
Copyright © 2003-2005, Peter Seibel

14. Files and File I/O
Common Lisp provides a rich library of functionality for dealing with
files. In this chapter I'll
focus on a few basic file-related tasks:
reading and writing files and listing files in the file
system. For
these basic tasks, Common Lisp's I/O facilities are similar to those
in other
languages. Common Lisp provides a stream abstraction for
reading and writing data and an
abstraction, called pathnames, for
manipulating filenames in an operating system-independent
way.
Additionally, Common Lisp provides other bits of functionality unique
to Lisp such as the
ability to read and write s-expressions.

Reading File Data
The most basic file I/O task is to read the contents of a file. You
obtain a stream from which you
can read a file's contents with the
OPEN function. By default OPEN returns a character-based
input stream you can pass to a variety of functions that read one or
more characters of text:
READ-CHAR reads a single character;
READ-LINE reads a line of text, returning it as a string
with
the end-of-line character(s) removed; and READ reads a single
s-expression, returning a
Lisp object. When you're done with the
stream, you can close it with the CLOSE function.

The only required argument to OPEN is the name of the file to
read. As you'll see in the section
"Filenames," Common Lisp provides
a couple of ways to represent a filename, but the simplest
is to use
a string containing the name in the local file-naming syntax. So
assuming that
/some/file/name.txt is a file, you can open it
like this:

(open "/some/file/name.txt")

You can use the object returned as the first argument to any of the
read functions. For instance,
to print the first line of the file,
you can combine OPEN, READ-LINE, and CLOSE as follows:

(let ((in (open "/some/file/name.txt")))

 (format t "~a~%" (read-line in))

 (close in))

Of course, a number of things can go wrong while trying to open and
read from a file. The file
may not exist. Or you may unexpectedly hit
the end of the file while reading. By default OPEN
and the
READ-* functions will signal an error in these situations. In
Chapter 19, I'll discuss how
to recover from such errors. For now,
however, there's a lighter-weight solution: each of these
functions
accepts arguments that modify its behavior in these exceptional
situations.

If you want to open a possibly nonexistent file without OPEN
signaling an error, you can use the
keyword argument
:if-does-not-exist to specify a different behavior. The three
possible
values are :error, the default; :create, which
tells it to go ahead and create the file and
then proceed as if it
had already existed; and NIL, which tells it to return NIL
instead of a
stream. Thus, you can change the previous example to
deal with the possibility that the file may
not exist.

(let ((in (open "/some/file/name.txt" :if-does-not-exist nil)))

 (when in

 (format t "~a~%" (read-line in))

 (close in)))

The reading functions--READ-CHAR, READ-LINE, and
READ--all take an optional argument,
which defaults to true,
that specifies whether they should signal an error if they're called
at the
end of the file. If that argument is NIL, they instead
return the value of their third argument,
which defaults to NIL.
Thus, you could print all the lines in a file like this:

(let ((in (open "/some/file/name.txt" :if-does-not-exist nil)))

 (when in

 (loop for line = (read-line in nil)

 while line do (format t "~a~%" line))

 (close in)))

Of the three text-reading functions, READ is unique to Lisp.
This is the same function that
provides the R in the REPL and
that's used to read Lisp source code. Each time it's called, it
reads
a single s-expression, skipping whitespace and comments, and returns
the Lisp object
denoted by the s-expression. For instance, suppose
/some/file/name.txt has the
following contents:

(1 2 3)

456

"a string" ; this is a comment

((a b)

 (c d))

In other words, it contains four s-expressions: a list of numbers, a
number, a string, and a list of
lists. You can read those expressions
like this:

CL-USER> (defparameter *s* (open "/some/file/name.txt"))

S

CL-USER> (read *s*)

(1 2 3)

CL-USER> (read *s*)

456

CL-USER> (read *s*)

"a string"

CL-USER> (read *s*)

((A B) (C D))

CL-USER> (close *s*)

T

As you saw in Chapter 3, you can use PRINT to print Lisp objects
in "readable" form. Thus,
whenever you need to store a bit of data in
a file, PRINT and READ provide an easy way to do it
without
having to design a data format or write a parser. They even--as the
previous example

demonstrated--give you comments for free. And
because s-expressions were designed to be
human editable, it's also a
fine format for things like configuration files.1

Reading Binary Data

By default OPEN returns character streams, which translate the
underlying bytes to characters
according to a particular
character-encoding scheme.2 To read the raw
bytes, you need to pass
OPEN an :element-type argument of
'(unsigned-byte 8).3
You can pass the
resulting stream to the function READ-BYTE,
which will return an integer between 0 and 255
each time it's called.
READ-BYTE, like the character-reading functions, also accepts
optional
arguments to specify whether it should signal an error if
called at the end of the file and what
value to return if not. In
Chapter 24 you'll build a library that allows you to conveniently
read
structured binary data using READ-BYTE.4

