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11. Collections
Like most programming languages, Common Lisp provides standard data
types that collect
multiple values into a single object. Every
language slices up the collection problem a little bit
differently,
but the basic collection types usually boil down to an integer-indexed
array type and
a table type that can be used to map more or less
arbitrary keys to values. The former are
variously called arrays,
lists, or tuples; the latter go by the names hash tables,
associative
arrays, maps, and dictionaries.

Lisp is, of course, famous for its list data structure, and most Lisp
books, following the
ontogeny-recapitulates-phylogeny principle of
language instruction, start their discussion of
Lisp's collections
with lists. However, that approach often leads readers to the
mistaken
conclusion that lists are Lisp's only collection type.
To make matters worse, because Lisp's lists
are such a flexible data
structure, it is possible to use them for many of the things
arrays and
hash tables are used for in other languages. But it's a
mistake to focus too much on lists; while
they're a crucial data
structure for representing Lisp code as Lisp data, in many situations
other
data structures are more appropriate.

To keep lists from stealing the show, in this chapter I'll focus on
Common Lisp's other collection
types: vectors and hash
tables.1 However,
vectors and lists share enough characteristics that
Common Lisp
treats them both as subtypes of a more general abstraction, the
sequence. Thus,
you can use many of the functions I'll discuss in
this chapter with both vectors and lists.

Vectors
Vectors are Common Lisp's basic integer-indexed collection, and they
come in two flavors.
Fixed-size vectors are a lot like arrays in a
language such as Java: a thin veneer over a chunk of
contiguous
memory that holds the vector's elements.2 Resizable vectors, on the other hand,
are
more like arrays in Perl or Ruby, lists in Python, or the
ArrayList class in Java: they abstract the
actual storage, allowing
the vector to grow and shrink as elements are added and removed.

You can make fixed-size vectors containing specific values with the
function VECTOR, which
takes any number of arguments and returns
a freshly allocated fixed-size vector containing those
arguments.

(vector)     ==> #()

(vector 1)   ==> #(1)

(vector 1 2) ==> #(1 2)



The #(...) syntax is the literal notation for vectors used by
the Lisp printer and reader. This
syntax allows you to save and
restore vectors by PRINTing them out and READing them back
in. You can use the #(...) syntax to include literal vectors
in your code, but as the effects of
modifying literal objects aren't
defined, you should always use VECTOR or the more general
function MAKE-ARRAY to create vectors you plan to modify.

MAKE-ARRAY is more general than VECTOR since you can use it
to create arrays of any
dimensionality as well as both fixed-size and
resizable vectors. The one required argument to
MAKE-ARRAY is a
list containing the dimensions of the array. Since a vector is a
one-
dimensional array, this list will contain one number, the size of
the vector. As a convenience,
MAKE-ARRAY will also accept a
plain number in the place of a one-item list. With no other
arguments, MAKE-ARRAY will create a vector with uninitialized
elements that must be set
before they can be accessed.3 To create a
vector with the elements all set to a particular value,
you can pass
an :initial-element argument. Thus, to make a five-element
vector with its
elements initialized to NIL, you can write the
following:

(make-array 5 :initial-element nil) ==> #(NIL NIL NIL NIL NIL)

MAKE-ARRAY is also the function to use to make a resizable
vector. A resizable vector is a
slightly more complicated object than
a fixed-size vector; in addition to keeping track of the
memory used
to hold the elements and the number of slots available, a resizable
vector also
keeps track of the number of elements actually stored in
the vector. This number is stored in the
vector's fill pointer,
so called because it's the index of the next position to be filled
when you add
an element to the vector.

To make a vector with a fill pointer, you pass MAKE-ARRAY a
:fill-pointer argument.
For instance, the following call to
MAKE-ARRAY makes a vector with room for five elements;
but it
looks empty because the fill pointer is zero:

(make-array 5 :fill-pointer 0) ==> #()

To add an element to the end of a resizable vector, you can use the
function VECTOR-PUSH. It
adds the element at the current value
of the fill pointer and then increments the fill pointer by
one,
returning the index where the new element was added. The function
VECTOR-POP returns
the most recently pushed item, decrementing
the fill pointer in the process.

