
Copyright © 2003-2005, Peter Seibel

19. Beyond Exception Handling:
Conditions and Restarts
One of Lisp's great features is its condition system. It serves a
similar purpose to the exception
handling systems in Java, Python, and
C++ but is more flexible. In fact, its flexibility extends
beyond
error handling--conditions are more general than exceptions in that a
condition can
represent any occurrence during a program's execution
that may be of interest to code at
different levels on the call stack.
For example, in the section "Other Uses for Conditions," you'll
see
that conditions can be used to emit warnings without disrupting
execution of the code that
emits the warning while allowing code
higher on the call stack to control whether the warning
message is
printed. For the time being, however, I'll focus on error handling.

The condition system is more flexible than exception systems because
instead of providing a
two-part division between the code that
signals an error1 and the code that handles it,2 the
condition system splits the
responsibilities into three parts--signaling a condition,
handling it,
and restarting. In this chapter, I'll describe
how you could use conditions in part of a
hypothetical application
for analyzing log files. You'll see how you could use the condition
system to allow a low-level function to detect a problem while
parsing a log file and signal an
error, to allow mid-level code to
provide several possible ways of recovering from such an error,
and
to allow code at the highest level of the application to define a
policy for choosing which
recovery strategy to use.

To start, I'll introduce some terminology: errors, as I'll use
the term, are the consequences of
Murphy's law. If something can go
wrong, it will: a file that your program needs to read will be
missing, a disk that you need to write to will be full, the server
you're talking to will crash, or the
network will go down. If any of
these things happen, it may stop a piece of code from doing
what you
want. But there's no bug; there's no place in the code that you can
fix to make the
nonexistent file exist or the disk not be full.
However, if the rest of the program is depending on
the actions that
were going to be taken, then you'd better deal with the error somehow
or you will
have introduced a bug. So, errors aren't caused by
bugs, but neglecting to handle an error is
almost certainly a bug.

So, what does it mean to handle an error? In a well-written program,
each function is a black box
hiding its inner workings. Programs are
then built out of layers of functions: high-level functions
are built
on top of the lower-level functions, and so on. This hierarchy of
functionality manifests
itself at runtime in the form of the call
stack: if high calls medium, which calls low,
when the

flow of control is in low, it's also still in
medium and high, that is, they're still on the call
stack.

Because each function is a black box, function boundaries are an
excellent place to deal with
errors. Each function--low, for
example--has a job to do. Its direct caller--medium in this
case--
is counting on it to do its job. However, an error that
prevents it from doing its job puts all its
callers at risk:
medium called low because it needs the work done that
low does; if that work
doesn't get done, medium is in
trouble. But this means that medium's caller, high, is
also in
trouble--and so on up the call stack to the very top of the
program. On the other hand, because
each function is a black box, if
any of the functions in the call stack can somehow do their job
despite underlying errors, then none of the functions above it needs
to know there was a
problem--all those functions care about is that
the function they called somehow did the work
expected of it.

In most languages, errors are handled by returning from a failing
function and giving the caller
the choice of either recovering or
failing itself. Some languages use the normal function return
mechanism, while languages with exceptions return control by
throwing or raising an exception.
Exceptions are a vast
improvement over using normal function returns, but both schemes
suffer
from a common flaw: while searching for a function that can
recover, the stack unwinds, which
means code that might recover has
to do so without the context of what the lower-level code was
trying
to do when the error actually occurred.

Consider the hypothetical call chain of high, medium,
low. If low fails and medium can't
recover, the
ball is in high's court. For high to handle the error,
it must either do its job
without any help from medium or
somehow change things so calling medium will work and
call it
again. The first option is theoretically clean but implies a lot of
extra code--a whole extra
implementation of whatever it was
medium was supposed to do. And the further the stack
unwinds,
the more work that needs to be redone. The second option--patching
things up and
retrying--is tricky; for high to be able to
change the state of the world so a second call into
medium
won't end up causing an error in low, it'd need an unseemly
knowledge of the inner
workings of both medium and low,
contrary to the notion that each function is a black box.

The Lisp Way

Common Lisp's error handling system gives you a way out of this
conundrum by letting you
separate the code that actually recovers
from an error from the code that decides how to recover.
Thus, you
can put recovery code in low-level functions without committing to
actually using any
particular recovery strategy, leaving that
decision to code in high-level functions.

