

UNIVERSITY OF CALIFORNIA,
IRVINE

EPITAXIS
A System for Syntactic and Semantic Software Queries using Deductive

Retrieval and Symbolic Execution

A dissertation submitted in partial satisfaction
 of the requirements for the degree of

Doctor of Philosophy in Computer Science

by

James Benvenuto

2010

Copyright by
James Benvenuto

2010

The dissertation of James Benvenuto is approved:

Date: _ ______________________
Approved:

Dr. Amelia Regan, Chair

Dr. Brian Demsky

Dr. Ian Harris

University Of California, Irvine

2010

iv

"The way to do research is to attack the facts at

the point of greatest astonishment."

--Celia Green

Abstract

Modern computer hardware (multi-core, multi gigahertz processors with

gigabytes of RAM and terabytes of disk) along with IDEs allows programmers to

build computer programs which are bigger and more complex than they can

understand or keep in their working memories. Additionally, the problems these

programs are designed to model are ever more complicated. Consequently,

programs are full of inconsistencies, mistakes, and incompleteness's. These

problems are difficult to detect, difficult to locate, and difficult to correct. Often a

change is made by a programmer to fix a problem for which understanding all

the repercussions of the change is difficult. Consequently, further bugs are

introduced into the code base. Because of the pervasiveness of software in society

and the potential severity of the consequences of bugs, software developers need

v

ever better tools to help them understand, navigate, and follow the consequences

of their development and maintenance activities.

This dissertation presents a novel framework based on tree/graph

searching and parsing, deductive retrieval, dynamic analysis, symbolic

execution, aspect oriented programming, and an open interpreter to allow a

software developer to navigate, locate features, find bugs, and abstract

information in software. The system is designed to have a fast modify-test cycle

such that the programmer can search and test the software as it is being edited

without time consuming recompilation, reinstrumenting, or database

repopulating each time an edit is made to the code base. The system is language

independent, requiring only files to specify the language grammar, control flow

graph transformation, and execution semantics. In addition, because of the

flexibility and programmability of the system it is an excellent environment to

perform further research on program analysis techniques such as dynamic

analysis, symbolic execution and abstract interpretation. A prototype system has

been built along with data files for the C programming language which

demonstrates the feasibility of the system and its ability to scale to "modern-

sized" programs.

vi

"A programmer is a machine for turning

coffee into software."

-- Adapted from Alfréd Rényi

Dedication

This dissertation is dedicated to the organic coffee growers of Sumatra.

vii

Contents

Abstract.. iv

List of Tables.. xi

List of Figures ... xii

1. Introduction.. 1

1.1 Contributions.. 8

1.1.1 Integration... 9

1.1.2 The Parser ... 9

1.1.3 Prolog Variants ... 9

1.1.4 Syntactic Search .. 10

1.1.5 Semantic Search.. 10

1.1.6 Open Symbolic Execution... 10

1.1.6.1 Openness... 10

1.1.6.2 Creation of a Semantic Search Space.. 10

1.1.6.3 Stop on Hit Counts ... 11

1.2 Outline .. 11

2. Literature Review ... 12

2.1 Program Query Systems... 14

2.1.1 Summary of Systems.. 26

2.1.2 ER-tuple representation versus AST representation.................................... 29

viii

2.2 Symbolic Execution... 32

2.2.1 Concolic Execution ... 35

2.3 Aspect Oriented Programming.. 46

2.4 Object-oriented Logic Programming Systems.. 47

3. Background... 49

3.1 Source Code Searching... 51

3.2 Parsing .. 54

3.3 Unification and Deductive Retrieval .. 57

3.4 Program Queries and Analysis... 60

3.5 Symbolic Execution... 65

3.5.1 Constraint Solving.. 67

4. Methodology: Epitaxis... 71

4.1 Virtual Abstract Semantic Graphs.. 74

4.1.1 Character and Lexical Level: Linked List... 75

4.1.2 Syntactic Level: Tree... 76

4.1.3 Semantic Level.. 77

4.1.3.1 Static Semantic Level: Graph.. 77

4.1.3.2 Dynamic Semantic Level: Symbolic Execution 78

4.1.4 Abstract Level: Virtual Graphs and Structuring Memoization.................... 78

4.2 Reparsing.. 81

4.3 Epitaxic Deductive Retrieval .. 81

4.3.1 Search Specifications... 82

ix

4.3.2 Search Engine.. 91

4.3.2.1 Lexical Search ... 94

4.3.2.2 Syntactic Search .. 94

4.3.2.3 Control Flow Graph Search .. 95

4.3.2.4 Logical Search ... 95

4.3.2.5 Symbolic Execution Search... 95

4.3.2.6 Abstract Search... 96

4.4 Symbolic Interpreter... 96

4.4.1 Set of Rules.. 97

4.4.2 Collection of Methods... 98

4.4.3 Set of Values.. 98

4.4.4 Symbolic Memory Management System...100

4.4.5 Propagation of Constraint System...101

4.4.6 Symbolic Execution Tree ...102

4.4.7 Collecting Semantic Information...104

4.5 Prototype..105

5. Findings ...109

5.1 Representation...110

5.2 Syntactic Search ...111

5.3 Semantic Search...114

5.3.1 Basic Semantic Search - Finding Bugs ...116

5.3.2 Advanced Semantic Search - Collecting Information124

x

6. Conclusion ...130

6.1 Reflections..130

6.1.1 Modeling..132

6.1.2 Querying..135

6.2 Further Research..140

6.2.1 Further Opening Of The Interpreter..140

6.2.2 Automated Refactoring...141

6.2.3 Multi-Threaded Support..141

6.2.4 Object Oriented Language Support...142

6.2.5 Improving The Constraint Solver..142

6.2.6 Understand The External Environment ..143

6.2.7 Further Forms Of Analysis ..143

Appendix A ...145

References..157

xi

List of Tables
Table 1: Elements of the Search Language ... 84

Table 2: Syntactic Search Performance on LISP System..114

Table 3: Symbolic Execution Statistics executing 5 million rules on retrieve()...............120

xii

List of Figures
Figure 1: A Simple Test Function ... 40

Figure 2: Representation of fixed data structure of { if (a) ; else ; ; }........................ 75

Figure 3: Architecture and Processing Pipeline for the Epitaxis Framework107

Figure 4 Code Coverage for tr.c...119

Figure 5 Path Growth for tr.c...119

Figure 6 Interpreter Running Rate for retrieve()...123

Figure 7 Interpreter Memory Usage for retrieve()...123

Figure 8 struct definition for stack element...125

Figure 9: Concept lattice for writes to type fields within a struct...................................126

Figure 10 Concept lattice for nested member access and union use...............................128

1

"Research is the process of going up alleys to

see if they are blind."

--Marston Bates

Chapter 1

1. Introduction

Software is more a logical product than a physical product. This has a

number of interesting implications. The actual production cost of software is

negligible, all the cost and effort is concentrated on development, evolution and

maintenance. Because of the stubborn persistence of Moore’s law, except in

unusual cases, memory capacity and processing speed are not constraints. This

leaves managing complexity as the principal bottleneck in software development

[128, 137]. So while we have the hardware capacity to build bigger, faster, and

more comprehensive systems, we have been accruing complexity, which has

outstripped the human capacity to handle this complexity. This has caused a

2

"software crisis" [58]. Society has come to rely on these large systems because of

their value; they have become integrated into the economic and physical

infrastructure of our society. Because of this dependence, these systems must be

maintained so they can evolve to meet the needs of the growth of society.