Bulk Reads

One last reading function, READ-SEQUENCE, works with both
character and binary streams.
You pass it a sequence (typically a
vector) and a stream, and it attempts to fill the sequence with
data
from the stream. It returns the index of the first element of the
sequence that wasn't filled or
the length of the sequence if it was
able to completely fill it. You can also pass :start and
:end keyword arguments to specify a subsequence that should be
filled instead. The sequence
argument must be a type that can hold
elements of the stream's element type. Since most
operating systems
support some form of block I/O, READ-SEQUENCE is likely to be
quite a bit
more efficient than filling a sequence by repeatedly
calling READ-BYTE or READ-CHAR.

File Output
To write data to a file, you need an output stream, which you obtain
by calling OPEN with a
:direction keyword argument of
:output. When opening a file for output, OPEN assumes
the
file shouldn't already exist and will signal an error if it does.
However, you can change that
behavior with the :if-exists
keyword argument. Passing the value :supersede tells
OPEN
to replace the existing file. Passing :append causes OPEN
to open the existing file such
that new data will be written at the
end of the file, while :overwrite returns a stream that will
overwrite existing data starting from the beginning of the file. And
passing NIL will cause
OPEN to return NIL instead of a
stream if the file already exists. A typical use of OPEN for
output looks like this:

(open "/some/file/name.txt" :direction :output :if-exists :supersede)

Common Lisp also provides several functions for writing data:
WRITE-CHAR writes a single
character to the stream.
WRITE-LINE writes a string followed by a newline, which will be
output as the appropriate end-of-line character or characters for the
platform. Another function,

WRITE-STRING, writes a string
without adding any end-of-line characters. Two different
functions
can print just a newline: TERPRI--short for "terminate
print"--unconditionally prints a
newline character, and
FRESH-LINE prints a newline character unless the stream is at
the
beginning of a line. FRESH-LINE is handy when you want to
avoid spurious blank lines in
textual output generated by different
functions called in sequence. For example, suppose you
have one
function that generates output that should always be followed by a
line break and
another that should start on a new line. But assume
that if the functions are called one after the
other, you don't want
a blank line between the two bits of output. If you use
FRESH-LINE at
the beginning of the second function, its output
will always start on a new line, but if it's called
right after the
first, it won't emit an extra line break.

Several functions output Lisp data as s-expressions: PRINT
prints an s-expression preceded by
an end-of-line and followed by a
space. PRIN1 prints just the s-expression. And the function
PPRINT prints s-expressions like PRINT and PRIN1 but
using the "pretty printer," which tries
to print its output in an
aesthetically pleasing way.

However, not all objects can be printed in a form that READ will
understand. The variable
PRINT-READABLY controls what happens
if you try to print such an object with PRINT,
PRIN1, or
PPRINT. When it's NIL, these functions will print the
object in a special syntax
that's guaranteed to cause READ to
signal an error if it tries to read it; otherwise they will signal
an
error rather than print the object.

Another function, PRINC, also prints Lisp objects, but in a way
designed for human
consumption. For instance, PRINC prints
strings without quotation marks. You can generate
more elaborate text
output with the incredibly flexible if somewhat arcane FORMAT
function. I'll
discuss some of the more important details of
FORMAT, which essentially defines a mini-
language for emitting
formatted output, in Chapter 18.

To write binary data to a file, you have to OPEN the file with
the same :element-type
argument as you did to read it:
'(unsigned-byte 8). You can then write individual bytes
to the
stream with WRITE-BYTE.

The bulk output function WRITE-SEQUENCE accepts both binary and
character streams as long
as all the elements of the sequence are of
an appropriate type for the stream, either characters or
bytes. As
with READ-SEQUENCE, this function is likely to be quite a bit
more efficient than
writing the elements of the sequence one at a
time.

Closing Files

As anyone who has written code that deals with lots of files knows,
it's important to close files
when you're done with them, because
file handles tend to be a scarce resource. If you open files
and
don't close them, you'll soon discover you can't open any more
files.5 It might seem

straightforward enough to just be sure every OPEN has a matching
CLOSE. For instance, you
could always structure your file using
code like this:

(let ((stream (open "/some/file/name.txt")))

 ;; do stuff with stream

 (close stream))

However, this approach suffers from two problems. One is simply that
it's error prone--if you
forget the CLOSE, the code will leak a
file handle every time it runs. The other--and more
significant--problem is that there's no guarantee you'll get to the
CLOSE. For instance, if the
code prior to the CLOSE
contains a RETURN or RETURN-FROM, you could leave the
LET
without closing the stream. Or, as you'll see in Chapter 19,
if any of the code before the CLOSE
signals an error, control
may jump out of the LET to an error handler and never come back
to
close the stream.