To get a sense of how this works, let's suppose you're writing an
application that reads some sort
of textual log file, such as a Web
server's log. Somewhere in your application you'll have a
function to
parse the individual log entries. Let's assume you'll write a
function,

parse-log-entry, that will be passed a string
containing the text of a single log entry and
that is supposed to
return a log-entry object representing the entry. This
function will be
called from a function, parse-log-file, that
reads a complete log file and returns a list of
objects representing
all the entries in the file.

To keep things simple, the parse-log-entry function will not
be required to parse
incorrectly formatted entries. It will, however,
be able to detect when its input is malformed. But
what should it do
when it detects bad input? In C you'd return a special value to
indicate there
was a problem. In Java or Python you'd throw or raise
an exception. In Common Lisp, you
signal a condition.

Conditions

A condition is an object whose class indicates the general nature
of the condition and whose
instance data carries information about
the details of the particular circumstances that lead to the
condition being signaled.3 In this
hypothetical log analysis program, you might define a
condition
class, malformed-log-entry-error, that parse-log-entry
will signal if
it's given data it can't parse.

Condition classes are defined with the DEFINE-CONDITION macro,
which works essentially
the same as DEFCLASS except that the
default superclass of classes defined with
DEFINE-CONDITION is
CONDITION rather than STANDARD-OBJECT. Slots are specified
in
the same way, and condition classes can singly and multiply
inherit from other classes that
descend from CONDITION. But for
historical reasons, condition classes aren't required to be
instances
of STANDARD-OBJECT, so some of the functions you use with
DEFCLASSed classes
aren't required to work with conditions. In
particular, a condition's slots can't be accessed using
SLOT-VALUE; you must specify either a :reader option or
an :accessor option for any
slot whose value you intend to
use. Likewise, new condition objects are created with
MAKE-CONDITION rather than MAKE-INSTANCE.
MAKE-CONDITION initializes the slots of
the new condition based
on the :initargs it's passed, but there's no way to further
customize
a condition's initialization, equivalent to
INITIALIZE-INSTANCE.4

When using the condition system for error handling, you should define
your conditions as
subclasses of ERROR, a subclass of
CONDITION. Thus, you might define
malformed-log-entry-error, with a slot to hold the argument
that was passed to
parse-log-entry, like this:

(define-condition malformed-log-entry-error (error)

 ((text :initarg :text :reader text)))

Condition Handlers

In parse-log-entry you'll signal a
malformed-log-entry-error if you can't parse
the log entry.
You signal errors with the function ERROR, which calls the
lower-level function
SIGNAL and drops into the debugger if the
condition isn't handled. You can call ERROR two
ways: you can
pass it an already instantiated condition object, or you can pass it
the name of the
condition class and any initargs needed to construct
a new condition, and it will instantiate the
condition for you. The
former is occasionally useful for resignaling an existing condition
object,
but the latter is more concise. Thus, you could write
parse-log-entry like this, eliding the
details of actually
parsing a log entry:

(defun parse-log-entry (text)

 (if (well-formed-log-entry-p text)

 (make-instance 'log-entry ...)

 (error 'malformed-log-entry-error :text text)))

What happens when the error is signaled depends on the code above
parse-log-entry on
the call stack. To avoid landing in the
debugger, you must establish a condition handler in one of
the
functions leading to the call to parse-log-entry. When a
condition is signaled, the
signaling machinery looks through a list
of active condition handlers, looking for a handler that
can handle
the condition being signaled based on the condition's class. Each
condition handler
consists of a type specifier indicating what types
of conditions it can handle and a function that
takes a single
argument, the condition. At any given moment there can be many active
condition
handlers established at various levels of the call stack.
When a condition is signaled, the
signaling machinery finds the most
recently established handler whose type specifier is
compatible with
the condition being signaled and calls its function, passing it the
condition
object.

