
Copyright © 2003-2005, Peter Seibel

1. Introduction: Why Lisp?
If you think the greatest pleasure in programming comes from getting
a lot done with code that
simply and clearly expresses your
intention, then programming in Common Lisp is likely to be
about the
most fun you can have with a computer. You'll get more done, faster,
using it than you
would using pretty much any other language.

That's a bold claim. Can I justify it? Not in a just a few pages in
this chapter--you're going to
have to learn some Lisp and see for
yourself--thus the rest of this book. For now, let me start
with some
anecdotal evidence, the story of my own road to Lisp. Then, in the
next section, I'll
explain the payoff I think you'll get from
learning Common Lisp.

I'm one of what must be a fairly small number of second-generation
Lisp hackers. My father got
his start in computers writing an
operating system in assembly for the machine he used to gather
data
for his doctoral dissertation in physics. After running computer
systems at various physics
labs, by the 1980s he had left physics
altogether and was working at a large pharmaceutical
company. That
company had a project under way to develop software to model
production
processes in its chemical plants--if you increase the size
of this vessel, how does it affect annual
production? The original
team, writing in FORTRAN, had burned through half the money and
almost all the time allotted to the project with nothing to show for
their efforts. This being the
1980s and the middle of the artificial
intelligence (AI) boom, Lisp was in the air. So my dad--at
that point
not a Lisper--went to Carnegie Mellon University (CMU) to talk to
some of the folks
working on what was to become Common Lisp about
whether Lisp might be a good language
for this project.

The CMU folks showed him some demos of stuff they were working on,
and he was convinced.
He in turn convinced his bosses to let his team
take over the failing project and do it in Lisp. A
year later, and
using only what was left of the original budget, his team delivered a
working
application with features that the original team had given up
any hope of delivering. My dad
credits his team's success to their
decision to use Lisp.

Now, that's just one anecdote. And maybe my dad is wrong about why
they succeeded. Or
maybe Lisp was better only in comparison to other
languages of the day. These days we have
lots of fancy new languages,
many of which have incorporated features from Lisp. Am I really
saying Lisp can offer you the same benefits today as it offered my
dad in the 1980s? Read on.

Despite my father's best efforts, I didn't learn any Lisp in high
school. After a college career that
didn't involve much programming
in any language, I was seduced by the Web and back into



computers. I
worked first in Perl, learning enough to be dangerous while building
an online
discussion forum for Mother Jones magazine's Web site
and then moving to a Web shop,
Organic Online, where I worked on
big--for the time--Web sites such as the one Nike put up
during the
1996 Olympics. Later I moved onto Java as an early developer at
WebLogic, now part
of BEA. After WebLogic, I joined another startup
where I was the lead programmer on a team
building a transactional
messaging system in Java. Along the way, my general interest in
programming languages led me to explore such mainstream languages as
C, C++, and Python, as
well as less well-known ones such as
Smalltalk, Eiffel, and Beta.

So I knew two languages inside and out and was familiar with another
half dozen. Eventually,
however, I realized my interest in
programming languages was really rooted in the idea planted
by my
father's tales of Lisp--that different languages really are
different, and that, despite the
formal Turing equivalence of all
programming languages, you really can get more done more
quickly in
some languages than others and have more fun doing it. Yet,
ironically, I had never
spent that much time with Lisp itself. So, I
started doing some Lisp hacking in my free time.
And whenever I did,
it was exhilarating how quickly I was able to go from idea to working
code.

For example, one vacation, having a week or so to hack Lisp, I
decided to try writing a version
of a program--a system for breeding
genetic algorithms to play the game of Go--that I had
written early
in my career as a Java programmer. Even handicapped by my then
rudimentary
knowledge of Common Lisp and having to look up even basic
functions, it still felt more
productive than it would have been to
rewrite the same program in Java, even with several extra
years of
Java experience acquired since writing the first version.

A similar experiment led to the library I'll discuss in Chapter 24.
Early in my time at WebLogic I
had written a library, in Java, for
taking apart Java class files. It worked, but the code was a bit of
a
mess and hard to modify or extend. I had tried several times, over
the years, to rewrite that
library, thinking that with my
ever-improving Java chops I'd find some way to do it that didn't
bog
down in piles of duplicated code. I never found a way. But when I
tried to do it in Common
Lisp, it took me only two days, and I ended
up not only with a Java class file parser but with a
general-purpose
library for taking apart any kind of binary file. You'll see how that
library works
in Chapter 24 and use it in Chapter 25 to write a
parser for the ID3 tags embedded in MP3 files.