Maintaining and evolving these software-intensive systems is expensive

and labor-intensive. Numerous sources in the literature have reported on the

high cost of software maintenance, ranging from 50 to 70 percent of the cost of

the entire project [17, 101, 121, 128]. Software maintenance is largely a manual

process, relying on human brain power to identify problems, perform analysis to

find a solution, and finally to implement a modification. Human attention span

and memory capacity is inadequate to handle the quantity and complexity of

software systems [55, 131] with hundreds of thousands to millions of lines of

computer code with a rich and detailed interconnectivity of parts [23].

Consequently, better software tools are needed to support software maintainers,

so their reach does not exceed their grasp.

This dissertation research concerns the construction of an integrated

development environment capable of software query using open symbolic

execution and epitaxic deductive retrieval . The name comes from the following: 1)

3

retrieval meaning the ability to access information, 2) deductive meaning the

ability to not just access information that is directly there but also what can

logically and structurally be deduced, and 3) epitaxic from the Greek epi + taxis

meaning above or upon an orderly arrangement. This reflects the ability of the

system to “grow” new information from the structure and align it to existing

information. There are four components to this work: an integrated data

structure for representing source code called a virtual abstract semantic graph; a

unified language for specifying program queries on the data structure; an open

symbolic interpreter for expanding the range of queries; and a set of built-in

queries that includes both syntactic and semantic based queries. These are also

the four contributions from this research.

The system will integrate the representation and search of software on

four levels: lexical, syntactic, semantic, and abstract. Via a Prolog-like unification

search algorithm, source code searching, program query, and interpretation will

be expressible using search predicates. The search predicates provide a single,

unified language for specifying program queries and analyses. They are capable

of expressing not just an elements lexical relationships and syntactic

relationships, they will also be able to express the elements semantic and runtime

4

relationships because there will exist an integrated interpreter driven by a rule

based representation of the program’s language semantics. Finally, it will also

unify both syntactic and semantic queries into a single framework. This system is

incremental because it is embedded within a hybrid character/structure editor.

As a result, queries can be performed interactively, as code is written. Query is

not limited to batch processing of a snapshot of the code, because re-parsing and

analysis is done incrementally.

This unified data structure is based on the following key insight into

program analysis. Parsing of source code to construct an abstract syntax tree

(AST) is a solved problem. It is a simple matter to specify a grammar for a LALR-

parser-generator. However, semantic level analysis is an area of active research.

These analyses rely on abstract semantic graphs (ASG)[15], or equivalent data

structures, which are constructed from ASTs by adding edges to represent

semantic information and removing unnecessary syntactic details. Currently,

different ASGs are constructed for each type of query or analysis and the tools

must be hand built. There is no general approach to specifying the construction

of ASGs and many, many ASGs are needed for a full range of analyses.

5

The solution is to reify virtual ASGs as they are needed using a unification

engine, an AST parser that walks and transforms the AST according to

prescribed rules, an open symbolic interpreter that can feed the search engine,

and a structuring memoization system which can accumulate various pieces of

extracted information in a structured form that can also be used as a data-base

for further or embedded queries. The language for specifying program queries

and analyses is based on search predicates and an open symbolic interpreter.

They represent rules for tree traversal, syntactic and semantic software query,

execution of code and so on. The system can be extended and configured simply

by adding classes, rules and predicates to handle additional source languages

and to perform additional queries. The system can also be extended by adding

before and after methods, and by overriding methods comprising the interpreter.

The data structure and search specification language together form the basis for

integrating various forms of queries and analysis. This is Epitaxis.

Evaluating this research presents challenges because it addresses an area

that is very broad; namely, how can we help programmers deal with the

complexities of writing software? The solution that will be presented is designing

and implementing a declarative language in which programmers can express

6

constraints and relationships that their software must obey and then have the

locations in their code where these do not hold pointed out to them. We select

several such queries to demonstrate the range of effectiveness of this solution.

These must be complex enough to be difficult to deal with manually on large

bodies of software, specific enough to the program under development so that

large monolithic systems have not already been build to find these problems, and

simple (relative to the complexity of the relationships they are intended to find)

to express declaratively so that they will be worth the effort of writing. We will

be evaluating this solution on several specific queries. These queries will be

selected to engage the system progressively in layers, simpler at first, and then

eventually the full set of features. These queries must be such that it is easy to see

that this language is expressive and powerful enough to be applied to many such

particular problems, which arise for the programmer. They must also work on

realistic size bodies of code and produce answers which have a “real-time”

response and a low false positive rate. To be usable by a programmer as he is

writing code they must be short and straight forward to write, quick to return a

response, and give a response which precise enough to be useful.

7

The set of test queries will be graded. The first element to validate is basic

syntactic querying on these structures. The second element to validate is the

structuring memoization system. This will be used to build the control flow

graph. The third element to validate will be the open interpreter. Finally, the

overall epitaxic deductive retrieval approach will be evaluated by selecting a set of

queries, which rely on all the machinery. These will each be described in more

detail in Section 5.3.

This research has an empirical quality to it. A powerful query language

will be built and the system will be explored to see some of the range of queries

that are possible using it. The ultimate validation will depend on how useful and

convenient the range of possible queries are as well as the scalability of the

system to handle hundreds of thousands lines of code and its real-time response.

It should be straightforward to build and run queries while the software is under

development and evolution. This body of queries should build upon itself and

grow with the complexity of the software under development. Although the

focus of this research is on query process and constraints it is expected that the

final system will ultimately accommodate a range of other activities such as

program refactoring and language translations as well.

8

Epitaxic deductive retrieval has the potential to form a new basis for

program query in the same manner that grammars form the basis for parsing.

With the power of this tool, more software maintenance tasks can be supported.

The word “maintenance” is derived from the Latin manu tenere which literally

means to hold in the hand; with this tool, understanding more complex

structures and relationships will be within the grasp of a software maintainer.

1.1 Contributions

In this dissertation, we present Epitaxis, a prototype system designed to

aid the programmer in understanding and modifying software systems. The

features of Epitaxis are designed with the constraint that the system works

interactively. That is, the programmer can search or test his program, make

changes repeatedly within an interactive time scale without lengthy

recompilations, reinstrumentations, or repopulating a database. Epitaxis is

embedded within a structure editor, although the editing features of the system

are not part of this dissertation. Epitaxis is also designed to be language

independent. Language specificity is supplied by several files: a BNF type

grammar file, a Prolog like set of rules for creating a control flow graph for the

abstract syntax tree, and a set of rules describing how to execute the control flow

9

graph. Epitaxis currently has definitions for the C programming language.

Specific research contributions are described below.

1.1.1 Integration

Epitaxis integrates search on a lexical, syntactic, and semantic level. Search

on a semantic level is achieved through the integration of search technology and

symbolic execution (as a means to expose the execution state to search).