The handler function can then choose whether to handle the condition.
The function can decline
to handle the condition by simply returning
normally, in which case control returns to the
SIGNAL function,
which will search for the next most recently established handler with
a
compatible type specifier. To handle the condition, the function
must transfer control out of
SIGNAL via a nonlocal exit. In
the next section, you'll see how a handler can choose where to
transfer control. However, many condition handlers simply want to
unwind the stack to the place
where they were established and then
run some code. The macro HANDLER-CASE establishes
this kind of
condition handler. The basic form of a HANDLER-CASE is as
follows:

(handler-case expression

 error-clause*)

where each error-clause is of the following form:

(condition-type ([var]) code)

If the expression returns normally, then its value is returned by
the HANDLER-CASE. The body
of a HANDLER-CASE must be a
single expression; you can use PROGN to combine several
expressions into a single form. If, however, the expression signals a
condition that's an instance
of any of the condition-types
specified in any error-clause, then the code in the appropriate
error

clause is executed and its value returned by the
HANDLER-CASE. The var, if included, is the
name of the
variable that will hold the condition object when the handler code is
executed. If the
code doesn't need to access the condition object,
you can omit the variable name.

For instance, one way to handle the malformed-log-entry-error
signaled by
parse-log-entry in its caller,
parse-log-file, would be to skip the malformed entry.
In the
following function, the HANDLER-CASE expression will either
return the value returned
by parse-log-entry or return
NIL if a malformed-log-entry-error is signaled.
(The
it in the LOOP clause collect it is another
LOOP keyword, which refers to the value
of the most recently
evaluated conditional test, in this case the value of entry.)

(defun parse-log-file (file)

 (with-open-file (in file :direction :input)

 (loop for text = (read-line in nil nil) while text

 for entry = (handler-case (parse-log-entry text)

 (malformed-log-entry-error () nil))

 when entry collect it)))

When parse-log-entry returns normally, its value will be
assigned to entry and collected
by the LOOP. But if
parse-log-entry signals a malformed-log-entry-error,
then
the error clause will return NIL, which won't be collected.

JAVA-STYLE EXCEPTON HANDLING

HANDLER-CASE is the nearest analog in Common Lisp to
Java- or Python-style exception handling. Where
you might write this
in Java:

try {

 doStuff();

 doMoreStuff();

} catch (SomeException se) {

 recover(se);

}

or this in Python:

try:

 doStuff()

 doMoreStuff()

except SomeException, se:

 recover(se)

in Common Lisp you'd write this:

(handler-case

 (progn

 (do-stuff)

 (do-more-stuff))

 (some-exception (se) (recover se)))

This version of parse-log-file has one serious deficiency:
it's doing too much. As its name
suggests, the job of
parse-log-file is to parse the file and produce a list of
log-entry
objects; if it can't, it's not its place to decide
what to do instead. What if you want to use

parse-log-file in
an application that wants to tell the user that the log file is
corrupted or
one that wants to recover from malformed entries by
fixing them up and re-parsing them? Or
maybe an application is fine
with skipping them but only until a certain number of corrupted
entries have been seen.

You could try to fix this problem by moving the HANDLER-CASE to
a higher-level function.
However, then you'd have no way to implement
the current policy of skipping individual entries-
-when the error was
signaled, the stack would be unwound all the way to the higher-level
function, abandoning the parsing of the log file altogether. What you
want is a way to provide
the current recovery strategy without
requiring that it always be used.

Restarts

The condition system lets you do this by splitting the error handling
code into two parts. You
place code that actually recovers from
errors into restarts, and condition handlers can then
handle a
condition by invoking an appropriate restart. You can place restart
code in mid- or low-
level functions, such as parse-log-file or
parse-log-entry, while moving the
condition handlers into the
upper levels of the application.

To change parse-log-file so it establishes a restart instead
of a condition handler, you can
change the HANDLER-CASE to a
RESTART-CASE. The form of RESTART-CASE is quite
similar to
a HANDLER-CASE except the names of restarts are just names, not
necessarily the
names of condition types. In general, a restart name
should describe the action the restart takes.
In
parse-log-file, you can call the restart skip-log-entry
since that's what it does.
The new version will look like this:

(defun parse-log-file (file)

 (with-open-file (in file :direction :input)

 (loop for text = (read-line in nil nil) while text

 for entry = (restart-case (parse-log-entry text)

 (skip-log-entry () nil))

 when entry collect it)))

If you invoke this version of parse-log-file on a log file
containing corrupted entries, it
won't handle the error directly;
you'll end up in the debugger. However, there among the various
restarts presented by the debugger will be one called
skip-log-entry, which, if you choose
it, will cause
parse-log-file to continue on its way as before. To avoid
ending up in the
debugger, you can establish a condition handler that
invokes the skip-log-entry restart
automatically.