(defparameter *x* (make-array 5 :fill-pointer 0))



(vector-push 'a *x*) ==> 0

*x*                  ==> #(A)

(vector-push 'b *x*) ==> 1

*x*                  ==> #(A B)

(vector-push 'c *x*) ==> 2

*x*                  ==> #(A B C)

(vector-pop *x*)     ==> C

*x*                  ==> #(A B)

(vector-pop *x*)     ==> B

*x*                  ==> #(A)




(vector-pop *x*)     ==> A

*x*                  ==> #()

However, even a vector with a fill pointer isn't completely
resizable. The vector *x* can hold at
most five elements. To
make an arbitrarily resizable vector, you need to pass
MAKE-ARRAY
another keyword argument: :adjustable.

(make-array 5 :fill-pointer 0 :adjustable t) ==> #()

This call makes an adjustable vector whose underlying memory can
be resized as needed. To
add elements to an adjustable vector, you
use VECTOR-PUSH-EXTEND, which works just like
VECTOR-PUSH
except it will automatically expand the array if you try to push an
element onto
a full vector--one whose fill pointer is equal to the
size of the underlying storage.4

Subtypes of Vector

All the vectors you've dealt with so far have been general
vectors that can hold any type of
object. It's also possible to
create specialized vectors that are restricted to holding certain
types
of elements. One reason to use specialized vectors is they may
be stored more compactly and
can provide slightly faster access to
their elements than general vectors. However, for the
moment let's
focus on a couple kinds of specialized vectors that are important
data types in their
own right.

One of these you've seen already--strings are vectors specialized to
hold characters. Strings are
important enough to get their own
read/print syntax (double quotes) and the set of string-specific
functions I discussed in the previous chapter. But because they're
also vectors, all the functions
I'll discuss in the next few sections
that take vector arguments can also be used with strings.
These
functions will fill out the string library with functions for things
such as searching a string
for a substring, finding occurrences of a
character within a string, and more.

Literal strings, such as "foo", are like literal vectors
written with the #() syntax--their size is
fixed, and they
must not be modified. However, you can use MAKE-ARRAY to make
resizable
strings by adding another keyword argument,
:element-type. This argument takes a type
descriptor. I
won't discuss all the possible type descriptors you can use here; for
now it's enough
to know you can create a string by passing the symbol
CHARACTER as the :element-type
argument. Note that you
need to quote the symbol to prevent it from being treated as a
variable
name. For example, to make an initially empty but resizable
string, you can write this:

(make-array 5 :fill-pointer 0 :adjustable t :element-type 'character)  ""

Bit vectors--vectors whose elements are all zeros or ones--also get
some special treatment. They
have a special read/print syntax that
looks like #*00001111 and a fairly large library of
functions,
which I won't discuss, for performing bit-twiddling operations such
as "anding"
together two bit arrays. The type descriptor to pass as
the :element-type to create a bit
vector is the symbol
BIT.



Vectors As Sequences
As mentioned earlier, vectors and lists are the two concrete subtypes
of the abstract type
sequence. All the functions I'll discuss in
the next few sections are sequence functions; in
addition to being
applicable to vectors--both general and specialized--they can also be
used with
lists.

The two most basic sequence functions are LENGTH, which returns
the length of a sequence, and
ELT, which allows you to access
individual elements via an integer index. LENGTH takes a
sequence as its only argument and returns the number of elements it
contains. For vectors with a
fill pointer, this will be the value of
the fill pointer. ELT, short for element, takes a sequence
and
an integer index between zero (inclusive) and the length of the
sequence (exclusive) and returns
the corresponding element. ELT
will signal an error if the index is out of bounds. Like LENGTH,
ELT treats a vector with a fill pointer as having the length
specified by the fill pointer.

(defparameter *x* (vector 1 2 3))



(length *x*) ==> 3

(elt *x* 0)  ==> 1

(elt *x* 1)  ==> 2

(elt *x* 2)  ==> 3

(elt *x* 3)  ==> error

ELT is also a SETFable place, so you can set the value of a
particular element like this:

(setf (elt *x* 0) 10)



*x* ==> #(10 2 3)

Sequence Iterating Functions
While in theory all operations on sequences boil down to some
combination of LENGTH, ELT,
and SETF of ELT
operations, Common Lisp provides a large library of sequence
functions.