1.1.2 The Parser

A standard LALR(1) parser generator has been enhanced for interactive

reparsing. After an initial AST has been constructed, when a line of program text

has been modified, only that line needs to be tokenized. The parser quickly

reparses the program using just a few pieces of intact AST surrounding the single

lines' token stream. The parser accepts both lexical tokens and AST nodes when

reparsing.

1.1.3 Prolog Variants

Epitaxis uses a novel object-oriented Prolog variant to perform search and

transformations on the syntax tree and the control flow graph. These include

dynamic scoped prolog variables, unification by reference, unification with

gatherers and generators, hyper-edges, and self-fulfilling assertions.

10

1.1.4 Syntactic Search

Epitaxis uses a novel syntactic search system.

1.1.5 Semantic Search

Epitaxis extends program query into the semantic realm using symbolic

execution and collect points.

1.1.6 Open Symbolic Execution

1.1.6.1 Openness

The symbolic execution interpreter is implemented using open program

design [88, 89]. Functional units within the interpreter are implemented using

generic functions allowing the user to participate in the implementation of the

system. The generic functions encapsulate interpreter functionality that the user

can override and redefine. This enables the system user to become a system

implementer to get additional functionality.

1.1.6.2 Creation of a Semantic Search Space

Symbolic execution is used as a means to transform a control flow graph

into a representation of the program execution state tree suitable for semantic

query of the program.

11

1.1.6.3 Stop on Hit Counts

The symbolic execution interpreter can be configured to track the

conditional expressions it has seen by path so the interpreter can terminate a

particular path execution when the path steps on itself a set number of times.

This allows a more sensible way to deal with loop termination and control over

how much of the program executes.

1.2 Outline

The remainder of this dissertation is organized as follows: Chapter 2

relates the current work to the research literature. Chapter 3 presents

background material related to understanding Epitaxis. Chapter 4 describes

Epitaxis. Chapter 5 presents the findings. Chapter 6 presents conclusions and

directions for future research.

12

"You should try to remember that a dedicated

teacher is a valuable messenger from the past,

and can be an escort to your future."

--Albert Einstein

Chapter 2

2. Literature Review

Program Query Systems are a type of Program Understanding Systems.

Program Understanding Systems include a wide range of functionality. Because

program understanding is such a large and complex area systems tend to

specialize or at least focus on an area. One area is visualization. Another area is

domain knowledge. These systems offer forms of program query but geared to

their specific specialty. In the case of visualization systems the results of queries

are clickable views. By clicking on elements of these views other queries are

13

performed. Comprehensive Software Information System (CSIS) [140] is a system

designed to represent software highly integrated with its domain. The software

is actually written in its domain representation, which automatically generates a

code representation. Here the queries are geared towards the application

domain. In this case the transformation goes in the reverse direction: from a

semantic net representation of domain features to the source code. Another area

where program query is embedded is within program analysis. Here the analysis

is generally “hardwired” instead of being available in a general-purpose

language. This is traditionally done in two areas: 1) in compilers to validate

optimizations to code, and 2) to validate the correctness of software. Validating

software can be further divided into two areas: 1) model checking and 2) testing.

There is a wide range of program analysis techniques, including control

flow analysis, data flow analysis [78, 79, 114], disjointness analysis [84], program

dependence graphs, slicing [64, 80, 125, 136, 138, 139], pointer alias analysis [47,

81, 113, 128, 129], type inference [19, 73], abstract interpretation [40, 85], symbolic

execution [11, 38, 42, 43, 91, 92, 94] among others. This technology is beginning to

migrate into program query systems themselves since much of this information

is also useful to the programmer to understand software. Program Query

14

Systems tend to have a more generic query mechanism designed to help a

programmer interactively “discover” facts about their code.

The complexity of program query systems has grown along with the

complexity of the programs they query. There are two reasons for this. They both

can be traced back to the availability of more memory and more processing

speed. As software has become bigger, it generally becomes more complex with

more non-locality. This dictates the need for more powerful tools to understand

it, hence more powerful query machinery. The same release from memory

confines also allows the program query systems themselves to become more

complex. This allows for the possibility of a source transformation and a more

robust program representation to query. The evolution of program query

systems somewhat reflects this.

2.1 Program Query Systems

One of the first and probably still one of the most widely used program

query systems is GREP [126]. It has the advantages of working directly on the

textual representation of the program hence no transform is needed. This makes

it fast and very tolerant to any irregularities within the source code (i.e. there can

be syntax errors, incomplete lines of code, the code can be in any partial state of

15

development, etc). It also requires no understanding of any subtly of the syntax

of the language it is querying. This lightens the cognitive burden on the tool user.

The user only needs to understand the language of regular expressions. The

down side of GREP systems is the limited range of possible queries. They admit

no context and cannot take advantage of saving any state in the search. It is not

easy for GREP to tell if what it is finding is embedded within a comment or

within a piece of code. Because of its lack of context sensitivity GREP results tend

to have low precision. There are various dialects of GREP, one is AWK [3]. AWK

uses regular expressions to match pieces of source code but in addition allows

pieces of C-like code to be executed when regular expressions match allowing

AWK to perform transformations or extended queries.

The limits of regular expression (lexically) based searches were addressed

with syntactic versions of these tools. Semantic GREP [25] adds a small amount

of syntactic understanding to GREP. It knows what some program constructs are

such as functions and can limit its lexical search to within these categories. It also

has a simple understanding of relationships between these categories, such as

being able to find all functions that call some function. The other useful addition

16

is queries with transitive closure. Semantic GREP is basically lexical search with a

mild amount of ad hoc syntactic awareness.

Lightweight Source Model Extraction (LSME) [116] fills an interesting

“sweet spot”. LSME allows patterns to be expressed with a hierarchical regular

expression. The system is basically a lexical scanner with a touch of syntactic

contextability supplied by the ability to nest the regular expressions. This way no

syntactic constraints are placed on the patterns. Attached actions may be

executed when a pattern is matched. The system is optimized for flexibility,

speed and tolerance over precision.

The next stage of advancement in query languages came when the source

code was transformed into an abstract syntax tree (AST). This allows much more

syntactic context to be used to constrain search. Of course, this required more

powerful processors to do the transform in a timely manner and more memory

to hold the transformation. One of the difficulties of syntactic search is that it

requires a more complicated language to express. This adds to the cognitive

burden of using these systems. SCRUPLE [119, 120] and TAWK [72] are

examples of this approach.

17

SCRUPLE transforms the source code into an AST and converts the query

into a finite state machine (FSM). The states of the FSM represent walking the

AST and matching pieces of the query to it. SCRUPLE uses the source language

augmented with syntactic wildcards to express queries. Using concrete syntax

somewhat eases the burden of learning the query language since the

programmer is already familiar with it. The wildcards can be given names so

what they match can later be referenced. The concrete syntax also causes

problems. Queries have to be syntactically correct so often extra patterns have to

be inserted between the patterns of interest to glue them together or to deal with

finding patterns that can either follow or be nested within another pattern.

Because patterns are syntactically based generalizing patterns such as looping

constructs which are conceptually similar but syntactically different can be

difficult. In order to enable patterns that are order independent the designers

introduced sets. This has the possibility of combinatorial explosion in the number

of matching possibility. SCRUPLE keeps the entire AST in memory and queries

always search the entire tree.

