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11. Collections
Like most programming languages, Common Lisp provides standard data types that collect
multiple values into a single object. Every language slices up the collection problem a little bit
differently, but the basic collection types usually boil down to an integer-indexed array type and
a table type that can be used to map more or less arbitrary keys to values. The former are
variously called arrays, lists, or tuples; the latter go by the names hash tables, associative
arrays, maps, and dictionaries.

Lisp is, of course, famous for its list data structure, and most Lisp books, following the
ontogeny-recapitulates-phylogeny principle of language instruction, start their discussion of
Lisp's collections with lists. However, that approach often leads readers to the mistaken
conclusion that lists are Lisp's only collection type. To make matters worse, because Lisp's lists
are such a flexible data structure, it is possible to use them for many of the things arrays and
hash tables are used for in other languages. But it's a mistake to focus too much on lists; while
they're a crucial data structure for representing Lisp code as Lisp data, in many situations other
data structures are more appropriate.

To keep lists from stealing the show, in this chapter I'll focus on Common Lisp's other collection
types: vectors and hash tables.1 However, vectors and lists share enough characteristics that
Common Lisp treats them both as subtypes of a more general abstraction, the sequence. Thus,
you can use many of the functions I'll discuss in this chapter with both vectors and lists.

Vectors
Vectors are Common Lisp's basic integer-indexed collection, and they come in two flavors.
Fixed-size vectors are a lot like arrays in a language such as Java: a thin veneer over a chunk of
contiguous memory that holds the vector's elements.2 Resizable vectors, on the other hand, are
more like arrays in Perl or Ruby, lists in Python, or the ArrayList class in Java: they abstract the
actual storage, allowing the vector to grow and shrink as elements are added and removed.

You can make fixed-size vectors containing specific values with the function VECTOR, which
takes any number of arguments and returns a freshly allocated fixed-size vector containing those
arguments.

(vector)     ==> #() 
(vector 1)   ==> #(1) 
(vector 1 2) ==> #(1 2)



The #(...) syntax is the literal notation for vectors used by the Lisp printer and reader. This
syntax allows you to save and restore vectors by PRINTing them out and READing them back
in. You can use the #(...) syntax to include literal vectors in your code, but as the effects of
modifying literal objects aren't defined, you should always use VECTOR or the more general
function MAKE-ARRAY to create vectors you plan to modify.

MAKE-ARRAY is more general than VECTOR since you can use it to create arrays of any
dimensionality as well as both fixed-size and resizable vectors. The one required argument to
MAKE-ARRAY is a list containing the dimensions of the array. Since a vector is a one-
dimensional array, this list will contain one number, the size of the vector. As a convenience,
MAKE-ARRAY will also accept a plain number in the place of a one-item list. With no other
arguments, MAKE-ARRAY will create a vector with uninitialized elements that must be set
before they can be accessed.3 To create a vector with the elements all set to a particular value,
you can pass an :initial-element argument. Thus, to make a five-element vector with its
elements initialized to NIL, you can write the following:

(make-array 5 :initial-element nil) ==> #(NIL NIL NIL NIL NIL)

MAKE-ARRAY is also the function to use to make a resizable vector. A resizable vector is a
slightly more complicated object than a fixed-size vector; in addition to keeping track of the
memory used to hold the elements and the number of slots available, a resizable vector also
keeps track of the number of elements actually stored in the vector. This number is stored in the
vector's fill pointer, so called because it's the index of the next position to be filled when you add
an element to the vector.

To make a vector with a fill pointer, you pass MAKE-ARRAY a :fill-pointer argument.
For instance, the following call to MAKE-ARRAY makes a vector with room for five elements;
but it looks empty because the fill pointer is zero:

(make-array 5 :fill-pointer 0) ==> #()

To add an element to the end of a resizable vector, you can use the function VECTOR-PUSH. It
adds the element at the current value of the fill pointer and then increments the fill pointer by
one, returning the index where the new element was added. The function VECTOR-POP returns
the most recently pushed item, decrementing the fill pointer in the process.