One group of sequence functions allows you to express certain
operations on sequences such as
finding or filtering specific
elements without writing explicit loops. Table 11-1 summarizes
them.

Table 11-1.Basic Sequence Functions

Name Required Arguments Returns
COUNT Item and sequence Number of times item appears in sequence
FIND Item and sequence Item or NIL
POSITION Item and sequence Index into sequence or NIL
REMOVE Item and sequence Sequence with instances of item removed
SUBSTITUTE New item, item, and sequence Sequence with instances of item replaced with new item

Here are some simple examples of how to use these functions:



(count 1 #(1 2 1 2 3 1 2 3 4))         ==> 3

(remove 1 #(1 2 1 2 3 1 2 3 4))        ==> #(2 2 3 2 3 4)

(remove 1 '(1 2 1 2 3 1 2 3 4))        ==> (2 2 3 2 3 4)

(remove #\a "foobarbaz")               ==> "foobrbz"

(substitute 10 1 #(1 2 1 2 3 1 2 3 4)) ==> #(10 2 10 2 3 10 2 3 4)

(substitute 10 1 '(1 2 1 2 3 1 2 3 4)) ==> (10 2 10 2 3 10 2 3 4)

(substitute #\x #\b "foobarbaz")       ==> "fooxarxaz"

(find 1 #(1 2 1 2 3 1 2 3 4))          ==> 1

(find 10 #(1 2 1 2 3 1 2 3 4))         ==> NIL

(position 1 #(1 2 1 2 3 1 2 3 4))      ==> 0

Note how REMOVE and SUBSTITUTE always return a sequence of
the same type as their
sequence argument.

You can modify the behavior of these five functions in a variety of
ways using keyword
arguments. For instance, these functions, by
default, look for elements in the sequence that are
the same object
as the item argument. You can change this in two ways: First, you can
use the
:test keyword to pass a function that accepts two
arguments and returns a boolean. If
provided, it will be used to
compare item to each element instead of the default object
equality
test, EQL.5 Second, with the :key keyword you can pass a one-argument
function to be called
on each element of the sequence to extract a
key value, which will then be compared to the item
in the place of
the element itself. Note, however, that functions such as FIND
that return
elements of the sequence continue to return the actual
element, not just the extracted key.

(count "foo" #("foo" "bar" "baz") :test #'string=)    ==> 1

(find 'c #((a 10) (b 20) (c 30) (d 40)) :key #'first) ==> (C 30)

To limit the effects of these functions to a particular subsequence
of the sequence argument, you
can provide bounding indices with
:start and :end arguments. Passing NIL for
:end or
omitting it is the same as specifying the length of
the sequence.6

If a non-NIL :from-end argument is provided, then the
elements of the sequence will be
examined in reverse order. By itself
:from-end can affect the results of only FIND and
POSITION. For instance:

(find 'a #((a 10) (b 20) (a 30) (b 40)) :key #'first)             ==> (A 10)
(find 'a #((a 10) (b 20) (a 30) (b 40)) :key #'first :from-end t) ==> (A 30)

However, the :from-end argument can affect REMOVE and
SUBSTITUTE in conjunction
with another keyword parameter,
:count, that's used to specify how many elements to remove
or
substitute. If you specify a :count lower than the number of
matching elements, then it
obviously matters which end you start
from:

(remove #\a "foobarbaz" :count 1)             ==> "foobrbaz"

(remove #\a "foobarbaz" :count 1 :from-end t) ==> "foobarbz"

And while :from-end can't change the results of the COUNT
function, it does affect the order
the elements are passed to any
:test and :key functions, which could possibly have
side
effects. For example:



CL-USER> (defparameter *v* #((a 10) (b 20) (a 30) (b 40)))

*V*

CL-USER> (defun verbose-first (x) (format t "Looking at ~s~%" x) (first x))

VERBOSE-FIRST

CL-USER> (count 'a *v* :key #'verbose-first)

Looking at (A 10)

Looking at (B 20)

Looking at (A 30)

Looking at (B 40)

2

CL-USER> (count 'a *v* :key #'verbose-first :from-end t)

Looking at (B 40)

Looking at (A 30)

Looking at (B 20)

Looking at (A 10)

2

Table 11-2 summarizes these arguments.