Common Lisp provides a general solution to the problem of how to
ensure that certain code
always runs: the special operator
UNWIND-PROTECT, which I'll discuss in Chapter 20.
However,
because the pattern of opening a file, doing something with the
resulting stream, and
then closing the stream is so common, Common
Lisp provides a macro, WITH-OPEN-FILE,
built on top of
UNWIND-PROTECT, to encapsulate this pattern. This is the basic
form:

(with-open-file (stream-var open-argument*)

 body-form*)

The forms in body-forms are evaluated with stream-var bound
to a file stream opened by a call
to OPEN with
open-arguments as its arguments. WITH-OPEN-FILE then ensures
the stream in
stream-var is closed before the WITH-OPEN-FILE
form returns. Thus, you can write this to
read a line from a file:

(with-open-file (stream "/some/file/name.txt")

 (format t "~a~%" (read-line stream)))

To create a new file, you can write something like this:

(with-open-file (stream "/some/file/name.txt" :direction :output)

 (format stream "Some text."))

You'll probably use WITH-OPEN-FILE for 90-99 percent of the file
I/O you do--the only time
you need to use raw OPEN and
CLOSE calls is if you need to open a file in a function and keep
the stream around after the function returns. In that case, you must
take care to eventually close
the stream yourself, or you'll leak
file descriptors and may eventually end up unable to open any
more
files.

Filenames

So far you've used strings to represent filenames. However, using
strings as filenames ties your
code to a particular operating system
and file system. Likewise, if you programmatically

construct names
according to the rules of a particular naming scheme (separating
directories
with /, say), you also tie your code to a particular file
system.

To avoid this kind of nonportability, Common Lisp provides another
representation of filenames:
pathname objects. Pathnames represent
filenames in a structured way that makes them easy to
manipulate
without tying them to a particular filename syntax. And the burden of
translating
back and forth between strings in the local syntax--called
namestrings--and pathnames is placed
on the Lisp implementation.

Unfortunately, as with many abstractions designed to hide the details
of fundamentally different
underlying systems, the pathname
abstraction introduces its own complications. When
pathnames were
designed, the set of file systems in general use was quite a bit more
variegated
than those in common use today. Consequently, some nooks
and crannies of the pathname
abstraction make little sense if all
you're concerned about is representing Unix or Windows
filenames.
However, once you understand which parts of the pathname abstraction
you can
ignore as artifacts of pathnames' evolutionary history, they
do provide a convenient way to
manipulate filenames.6

Most places a filename is called for, you can use either a namestring
or a pathname. Which to
use depends mostly on where the name
originated. Filenames provided by the user--for example,
as arguments
or as values in configuration files--will typically be namestrings,
since the user
knows what operating system they're running on and
shouldn't be expected to care about the
details of how Lisp
represents filenames. But programmatically generated filenames will
be
pathnames because you can create them portably. A stream returned
by OPEN also represents a
filename, namely, the filename that
was originally used to open the stream. Together these three
types
are collectively referred to as pathname designators. All the
built-in functions that expect a
filename argument accept all three
types of pathname designator. For instance, all the places in
the
previous section where you used a string to represent a filename, you
could also have passed
a pathname object or a stream.

How We Got Here

The historical diversity of file systems in existence during
the 70s and 80s can be easy to forget. Kent
Pitman, one of the
principal technical editors of the Common Lisp standard, described
the situation once in
comp.lang.lisp (Message-ID:
sfwzo74np6w.fsf@world.std.com) thusly:

The dominant file systems at the time the design [of Common Lisp]
was done were TOPS-10, TENEX,
TOPS-20, VAX VMS, AT&T Unix, MIT
Multics, MIT ITS, not to mention a bunch of mainframe [OSs].
Some
were uppercase only, some mixed, some were case-sensitive but case-
translating (like CL).
Some had dirs as files, some not. Some had
quote chars for funny file chars, some not. Some had
wildcards,
some didn't. Some had :up in relative pathnames, some didn't. Some
had namable root dirs,
some didn't. There were file systems with no
directories, file systems with non-hierarchical directories,
file
systems with no file types, file systems with no versions, file
systems with no devices, and so on.