(defparameter *x* (make-array 5 :fill-pointer 0)) 
 
(vector-push 'a *x*) ==> 0 
*x*                  ==> #(A) 
(vector-push 'b *x*) ==> 1 
*x*                  ==> #(A B) 
(vector-push 'c *x*) ==> 2 
*x*                  ==> #(A B C) 
(vector-pop *x*)     ==> C 
*x*                  ==> #(A B) 
(vector-pop *x*)     ==> B 
*x*                  ==> #(A) 



(vector-pop *x*)     ==> A 
*x*                  ==> #()

However, even a vector with a fill pointer isn't completely resizable. The vector *x* can hold at
most five elements. To make an arbitrarily resizable vector, you need to pass MAKE-ARRAY
another keyword argument: :adjustable.

(make-array 5 :fill-pointer 0 :adjustable t) ==> #()

This call makes an adjustable vector whose underlying memory can be resized as needed. To
add elements to an adjustable vector, you use VECTOR-PUSH-EXTEND, which works just like
VECTOR-PUSH except it will automatically expand the array if you try to push an element onto
a full vector--one whose fill pointer is equal to the size of the underlying storage.4

Subtypes of Vector

All the vectors you've dealt with so far have been general vectors that can hold any type of
object. It's also possible to create specialized vectors that are restricted to holding certain types
of elements. One reason to use specialized vectors is they may be stored more compactly and
can provide slightly faster access to their elements than general vectors. However, for the
moment let's focus on a couple kinds of specialized vectors that are important data types in their
own right.

One of these you've seen already--strings are vectors specialized to hold characters. Strings are
important enough to get their own read/print syntax (double quotes) and the set of string-specific
functions I discussed in the previous chapter. But because they're also vectors, all the functions
I'll discuss in the next few sections that take vector arguments can also be used with strings.
These functions will fill out the string library with functions for things such as searching a string
for a substring, finding occurrences of a character within a string, and more.

Literal strings, such as "foo", are like literal vectors written with the #() syntax--their size is
fixed, and they must not be modified. However, you can use MAKE-ARRAY to make resizable
strings by adding another keyword argument, :element-type. This argument takes a type
descriptor. I won't discuss all the possible type descriptors you can use here; for now it's enough
to know you can create a string by passing the symbol CHARACTER as the :element-type
argument. Note that you need to quote the symbol to prevent it from being treated as a variable
name. For example, to make an initially empty but resizable string, you can write this:

(make-array 5 :fill-pointer 0 :adjustable t :element-type 'character)  ""

Bit vectors--vectors whose elements are all zeros or ones--also get some special treatment. They
have a special read/print syntax that looks like #*00001111 and a fairly large library of
functions, which I won't discuss, for performing bit-twiddling operations such as "anding"
together two bit arrays. The type descriptor to pass as the :element-type to create a bit
vector is the symbol BIT.



Vectors As Sequences
As mentioned earlier, vectors and lists are the two concrete subtypes of the abstract type
sequence. All the functions I'll discuss in the next few sections are sequence functions; in
addition to being applicable to vectors--both general and specialized--they can also be used with
lists.

The two most basic sequence functions are LENGTH, which returns the length of a sequence, and
ELT, which allows you to access individual elements via an integer index. LENGTH takes a
sequence as its only argument and returns the number of elements it contains. For vectors with a
fill pointer, this will be the value of the fill pointer. ELT, short for element, takes a sequence and
an integer index between zero (inclusive) and the length of the sequence (exclusive) and returns
the corresponding element. ELT will signal an error if the index is out of bounds. Like LENGTH,
ELT treats a vector with a fill pointer as having the length specified by the fill pointer.

(defparameter *x* (vector 1 2 3)) 
 
(length *x*) ==> 3 
(elt *x* 0)  ==> 1 
(elt *x* 1)  ==> 2 
(elt *x* 2)  ==> 3 
(elt *x* 3)  ==> error

ELT is also a SETFable place, so you can set the value of a particular element like this:

(setf (elt *x* 0) 10) 
 
*x* ==> #(10 2 3)

Sequence Iterating Functions
While in theory all operations on sequences boil down to some combination of LENGTH, ELT,
and SETF of ELT operations, Common Lisp provides a large library of sequence functions.