Table 11-2. Standard Sequence Function Keyword Arguments

Argument Meaning Default

:test
Two-argument function used to compare item (or value extracted by :key function)
to element. EQL

:key
One-argument function to extract key value from actual sequence element. NIL
means use element as is. NIL

:start Starting index (inclusive) of subsequence. 0
:end Ending index (exclusive) of subsequence. NIL indicates end of sequence. NIL

:from-end If true, the sequence will be traversed in reverse order, from end to start. NIL

:count
Number indicating the number of elements to remove or substitute or NIL to indicate
all (REMOVE and SUBSTITUTE only). NIL

Higher-Order Function Variants

For each of the functions just discussed, Common Lisp provides two
higher-order function
variants that, in the place of the item
argument, take a function to be called on each element of
the
sequence. One set of variants are named the same as the basic
function with an -IF
appended. These functions count, find,
remove, and substitute elements of the sequence for
which the
function argument returns true. The other set of variants are named
with an -IF-NOT
suffix and count, find, remove, and substitute
elements for which the function argument does not
return true.

(count-if #'evenp #(1 2 3 4 5))         ==> 2



(count-if-not #'evenp #(1 2 3 4 5))     ==> 3



(position-if #'digit-char-p "abcd0001") ==> 4



(remove-if-not #'(lambda (x) (char= (elt x 0) #\f))

  #("foo" "bar" "baz" "foom")) ==> #("foo" "foom")

According to the language standard, the -IF-NOT variants are
deprecated. However, that
deprecation is generally considered to have
itself been ill-advised. If the standard is ever revised,
it's more
likely the deprecation will be removed than the -IF-NOT
functions. For one thing, the
REMOVE-IF-NOT variant is probably
used more often than REMOVE-IF. Despite its negative-



sounding
name, REMOVE-IF-NOT is actually the positive variant--it returns
the elements that
do satisfy the predicate. 7

The -IF and -IF-NOT variants accept all the same
keyword arguments as their vanilla
counterparts except for
:test, which isn't needed since the main argument is already a
function.8 With a :key argument, the value extracted by the :key
function is passed to the
function instead of the actual element.

(count-if #'evenp #((1 a) (2 b) (3 c) (4 d) (5 e)) :key #'first)     ==> 2



(count-if-not #'evenp #((1 a) (2 b) (3 c) (4 d) (5 e)) :key #'first) ==> 3



(remove-if-not #'alpha-char-p

  #("foo" "bar" "1baz") :key #'(lambda (x) (elt x 0))) ==> #("foo" "bar")

The REMOVE family of functions also support a fourth variant,
REMOVE-DUPLICATES, that
has only one required argument, a
sequence, from which it removes all but one instance of each
duplicated element. It takes the same keyword arguments as
REMOVE, except for :count, since
it always removes all
duplicates.

(remove-duplicates #(1 2 1 2 3 1 2 3 4)) ==> #(1 2 3 4)

Whole Sequence Manipulations

A handful of functions perform operations on a whole sequence (or
sequences) at a time. These
tend to be simpler than the other
functions I've described so far. For instance, COPY-SEQ and
REVERSE each take a single argument, a sequence, and each
returns a new sequence of the same
type. The sequence returned by
COPY-SEQ contains the same elements as its argument while
the
sequence returned by REVERSE contains the same elements but in
reverse order. Note that
neither function copies the elements
themselves--only the returned sequence is a new object.