Another AST based example is TAWK [72]. The idea of TAWK is to

combine the precision of syntactic matching with the speed and generality of

18

lexical matching. In addition, allowing limits to the units being searched instead

of the entire program increases speed of search. The query language is made

more expressive by using abstract instead of concrete syntax. This also helps

make the query language more language independent. Like AWK, TAWK also

has C as its action language, which gets triggered when patterns match. TAWK

also allows pattern abstractions using a macro-like facility. Backtracking is

performed to explore all possible alternatives until the entire pattern is matched

or exhausted. Like SCRUPLE, a TAWK pattern is parsed and converted into a

FSM that walks over the AST. To reduce its memory footprint TAWK throws out

its AST after each search. They trade amortizing parsing costs over multiple

queries for a smaller memory footprint.

A* [98] is similar to TAWK. It also is a syntactic generalization of AWK. It

converts the input source text into an abstract syntax tree. A* programs are

interpreted and have the usual AWK pattern-action syntax. The pattern language

allows for control in the traversal of the AST. It however it does not support

wildcards or pattern variables.

REFINE [26, 96] is a software development system, which includes a

parser generator, an object-oriented database, and a query/transformation

19

system. Software is transformed into the database as an annotated AST by the

parser. The query language uses templates with wild cards and variables to

match pieces of code. Rules allow the matched pieces to be output to the user or

transformed for re-engineering. In all cases there is a distance between the source

code and the transformed database. The transformation is a batch process.

GENOA [57] is a framework for generating tools, which process the AST.

Tools such as GEN++ and Aria have been built from this framework. The system

has to be integrated with a front-end that does the parsing. GENOA reads the

AST representation of a source program and using a scripting language can

perform a range of traversals, tests, and iterations eventually generating output.

The scripting language has constructs for walking the AST and print statements

for outputting information once it is found. GENOA is designed to be

independent of the structure of the AST.

CodeSurfer™ [7, 8] is a tool designed to provide “fine-grained” inspection

to software. It uses static analysis to build a complex representation of the

program, which includes a call graph, points-to graph, and dependence graph.

Vertices of the graph represent program constructs such as assignment

statements, call sites, conditional branches, etc. An edge in the dependence graph

20

represents either data dependence or control dependence. Queries are

implemented as primitive operations on the dependence graph. This graph is

stored entirely in memory. One this structure is constructed CodeSurfer™

provides a system of windows with clickable links for viewing and navigating

the dependence graph.

ASTLOG [44] is a prolog based query language that allows for a very

flexible but structured search control methodology. It eliminates a lot of the ad

hoc quality in many query languages because of its general declarative prolog

like language. Predicates are used to traverse the program’s AST, but instead of

importing the AST as prolog like facts, in ASTLOG the interpretation of the

predicates and queries are modified to be applicable to external objects. A C/C++

front end provides the accessability to the nodes of the AST. Rather than the

usual prolog database ASTLOG has a current object. Every query and term being

evaluated as a predicate is interpreted as a pattern that may or may not match

the current object (instead of the usual prolog system of looking for matches in

the database of facts and rules). It’s as if every predicate takes on another hidden

term, which is the current object. Of all the query systems surveyed ASTLOG

comes closest in spirit to the functioning of the query engine in Epitaxis. One of

21

the main differences is that Epitaxis has a more intimate awareness of the

structure of the AST nodes as well as the node being object-oriented and admits

the use of inheritance in matching. ASTLOG uses an op predicate to match the

“opcode” (meaning type) of the node and a kid predicate to select the child node.

There is no hierarchical structure to the nodes relating different types of

expression operators or different types of iteration constructs. Also, in Epitaxis,

the current object is explicitly mentioned in the rules. This gives more direct

control over the movement around the parse tree as well as allowing multiple

uses so there in essence can be multiple current objects, which can be compared

or related in some way. ASTLOG has an interesting reflection mechanism, which

allows queries themselves to be used as objects to search. While this is a

fascinating mechanism it is used as a way to create aggregates of items found in

searches. Epitaxis does this much more directly.

Smalltalk Open Unification Language (SOUL) [142, 143] is another

program query language, which shares a similar spirit with Epitaxis. Whereas

Epitaxis is a hybrid combination of Prolog and LISP, SOUL is a hybrid

combination of Prolog and Smalltalk. The prolog based query system of SOUL is

designed to work directly with Smalltalk objects, so to use the system with

22

another language such as Java some sort of interoperability library is needed to

make a connection between the elements of the other language and Smalltalk. In

the case of Java, JavaConnect is used as a library to allow a Smalltalk application

to reference any Java object, via a proxy in Smalltalk. It is not clear how available

this technique is for other languages, especially ones that are not object-oriented

such as C. Epitaxis creates the connection more directly. In Epitaxis there is a

parser generator that can be used to create an AST using CLOS objects, so once

you have the grammar for the parser, the AST can be built in a form that the

query language can work with directly. SOUL has an open [22, 88] unification

system. This means that some of the inner workings of the unification algorithm

are user programmable. This allows for user definable additions to unification,

which is used to create a level of abstraction in how objects are declared equal

with respect to unification. In Epitaxis the ability of more abstract or complex

matching is done within the systems' rules (or by direct modification of the

unification code base). This extra complexity of matching can be packaged up

into functions also creating abstractions. In the case of SOUL the complexity is

pushed into the unification algorithm, in Epitaxis, the complexity is packaged up

into the rule system. Epitaxis has a rule-based interpreter to enable queries on

running code. This system is open and allows user level modification by

23

overriding and/or augmenting sub-systems within the interpreter in a manner

similar to how SOUL allows the user to augment the unification algorithm.

SOUL gets the open interpreter for free by using Smalltalk’s meta-object

protocol, but it is not clear that this functionality will carry over with other

languages.

The ram based AST systems allowed for fast processing but ran up against

limits on the size of programs they can query. As relational database

management systems (RDBMS) became more efficient it became practical to

transform the program into a collection of entity-relation (ER) tuples [34]. While

this slows down the access it allows for enough memory to handle any size

program. One of the earlier systems to use this approach is OMEGA [104].

Another is C Information Abstraction (CIA) [36].

JQuery [50, 83] is another system that uses a RDBMS. JQuery uses TyRuBa

[49], which was originally used to create a Parametric Type System for Java.

JQuery is a Java browser implemented as an Eclipse plug-in. JQuery is generic

and can be configured by writing TyRuBa include files for rendering many

different types of views. JQuery passes queries to TyRuBa, which executes them

over its source model, a database containing facts about the browsed program’s

24

structure. The results of the query are passed back to JQuery, which creates

navigatable views of them.

Java Tools Language (JTL) [39] is a language for querying Java. It is a

declarative language based on logic programming which uses a simply typed

relational database for program representation. JTL is designed as a “tool for

making tools”. JTL is currently intimately related to Java since it queries the

binary representation within the Java environment. Because of its program

representation JTL is limited in its ability to query dynamic control flow

questions. It has a set of ad hoc built in predicates to extract this information in a

Java environment dependant way. Given these limitations, JTL still has a fairly

expressive query language. Its underlying semantics is first order predicate logic

augmented with transitive closure.

There are a number of program query systems based on Datalog [31].

Datalog is a database query system based on the logic-programming paradigm.