One group of sequence functions allows you to express certain operations on sequences such as
finding or filtering specific elements without writing explicit loops. Table 11-1 summarizes
them.

Table 11-1.Basic Sequence Functions

Name Required Arguments Returns
COUNT Item and sequence Number of times item appears in sequence
FIND Item and sequence Item or NIL
POSITION Item and sequence Index into sequence or NIL
REMOVE Item and sequence Sequence with instances of item removed
SUBSTITUTE New item, item, and sequence Sequence with instances of item replaced with new item

Here are some simple examples of how to use these functions:



(count 1 #(1 2 1 2 3 1 2 3 4))         ==> 3 
(remove 1 #(1 2 1 2 3 1 2 3 4))        ==> #(2 2 3 2 3 4) 
(remove 1 '(1 2 1 2 3 1 2 3 4))        ==> (2 2 3 2 3 4) 
(remove #\a "foobarbaz")               ==> "foobrbz" 
(substitute 10 1 #(1 2 1 2 3 1 2 3 4)) ==> #(10 2 10 2 3 10 2 3 4) 
(substitute 10 1 '(1 2 1 2 3 1 2 3 4)) ==> (10 2 10 2 3 10 2 3 4) 
(substitute #\x #\b "foobarbaz")       ==> "fooxarxaz" 
(find 1 #(1 2 1 2 3 1 2 3 4))          ==> 1 
(find 10 #(1 2 1 2 3 1 2 3 4))         ==> NIL 
(position 1 #(1 2 1 2 3 1 2 3 4))      ==> 0

Note how REMOVE and SUBSTITUTE always return a sequence of the same type as their
sequence argument.

You can modify the behavior of these five functions in a variety of ways using keyword
arguments. For instance, these functions, by default, look for elements in the sequence that are
the same object as the item argument. You can change this in two ways: First, you can use the
:test keyword to pass a function that accepts two arguments and returns a boolean. If
provided, it will be used to compare item to each element instead of the default object equality
test, EQL.5 Second, with the :key keyword you can pass a one-argument function to be called
on each element of the sequence to extract a key value, which will then be compared to the item
in the place of the element itself. Note, however, that functions such as FIND that return
elements of the sequence continue to return the actual element, not just the extracted key.

(count "foo" #("foo" "bar" "baz") :test #'string=)    ==> 1 
(find 'c #((a 10) (b 20) (c 30) (d 40)) :key #'first) ==> (C 30)

To limit the effects of these functions to a particular subsequence of the sequence argument, you
can provide bounding indices with :start and :end arguments. Passing NIL for :end or
omitting it is the same as specifying the length of the sequence.6

If a non-NIL :from-end argument is provided, then the elements of the sequence will be
examined in reverse order. By itself :from-end can affect the results of only FIND and
POSITION. For instance:

(find 'a #((a 10) (b 20) (a 30) (b 40)) :key #'first)             ==> (A 10)
(find 'a #((a 10) (b 20) (a 30) (b 40)) :key #'first :from-end t) ==> (A 30)

However, the :from-end argument can affect REMOVE and SUBSTITUTE in conjunction
with another keyword parameter, :count, that's used to specify how many elements to remove
or substitute. If you specify a :count lower than the number of matching elements, then it
obviously matters which end you start from:

(remove #\a "foobarbaz" :count 1)             ==> "foobrbaz" 
(remove #\a "foobarbaz" :count 1 :from-end t) ==> "foobarbz"

And while :from-end can't change the results of the COUNT function, it does affect the order
the elements are passed to any :test and :key functions, which could possibly have side
effects. For example:



CL-USER> (defparameter *v* #((a 10) (b 20) (a 30) (b 40))) 
*V* 
CL-USER> (defun verbose-first (x) (format t "Looking at ~s~%" x) (first x)) 
VERBOSE-FIRST 
CL-USER> (count 'a *v* :key #'verbose-first) 
Looking at (A 10) 
Looking at (B 20) 
Looking at (A 30) 
Looking at (B 40) 
2 
CL-USER> (count 'a *v* :key #'verbose-first :from-end t) 
Looking at (B 40) 
Looking at (A 30) 
Looking at (B 20) 
Looking at (A 10) 
2

Table 11-2 summarizes these arguments.