The CONCATENATE function creates a new sequence containing the
concatenation of any
number of sequences. However, unlike
REVERSE and COPY-SEQ, which simply return a
sequence of the
same type as their single argument, CONCATENATE must be told
explicitly what
kind of sequence to produce in case the arguments are
of different types. Its first argument is a
type descriptor, like the
:element-type argument to MAKE-ARRAY. In this case, the
type
descriptors you'll most likely use are the symbols VECTOR,
LIST, or STRING.9 For example:

(concatenate 'vector #(1 2 3) '(4 5 6))    ==> #(1 2 3 4 5 6)

(concatenate 'list #(1 2 3) '(4 5 6))      ==> (1 2 3 4 5 6)

(concatenate 'string "abc" '(#\d #\e #\f)) ==> "abcdef"

Sorting and Merging

The functions SORT and STABLE-SORT provide two ways of
sorting a sequence. They both
take a sequence and a two-argument
predicate and return a sorted version of the sequence.

(sort (vector "foo" "bar" "baz") #'string<) ==> #("bar" "baz" "foo")



The difference is that STABLE-SORT is guaranteed to not reorder
any elements considered
equivalent by the predicate while SORT
guarantees only that the result is sorted and may reorder
equivalent
elements.

Both these functions are examples of what are called destructive
functions. Destructive functions
are allowed--typically for reasons
of efficiency--to modify their arguments in more or less
arbitrary
ways. This has two implications: one, you should always do something
with the return
value of these functions (such as assign it to a
variable or pass it to another function), and, two,
unless you're
done with the object you're passing to the destructive function, you
should pass a
copy instead. I'll say more about destructive functions
in the next chapter.

Typically you won't care about the unsorted version of a sequence
after you've sorted it, so it
makes sense to allow SORT and
STABLE-SORT to destroy the sequence in the course of sorting
it.
But it does mean you need to remember to write the
following:10

(setf my-sequence (sort my-sequence #'string<))

rather than just this:

(sort my-sequence #'string<)

Both these functions also take a keyword argument, :key,
which, like the :key argument in
other sequence functions,
should be a function and will be used to extract the values to be
passed
to the sorting predicate in the place of the actual elements.
The extracted keys are used only to
determine the ordering of
elements; the sequence returned will contain the actual elements of
the
argument sequence.

The MERGE function takes two sequences and a predicate and
returns a sequence produced by
merging the two sequences, according
to the predicate. It's related to the two sorting functions in
that
if each sequence is already sorted by the same predicate, then the
sequence returned by
MERGE will also be sorted. Like the sorting
functions, MERGE takes a :key argument. Like
CONCATENATE, and for the same reason, the first argument to
MERGE must be a type descriptor
specifying the type of sequence
to produce.

(merge 'vector #(1 3 5) #(2 4 6) #'<) ==> #(1 2 3 4 5 6)

(merge 'list #(1 3 5) #(2 4 6) #'<)   ==> (1 2 3 4 5 6)

Subsequence Manipulations

Another set of functions allows you to manipulate subsequences of
existing sequences. The most
basic of these is SUBSEQ, which
extracts a subsequence starting at a particular index and
continuing
to a particular ending index or the end of the sequence. For
instance:

(subseq "foobarbaz" 3)   ==> "barbaz"

(subseq "foobarbaz" 3 6) ==> "bar"



SUBSEQ is also SETFable, but it won't extend or shrink a
sequence; if the new value and the
subsequence to be replaced are
different lengths, the shorter of the two determines how many
characters are actually changed.

(defparameter *x* (copy-seq "foobarbaz"))



(setf (subseq *x* 3 6) "xxx")  ; subsequence and new value are same length

*x* ==> "fooxxxbaz"



(setf (subseq *x* 3 6) "abcd") ; new value too long, extra character ignored.

*x* ==> "fooabcbaz"



(setf (subseq *x* 3 6) "xx")   ; new value too short, only two characters changed
*x* ==> "fooxxcbaz"

You can use the FILL function to set multiple elements of a
sequence to a single value. The
required arguments are a sequence and
the value with which to fill it. By default every element
of the
sequence is set to the value; :start and :end keyword
arguments can limit the effects
to a given subsequence.

If you need to find a subsequence within a sequence, the SEARCH
function works like
POSITION except the first argument is a
sequence rather than a single item.

(position #\b "foobarbaz") ==> 3

(search "bar" "foobarbaz") ==> 3

On the other hand, to find where two sequences with a common prefix
first diverge, you can use
the MISMATCH function. It takes two
sequences and returns the index of the first pair of
mismatched
elements.