Syntactically Datalog is a subset of Prolog, however this subset differs

semantically. Datalog semantics are purely declarative, whereas in Prolog there

is an operational semantic (e.g. the order of clauses can effect whether or not a

Prolog queries terminates whereas all Datalog queries terminate). Datalog

25

queries are translated into relational algebra (RA). Each clause of a Datalog

program is translated into an inclusion relationship of RA. Datalog is at least as

powerful as positive relational algebra but not as powerful as full relational

algebra as there is no Datalog rule defining set difference. These expressions can

be captured by extended versions of Datalog that use logical negation. Datalog is

full of clever optimizations and has numerous implementations.

CodeQuest [74, 75] is a source code querying system based on Datalog. It

has two main components. The first is Datalog and the second is an Eclipse plug-

in responsible for parsing Java. The use of a disk based RDBMS makes

CodeQuest scalable to large-size software systems. The use of an Eclipse plug-in

leverages its automatic system for recompiling appropriate modules as source

code changes. This way the entire project does not need to be processed to

reconstitute the database after a small source change. Datalog queries are

translated into a version of SQL that handles recursion, then passed to the

RDBMS.

Another system, called Program Query Language (PQL) [99, 107], allows

queries to be made on an executing program. It uses static analysis to minimize

the number of instrumentation points needed. The queries can also be fixed with

26

actions to be performed when the query matches. This way potential errors or

security flaws can be handled “on the fly” as they happen. The query language is

designed to match sequences of events. Lower level actions such as variable

accesses are abstracted away. The events tracked are field accesses, array

accesses, method calls and returns, object creations and the end of program (to

know that something has not happened). PQL essentially looks to find a set of

heap objects to parameterize a context sensitive pattern of events of a program

execution trace. The system performs flow-insensitive points-to analysis. The

points-to information is stored in bddbddb, a Datalog deductive database

implemented using binary decisions diagrams. Queries can be nested and can be

recursive. A key feature of PQL is its ability to do object-based parametric

matching across time in a running instrumented program. Currently PQL works

only on Java.

2.1.1 Summary of Systems

There are three components to source code analysis [16]. They are the

transformation, the representation, and the actual analysis. Software in its most

usual form is a text file organized as a flow of instructions. Because of the

multiplicity of elements, representations, relationships, and layers of abstraction

27

in software most of the information content is implicit. Because it is temporal,

information may not become obvious until all the predecessorary actions have

been executed and successor states are extant. It is therefore expedient to extract

into an explicit form the information of interest before attempting to analyze it.

The transformation usually involves some form of parsing. There is a wide range

of structures that the source code may be parsed into. These include the abstract

syntax tree, the control flow graph, the call graph, the value dependence graph,

single static assignment form, ER tuples, the trace flow graph, etc. Often one

transformation is used as an intermediate step to a further transformation, as it

may be too complex to go directly into the final form. Finally, some form of

analysis is performed on the transformation. This may be done to prove some

fact to validate an optimization, or simply to extract a highly embedded piece of

information. In the case of compiler optimizations the analysis is formalized and

scripted towards a specific goal. In the case of query a more interactive generic

system is used to try to maximize the exposure of information.

The systems described above show a progressive range of software

representations. At the simplest is simply the source code text. The next level is a

list of lexical tokens. The next level is an AST. Some systems allow various

28

annotations to the AST in essence constructing an ASG. Some systems instead of

keeping a memory based AST, decompose the AST into ER tuples into a data

base. These tuples can also contain the equivalent of AST annotations. Some of

the systems are fixed with respect to the AST they build and some allow the user

to add arbitrary annotations and edges. These systems also range in the degree to

which they can handle non-syntactical elements such as comments, white space,

line position, macros, and conditional compilation directives.

There is also a progression of analysis/search techniques. These range

from regular expressions to path walking, to path walking with wild cards and

variables to full first order logic. With this is a corresponding variance in the

ability over the order of search. Of course lexical search only has one search path,

however searching through tree requires a search methodology such as preorder,

postorder, depth first, breath first, or some form of general arbitrary control.

The literature shows a progression from text based to memory based AST

to disk based RDBMS. Most of the systems (except PQL) cannot handle queries

over control flow graphs. Most of the examples of queries in the literature are

relatively simple. Some of the systems are software engineering systems. That is

they handle higher-level aspects such as domain knowledge and software

29

architecture. Epitaxis specifically aims at the act of programming. It is designed to

have an extremely fast query-modify cycle and to address queries at all levels of

code, including not just syntax or control flow queries, but also awareness of

runtime values and states. It is designed to push software query into the realm of

program analysis.

2.1.2 ER-tuple representation versus AST representation

Tuple representations of class hierarchies, methods, member elements are

easy and natural. They are essentially sets. So all the systems above which use

RDBMS to represent programs are very good at this sort of query (e.g. “What

methods does this class have?” “Is there a methods that returns this type?”, etc.)

They easily “capture” set-membership based non-local aspects. These systems

have difficulty when representing the imperative (or local) aspects of programs.

Imperative aspects cannot easily be represented by sets. You would need an

enormous number of follows relations, and other relations, which describe all the

complexities of control flow. This is best represented by a CFG. Epitaxis has the

expressive power to query the AST and derive the CFG, which can then be used

for further queries. The RDBMS systems, which get around this problem, do so

by partial ad hoc measures. PQL answers control flow questions using dynamic

30

analysis. They instrument the code and answer queries on the trace. This has all

the normal pros and cons of dynamic analysis versus static analysis, but it is

nonetheless a limitation. Some amount of static analysis is done, but this is

implemented internally and not expressible using their query language. JTL

slightly gets around this problem by “hard-coding” some primitive queries

which analyze the Java byte code to answer dynamic program questions. These

types of queries are not generally representable in their query language and so

their language is limited by what they have prebuilt. These queries pertain to

accessing, reading, writing, and calling, but are unordered within the method

body and are therefore flow insensitive.

The query languages which use an AST or graph based representations

also have limitations. In ASTLOG the AST is imported and queries are made on

it. There is no way within the query language itself to transcend this structure.

Given a semantically complete AST representation, the query rules can deduce

control flow information, but this can become quite cumbersome and inefficient.

It is also a further step away to actually deduce runtime state to perform any

kind of dynamic analysis. CodeSurfer gets around this by building a very

extensive graph to represent the program. This is done internally and not

31

expressible in their query language. In fact, their query language is actually not

deductive, but simply walks the graph representation. It relies on the

information already being represented on the precomputed graph.

A key insight of Epitaxis is that representation matters. Epitaxis not only

has a source complete [103] representation of the program, but also has a

powerful enough query language to extract other abstracted representations as

needed to allow search on a higher level of abstraction. Also, the expressiveness

of its query language and its database of a source complete AST allows Epitaxis

to be more easily extendable to other programming languages. It does not rely on

client language features such as its byte code representation or features of the

client language’s environment such as reflection to access things. Epitaxis only

needs a grammar for the language and class definitions for the nodes of the AST;

its query language is powerful enough to do the rest.

The important question for Epitaxis relative to the RDBMS based systems

is how well does it scale to large programs. Speed wise it scales very well as it

has a memory based representation. The question that remains is how large of a

program can its representation fit within the limits of RAM? The one thing in

Epitaxis’ favor is time. Systems with 4Gb of RAM are common, and with the

32

advent of 64 bit systems, this will continue to grow. Memory size grows

exponentia lly with time, whereas, program code size probably grows linearly

with time. I suspect we are very close to the transition where memory size

overtakes program size. I currently estimate that Epitaxis can represent 1 million

lines of C code in just over 3 GB of RAM.