If you look at the pathname abstraction from the point of view of any
single file system, it seems baroque.
However, if you take even two
such similar file systems as Windows and Unix, you can already begin
to see
differences the pathname system can help abstract
away--Windows filenames contain a drive letter, for
instance, while
Unix filenames don't. The other advantage of having the pathname
abstraction designed to

handle the wide variety of file systems that
existed in the past is that it's more likely to be able to handle
file
systems that may exist in the future. If, say, versioning file
systems come back into vogue, Common Lisp will
be ready.

How Pathnames Represent Filenames

A pathname is a structured object that represents a filename using
six components: host, device,
directory, name, type, and version.
Most of these components take on atomic values, usually
strings; only
the directory component is further structured, containing a list of
directory names
(as strings) prefaced with the keyword
:absolute or :relative. However, not all
pathname
components are needed on all platforms--this is one of the reasons
pathnames strike
many new Lispers as gratuitously complex. On the
other hand, you don't really need to worry
about which components may
or may not be used to represent names on a particular file system
unless you need to create a new pathname object from scratch, which
you'll almost never need to
do. Instead, you'll usually get hold of
pathname objects either by letting the implementation
parse a file
system-specific namestring into a pathname object or by creating a
new pathname
that takes most of its components from an existing
pathname.

For instance, to translate a namestring to a pathname, you use the
PATHNAME function. It takes a
pathname designator and returns an
equivalent pathname object. When the designator is already
a
pathname, it's simply returned. When it's a stream, the original
filename is extracted and
returned. When the designator is a
namestring, however, it's parsed according to the local
filename
syntax. The language standard, as a platform-neutral document,
doesn't specify any
particular mapping from namestring to pathname,
but most implementations follow the same
conventions on a given
operating system.

On Unix file systems, only the directory, name, and type components
are typically used. On
Windows, one more component--usually the
device or host--holds the drive letter. On these
platforms, a
namestring is parsed by first splitting it into elements on the path
separator--a slash
on Unix and a slash or backslash on Windows. The
drive letter on Windows will be placed into
either the device or the
host component. All but the last of the other name elements are
placed in
a list starting with :absolute or :relative
depending on whether the name (ignoring the
drive letter, if any)
began with a path separator. This list becomes the directory
component of the
pathname. The last element is then split on the
rightmost dot, if any, and the two parts put into
the name and type
components of the pathname.7

You can examine these individual components of a pathname with the
functions
PATHNAME-DIRECTORY, PATHNAME-NAME, and
PATHNAME-TYPE.

(pathname-directory (pathname "/foo/bar/baz.txt")) ==> (:ABSOLUTE "foo" "bar")

(pathname-name (pathname "/foo/bar/baz.txt")) ==> "baz"

(pathname-type (pathname "/foo/bar/baz.txt")) ==> "txt"

Three other functions--PATHNAME-HOST, PATHNAME-DEVICE, and
PATHNAME-VERSION-
-allow you to get at the other three pathname
components, though they're unlikely to have
interesting values on
Unix. On Windows either PATHNAME-HOST or PATHNAME-DEVICE
will return the drive letter.

Like many other built-in objects, pathnames have their own read
syntax, #p followed by a
double-quoted string. This allows you
to print and read back s-expressions containing pathname
objects, but
because the syntax depends on the namestring parsing algorithm, such
data isn't
necessarily portable between operating systems.

(pathname "/foo/bar/baz.txt") ==> #p"/foo/bar/baz.txt"

To translate a pathname back to a namestring--for instance, to
present to the user--you can use
the function NAMESTRING, which
takes a pathname designator and returns a namestring. Two
other
functions, DIRECTORY-NAMESTRING and FILE-NAMESTRING, return
a partial
namestring. DIRECTORY-NAMESTRING combines the elements
of the directory component
into a local directory name, and
FILE-NAMESTRING combines the name and type
components.8

(namestring #p"/foo/bar/baz.txt") ==> "/foo/bar/baz.txt"

(directory-namestring #p"/foo/bar/baz.txt") ==> "/foo/bar/"

(file-namestring #p"/foo/bar/baz.txt") ==> "baz.txt"

Constructing New Pathnames

You can construct arbitrary pathnames using the MAKE-PATHNAME
function. It takes one
keyword argument for each pathname component
and returns a pathname with any supplied
components filled in and the
rest NIL.9

(make-pathname

 :directory '(:absolute "foo" "bar")

 :name "baz"

 :type "txt") ==> #p"/foo/bar/baz.txt"

However, if you want your programs to be portable, you probably don't
want to make pathnames
completely from scratch: even though the
pathname abstraction protects you from unportable
filename syntax,
filenames can be unportable in other ways. For instance, the filename
/home/peter/foo.txt is no good on an OS X box where
/home/ is called /Users/.