(mismatch "foobarbaz" "foom") ==> 3

It returns NIL if the strings match. MISMATCH also takes
many of the standard keyword
arguments: a :key argument for
specifying a function to use to extract the values to be
compared; a
:test argument to specify the comparison function; and
:start1, :end1,
:start2, and :end2
arguments to specify subsequences within the two sequences. And a
:from-end argument of T specifies the sequences should be
searched in reverse order, causing
MISMATCH to return the index,
in the first sequence, where whatever common suffix the two
sequences
share begins.

(mismatch "foobar" "bar" :from-end t) ==> 3

Sequence Predicates

Four other handy functions are EVERY, SOME, NOTANY,
and NOTEVERY, which iterate over
sequences testing a boolean
predicate. The first argument to all these functions is the
predicate,
and the remaining arguments are sequences. The predicate
should take as many arguments as the
number of sequences passed. The
elements of the sequences are passed to the predicate--one
element
from each sequence--until one of the sequences runs out of elements
or the overall



termination test is met: EVERY terminates,
returning false, as soon as the predicate fails. If the
predicate is
always satisfied, it returns true. SOME returns the first
non-NIL value returned by
the predicate or returns false if the
predicate is never satisfied. NOTANY returns false as soon as
the predicate is satisfied or true if it never is. And NOTEVERY
returns true as soon as the
predicate fails or false if the predicate
is always satisfied. Here are some examples of testing just
one
sequence:

(every #'evenp #(1 2 3 4 5))    ==> NIL

(some #'evenp #(1 2 3 4 5))     ==> T

(notany #'evenp #(1 2 3 4 5))   ==> NIL

(notevery #'evenp #(1 2 3 4 5)) ==> T

These calls compare elements of two sequences pairwise:

(every #'> #(1 2 3 4) #(5 4 3 2))    ==> NIL

(some #'> #(1 2 3 4) #(5 4 3 2))     ==> T

(notany #'> #(1 2 3 4) #(5 4 3 2))   ==> NIL

(notevery #'> #(1 2 3 4) #(5 4 3 2)) ==> T

Sequence Mapping Functions

Finally, the last of the sequence functions are the generic mapping
functions. MAP, like the
sequence predicate functions, takes a
n-argument function and n sequences. But instead of a
boolean
value, MAP returns a new sequence containing the result of
applying the function to
subsequent elements of the sequences. Like
CONCATENATE and MERGE, MAP needs to be told
what kind
of sequence to create.

(map 'vector #'* #(1 2 3 4 5) #(10 9 8 7 6)) ==> #(10 18 24 28 30)

MAP-INTO is like MAP except instead of producing a new
sequence of a given type, it places the
results into a sequence
passed as the first argument. This sequence can be the same as one of
the
sequences providing values for the function. For instance, to sum
several vectors--a, b, and c--
into one, you
could write this:

(map-into a #'+ a b c)

If the sequences are different lengths, MAP-INTO affects only as
many elements as are present
in the shortest sequence, including the
sequence being mapped into. However, if the sequence
being mapped
into is a vector with a fill pointer, the number of elements affected
isn't limited by
the fill pointer but rather by the actual size of
the vector. After a call to MAP-INTO, the fill
pointer will be
set to the number of elements mapped. MAP-INTO won't, however,
extend an
adjustable vector.

The last sequence function is REDUCE, which does another kind of
mapping: it maps over a
single sequence, applying a two-argument
function first to the first two elements of the sequence
and then to
the value returned by the function and subsequent elements of the
sequence. Thus,
the following expression sums the numbers from one to
ten:



(reduce #'+ #(1 2 3 4 5 6 7 8 9 10)) ==> 55

REDUCE is a surprisingly useful function--whenever you need to
distill a sequence down to a
single value, chances are you can write
it with REDUCE, and it will often be quite a concise way
to
express what you want. For instance, to find the maximum value in a
sequence of numbers,
you can write (reduce #'max numbers).
REDUCE also takes a full complement of
keyword arguments
(:key, :from-end, :start, and :end) and
one unique to REDUCE
(:initial-value). The latter
specifies a value that's logically placed before the first element
of
the sequence (or after the last if you also specify a true
:from-end argument).