Why Lisp?

It's hard, in only a few pages of an introductory chapter, to explain
why users of a language like
it, and it's even harder to make the
case for why you should invest your time in learning a certain
language. Personal history only gets us so far. Perhaps I like Lisp
because of some quirk in the
way my brain is wired. It could even be
genetic, since my dad has it too. So before you dive into
learning
Lisp, it's reasonable to want to know what the payoff is going to be.

For some languages, the payoff is relatively obvious. For instance, if
you want to write low-level
code on Unix, you should learn C. Or if
you want to write certain kinds of cross-platform



applications, you
should learn Java. And any of a number companies still use a lot of
C++, so if
you want to get a job at one of them, you should learn C++.

For most languages, however, the payoff isn't so easily categorized;
it has to do with subjective
criteria such as how it feels to use the
language. Perl advocates like to say that Perl "makes easy
things
easy and hard things possible" and revel in the fact that, as the
Perl motto has it, "There's
more than one way to do it."1 Python's
fans, on the other hand, think Python is clean and simple
and think
Python code is easier to understand because, as their motto says,
"There's only one
way to do it."

So, why Common Lisp? There's no immediately obvious payoff for
adopting Common Lisp the
way there is for C, Java, and C++ (unless,
of course, you happen to own a Lisp Machine). The
benefits of using
Lisp have much more to do with the experience of using it. I'll spend
the rest of
this book showing you the specific features of Common
Lisp and how to use them so you can
see for yourself what it's like.
For now I'll try to give you a sense of Lisp's philosophy.

The nearest thing Common Lisp has to a motto is the koan-like
description, "the programmable
programming language." While cryptic,
that description gets at the root of the biggest advantage
Common
Lisp still has over other languages. More than any other language,
Common Lisp
follows the philosophy that what's good for the
language's designer is good for the language's
users. Thus, when
you're programming in Common Lisp, you almost never find yourself
wishing
the language supported some feature that would make your
program easier to write, because, as
you'll see throughout this book,
you can just add the feature yourself.

Consequently, a Common Lisp program tends to provide a much clearer
mapping between your
ideas about how the program works and the code
you actually write. Your ideas aren't obscured
by boilerplate code
and endlessly repeated idioms. This makes your code easier to
maintain
because you don't have to wade through reams of code every
time you need to make a change.
Even systemic changes to a program's
behavior can often be achieved with relatively small
changes to the
actual code. This also means you'll develop code more quickly;
there's less code
to write, and you don't waste time thrashing around
trying to find a clean way to express yourself
within the limitations
of the language.2

Common Lisp is also an excellent language for exploratory
programming--if you don't know
exactly how your program is going to
work when you first sit down to write it, Common Lisp
provides
several features to help you develop your code incrementally and
interactively.

For starters, the interactive read-eval-print loop, which I'll
introduce in the next chapter, lets you
continually interact with
your program as you develop it. Write a new function. Test it. Change
it. Try a different approach. You never have to stop for a lengthy
compilation cycle.3

Other features that support a flowing, interactive programming style
are Lisp's dynamic typing
and the Common Lisp condition system.
Because of the former, you spend less time convincing



the compiler
you should be allowed to run your code and more time actually running
it and
working on it,4 and the latter lets you
develop even your error handling code interactively.

Another consequence of being "a programmable programming language" is
that Common Lisp,
in addition to incorporating small changes that
make particular programs easier to write, can
easily adopt big new
ideas about how programming languages should work. For instance, the
original implementation of the Common Lisp Object System (CLOS),
Common Lisp's powerful
object system, was as a library written in
portable Common Lisp. This allowed Lisp
programmers to gain actual
experience with the facilities it provided before it was officially
incorporated into the language.

