by an accumulation or termination test clause.

To allow RETURN-FROM to be used to return from a specific loop
(useful when nesting LOOP
expressions), you can name a LOOP
with the loop keyword named. If a named clause appears
in a loop, it must be the first clause. For a simple example, assume
lists is a list of lists and
you want to find an item that
matches some criteria in one of those nested lists. You could find it
with a pair of nested loops like this:

(loop named outer for list in lists do

 (loop for item in list do

 (if (what-i-am-looking-for-p item)

 (return-from outer item))))

Termination Tests

While the for and repeat clauses provide the basic
infrastructure for controlling the number
of iterations, sometimes
you'll need to break out of a loop early. You've already seen how a
return clause or a RETURN or RETURN-FROM within a
do clause can immediately terminate
the loop; but just as
there are common patterns for accumulating values, there are also
common
patterns for deciding when it's time to bail on a loop. These
patterns are supported in LOOP by

the termination clauses,
while, until, always, never, and
thereis. They all follow the
same pattern.

loop-keyword test-form

All five evaluate test-form each time through the iteration and
decide, based on the resulting
value, whether to terminate the loop.
They differ in what happens after they terminate the loop--
if they
do--and how they decide.

The loop keywords while and until introduce the "mild"
termination clauses. When they
decide to terminate the loop, control
passes to the epilogue, skipping the rest of the loop body.
The
epilogue can then return a value or do whatever it wants to finish
the loop. A while clause
terminates the loop the first time
the test form is false; until, conversely, stops it the first
time
the test form is true.

Another form of mild termination is provided by the LOOP-FINISH
macro. This is a regular
Lisp form, not a loop clause, so it can be
used anywhere within the Lisp forms of a do clause. It
also
causes an immediate jump to the loop epilogue. It can be useful when
the decision to break
out of the loop can't be easily condensed into a
single form that can be used with a while or
until
clause.

The other three clauses--always, never, and
thereis--terminate the loop with extreme
prejudice; they
immediately return from the loop, skipping not only any subsequent
loop clauses
but also the epilogue. They also provide a default value
for the loop even when they don't cause
the loop to terminate.
However, if the loop is not terminated by one of these termination
tests,
the epilogue is run and can return a value other than the
default provided by the termination
clauses.

Because these clauses provide their own return values, they can't be
combined with
accumulation clauses unless the accumulation clause has
an into subclause. The compiler (or
interpreter) should signal
an error at compile time if they are.The always and
never clauses
return only boolean values, so they're most
useful when you need to use a loop expression as
part of a predicate.
You can use always to check that the test form is true on
every iteration of
the loop. Conversely, never tests that the
test form evaluates to NIL on every iteration. If the
test form
fails (returning NIL in an always clause or non-NIL
in a never clause), the loop is
immediately terminated,
returning NIL. If the loop runs to completion, the default value
of T is
provided.

For instance, if you want to test that all the numbers in a list,
numbers, are even, you can write
this:

(if (loop for n in numbers always (evenp n))

 (print "All numbers even."))

Equivalently you could write the following:

(if (loop for n in numbers never (oddp n))

 (print "All numbers even."))

A thereis clause is used to test whether the test form is
ever true. As soon as the test form
returns a non-NIL value,
the loop is terminated, returning that value. If the loop runs to
completion, the thereis clause provides a default return value
of NIL.

(loop for char across "abc123" thereis (digit-char-p char)) ==> 1

(loop for char across "abcdef" thereis (digit-char-p char)) ==> NIL

Putting It All Together

Now you've seen all the main features of the LOOP facility. You
can combine any of the clauses
I've discussed as long as you abide by
the following rules:

The named clause, if any, must be the first clause.
After the named clause come all the initially,
with, for, and repeat clauses.
Then comes the body clauses: conditional and unconditional
execution, accumulation, and
termination test.11

End with any finally clauses.

The LOOP macro will expand into code that performs the following
actions:

Initializes all local loop variables as declared with
with or for clauses as well as those
implicitly created
by accumulation clauses. The initial value forms are evaluated in the
order the clauses appear in the loop.
Execute the forms provided by any initially clauses--the
prologue--in the order they
appear in the loop.
Iterate, executing the body of the loop as described in the next
paragraph.
Execute the forms provided by any finally clauses--the
epilogue--in the order they
appear in the loop.