Table 11-2. Standard Sequence Function Keyword Arguments

Argument Meaning Default

:test
Two-argument function used to compare item (or value extracted by :key function)
to element. EQL

:key
One-argument function to extract key value from actual sequence element. NIL
means use element as is. NIL

:start Starting index (inclusive) of subsequence. 0
:end Ending index (exclusive) of subsequence. NIL indicates end of sequence. NIL

:from-end If true, the sequence will be traversed in reverse order, from end to start. NIL

:count
Number indicating the number of elements to remove or substitute or NIL to indicate
all (REMOVE and SUBSTITUTE only). NIL

Higher-Order Function Variants

For each of the functions just discussed, Common Lisp provides two higher-order function
variants that, in the place of the item argument, take a function to be called on each element of
the sequence. One set of variants are named the same as the basic function with an -IF
appended. These functions count, find, remove, and substitute elements of the sequence for
which the function argument returns true. The other set of variants are named with an -IF-NOT
suffix and count, find, remove, and substitute elements for which the function argument does not
return true.

(count-if #'evenp #(1 2 3 4 5))         ==> 2 
 
(count-if-not #'evenp #(1 2 3 4 5))     ==> 3 
 
(position-if #'digit-char-p "abcd0001") ==> 4 
 
(remove-if-not #'(lambda (x) (char= (elt x 0) #\f)) 
  #("foo" "bar" "baz" "foom")) ==> #("foo" "foom")

According to the language standard, the -IF-NOT variants are deprecated. However, that
deprecation is generally considered to have itself been ill-advised. If the standard is ever revised,
it's more likely the deprecation will be removed than the -IF-NOT functions. For one thing, the
REMOVE-IF-NOT variant is probably used more often than REMOVE-IF. Despite its negative-



sounding name, REMOVE-IF-NOT is actually the positive variant--it returns the elements that
do satisfy the predicate. 7

The -IF and -IF-NOT variants accept all the same keyword arguments as their vanilla
counterparts except for :test, which isn't needed since the main argument is already a
function.8 With a :key argument, the value extracted by the :key function is passed to the
function instead of the actual element.

(count-if #'evenp #((1 a) (2 b) (3 c) (4 d) (5 e)) :key #'first)     ==> 2 
 
(count-if-not #'evenp #((1 a) (2 b) (3 c) (4 d) (5 e)) :key #'first) ==> 3 
 
(remove-if-not #'alpha-char-p 
  #("foo" "bar" "1baz") :key #'(lambda (x) (elt x 0))) ==> #("foo" "bar")

The REMOVE family of functions also support a fourth variant, REMOVE-DUPLICATES, that
has only one required argument, a sequence, from which it removes all but one instance of each
duplicated element. It takes the same keyword arguments as REMOVE, except for :count, since
it always removes all duplicates.

(remove-duplicates #(1 2 1 2 3 1 2 3 4)) ==> #(1 2 3 4)

Whole Sequence Manipulations

A handful of functions perform operations on a whole sequence (or sequences) at a time. These
tend to be simpler than the other functions I've described so far. For instance, COPY-SEQ and
REVERSE each take a single argument, a sequence, and each returns a new sequence of the same
type. The sequence returned by COPY-SEQ contains the same elements as its argument while
the sequence returned by REVERSE contains the same elements but in reverse order. Note that
neither function copies the elements themselves--only the returned sequence is a new object.