Hash Tables

The other general-purpose collection provided by Common Lisp is the
hash table. Where vectors
provide an integer-indexed data structure,
hash tables allow you to use arbitrary objects as the
indexes, or
keys. When you add a value to a hash table, you store it under a
particular key. Later
you can use the same key to retrieve the value.
Or you can associate a new value with the same
key--each key maps to
a single value.

With no arguments MAKE-HASH-TABLE makes a hash table that
considers two keys equivalent
if they're the same object according to
EQL. This is a good default unless you want to use strings
as
keys, since two strings with the same contents aren't necessarily
EQL. In that case you'll want
a so-called EQUAL hash table,
which you can get by passing the symbol EQUAL as the
:test
keyword argument to MAKE-HASH-TABLE. Two other
possible values for the :test argument
are the symbols EQ
and EQUALP. These are, of course, the names of the standard
object
comparison functions, which I discussed in Chapter 4. However,
unlike the :test argument
passed to sequence functions,
MAKE-HASH-TABLE's :test can't be used to specify an
arbitrary function--only the values EQ, EQL, EQUAL,
and EQUALP. This is because hash tables
actually need two
functions, an equivalence function and a hash function that
computes a
numerical hash code from the key in a way compatible with
how the equivalence function will
ultimately compare two keys.
However, although the language standard provides only for hash
tables
that use the standard equivalence functions, most implementations
provide some
mechanism for defining custom hash tables.

The GETHASH function provides access to the elements of a hash
table. It takes two arguments--
a key and the hash table--and returns
the value, if any, stored in the hash table under that key or
NIL.11 For example:

(defparameter *h* (make-hash-table))



(gethash 'foo *h*) ==> NIL



(setf (gethash 'foo *h*) 'quux)



(gethash 'foo *h*) ==> QUUX



Since GETHASH returns NIL if the key isn't present in the
table, there's no way to tell from the
return value the difference
between a key not being in a hash table at all and being in the table
with the value NIL. GETHASH solves this problem with a
feature I haven't discussed yet--
multiple return values. GETHASH
actually returns two values; the primary value is the value
stored
under the given key or NIL. The secondary value is a boolean
indicating whether the key
is present in the hash table. Because of
the way multiple values work, the extra return value is
silently
discarded unless the caller explicitly handles it with a form that can
"see" multiple
values.

I'll discuss multiple return values in greater detail in Chapter 20,
but for now I'll give you a sneak
preview of how to use the
MULTIPLE-VALUE-BIND macro to take advantage of GETHASH's
extra return value. MULTIPLE-VALUE-BIND creates variable
bindings like LET does, filling
them with the multiple values
returned by a form.

The following function shows how you might use
MULTIPLE-VALUE-BIND; the variables it
binds are value and
present:

(defun show-value (key hash-table)

  (multiple-value-bind (value present) (gethash key hash-table)

    (if present

      (format nil "Value ~a actually present." value)

      (format nil "Value ~a because key not found." value))))



(setf (gethash 'bar *h*) nil) ; provide an explicit value of NIL



(show-value 'foo *h*) ==> "Value QUUX actually present."

(show-value 'bar *h*) ==> "Value NIL actually present."

(show-value 'baz *h*) ==> "Value NIL because key not found."

Since setting the value under a key to NIL leaves the key in the
table, you'll need another
function to completely remove a key/value
pair. REMHASH takes the same arguments as
GETHASH and
removes the specified entry. You can also completely clear a hash
table of all its
key/value pairs with CLRHASH.