While the loop is iterating, the body is executed by first stepping
any iteration control variables
and then executing any conditional or
unconditional execution, accumulation, or termination test
clauses in
the order they appear in the loop code. If any of the clauses in the
loop body terminate
the loop, the rest of the body is skipped and the
loop returns, possibly after running the epilogue.

And that's pretty much all there is to it.12 You'll use
LOOP fairly often in the code later in this
book, so it's worth
having some knowledge of it. Beyond that, it's up to you how much you
use
it.

And with that, you're ready to dive into the practical chapters that
make up the rest of the book--
up first, writing a spam filter.

1The term loop keyword is a
bit unfortunate, as loop keywords aren't keywords in the normal sense
of being symbols in the
KEYWORD package. In fact, any symbol,
from any package, with the appropriate name will do; the LOOP
macro cares only about
their names. Typically, though, they're
written with no package qualifier and are thus read (and interned as
necessary) in the
current package.

2Because one of the
goals of LOOP is to allow loop expressions to be written with a
quasi-English syntax, many of the keywords
have synonyms that are
treated the same by LOOP but allow some freedom to express
things in slightly more idiomatic English for
different contexts.

3You may
wonder why LOOP can't figure out whether it's looping over a
list or a vector without needing different prepositions.
This is
another consequence of LOOP being a macro: the value of the list
or vector won't be known until runtime, but LOOP, as a
macro,
has to generate code at compile time. And LOOP's designers
wanted it to generate extremely efficient code. To be able to
generate efficient code for looping across, say, a vector, it needs
to know at compile time that the value will be a vector at
runtime-
-thus, the different prepositions are needed.

4Don't ask me why LOOP's authors chickened out on the
no-parentheses style for the using subclause.

5The trick is to keep ahold of the tail
of the list and add new cons cells by SETFing the CDR of
the tail. A handwritten equivalent
of the code generated by
(loop for i upto 10 collect i) would look like this:

(do ((list nil) (tail nil) (i 0 (1+ i)))

 ((> i 10) list)

 (let ((new (cons i nil)))

 (if (null list)

 (setf list new)

 (setf (cdr tail) new))

 (setf tail new)))

Of course you'll rarely, if ever, write code like that. You'll use
either LOOP or (if, for some reason, you don't want to use
LOOP) the
standard PUSH/NREVERSE idiom for collecting
values.

6Recall that NCONC is
the destructive version of APPEND--it's safe to use an
nconc clause only if the values you're collecting are
fresh
lists that don't share any structure with other lists. For instance,
this is safe:

(loop for i upto 3 nconc (list i i)) ==> (0 0 1 1 2 2 3 3)

But this will get you into trouble:

(loop for i on (list 1 2 3) nconc i) ==> undefined

The later will most likely get into an infinite loop as the various
parts of the list produced by (list 1 2 3) are destructively modified
to point to each other. But even that's not guaranteed--the behavior
is simply undefined.

7"No! Try not. Do . . . or do not. There is
no try." -- Yoda, The Empire Strikes Back

8I'm not picking on Perl here--this
example would look pretty much the same in any language that bases
its syntax on C's.

9Perl would let you get away with not declaring those
variables if your program didn't use strict. But you should
always
use strict in Perl. The equivalent code in Python,
Java, or C would always require the variables to be declared.

10You
can cause a loop to finish normally, running the epilogue, from Lisp
code executed as part of the loop body with the local
macro
LOOP-FINISH.

11Some Common Lisp
implementations will let you get away with mixing body clauses and
for clauses, but that's strictly
undefined, and some
implementations will reject such loops.

12The one aspect of
LOOP I haven't touched on at all is the syntax for declaring the
types of loop variables. Of course, I haven't
discussed type
declarations outside of LOOP either. I'll cover the general
topic a bit in Chapter 32. For information on how they
work with
LOOP, consult your favorite Common Lisp reference.