Another reason not to make pathnames completely from scratch is that
different implementations
use the pathname components slightly
differently. For instance, as mentioned previously, some
Windows-based Lisp implementations store the drive letter in the
device component while others
store it in the host component. If you
write code like this:

(make-pathname :device "c" :directory '(:absolute "foo" "bar") :name "baz")

it will be correct on some implementations but not on others.

Rather than making names from scratch, you can build a new pathname
based on an existing
pathname with MAKE-PATHNAME's keyword
parameter :defaults. With this parameter you
can provide a
pathname designator, which will supply the values for any components
not
specified by other arguments. For example, the following
expression creates a pathname with an
.html extension and all
other components the same as the pathname in the variable
input-file:

(make-pathname :type "html" :defaults input-file)

Assuming the value in input-file was a user-provided name,
this code will be robust in the
face of operating system and
implementation differences such as whether filenames have drive
letters in them and where they're stored in a pathname if they
do.10

You can use the same technique to create a pathname with a different
directory component.

(make-pathname :directory '(:relative "backups") :defaults input-file)

However, this will create a pathname whose whole directory component
is the relative directory
backups/, regardless of any
directory component input-file may have had. For example:

(make-pathname :directory '(:relative "backups")

 :defaults #p"/foo/bar/baz.txt") ==> #p"backups/baz.txt"

Sometimes, though, you want to combine two pathnames, at least one of
which has a relative
directory component, by combining their
directory components. For instance, suppose you have
a relative
pathname such as #p"foo/bar.html" that you want to combine
with an absolute
pathname such as #p"/www/html/" to get
#p"/www/html/foo/bar.html". In that
case, MAKE-PATHNAME
won't do; instead, you want MERGE-PATHNAMES.

MERGE-PATHNAMES takes two pathnames and merges them, filling in
any NIL components in
the first pathname with the corresponding
value from the second pathname, much like
MAKE-PATHNAME fills in
any unspecified components with components from the :defaults
argument. However, MERGE-PATHNAMES treats the directory
component specially: if the first
pathname's directory is relative,
the directory component of the resulting pathname will be the
first
pathname's directory relative to the second pathname's directory.
Thus:

(merge-pathnames #p"foo/bar.html" #p"/www/html/") ==> #p"/www/html/foo/bar.html"

The second pathname can also be relative, in which case the resulting
pathname will also be
relative.

(merge-pathnames #p"foo/bar.html" #p"html/") ==> #p"html/foo/bar.html"

To reverse this process and obtain a filename relative to a
particular root directory, you can use
the handy function
ENOUGH-NAMESTRING.

(enough-namestring #p"/www/html/foo/bar.html" #p"/www/") ==> "html/foo/bar.html"

You can then combine ENOUGH-NAMESTRING with MERGE-PATHNAMES
to create a
pathname representing the same name but in a different
root.

(merge-pathnames

 (enough-namestring #p"/www/html/foo/bar/baz.html" #p"/www/")

 #p"/www-backups/") ==> #p"/www-backups/html/foo/bar/baz.html"

MERGE-PATHNAMES is also used internally by the standard
functions that actually access files
in the file system to fill in
incomplete pathnames. For instance, suppose you make a pathname
with
just a name and a type.

(make-pathname :name "foo" :type "txt") ==> #p"foo.txt"

If you try to use this pathname as an argument to OPEN, the
missing components, such as the
directory, must be filled in before
Lisp will be able to translate the pathname to an actual
filename.
Common Lisp will obtain values for the missing components by merging
the given
pathname with the value of the variable
DEFAULT-PATHNAME-DEFAULTS. The initial
value of this variable
is determined by the implementation but is usually a pathname with a
directory component representing the directory where Lisp was started
and appropriate values
for the host and device components, if needed.
If invoked with just one argument,
MERGE-PATHNAMES will merge
the argument with the value of
DEFAULT-PATHNAME-DEFAULTS. For
instance, if
DEFAULT-PATHNAME-DEFAULTS is
#p"/home/peter/", then you'd get the
following:

(merge-pathnames #p"foo.txt") ==> #p"/home/peter/foo.txt"

Two Representations of Directory Names

When dealing with pathnames that name directories, you need to be
aware of one wrinkle.
Pathnames separate the directory and name
components, but Unix and Windows consider
directories just another
kind of file. Thus, on those systems, every directory has two
different
pathname representations.

One representation, which I'll call file form, treats a directory
like any other file and puts the last
element of the namestring into
the name and type components. The other representation,
directory
form, places all the elements of the name in the directory
component, leaving the name
and type components NIL. If
/foo/bar/ is a directory, then both of the following pathnames
name it.