2.2 Symbolic Execution

Validating software is a complex and difficult task. There are two

approaches to ensure the correctness of software. One approach is program

proving using techniques from static analysis and model checking. While

theoretically this approach is very appealing, powerful and accurate, practically

this approach does not scale well to realistic size programs, tends to be restricted

to simple properties, and is prone to a large number of false positives [144]. The

other approach is program testing. Testing is expensive, tedious and tends not to

find most errors. To remedy this there has been research toward automating the

creation of tests. The main method for this is through symbolic execution.

Symbolic execution is a technique to determine a set of input vectors that

when input to a program will cause all of its paths to be executed. The most basic

33

approach to symbolic execution is to first create a control flow graph (CFG) from

the program source code. This identifies all the decision points in the program

and all the variables which control those decisions. This CFG is then traversed

from the entry point along a particular path. A list of all the input variables,

variable assignments and branch predicates are then collected. The input

variables represent symbolic values. The variable assignment expressions and

conditional predicates (constraints) along the path represent the path conditions.

The values of the output variables will then be represented by expressions in

terms of the symbolic input values, assignment expressions, and conditional

predicate constraints. This is then solved for the input values. If there is no

solution then the path is infeasible and control flow cannot reach that point. If any

solution is found, the path is feasible; the values of the input variables determine a

vector of test input values to cover that path in the code. The system will then

negate the last conditional (to follow the other path), follow that path then solve

the new path condition to generate an input vector to reach this new end point.

The system will continue to backtrack, negating the new last conditional, and

continuing until all the paths are covered. There are now a set of test input

vectors which can be used to exercise the code base. Mathematically, symbolic

34

execution divides the input space of a program into a set of equivalence classes,

each defined by a path through the program.

The goal of the approach is to generate a set of input vectors that will

cover all the execution paths through the program. There are two serious limits

to the above technique. One is path explosion and the other is that solving the

constraint equations may be extremely difficult. In practice, this both limits the

coverage produced and covers many infeasible paths. Often the same region of

code can be reached via many different paths. In order to help reduce the

number of paths followed, the systems keep track of where they have been and

stops the system from producing redundant coverage.

One of the earliest systems using symbolic execution is EFFIGY [92]. It

worked on a "simple" version of PL/1. Another is SELECT [20] working on a

subset of LISP, and one by Clarke [37] working on ANSI Fortran. All of these

systems were very limited research systems. In addition to the limited processing

power of their day, these systems were also limited by their ability to only

handle primitive data types, e.g. integer, Boolean. An increase in practicality and

power came with the ability to handle dynamically allocated data structures (e.g.

lists and trees) allowing use on modern programming languages such as Java

and C++ [86]. This approach is called generalized symbolic execution by Kurshid. In

35

addition to generalizing the system to handle dynamically allocated data, their

system also used a source to source translation to instrument the code. This

allowed their system to perform symbolic execution using a standard model

checker (for the underlying language) instead of having to build a dedicated tool.

It uses lazy initialization to defer the actual allocation of heap objects until a field

in the object is first referenced. This way only the portion of the heap that is

referenced along the current execution path is materialized. There are three

possibilities in initializing the referenced field: 1) a null value, 2) a new object of

the field’s type, and 3) an existing object of the field’s type. This creates 2 or more

branches in the execution tree. The third case can create 0 or more branches

depending on the number objects of the field’s type the path had already created.

However, their system was still not practical for real world applications.

2.2.1 Concolic Execution

Another variant to symbolic execution is concolic execution. Concolic

execution is a combination of concrete and symbolic execution. By instrumenting

the source code with all the functions needed to carry out the symbolic

execution, the program itself ran the symbolic execution along with a concrete

run. This avoided a whole level of separate machinery to do the symbolic

execution. The system also had concrete values available when the constraint

36

solver got stuck. This allowed symbolic execution systems to reach a real level of

practicality. Part of the efficiency of this method is that the test runs are

happening simultaneously with the symbolic execution, not in a separate run

after the symbolic execution has determined the input values. Here if the

concrete execution throws an exception a bug has been found. Of course the

exception may occur arbitrarily far after the cause. Bugs can also be missed if

they are only caused by a subset of the values in the equivalence class

represented by the path. As an example if there is a condition if (abs(x) <

10) then a = y / x; In this case x having concrete value of 3 is in the

equivalence class of values that may have gotten execution into this path, but it

will not trigger the error.

DART (Directed Automated Random Testing) [71] uses this approach.

DART executes the instrumented program repeatedly, the first time with a set of

random input values. If the input variable is a pointer DART will randomly

initialize it to NULL (with a 0.5 probability) or with the address of a newly

allocated memory location, whose value is in turn initialized using the same rule

recursively. Constraints on pointer data are thereby avoided in favor the

randomly generated data. Each additional run uses a record of the conditional

statements executed in the previous run. The conjuncts in the path conditions are

37

systematically negated. This is used to generate the next set of input values

needed to follow the next path. Thus DART attempts to follow all feasible paths.

If the constraint solver is unable to solve a conditional the symbolic condition is

replaced by the concrete value, then both the concrete and symbolic execution

resume with it. By picking the branch determined by the concrete value (derived

from the initial random values) instead of choosing both (which may result in

unsound behavior if the other path is infeasible), bugs found along the path are

sound. A traditional symbolic execution system which cannot solve a constraint

will not know how to generate a value to take either path and will either stop,

possibly missing a feasible path (producing incomplete coverage) or choose both,

possibly taking an infeasible path (possibly producing an unsound result). The

difficulty in the DART approach is to provide the methods which extract and

solve the constraints generated by the program [124].

Another system using concolic execution is CUTE (Concolic Unit Testing

Engine) [124]. CUTE allows constraints on pointer based structures by separating

pointer based constraints from integer constraints and simplifying them. This

allows them to represent and solve approximate pointer constraints to generate

test inputs. CUTE represents pointer input values logically. That is they don't

have physical memory addresses. When a pointer input value is referenced

38

CUTE first explores the path where the value is NULL. When this constraint is

negated, CUTE must make the pointer point to a structure of the appropriate

type. To populate this structure CUTE will randomly generate numbers for

numeric fields and follow the NULL and non-NULL logical pointer paths when

the inner pointer fields are referenced. These pointer values are represented in a

logical input map; they are not part of the physical address system. Constraints in

the logical addresses are represented by constraints on the integers that represent

them. Each logical address also has a type associated with it. The logical address

system of CUTE is a much simplified version of the proxy-value system that

Epitaxis uses.

One of the main problems with both the symbolic and concolic execution

systems described above is that due to the possibly enormous number of paths

that must be explored symbolically, the testing tends to be wide but not deep. That

is they explore many of the paths from the initial starting point, but because

there are so many they never explore them very deeply. This problem is

particularly prevalent on programs with complicated input or even programs

which input a text string. The systems explore the input parsing code (mostly

exploring paths detecting malformed input as even a text input string of only 10

characters long has 7210 possible values (assuming 72 valid text characters), most

39

of which are probably illegal) but never make it to the input processing section of

the code. To address this problem hybrid concolic testing was developed [106].