Whatever new paradigm comes down the pike next, it's extremely likely
that Common Lisp will
be able to absorb it without requiring any
changes to the core language. For example, a Lisper
has recently
written a library, AspectL, that adds support for aspect-oriented
programming
(AOP) to Common Lisp.5 If AOP turns out to
be the next big thing, Common Lisp will be able
to support it without
any changes to the base language and without extra preprocessors and
extra
compilers.6

Where It Began

Common Lisp is the modern descendant of the Lisp language first
conceived by John McCarthy
in 1956. Lisp circa 1956 was designed for
"symbolic data processing"7 and derived its name
from one of the things it
was quite good at: LISt Processing. We've come a long way since then:
Common Lisp sports as fine an array of modern data types as you can
ask for: a condition
system that, as you'll see in Chapter 19,
provides a whole level of flexibility missing from the
exception
systems of languages such as Java, Python, and C++; powerful
facilities for doing
object-oriented programming; and several language
facilities that just don't exist in other
programming languages. How
is this possible? What on Earth would provoke the evolution of
such a
well-equipped language?

Well, McCarthy was (and still is) an artificial intelligence (AI)
researcher, and many of the
features he built into his initial
version of the language made it an excellent language for AI
programming. During the AI boom of the 1980s, Lisp remained a
favorite tool for programmers
writing software to solve hard problems
such as automated theorem proving, planning and
scheduling, and
computer vision. These were problems that required a lot of
hard-to-write
software; to make a dent in them, AI programmers needed
a powerful language, and they grew
Lisp into the language they
needed. And the Cold War helped--as the Pentagon poured money
into
the Defense Advanced Research Projects Agency (DARPA), a lot of it
went to folks
working on problems such as large-scale battlefield
simulations, automated planning, and natural
language interfaces.
These folks also used Lisp and continued pushing it to do what they
needed.



The same forces that drove Lisp's feature evolution also pushed the
envelope along other
dimensions--big AI problems eat up a lot of
computing resources however you code them, and if
you run Moore's law
in reverse for 20 years, you can imagine how scarce computing
resources
were on circa-80s hardware. The Lisp guys had to find all
kinds of ways to squeeze performance
out of their implementations.
Modern Common Lisp implementations are the heirs to those early
efforts and often include quite sophisticated, native machine
code-generating compilers. While
today, thanks to Moore's law, it's
possible to get usable performance from a purely interpreted
language, that's no longer an issue for Common Lisp. As I'll show in
Chapter 32, with proper
(optional) declarations, a good Lisp compiler
can generate machine code quite similar to what
might be generated by
a C compiler.

The 1980s were also the era of the Lisp Machines, with several
companies, most famously
Symbolics, producing computers that ran Lisp
natively from the chips up. Thus, Lisp became a
systems programming
language, used for writing the operating system, editors, compilers,
and
pretty much everything else that ran on the Lisp Machines.

In fact, by the early 1980s, with various AI labs and the Lisp
machine vendors all providing their
own Lisp implementations, there
was such a proliferation of Lisp systems and dialects that the
folks
at DARPA began to express concern about the Lisp community
splintering. To address this
concern, a grassroots group of Lisp
hackers got together in 1981 and began the process of
standardizing a
new language called Common Lisp that combined the best features from
the
existing Lisp dialects. Their work was documented in the book
Common Lisp the Language by
Guy Steele (Digital Press,
1984)--CLtL to the Lisp-cognoscenti.

By 1986 the first Common Lisp implementations were available, and the
writing was on the wall
for the dialects it was intended to replace.
In 1996, the American National Standards Institute
(ANSI) released a
standard for Common Lisp that built on and extended the language
specified
in CLtL, adding some major new features such as the CLOS
and the condition system. And even
that wasn't the last word: like
CLtL before it, the ANSI standard intentionally leaves room for
implementers to experiment with the best way to do things: a full
Lisp implementation provides
a rich runtime environment with access
to GUI widgets, multiple threads of control, TCP/IP
sockets, and
more. These days Common Lisp is evolving much like other open-source
languages--the folks who use it write the libraries they need and
often make them available to
others. In the last few years, in
particular, there has been a spurt of activity in open-source Lisp
libraries.

So, on one hand, Lisp is one of computer science's "classical"
languages, based on ideas that
have stood the test of time.8 On the other, it's a
thoroughly modern, general-purpose language
whose design reflects a
deeply pragmatic approach to solving real problems as efficiently and
robustly as possible. The only downside of Lisp's "classical" heritage
is that lots of folks are still
walking around with ideas about Lisp
based on some particular flavor of Lisp they were exposed
to at some
particular time in the nearly half century since McCarthy invented
Lisp. If someone



tells you Lisp is only interpreted, that it's slow,
or that you have to use recursion for everything,
ask them what
dialect of Lisp they're talking about and whether people were wearing
bell-
bottoms when they learned it.9

But I learned Lisp Once, And IT Wasn't Like what you're describing

If you've used Lisp in the past, you may have ideas about
what "Lisp" is that have little to do with Common
Lisp. While Common
Lisp supplanted most of the dialects it's descended from, it isn't
the only remaining Lisp
dialect, and depending on where and when you
were exposed to Lisp, you may very well have learned one
of these
other dialects.