(make-pathname :directory '(:absolute "foo") :name "bar") ; file form

(make-pathname :directory '(:absolute "foo" "bar")) ; directory form

When you create pathnames with MAKE-PATHNAME, you can control
which form you get, but
you need to be careful when dealing with
namestrings. All current implementations create file
form pathnames
unless the namestring ends with a path separator. But you can't rely
on user-

supplied namestrings necessarily being in one form or
another. For instance, suppose you've
prompted the user for a
directory to save a file in and they entered "/home/peter". If
you
pass that value as the :defaults argument of
MAKE-PATHNAME like this:

(make-pathname :name "foo" :type "txt" :defaults user-supplied-name)

you'll end up saving the file in /home/foo.txt rather than the
intended
/home/peter/foo.txt because the "peter" in the
namestring will be placed in the name
component when
user-supplied-name is converted to a pathname. In the pathname
portability library I'll discuss in the next chapter, you'll write a
function called
pathname-as-directory that converts a pathname
to directory form. With that function
you can reliably save the file
in the directory indicated by the user.

(make-pathname

 :name "foo" :type "txt" :defaults (pathname-as-directory user-supplied-name))

Interacting with the File System

While the most common interaction with the file system is probably
OPENing files for reading
and writing, you'll also occasionally
want to test whether a file exists, list the contents of a
directory,
delete and rename files, create directories, and get information
about a file such as
who owns it, when it was last modified, and its
length. This is where the generality of the
pathname abstraction
begins to cause a bit of pain: because the language standard doesn't
specify
how functions that interact with the file system map to any
specific file system, implementers are
left with a fair bit of
leeway.

That said, most of the functions that interact with the file system
are still pretty straightforward.
I'll discuss the standard functions
here and point out the ones that suffer from nonportability
between
implementations. In the next chapter you'll develop a pathname
portability library to
smooth over some of those nonportability
issues.

To test whether a file exists in the file system corresponding to a
pathname designator--a
pathname, namestring, or file stream--you can
use the function PROBE-FILE. If the file named
by the pathname
designator exists, PROBE-FILE returns the file's truename, a
pathname with
any file system-level translations such as resolving
symbolic links performed. Otherwise, it
returns NIL. However,
not all implementations support using this function to test whether a
directory exists. Also, Common Lisp doesn't provide a portable way to
test whether a given file
that exists is a regular file or a
directory. In the next chapter you'll wrap PROBE-FILE with a
new
function, file-exists-p, that can both test whether a
directory exists and tell you
whether a given name is the name of a
file or directory.

Similarly, the standard function for listing files in the file
system, DIRECTORY, works fine for
simple cases, but the
differences between implementations make it tricky to use portably.
In the

next chapter you'll define a list-directory function
that smoothes over some of these
differences.

DELETE-FILE and RENAME-FILE do what their names suggest.
DELETE-FILE takes a
pathname designator and deletes the named
file, returning true if it succeeds. Otherwise it signals
a
FILE-ERROR.11

RENAME-FILE takes two pathname designators and renames the file
named by the first name to
the second name.

You can create directories with the function
ENSURE-DIRECTORIES-EXIST. It takes a
pathname designator and
ensures that all the elements of the directory component exist and
are
directories, creating them as necessary. It returns the pathname
it was passed, which makes it
convenient to use inline.

(with-open-file (out (ensure-directories-exist name) :direction :output)

 ...

)

Note that if you pass ENSURE-DIRECTORIES-EXIST a directory name,
it should be in
directory form, or the leaf directory won't be
created.

The functions FILE-WRITE-DATE and FILE-AUTHOR both take a
pathname designator.
FILE-WRITE-DATE returns the time in number
of seconds since midnight January 1, 1900,
Greenwich mean time (GMT),
that the file was last written, and FILE-AUTHOR returns, on
Unix
and Windows, the file owner.12

To find the length of a file, you can use the function
FILE-LENGTH. For historical reasons
FILE-LENGTH takes a
stream as an argument rather than a pathname. In theory this allows
FILE-LENGTH to return the length in terms of the element type of
the stream. However, since
on most present-day operating systems, the
only information available about the length of a file,
short of
actually reading the whole file to measure it, is its length in
bytes, that's what most
implementations return, even when
FILE-LENGTH is passed a character stream. However, the
standard
doesn't require this behavior, so for predictable results, the best
way to get the length of
a file is to use a binary stream.13

(with-open-file (in filename :element-type '(unsigned-byte 8))

 (file-length in))

A related function that also takes an open file stream as its
argument is FILE-POSITION.
When called with just a stream, this
function returns the current position in the file--the number
of
elements that have been read from or written to the stream. When
called with two arguments,
the stream and a position designator, it
sets the position of the stream to the designated position.
The
position designator must be the keyword :start, the keyword
:end, or a non-negative
integer. The two keywords set the
position of the stream to the start or end of the file while an

integer moves to the indicated position in the file. With a binary
stream the position is simply a
byte offset into the file. However,
for character streams things are a bit more complicated
because of
character-encoding issues. Your best bet, if you need to jump around
within a file of
textual data, is to only ever pass, as a second
argument to the two-argument version of
FILE-POSITION, a value
previously returned by the one-argument version of
FILE-POSITION
with the same stream argument.