The CONCATENATE function creates a new sequence containing the concatenation of any
number of sequences. However, unlike REVERSE and COPY-SEQ, which simply return a
sequence of the same type as their single argument, CONCATENATE must be told explicitly what
kind of sequence to produce in case the arguments are of different types. Its first argument is a
type descriptor, like the :element-type argument to MAKE-ARRAY. In this case, the type
descriptors you'll most likely use are the symbols VECTOR, LIST, or STRING.9 For example:

(concatenate 'vector #(1 2 3) '(4 5 6))    ==> #(1 2 3 4 5 6) 
(concatenate 'list #(1 2 3) '(4 5 6))      ==> (1 2 3 4 5 6) 
(concatenate 'string "abc" '(#\d #\e #\f)) ==> "abcdef"

Sorting and Merging

The functions SORT and STABLE-SORT provide two ways of sorting a sequence. They both
take a sequence and a two-argument predicate and return a sorted version of the sequence.

(sort (vector "foo" "bar" "baz") #'string<) ==> #("bar" "baz" "foo")



The difference is that STABLE-SORT is guaranteed to not reorder any elements considered
equivalent by the predicate while SORT guarantees only that the result is sorted and may reorder
equivalent elements.

Both these functions are examples of what are called destructive functions. Destructive functions
are allowed--typically for reasons of efficiency--to modify their arguments in more or less
arbitrary ways. This has two implications: one, you should always do something with the return
value of these functions (such as assign it to a variable or pass it to another function), and, two,
unless you're done with the object you're passing to the destructive function, you should pass a
copy instead. I'll say more about destructive functions in the next chapter.

Typically you won't care about the unsorted version of a sequence after you've sorted it, so it
makes sense to allow SORT and STABLE-SORT to destroy the sequence in the course of sorting
it. But it does mean you need to remember to write the following:10

(setf my-sequence (sort my-sequence #'string<))

rather than just this:

(sort my-sequence #'string<)

Both these functions also take a keyword argument, :key, which, like the :key argument in
other sequence functions, should be a function and will be used to extract the values to be passed
to the sorting predicate in the place of the actual elements. The extracted keys are used only to
determine the ordering of elements; the sequence returned will contain the actual elements of the
argument sequence.

The MERGE function takes two sequences and a predicate and returns a sequence produced by
merging the two sequences, according to the predicate. It's related to the two sorting functions in
that if each sequence is already sorted by the same predicate, then the sequence returned by
MERGE will also be sorted. Like the sorting functions, MERGE takes a :key argument. Like
CONCATENATE, and for the same reason, the first argument to MERGE must be a type descriptor
specifying the type of sequence to produce.

(merge 'vector #(1 3 5) #(2 4 6) #'<) ==> #(1 2 3 4 5 6) 
(merge 'list #(1 3 5) #(2 4 6) #'<)   ==> (1 2 3 4 5 6)

Subsequence Manipulations

Another set of functions allows you to manipulate subsequences of existing sequences. The most
basic of these is SUBSEQ, which extracts a subsequence starting at a particular index and
continuing to a particular ending index or the end of the sequence. For instance:

(subseq "foobarbaz" 3)   ==> "barbaz" 
(subseq "foobarbaz" 3 6) ==> "bar"



SUBSEQ is also SETFable, but it won't extend or shrink a sequence; if the new value and the
subsequence to be replaced are different lengths, the shorter of the two determines how many
characters are actually changed.

(defparameter *x* (copy-seq "foobarbaz")) 
 
(setf (subseq *x* 3 6) "xxx")  ; subsequence and new value are same length 
*x* ==> "fooxxxbaz" 
 
(setf (subseq *x* 3 6) "abcd") ; new value too long, extra character ignored. 
*x* ==> "fooabcbaz" 
 
(setf (subseq *x* 3 6) "xx")   ; new value too short, only two characters changed
*x* ==> "fooxxcbaz"

You can use the FILL function to set multiple elements of a sequence to a single value. The
required arguments are a sequence and the value with which to fill it. By default every element
of the sequence is set to the value; :start and :end keyword arguments can limit the effects
to a given subsequence.

If you need to find a subsequence within a sequence, the SEARCH function works like
POSITION except the first argument is a sequence rather than a single item.