The advantage of establishing a restart rather than having
parse-log-file handle the error
directly is it makes
parse-log-file usable in more situations. The higher-level
code that
invokes parse-log-file doesn't have to invoke the
skip-log-entry restart. It can
choose to handle the error at a
higher level. Or, as I'll show in the next section, you can add

restarts to parse-log-entry to provide other recovery
strategies, and then condition
handlers can choose which strategy
they want to use.

But before I can talk about that, you need to see how to set up a
condition handler that will
invoke the skip-log-entry restart.
You can set up the handler anywhere in the chain of calls
leading to
parse-log-file. This may be quite high up in your application,
not necessarily
in parse-log-file's direct caller. For
instance, suppose the main entry point to your
application is a
function, log-analyzer, that finds a bunch of logs and
analyzes them with
the function analyze-log, which eventually
leads to a call to parse-log-file. Without
any error handling,
it might look like this:

(defun log-analyzer ()

 (dolist (log (find-all-logs))

 (analyze-log log)))

The job of analyze-log is to call, directly or indirectly,
parse-log-file and then do
something with the list of log
entries returned. An extremely simple version might look like this:

(defun analyze-log (log)

 (dolist (entry (parse-log-file log))

 (analyze-entry entry)))

where the function analyze-entry is presumably responsible for
extracting whatever
information you care about from each log entry and
stashing it away somewhere.

Thus, the path from the top-level function, log-analyzer, to
parse-log-entry, which
actually signals an error, is as
follows:

Assuming you always want to skip malformed log entries, you could
change this function to
establish a condition handler that invokes
the skip-log-entry restart for you. However, you
can't use
HANDLER-CASE to establish the condition handler because then the
stack would be
unwound to the function where the HANDLER-CASE
appears. Instead, you need to use the
lower-level macro
HANDLER-BIND. The basic form of HANDLER-BIND is as follows:

(handler-bind (binding*) form*)

where each binding is a list of a condition type and a handler
function of one argument. After the
handler bindings, the body of the
HANDLER-BIND can contain any number of forms. Unlike the
handler
code in HANDLER-CASE, the handler code must be a function
object, and it must accept
a single argument. A more important
difference between HANDLER-BIND and

HANDLER-CASE is that
the handler function bound by HANDLER-BIND will be run without
unwinding the stack--the flow of control will still be in the call to
parse-log-entry when
this function is called. The call to
INVOKE-RESTART will find and invoke the most recently
bound
restart with the given name. So you can add a handler to
log-analyzer that will
invoke the skip-log-entry
restart established in parse-log-file like this:5

(defun log-analyzer ()

 (handler-bind ((malformed-log-entry-error

 #'(lambda (c)

 (invoke-restart 'skip-log-entry))))

 (dolist (log (find-all-logs))

 (analyze-log log))))

In this HANDLER-BIND, the handler function is an anonymous
function that invokes the restart
skip-log-entry. You could
also define a named function that does the same thing and bind
it
instead. In fact, a common practice when defining a restart is to
define a function, with the
same name and taking a single argument,
the condition, that invokes the eponymous restart.
Such functions are
called restart functions. You could define a restart function for
skip-log-entry like this:

(defun skip-log-entry (c)

 (invoke-restart 'skip-log-entry))

Then you could change the definition of log-analyzer to this:

(defun log-analyzer ()

 (handler-bind ((malformed-log-entry-error #'skip-log-entry))

 (dolist (log (find-all-logs))

 (analyze-log log))))

As written, the skip-log-entry restart function assumes that a
skip-log-entry restart
has been established. If a
malformed-log-entry-error is ever signaled by code called
from
log-analyzer without a skip-log-entry having been
established, the call to
INVOKE-RESTART will signal a
CONTROL-ERROR when it fails to find the
skip-log-entry
restart. If you want to allow for the possibility that a
malformed-log-entry-error might be signaled from code that
doesn't have a
skip-log-entry restart established, you could
change the skip-log-entry function to
this:

(defun skip-log-entry (c)

 (let ((restart (find-restart 'skip-log-entry)))

 (when restart (invoke-restart restart))))

FIND-RESTART looks for a restart with a given name and returns
an object representing the
restart if the restart is found and
NIL if not. You can invoke the restart by passing the restart
object to INVOKE-RESTART. Thus, when skip-log-entry is
bound with
HANDLER-BIND, it will handle the condition by
invoking the skip-log-entry restart if
one is available and
otherwise will return normally, giving other condition handlers,
bound
higher on the stack, a chance to handle the condition.

Providing Multiple Restarts
Since restarts must be explicitly invoked to have any effect, you can
define multiple restarts,
each providing a different recovery
strategy. As I mentioned earlier, not all log-parsing
applications
will necessarily want to skip malformed entries. Some applications
might want
parse-log-file to include a special kind of object
representing malformed entries in the list
of log-entry
objects; other applications may have some way to repair a malformed
entry and
may want a way to pass the fixed entry back to
parse-log-entry.

To allow more complex recovery protocols, restarts can take arbitrary
arguments, which are
passed in the call to INVOKE-RESTART. You
can provide support for both the recovery
strategies I just mentioned
by adding two restarts to parse-log-entry, each of which takes
a single argument. One simply returns the value it's passed as the
return value of
parse-log-entry, while the other tries to
parse its argument in the place of the original log
entry.

(defun parse-log-entry (text)

 (if (well-formed-log-entry-p text)

 (make-instance 'log-entry ...)

 (restart-case (error 'malformed-log-entry-error :text text)

 (use-value (value) value)

 (reparse-entry (fixed-text) (parse-log-entry fixed-text)))))

The name USE-VALUE is a standard name for this kind of restart.
Common Lisp defines a
restart function for USE-VALUE similar to
the skip-log-entry function you just defined.
So, if you
wanted to change the policy on malformed entries to one that created
an instance of
malformed-log-entry, you could change
log-analyzer to this (assuming the
existence of a
malformed-log-entry class with a :text initarg):

(defun log-analyzer ()

 (handler-bind ((malformed-log-entry-error

 #'(lambda (c)

 (use-value

 (make-instance 'malformed-log-entry :text (text c))))))

 (dolist (log (find-all-logs))

 (analyze-log log))))

You could also have put these new restarts into parse-log-file
instead of
parse-log-entry. However, you generally want to put
restarts in the lowest-level code
possible. It wouldn't, though, be
appropriate to move the skip-log-entry restart into
parse-log-entry since that would cause parse-log-entry
to sometimes return
normally with NIL, the very thing you
started out trying to avoid. And it'd be an equally bad
idea to
remove the skip-log-entry restart on the theory that the
condition handler could get
the same effect by invoking the
use-value restart with NIL as the argument; that would
require the condition handler to have intimate knowledge of how the
parse-log-file
works. As it stands, the skip-log-entry
is a properly abstracted part of the log-parsing API.

Other Uses for Conditions
While conditions are mainly used for error handling, they can be used
for other purposes--you
can use conditions, condition handlers, and
restarts to build a variety of protocols between low-
and high-level
code. The key to understanding the potential of conditions is to
understand that
merely signaling a condition has no effect on the
flow of control.

The primitive signaling function SIGNAL implements the mechanism
of searching for an
applicable condition handler and invoking its
handler function. The reason a handler can decline
to handle a
condition by returning normally is because the call to the handler
function is just a
regular function call--when the handler returns,
control passes back to SIGNAL, which then
looks for another,
less recently bound handler that can handle the condition. If
SIGNAL runs out
of condition handlers before the condition is
handled, it also returns normally.

The ERROR function you've been using calls SIGNAL. If the
error is handled by a condition
handler that transfers control via
HANDLER-CASE or by invoking a restart, then the call to
SIGNAL never returns. But if SIGNAL returns, ERROR
invokes the debugger by calling the
function stored in
DEBUGGER-HOOK. Thus, a call to ERROR can never return
normally; the
condition must be handled either by a condition handler
or in the debugger.