Other Kinds of I/O

In addition to file streams, Common Lisp supports other kinds of
streams, which can also be
used with the various reading, writing,
and printing I/O functions. For instance, you can read
data from, or
write data to, a string using STRING-STREAMs, which you can
create with the
functions MAKE-STRING-INPUT-STREAM and
MAKE-STRING-OUTPUT-STREAM.

MAKE-STRING-INPUT-STREAM takes a string and optional start and
end indices to bound the
area of the string from which data should be
read and returns a character stream that you can
pass to any of the
character-based input functions such as READ-CHAR,
READ-LINE, or READ.
For example, if you have a string
containing a floating-point literal in Common Lisp's syntax,
you can
convert it to a float like this:

(let ((s (make-string-input-stream "1.23")))

 (unwind-protect (read s)

 (close s)))

Similarly, MAKE-STRING-OUTPUT-STREAM creates a stream you can
use with FORMAT,
PRINT, WRITE-CHAR, WRITE-LINE,
and so on. It takes no arguments. Whatever you write, a
string output
stream will be accumulated into a string that can then be obtained
with the function
GET-OUTPUT-STREAM-STRING. Each time you call
GET-OUTPUT-STREAM-STRING, the
stream's internal string is
cleared so you can reuse an existing string output stream.

However, you'll rarely use these functions directly, because the
macros
WITH-INPUT-FROM-STRING and WITH-OUTPUT-TO-STRING
provide a more convenient
interface. WITH-INPUT-FROM-STRING is
similar to WITH-OPEN-FILE--it creates a string
input stream from
a given string and then executes the forms in its body with the
stream bound
to the variable you provide. For instance, instead of
the LET form with the explicit
UNWIND-PROTECT, you'd
probably write this:

(with-input-from-string (s "1.23")

 (read s))

The WITH-OUTPUT-TO-STRING macro is similar: it binds a newly
created string output
stream to a variable you name and then executes
its body. After all the body forms have been
executed,
WITH-OUTPUT-TO-STRING returns the value that would be returned
by
GET-OUTPUT-STREAM-STRING.

CL-USER> (with-output-to-string (out)

 (format out "hello, world ")

 (format out "~s" (list 1 2 3)))

"hello, world (1 2 3)"

The other kinds of streams defined in the language standard provide
various kinds of stream
"plumbing," allowing you to plug together
streams in almost any configuration. A
BROADCAST-STREAM is an
output stream that sends any data written to it to a set of output
streams provided as arguments to its constructor function,
MAKE-BROADCAST-STREAM.14

Conversely, a
CONCATENATED-STREAM is an input stream that takes its input from
a set of
input streams, moving from stream to stream as it hits the
end of each stream.
CONCATENATED-STREAMs are constructed with
the function
MAKE-CONCATENATED-STREAM, which takes any number of
input streams as arguments.

Two kinds of bidirectional streams that can plug together streams in
a couple ways are
TWO-WAY-STREAM and ECHO-STREAM. Their
constructor functions,
MAKE-TWO-WAY-STREAM and
MAKE-ECHO-STREAM, both take two arguments, an input
stream and
an output stream, and return a stream of the appropriate type, which
you can use with
both input and output functions.

In a TWO-WAY-STREAM every read you perform will return data read
from the underlying input
stream, and every write will send data to
the underlying output stream. An ECHO-STREAM
works essentially
the same way except that all the data read from the underlying input
stream is
also echoed to the output stream. Thus, the output stream
of an ECHO-STREAM stream will
contain a transcript of both sides
of the conversation.

Using these five kinds of streams, you can build almost any topology
of stream plumbing you
want.

Finally, although the Common Lisp standard doesn't say anything about
networking APIs, most
implementations support socket programming and
typically implement sockets as another kind
of stream, so you can use
all the regular I/O functions with them.15

Now you're ready to move on to building a library that smoothes over
some of the differences
between how the basic pathname functions
behave in different Common Lisp implementations.

1Note, however,
that while the Lisp reader knows how to skip comments, it completely
skips them. Thus, if you use READ to read
in a configuration
file containing comments and then use PRINT to save changes to
the data, you'll lose the comments.