(position #\b "foobarbaz") ==> 3 
(search "bar" "foobarbaz") ==> 3

On the other hand, to find where two sequences with a common prefix first diverge, you can use
the MISMATCH function. It takes two sequences and returns the index of the first pair of
mismatched elements.

(mismatch "foobarbaz" "foom") ==> 3

It returns NIL if the strings match. MISMATCH also takes many of the standard keyword
arguments: a :key argument for specifying a function to use to extract the values to be
compared; a :test argument to specify the comparison function; and :start1, :end1,
:start2, and :end2 arguments to specify subsequences within the two sequences. And a
:from-end argument of T specifies the sequences should be searched in reverse order, causing
MISMATCH to return the index, in the first sequence, where whatever common suffix the two
sequences share begins.

(mismatch "foobar" "bar" :from-end t) ==> 3

Sequence Predicates

Four other handy functions are EVERY, SOME, NOTANY, and NOTEVERY, which iterate over
sequences testing a boolean predicate. The first argument to all these functions is the predicate,
and the remaining arguments are sequences. The predicate should take as many arguments as the
number of sequences passed. The elements of the sequences are passed to the predicate--one
element from each sequence--until one of the sequences runs out of elements or the overall



termination test is met: EVERY terminates, returning false, as soon as the predicate fails. If the
predicate is always satisfied, it returns true. SOME returns the first non-NIL value returned by
the predicate or returns false if the predicate is never satisfied. NOTANY returns false as soon as
the predicate is satisfied or true if it never is. And NOTEVERY returns true as soon as the
predicate fails or false if the predicate is always satisfied. Here are some examples of testing just
one sequence:

(every #'evenp #(1 2 3 4 5))    ==> NIL 
(some #'evenp #(1 2 3 4 5))     ==> T 
(notany #'evenp #(1 2 3 4 5))   ==> NIL 
(notevery #'evenp #(1 2 3 4 5)) ==> T

These calls compare elements of two sequences pairwise:

(every #'> #(1 2 3 4) #(5 4 3 2))    ==> NIL 
(some #'> #(1 2 3 4) #(5 4 3 2))     ==> T 
(notany #'> #(1 2 3 4) #(5 4 3 2))   ==> NIL 
(notevery #'> #(1 2 3 4) #(5 4 3 2)) ==> T

Sequence Mapping Functions

Finally, the last of the sequence functions are the generic mapping functions. MAP, like the
sequence predicate functions, takes a n-argument function and n sequences. But instead of a
boolean value, MAP returns a new sequence containing the result of applying the function to
subsequent elements of the sequences. Like CONCATENATE and MERGE, MAP needs to be told
what kind of sequence to create.

(map 'vector #'* #(1 2 3 4 5) #(10 9 8 7 6)) ==> #(10 18 24 28 30)

MAP-INTO is like MAP except instead of producing a new sequence of a given type, it places the
results into a sequence passed as the first argument. This sequence can be the same as one of the
sequences providing values for the function. For instance, to sum several vectors--a, b, and c--
into one, you could write this:

(map-into a #'+ a b c)

If the sequences are different lengths, MAP-INTO affects only as many elements as are present
in the shortest sequence, including the sequence being mapped into. However, if the sequence
being mapped into is a vector with a fill pointer, the number of elements affected isn't limited by
the fill pointer but rather by the actual size of the vector. After a call to MAP-INTO, the fill
pointer will be set to the number of elements mapped. MAP-INTO won't, however, extend an
adjustable vector.

The last sequence function is REDUCE, which does another kind of mapping: it maps over a
single sequence, applying a two-argument function first to the first two elements of the sequence
and then to the value returned by the function and subsequent elements of the sequence. Thus,
the following expression sums the numbers from one to ten:



(reduce #'+ #(1 2 3 4 5 6 7 8 9 10)) ==> 55

REDUCE is a surprisingly useful function--whenever you need to distill a sequence down to a
single value, chances are you can write it with REDUCE, and it will often be quite a concise way
to express what you want. For instance, to find the maximum value in a sequence of numbers,
you can write (reduce #'max numbers). REDUCE also takes a full complement of
keyword arguments (:key, :from-end, :start, and :end) and one unique to REDUCE
(:initial-value). The latter specifies a value that's logically placed before the first element
of the sequence (or after the last if you also specify a true :from-end argument).