Hash Table Iteration

Common Lisp provides a couple ways to iterate over the entries in a
hash table. The simplest of
these is via the function MAPHASH.
Analogous to the MAP function, MAPHASH takes a two-
argument
function and a hash table and invokes the function once for each
key/value pair in the
hash table. For instance, to print all the
key/value pairs in a hash table, you could use MAPHASH
like
this:

(maphash #'(lambda (k v) (format t "~a => ~a~%" k v)) *h*)

The consequences of adding or removing elements from a hash table
while iterating over it aren't
specified (and are likely to be bad)
with two exceptions: you can use SETF with GETHASH to
change the value of the current entry, and you can use REMHASH
to remove the current entry.
For instance, to remove all the entries
whose value is less than ten, you could write this:



(maphash #'(lambda (k v) (when (< v 10) (remhash k *h*))) *h*)

The other way to iterate over a hash table is with the extended
LOOP macro, which I'll discuss in
Chapter 22.12 The LOOP equivalent of the first MAPHASH
expression would look like this:

(loop for k being the hash-keys in *h* using (hash-value v)

  do (format t "~a => ~a~%" k v))

I could say a lot more about the nonlist collections supported by
Common Lisp. For instance, I
haven't discussed multidimensional
arrays at all or the library of functions for manipulating bit
arrays. However, what I've covered in this chapter should suffice for
most of your general-
purpose programming needs. Now it's finally time
to look at Lisp's eponymous data structure:
lists.

1Once you're familiar with all the data types Common Lisp
offers, you'll also see that lists can be useful for prototyping data
structures that will later be replaced with something more efficient
once it becomes clear how exactly the data is to be used.

2Vectors are called
vectors, not arrays as their analogs in other languages are,
because Common Lisp supports true
multidimensional arrays. It's
equally correct, though more cumbersome, to refer to them as
one-dimensional arrays.

3Array
elements "must" be set before they're accessed in the sense that the
behavior is undefined; Lisp won't necessarily stop you.

4While frequently used together,
the :fill-pointer and :adjustable arguments are
independent--you can make an
adjustable array without a fill
pointer. However, you can use VECTOR-PUSH and VECTOR-POP
only with vectors that have a fill
pointer and
VECTOR-PUSH-EXTEND only with vectors that have a fill pointer
and are adjustable. You can also use the function
ADJUST-ARRAY
to modify adjustable arrays in a variety of ways beyond just
extending the length of a vector.

5Another parameter, :test-not
parameter, specifies a two-argument predicate to be used like a
:test argument except with
the boolean result logically
reversed. This parameter is deprecated, however, in preference for
using the COMPLEMENT function.
COMPLEMENT takes a function
argu-ment and returns a function that takes the same number of
arguments as the original and
returns the logical complement of the
original function. Thus, you can, and should, write this:

(count x sequence :test (complement #'some-test))

rather than the following:

(count x sequence :test-not #'some-test)

6Note, however, that the effect of :start
and :end on REMOVE and SUBSTITUTE is only to limit
the elements they consider
for removal or substitution; elements
before :start and after :end will be passed through
untouched.

7This same
functionality goes by the name grep in Perl and filter
in Python.

8The difference between the predicates passed as
:test arguments and as the function arguments to the
-IF and -IF-NOT
functions is that the :test
predicates are two-argument predicates used to compare the elements
of the sequence to the specific
item while the -IF and
-IF-NOT predicates are one-argument functions that simply test
the individual elements of the sequence.
If the vanilla variants
didn't exist, you could implement them in terms of the -IF versions
by embedding a specific item in the test
function.

(count char string) ===

  (count-if #'(lambda (c) (eql char c)) string)

(count char string :test #'CHAR-EQUAL) ===

  (count-if #'(lambda (c) (char-equal char c)) string)



9If you tell CONCATENATE to
return a specialized vector, such as a string, all the elements of
the argument sequences must be
instances of the vector's element
type.

10When the sequence passed to the sorting functions is
a vector, the "destruction" is actually guaranteed to entail
permuting the
elements in place, so you could get away without saving
the returned value. However, it's good style to always do something
with
the return value since the sorting functions can modify lists in
much more arbitrary ways.

11By an accident of history, the order of arguments to
GETHASH is the opposite of ELT--ELT takes the
collection first and then the
index while GETHASH takes the key
first and then the collection.

12LOOP's
hash table iteration is typically implemented on top of a more
primitive form, WITH-HASH-TABLE-ITERATOR, that
you don't need to
worry about; it was added to the language specifically to support
implementing things such as LOOP and is of
little use unless you
need to write completely new control constructs for iterating over
hash tables.