Other than Common Lisp, the one general-purpose Lisp dialect that
still has an active user community is
Scheme. Common Lisp borrowed a
few important features from Scheme but never intended to replace it.

Originally designed at M.I.T., where it was quickly put to use as a
teaching language for undergraduate
computer science courses, Scheme
has always been aimed at a different language niche than Common
Lisp.
In particular, Scheme's designers have focused on keeping the core
language as small and as simple
as possible. This has obvious
benefits for a teaching language and also for programming language
researchers who like to be able to formally prove things about
languages.

It also has the benefit of making it relatively easy to understand
the whole language as specified in the
standard. But, it does so at
the cost of omitting many useful features that are standardized in
Common Lisp.
Individual Scheme implementations may provide these
features in implementation-specific ways, but their
omission from the
standard makes it harder to write portable Scheme code than to write
portable Common
Lisp code.

Scheme also emphasizes a functional programming style and the use of
recursion much more than Common
Lisp does. If you studied Lisp in
college and came away with the impression that it was only an
academic
language with no real-world application, chances are you
learned Scheme. This isn't to say that's a
particularly fair
characterization of Scheme, but it's even less applicable to Common
Lisp, which was
expressly designed to be a real-world engineering
language rather than a theoretically "pure" language.

If you've learned Scheme, you should also be aware that a number of
subtle differences between Scheme
and Common Lisp may trip you up.
These differences are also the basis for several perennial religious
wars
between the hotheads in the Common Lisp and Scheme communities.
I'll try to point out some of the more
important differences as we go
along.

Two other Lisp dialects still in widespread use are Elisp, the
extension language for the Emacs editor, and
Autolisp, the extension
language for Autodesk's AutoCAD computer-aided design tool. Although
it's possible
more lines of Elisp and Autolisp have been written than
of any other dialect of Lisp, neither can be used
outside their host
application, and both are quite old-fashioned Lisps compared to
either Scheme or
Common Lisp. If you've used one of these dialects,
prepare to hop in the Lisp time machine and jump
forward several
decades.

Who This Book Is For
This book is for you if you're curious about Common Lisp, regardless
of whether you're already
convinced you want to use it or if you just
want to know what all the fuss is about.

If you've learned some Lisp already but have had trouble making the
leap from academic
exercises to real programs, this book should get
you on your way. On the other hand, you don't
have to be already
convinced that you want to use Lisp to get something out of this
book.



If you're a hard-nosed pragmatist who wants to know what advantages
Common Lisp has over
languages such as Perl, Python, Java, C, or C#,
this book should give you some ideas. Or maybe
you don't even care
about using Lisp--maybe you're already sure Lisp isn't really any
better than
other languages you know but are annoyed by some Lisper
telling you that's because you just
don't "get it." If so, this book
will give you a straight-to-the-point introduction to Common Lisp.
If, after reading this book, you still think Common Lisp is no better
than your current favorite
languages, you'll be in an excellent
position to explain exactly why.

I cover not only the syntax and semantics of the language but also
how you can use it to write
software that does useful stuff. In the
first part of the book, I'll cover the language itself, mixing
in a
few "practical" chapters, where I'll show you how to write real code.
Then, after I've covered
most of the language, including several
parts that other books leave for you to figure out on your
own, the
remainder of the book consists of nine more practical chapters where
I'll help you write
several medium-sized programs that actually do
things you might find useful: filter spam, parse
binary files,
catalog MP3s, stream MP3s over a network, and provide a Web interface
for the
MP3 catalog and server.

After you finish this book, you'll be familiar with all the most
important features of the language
and how they fit together, you'll
have used Common Lisp to write several nontrivial programs,
and
you'll be well prepared to continue exploring the language on your
own. While everyone's
road to Lisp is different, I hope this book
will help smooth the way for you. So, let's begin.