Hash Tables

The other general-purpose collection provided by Common Lisp is the hash table. Where vectors
provide an integer-indexed data structure, hash tables allow you to use arbitrary objects as the
indexes, or keys. When you add a value to a hash table, you store it under a particular key. Later
you can use the same key to retrieve the value. Or you can associate a new value with the same
key--each key maps to a single value.

With no arguments MAKE-HASH-TABLE makes a hash table that considers two keys equivalent
if they're the same object according to EQL. This is a good default unless you want to use strings
as keys, since two strings with the same contents aren't necessarily EQL. In that case you'll want
a so-called EQUAL hash table, which you can get by passing the symbol EQUAL as the :test
keyword argument to MAKE-HASH-TABLE. Two other possible values for the :test argument
are the symbols EQ and EQUALP. These are, of course, the names of the standard object
comparison functions, which I discussed in Chapter 4. However, unlike the :test argument
passed to sequence functions, MAKE-HASH-TABLE's :test can't be used to specify an
arbitrary function--only the values EQ, EQL, EQUAL, and EQUALP. This is because hash tables
actually need two functions, an equivalence function and a hash function that computes a
numerical hash code from the key in a way compatible with how the equivalence function will
ultimately compare two keys. However, although the language standard provides only for hash
tables that use the standard equivalence functions, most implementations provide some
mechanism for defining custom hash tables.

The GETHASH function provides access to the elements of a hash table. It takes two arguments--
a key and the hash table--and returns the value, if any, stored in the hash table under that key or
NIL.11 For example:

(defparameter *h* (make-hash-table)) 
 
(gethash 'foo *h*) ==> NIL 
 
(setf (gethash 'foo *h*) 'quux) 
 
(gethash 'foo *h*) ==> QUUX



Since GETHASH returns NIL if the key isn't present in the table, there's no way to tell from the
return value the difference between a key not being in a hash table at all and being in the table
with the value NIL. GETHASH solves this problem with a feature I haven't discussed yet--
multiple return values. GETHASH actually returns two values; the primary value is the value
stored under the given key or NIL. The secondary value is a boolean indicating whether the key
is present in the hash table. Because of the way multiple values work, the extra return value is
silently discarded unless the caller explicitly handles it with a form that can "see" multiple
values.

I'll discuss multiple return values in greater detail in Chapter 20, but for now I'll give you a sneak
preview of how to use the MULTIPLE-VALUE-BIND macro to take advantage of GETHASH's
extra return value. MULTIPLE-VALUE-BIND creates variable bindings like LET does, filling
them with the multiple values returned by a form.

The following function shows how you might use MULTIPLE-VALUE-BIND; the variables it
binds are value and present:

(defun show-value (key hash-table) 
  (multiple-value-bind (value present) (gethash key hash-table) 
    (if present 
      (format nil "Value ~a actually present." value) 
      (format nil "Value ~a because key not found." value)))) 
 
(setf (gethash 'bar *h*) nil) ; provide an explicit value of NIL 
 
(show-value 'foo *h*) ==> "Value QUUX actually present." 
(show-value 'bar *h*) ==> "Value NIL actually present." 
(show-value 'baz *h*) ==> "Value NIL because key not found."

Since setting the value under a key to NIL leaves the key in the table, you'll need another
function to completely remove a key/value pair. REMHASH takes the same arguments as
GETHASH and removes the specified entry. You can also completely clear a hash table of all its
key/value pairs with CLRHASH.