This system interleaves random testing with concolic execution to explore the

program state space both deep and wide. It uses CUTE to do concolic execution.

Hybrid concolic testing starts by testing random paths. This allows the algorithm

to explore deeply quickly. When the random testing saturates (finds all the paths

with large equivalence classes and does not produce any new coverage after a set

number of steps) the algorithm switches to concolic mode (from the current set of

program states) to find the improbable paths (those with small equivalence

classes that take a precise set of input values to find) thereby achieving wide

coverage from a set of deep points. Hybrid concolic testing is most suitable for

testing programs that periodically get input (reactive programs) and not suitable

for programs which get fixed initial input and then process the data

(transformational programs). Figure 1 shows their motivating example. It is an

abstraction of a state machine taking both a character and string input iteratively

within an infinite loop. The problem is to cover the execution space to find the

ERROR at the bottom. The authors state that both pure random testing and pure

concolic testing (presumably using CUTE) were unable to hit the ERROR after

40

one day of testing while their hybrid system hit the ERROR in a couple of

minutes.

void testme()
{
 char *s;
 char c;
 int state = 0;

 while (1)
 {
 c = input();
 s = input();

 /* a simple state machine */
 if (c == '[' && state == 0) state = 1;
 if (c == '(' && state == 1) state = 2;
 if (c == '{' && state == 2) state = 3;
 if (c == '~' && state == 3) state = 4;
 if (c == 'a' && state == 4) state = 5;
 if (c == 'x' && state == 5) state = 6;
 if (c == '}' && state == 6) state = 7;
 if (c == ')' && state == 7) state = 8;
 if (c == ']' && state == 8) state = 9;

 if (s[0] == 'r' && s[1] == 'e' && s[2] == 's' && s[3] == 'e' && s[4] == 't' && state == 9)
 ERROR;
 }
}

Figure 1: A Simple Test Function

The concolic execution systems described above use a depth first

exploration (DFS) strategy by repeatedly exploring a new depth with each

iteration. EXE (EXecution generated Executions) [29] works using DFS by forking

at each decision point instead of keeping information in an external file and

rerunning the program. This way the number of children is linear in the depth of

41

the process chain. EXE works by using a source to source translation to

instrument the program with the routines necessary for the symbolic execution.

In addition the user must manually insert calls to mark areas of memory as

symbolic. This presumably limits the scope of what is executed symbolically so

the program can run without overflowing memory tracking. Whereas CUTE and

DART tightly interleave symbolic and concrete execution, EXE merges them. If

the operands are concrete, normal concrete operations are performed. If any

operands are symbolic then symbolic operations are performed. EXE uses a

UNIX fork() system call at each unresolved decision point. When taking the true

path it assumes the condition true and when taking the false path it assumes the

condition false. The fork() points constitute a DFS chain of the execution tree. In

this manner EXE (ideally) will follow all paths. EXE's instrumentation includes

universal checks for integer division and modulus by zero, that a dereferenced

pointer is never NULL, and that a dereferenced pointer lies within a valid object.

In addition programmer supplied assertions are also turned into a universal check.

A universal check is more general than a concrete check. The universal check tests

that the error condition or assert condition are not possible for any possible

solution to the symbolic value tested. So whereas with concolic execution a

program fault will occur only if the concrete value standing in for the symbolic

42

value triggers the fault, universal checks will detect the error if any possible

feasible value triggers the fault. This way, one path traversal represents the

whole equivalence class of values, not just one concrete vector of values in its

error detecting ability. Of course this error detecting is limited to the small set of

universal checks that are instrumented into the code. EXE will create a concrete

value(s) to continue execution if its constraint solver fails.

KLEE [28] is a system that works using a custom built virtual machine.

The KLEE virtual machine directly interprets the assembly language output by

the LLVM compiler [100]. The virtual machine operators handle both concrete

values and symbolic values. Potentially dangerous operators (such as division or

pointer dereference) generate branches that check if any input values could cause

an error. If one is detected, KLEE generates a test case and terminates the

execution state. On conditional branches, KLEE queries the constraint solver to

determine if the conditional is either provably true or false. If not KLEE clones

the state so that both paths are explored. When a dereferenced pointer can refer

to N objects, KLEE clones the current state N times. KLEE has been designed to

handle the two following problems with symbolic execution: 1) handling the

exponential number of paths through code and 2) the challenges in handling

code that interacts with its surrounding environment, such as the operating

43

system, the network, or the user (colloquially referred to as "the environment

problem"). KLEE is a robust system that has been tested on a wide range of real

programs. During its testing it reached a maximum of 95,982 concurrent

execution states. The average of the maximums across programs tested was

51,385. KLEE implements various state compaction optimizations as well as

query optimizations to achieve these results. Like Epitaxis, KLEE maintains the

entire execution tree and uses a memory management system that shares values

across states. KLEE models about 40 systems calls (e.g. open, read, write,

lseek, etc). This allows it to write symbolic values to a file and later read them

back in. KLEE can also be set to simulate environmental failures by failing

systems calls in a controlled manner.

KLEE gets more power by virtue of implementing their own virtual

machine to directly handle the symbolic execution instead of having to

instrument the source code. Epitaxis takes this further and has its own "source"

level interpreter. This allows access to the source level constructs, declarations,

and type definitions. Much of this information is compiled away and is not

available to an assembly level virtual machine. Epitaxis uses this information to

know what types are being referenced, when members are being referenced, and

44

about casting. This allows a much wider range of information to be queried or

checked.

There are two main thrusts to the work of symbolic execution. The first is

effective execution tree coverage. This means that the SE system should traverse

all the feasible execution paths (completeness) efficiently and without

redundancy, and without traversing any infeasible paths (causing unsound

results). The second is either producing the input vectors to test programs or

directly testing the code during the coverage. Currently the types of bugs found

are "crash" bugs. (The one exception to this is the systems which track object size

and catch when pointers are dereferenced to locations outside the defined

boundary). These are bugs that are "easy to spot" once you are at their point of

execution in the running code. The CPU itself will point them out to you (by

throwing an exception). Although it is good to know about these really what is

wanted is not this symptom, but the cause i.e. where the code goes wrong in the

first place.

Because of the typically exponential growth of execution paths and loops

whose termination depend on symbolic values, symbolic execution systems have

to enforce alternative termination strategies. They cannot wait for all their paths

to reach an exit or error state; some never will. To ensure termination within a

45

reasonable amount of time they either impose a depth limit to the execution tree

or a run timeout limit. Epitaxis adds a third alternative to these; it can track how

many times a path steps on itself. After a path traverses the body of a loop and

tests the loop exit condition, assuming a symbolic value, it will split into two.

One leaves the loop and the other repeats the loop stepping on itself. Epitaxis can

be set to allow this to happen a set number of times after which the path will

terminate. This is useful if the system is looking for type anomalies in

assignments. Except in contrived cases these are likely to be found the first time

through the loop and a second iteration is unnecessary.