Another condition signaling function, WARN, provides an example
of a different kind of protocol
built on the condition system. Like
ERROR, WARN calls SIGNAL to signal a condition. But if
SIGNAL returns, WARN doesn't invoke the debugger--it prints
the condition to
ERROR-OUTPUT and returns NIL, allowing
its caller to proceed. WARN also establishes a
restart,
MUFFLE-WARNING, around the call to SIGNAL that can be used
by a condition handler
to make WARN return without printing
anything. The restart function MUFFLE-WARNING finds
and invokes
its eponymous restart, signaling a CONTROL-ERROR if no such
restart is available.
Of course, a condition signaled with WARN
could also be handled in some other way--a condition
handler could
"promote" a warning to an error by handling it as if it were an
error.

For instance, in the log-parsing application, if there were ways a
log entry could be slightly
malformed but still parsable, you could
write parse-log-entry to go ahead and parse the
slightly
defective entries but to signal a condition with WARN when it
did. Then the larger
application could choose to let the warning
print, to muffle the warning, or to treat the warning
like an error,
recovering the same way it would from a
malformed-log-entry-error.

A third error-signaling function, CERROR, provides yet another
protocol. Like ERROR, CERROR
will drop you into the
debugger if the condition it signals isn't handled. But like
WARN, it
establishes a restart before it signals the condition.
The restart, CONTINUE, causes CERROR to
return normally--if
the restart is invoked by a condition handler, it will keep you out
of the
debugger altogether. Otherwise, you can use the restart once
you're in the debugger to resume

the computation immediately after
the call to CERROR. The function CONTINUE finds and
invokes
the CONTINUE restart if it's available and returns NIL
otherwise.

You can also build your own protocols on SIGNAL--whenever
low-level code needs to
communicate information back up the call
stack to higher-level code, the condition mechanism
is a reasonable
mechanism to use. But for most purposes, one of the standard error or
warning
protocols should suffice.

You'll use the condition system in future practical chapters, both
for regular error handling and,
in Chapter 25, to help in handling a
tricky corner case of parsing ID3 files. Unfortunately, it's the
fate
of error handling to always get short shrift in programming
texts--proper error handling, or
lack thereof, is often the biggest
difference between illustrative code and hardened, production-
quality
code. The trick to writing the latter has more to do with adopting a
particularly rigorous
way of thinking about software than with the
details of any particular programming language
constructs. That said,
if your goal is to write that kind of software, you'll find the
Common Lisp
condition system is an excellent tool for writing robust
code and one that fits quite nicely into
Common Lisp's incremental
development style.

Writing Robust Software

For information on writing robust software, you could do
worse than to start by finding a copy of Software
Reliability (John Wiley & Sons, 1976) by Glenford J. Meyers. Bertrand Meyer's
writings on Design By
Contract also provide a useful way of thinking
about software correctness. For instance, see Chapters 11
and 12 of
his Object-Oriented Software Construction (Prentice Hall, 1997).
Keep in mind, however, that
Bertrand Meyer is the inventor of Eiffel,
a statically typed bondage and discipline language in the Algol/Ada
school. While he has a lot of smart things to say about object
orientation and software reliability, there's a
fairly wide gap
between his view of programming and The Lisp Way. Finally, for an
excellent overview of the
larger issues surrounding building
fault-tolerant systems, see Chapter 3 of the classic Transaction
Processing: Concepts and Techniques (Morgan Kaufmann, 1993) by Jim
Gray and Andreas Reuter.

In the next chapter I'll give a quick overview of some of the 25
special operators you haven't had
a chance to use yet, at least not
directly.

1Throws or raises an exception in
Java/Python terms

2Catches the
exception in Java/Python terms

3In this respect, a condition is a lot
like an exception in Java or Python except not all conditions
represent an error or exceptional
situation.

4In some Common Lisp implementations,
conditions are defined as subclasses of STANDARD-OBJECT, in
which case
SLOT-VALUE, MAKE-INSTANCE, and
INITIALIZE-INSTANCE will work, but it's not portable to rely on
it.

5The
compiler may complain if the parameter is never used. You can silence
that warning by adding a declaration
(declare (ignore c)) as
the first expression in the LAMBDA body.