Hash Table Iteration

Common Lisp provides a couple ways to iterate over the entries in a hash table. The simplest of
these is via the function MAPHASH. Analogous to the MAP function, MAPHASH takes a two-
argument function and a hash table and invokes the function once for each key/value pair in the
hash table. For instance, to print all the key/value pairs in a hash table, you could use MAPHASH
like this:

(maphash #'(lambda (k v) (format t "~a => ~a~%" k v)) *h*)

The consequences of adding or removing elements from a hash table while iterating over it aren't
specified (and are likely to be bad) with two exceptions: you can use SETF with GETHASH to
change the value of the current entry, and you can use REMHASH to remove the current entry.
For instance, to remove all the entries whose value is less than ten, you could write this:



(maphash #'(lambda (k v) (when (< v 10) (remhash k *h*))) *h*)

The other way to iterate over a hash table is with the extended LOOP macro, which I'll discuss in
Chapter 22.12 The LOOP equivalent of the first MAPHASH expression would look like this:

(loop for k being the hash-keys in *h* using (hash-value v) 
  do (format t "~a => ~a~%" k v))

I could say a lot more about the nonlist collections supported by Common Lisp. For instance, I
haven't discussed multidimensional arrays at all or the library of functions for manipulating bit
arrays. However, what I've covered in this chapter should suffice for most of your general-
purpose programming needs. Now it's finally time to look at Lisp's eponymous data structure:
lists.

1Once you're familiar with all the data types Common Lisp offers, you'll also see that lists can be useful for prototyping data
structures that will later be replaced with something more efficient once it becomes clear how exactly the data is to be used.

2Vectors are called vectors, not arrays as their analogs in other languages are, because Common Lisp supports true
multidimensional arrays. It's equally correct, though more cumbersome, to refer to them as one-dimensional arrays.

3Array elements "must" be set before they're accessed in the sense that the behavior is undefined; Lisp won't necessarily stop you.

4While frequently used together, the :fill-pointer and :adjustable arguments are independent--you can make an
adjustable array without a fill pointer. However, you can use VECTOR-PUSH and VECTOR-POP only with vectors that have a fill
pointer and VECTOR-PUSH-EXTEND only with vectors that have a fill pointer and are adjustable. You can also use the function
ADJUST-ARRAY to modify adjustable arrays in a variety of ways beyond just extending the length of a vector.

5Another parameter, :test-not parameter, specifies a two-argument predicate to be used like a :test argument except with
the boolean result logically reversed. This parameter is deprecated, however, in preference for using the COMPLEMENT function.
COMPLEMENT takes a function argu-ment and returns a function that takes the same number of arguments as the original and
returns the logical complement of the original function. Thus, you can, and should, write this:

(count x sequence :test (complement #'some-test))

rather than the following:

(count x sequence :test-not #'some-test)

6Note, however, that the effect of :start and :end on REMOVE and SUBSTITUTE is only to limit the elements they consider
for removal or substitution; elements before :start and after :end will be passed through untouched.

7This same functionality goes by the name grep in Perl and filter in Python.

8The difference between the predicates passed as :test arguments and as the function arguments to the -IF and -IF-NOT
functions is that the :test predicates are two-argument predicates used to compare the elements of the sequence to the specific
item while the -IF and -IF-NOT predicates are one-argument functions that simply test the individual elements of the sequence.
If the vanilla variants didn't exist, you could implement them in terms of the -IF versions by embedding a specific item in the test
function.

(count char string) === 
  (count-if #'(lambda (c) (eql char c)) string)

(count char string :test #'CHAR-EQUAL) === 
  (count-if #'(lambda (c) (char-equal char c)) string)



9If you tell CONCATENATE to return a specialized vector, such as a string, all the elements of the argument sequences must be
instances of the vector's element type.

10When the sequence passed to the sorting functions is a vector, the "destruction" is actually guaranteed to entail permuting the
elements in place, so you could get away without saving the returned value. However, it's good style to always do something with
the return value since the sorting functions can modify lists in much more arbitrary ways.

11By an accident of history, the order of arguments to GETHASH is the opposite of ELT--ELT takes the collection first and then the
index while GETHASH takes the key first and then the collection.

12LOOP's hash table iteration is typically implemented on top of a more primitive form, WITH-HASH-TABLE-ITERATOR, that
you don't need to worry about; it was added to the language specifically to support implementing things such as LOOP and is of
little use unless you need to write completely new control constructs for iterating over hash tables.