2By default OPEN uses the default
character encoding for the operating system, but it also accepts a
keyword parameter,
:external-format, that can pass
implementation-defined values that specify a different encoding.
Character streams also
translate the platform-specific end-of-line
sequence to the single character #\Newline.

3The type (unsigned-byte 8)
indicates an 8-bit byte; Common Lisp "byte" types aren't a fixed size
since Lisp has run at
various times on architectures with byte sizes
from 6 to 9 bits, to say nothing of the PDP-10, which had
individually addressable
variable-length bit fields of 1 to 36 bits.

4In general, a
stream is either a character stream or a binary stream, so you can't
mix calls to READ-BYTE and READ-CHAR or
other
character-based read functions. However, some implementations, such
as Allegro, support so-called bivalent streams, which
support both
character and binary I/O.

5Some folks expect this wouldn't be a problem in a
garbage-collected language such as Lisp. It is the case in most Lisp
implementations that a stream that becomes garbage will automatically
be closed. However, this isn't something to rely on--the
problem is
that garbage collectors usually run only when memory is low; they
don't know about other scarce resources such as file
handles. If
there's plenty of memory available, it's easy to run out of file
handles long before the garbage collector runs.

6Another
reason the pathname system is considered somewhat baroque is because
of the inclusion of logical pathnames. However,
you can use the
rest of the pathname system perfectly well without knowing anything
more about logical pathnames than that you
can safely ignore them.
Briefly, logical pathnames allow Common Lisp programs to contain
references to pathnames without
naming specific files. Logical
pathnames could then be mapped to specific locations in an actual
file system when the program was
installed by defining a "logical
pathname translation" that translates logical pathnames matching
certain wildcards to pathnames
representing files in the file system,
so-called physical pathnames. They have their uses in certain
situations, but you can get pretty
far without worrying about them.

7Many Unix-based implementations
treat filenames whose last element starts with a dot and don't
contain any other dots specially,
putting the whole element, with the
dot, in the name component and leaving the type component NIL.

(pathname-name (pathname "/foo/.emacs")) ==> ".emacs"

(pathname-type (pathname "/foo/.emacs")) ==> NIL

However, not all implementations follow this convention; some will
create a pathname with "" as the name and emacs as the type.

8The
name returned by FILE-NAMESTRING also includes the version
component on file systems that use it.

9The host component may not default to NIL,
but if not, it will be an opaque implementation-defined value.

10For absolutely maximum portability, you should really write
this:

(make-pathname :type "html" :version :newest :defaults input-file)

Without the :version argument, on a file system with built-in
versioning, the output pathname would inherit its version number
from
the input file which isn't likely to be right--if the input file has
been saved many times it will have a much higher version
number than
the generated HTML file. On implementations without file versioning,
the :version argument should be ignored.
It's up to you if you
care that much about portability.

11See Chapter 19 for more on handling errors.

12For applications that need access
to other file attributes on a particular operating system or file
system, libraries provide bindings
to underlying C system calls. The
Osicat library at http://common-lisp.net/project/osicat/
provides a simple API
built using the Universal Foreign Function
Interface (UFFI), which should run on most Common Lisps that run on a
POSIX
operating system.

13The
number of bytes and characters in a file can differ even if you're
not using a multibyte character encoding. Because
character streams
also translate platform-specific line endings to a single
#\Newline character, on Windows (which uses CRLF
as its line
ending) the number of characters will typically be smaller than the
number of bytes. If you really have to know the
number of characters
in a file, you have to bite the bullet and write something like
this:

(with-open-file (in filename)

 (loop while (read-char in nil) count t))

or maybe something more efficient like this:

(with-open-file (in filename)

 (let ((scratch (make-string 4096)))

 (loop for read = (read-sequence scratch in)

 while (plusp read) sum read)))

14MAKE-BROADCAST-STREAM can make
a data black hole by calling it with no arguments.

15The biggest missing
piece in Common Lisp's standard I/O facilities is a way for users to
define new stream classes. There are,
however, two de facto standards
for user-defined streams. During the Common Lisp standardization,
David Gray of Texas
Instruments wrote a draft proposal for an API to
allow users to define new stream classes. Unfortunately, there wasn't
time to work
out all the issues raised by his draft to include it in
the language standard. However, many implementations support some form
of
so-called Gray Streams, basing their API on Gray's draft proposal.
Another, newer API, called Simple Streams, has been
developed by Franz
and included in Allegro Common Lisp. It was designed to improve the
performance of user-defined streams
relative to Gray Streams and has
been adopted by some of the open-source Common Lisp implementations.