1Perl is
also worth learning as "the duct tape of the Internet."

2Unfortunately, there's little actual research
on the productivity of different languages. One report that shows
Lisp coming out well
compared to C++ and Java in the combination of
programmer and program efficiency is discussed at
http://www.norvig.com/java-lisp.html.

3Psychologists have identified a state of mind
called flow in which we're capable of incredible concentration
and productivity. The
importance of flow to programming has been
recognized for nearly two decades since it was discussed in the
classic book about
human factors in programming Peopleware:
Productive Projects and Teams by Tom DeMarco and Timothy Lister
(Dorset House,
1987). The two key facts about flow are that it takes
around 15 minutes to get into a state of flow and that even brief
interruptions
can break you right out of it, requiring another
15-minute immersion to reenter. DeMarco and Lister, like most
subsequent authors,
concerned themselves mostly with flow-destroying
interruptions such as ringing telephones and inopportune visits from
the boss.
Less frequently considered but probably just as important
to programmers are the interruptions caused by our tools. Languages
that
require, for instance, a lengthy compilation before you can try
your latest code can be just as inimical to flow as a noisy phone or
a
nosy boss. So, one way to look at Lisp is as a language designed to
keep you in a state of flow.

4This point is bound to be somewhat
controversial, at least with some folks. Static versus dynamic typing
is one of the classic
religious wars in programming. If you're coming
from C++ and Java (or from statically typed functional languages such
as Haskel
and ML) and refuse to consider living without static type
checks, you might as well put this book down now. However, before you
do, you might first want to check out what self-described "statically
typed bigot" Robert Martin (author of Designing Object
Oriented
C++ Applications Using the Booch Method [Prentice Hall, 1995]) and
C++ and Java author Bruce Eckel (author of
Thinking in C++
[Prentice Hall, 1995] and Thinking in Java [Prentice Hall, 1998])
have had to say about dynamic typing on their
weblogs
(http://www.artima.com/weblogs/viewpost.jsp?thread=4639 and
http://www.mindview.net/WebLog/log-0025). On the other hand,
folks coming from Smalltalk, Python, Perl, or
Ruby should feel right
at home with this aspect of Common Lisp.



5AspectL is an interesting
project insofar as AspectJ, its Java-based predecessor, was written
by Gregor Kiczales, one of the
designers of Common Lisp's object and
metaobject systems. To many Lispers, AspectJ seems like Kiczales's
attempt to backport
his ideas from Common Lisp into Java. However,
Pascal Costanza, the author of AspectL, thinks there are interesting
ideas in
AOP that could be useful in Common Lisp. Of course, the
reason he's able to implement AspectL as a library is because of the
incredible flexibility of the Common Lisp Meta Object Protocol
Kiczales designed. To implement AspectJ, Kiczales had to write
what
was essentially a separate compiler that compiles a new language into
Java source code. The AspectL project page is at
http://common-lisp.net/ project/aspectl/.

6Or to look at it another, more technically
accurate, way, Common Lisp comes with a built-in facility for
integrating compilers for
embedded languages.

7Lisp 1.5 Programmer's Manual
(M.I.T. Press, 1962)

8Ideas
first introduced in Lisp include the if/then/else construct, recursive
function calls, dynamic memory allocation, garbage
collection,
first-class functions, lexical closures, interactive programming,
incremental compilation, and dynamic typing.

9One of the most commonly
repeated myths about Lisp is that it's "dead." While it's true that
Common Lisp isn't as widely used as,
say, Visual Basic or Java, it
seems strange to describe a language that continues to be used for new
development and that continues
to attract new users as "dead." Some
recent Lisp success stories include Paul Graham's Viaweb, which became
Yahoo Store when
Yahoo bought his company; ITA Software's airfare
pricing and shopping system, QPX, used by the online ticket seller
Orbitz and
others; Naughty Dog's game for the PlayStation 2, Jak and
Daxter, which is largely written in a domain-specific Lisp dialect
Naughty Dog invented called GOAL, whose compiler is itself written in
Common Lisp; and the Roomba, the autonomous robotic
vacuum cleaner,
whose software is written in L, a downwardly compatible subset of
Common Lisp. Perhaps even more telling is
the growth of the
Common-Lisp.net Web site, which hosts open-source Common Lisp
projects, and the number of local Lisp user
groups that have sprung up
in the past couple of years.