This research aims to expand this second thrust in two ways. First is to

spot these errors sooner, that is closer to their cause and the second is to use this

powerful execution space coverage technique to find more "sophisticated" and

"conceptual" bugs. For this prototype version this involves both the interpreter

tracking more semantic level information that can be used to locate bugs on the

spot and gathering information from throughout the execution tree about type

usage and member access and analyzing it for problems as a collection. We

expect that further research can expand this class of analysis. Part of the reason

for the open design of the symbolic execution is to facilitate exactly this line of

research.

46

Additionally, this research leverages symbolic execution's ability to

traverse the execution space in order to bring program query into the semantic

realm. Because of the open architecture of the symbolic interpreter it is possible to

attach assertions and collectors to semantic points in the execution space. This

will be described in Section 4.4.7 below.

2.3 Aspect Oriented Programming

Aspect oriented programming (AOP) is a kind of meta-programming

system for addressing crosscutting concerns [130]. Crosscutting concerns are parts of

a software system that would logically belong to one module (called an aspect)

but implementation-wise needs to be distributed throughout the software. AOP

and Epitaxis share a common concern of how to label and find (or select) a related

set of points, called join points, within software. In the case of AOP these join

points specify where pieces of code need to go. Some AOP systems can recognize

both static and dynamic join points. A static join point can be defined by a location

in the programs source code or syntax tree without need of runtime information.

A dynamic join point in addition specifies runtime information such as memory

state or call sequences. AOP languages which allow static join points are called

specification based join point languages. One which also allows memory state to

47

specify locations are called state-based join point languages, and one which also

allow call stack information are called program based join point languages.

Whereas AOP languages specify join points to define where to effectively insert

code Epitaxis specifies collect points to locate where to extract information.

2.4 Object-oriented Logic Programming Systems

A related area of research is in object-oriented logic programming

systems. Although this is not a main thrust of the current research, an object-

oriented logic programming language forms the backbone of the analysis engine.

This system has some interesting features related to those, which show up in the

literature. Object-oriented logic programming systems are prolific in the

literature. An annotated bibliography from 1993 [5] states that there are about

180 references and at least 50 different mergers and/or object-oriented plus logic

programming languages. They can be divided into three groups based on 1) an

object-oriented language with logic added, 2) a logic language with objects

and/or inheritance added on, and 3) languages designed from the ground up to

have a somewhat equal expression of both. The system described in this thesis is

in the second category. Typically these systems use object-oriented ideas to

implement some form of inheritance or as a way to create different name spaces

48

for rules and facts to help organize the database. The other synthesis is to

augment the structure of facts. Logic languages often have a “purest” [30]

quality where the only data structure they admit is lists. By incorporating facts as

objects the facts can have a little more structure. This can go to the point of full

frame based systems or semantic nets with logic programming on them. Epitaxis

uses the class structure of facts to help organize its database of rules and their

range of applicability. Epitaxis also uses the object structure to organize its

database of facts, however because this database is generated by a parser or by

rule application, it tends to have a much more regular structure than a frame

based or semantic net system.

49

"If you don't know where you are going, you

will wind up somewhere else."

--Yogi Berra

Chapter 3

3. Background

Software is an entity that has meaning on different levels: 1) character; 2)

lexical; 3) syntactic; and 4) semantic. Information must be lifted and integrated

through these levels in order to gain an understanding of what a program does.

A software developer must gain this knowledge and understanding in order to

locate problems and make changes to a software system, so that the system can

stay current with user and business needs. This process relies heavily on human

reasoning to analyze and integrate information, but as software increases in

50

quantity, size, and complexity, tools that are capable of taking over more of the

work are needed.

In order to support this process of information integration, an

environment is needed where software developers can interact with information

about source code from the four levels. Each of the different levels of meaning

and abstraction for source code has their uses, and different levels are inherently

more efficient for different types of queries or analysis. Epitaxis forms the basis

for such an environment. This approach builds on research in five areas: source

code searching; parsing and interpreting; unification and deductive retrieval;

program query; and symbolic execution [76, 99, 108, 109, 117, 122, 123, 132, 134,

135, 141]. Search is a technique to identify things; it is a way to name an

unknown entity such that it can be found and processed. The more expressive

the search language, the wider the range of things that can be identified, and

consequently the more that can be dealt with computationally. Parsing is

essentially a technique to transform representations. Different representations

determine how easy it is to access content. Unification and deductive retrieval is

a way to reason over some representation. Symbolic execution is used as a

technique to expose the execution state space to search. Finally, program query

51

can be thought of as search on a transformed representation which permits

search at a higher level of abstraction, that is, for function and relationships

instead of a search on parts. Much of the labor in program analysis is the

construction of a representation that admits the desired results and must be

tailored for each new analysis. This is a key insight of this research: a robust and

flexible unified representation allows analyses to be performed using a

declarative and constructive query language to identify a variety of results,

ranging from character-based search to value-based search, including syntactic

and semantic query.

3.1 Source Code Searching

Software developers have needed tools to search through source code

since the beginning of interactive programming environments. It started with

simple keyword search. This was extremely limited as it only allowed you to find

fixed sequences of characters without regard to context. When regular

expressions were added, it became possible to find search patterns and context

using the search language. An important advance was made when search

techniques started using concepts of program structure, such as identifiers of

variables and functions, directly in expressing search patterns. Syntactic search is

52

more difficult than lexical, due to language specificity and implementation

challenges. There is more possible variation in the order and direction of search

in a tree structure than a linked list. Syntactic search is usually limited in its

ability to reason about its choice of search direction. This is largely a limitation

caused by the expressiveness of search languages. Often search direction is fixed

such as in preorder traversal, or by only being able direct movement based on

immediate neighbors. One example of such a search language is syntactic regular

expressions [4, 12, 119, 120]. They are limited by the limited expressive power of

regular expressions. In addition, they have no dynamic representation. The usual

solution is to build another data structure in which the search direction decisions

are easier to make.

Another approach to search at the syntactic level involves pre-processing

the program and storing facts in a database file of entity-relations [34]. The CIA

System [36] uses this approach, as do others [6, 32, 75, 104]. Alternatively, the

parse tree can be transformed into other representations such as data flow graphs

or control flow graphs [7, 59, 77, 97, 105, 116].

The various methods above each address part of the problem. Because

they are based on a fixed data structure or a limited search language they are

53

each limited in what semantic information they can access. Also, the set of

relations is fixed at build time so if the needed relationship was not anticipated in

advance there is no way to search based on it. These analyses are run in batch

mode on a snapshot of the code, which limits their applicability in today’s

integrated development environments.

Searching at the semantic level is a problem in need of original research.

While information from semantic analysis can be stored in a database and

queried in the same manner as syntactic information, this approach is limited to

those relations and keywords that have been stored. There is no general

mechanism for specifying patterns and relations at the semantic level.

This research seeks to provide a mechanism for specifying arbitrary

queries and relations in source at all four levels of program structure. This

mechanism is based on Prolog-like predicates, consisting of facts and rules that

can be used to specify software entities including individual characters, classes,

dependencies, abstractions, and even execution patterns or relationships. The

desired search target is represented as predicates that the Epitaxis system uses to

traverse, i.e. search, a unified data structure that includes the lexical

54

representation, an abstract syntax tree, a control flow graph, execution states and

virtual abstract semantic graphs.

Typically, Prolog systems search a collection of facts and use rules for

combining or inferring facts [18]. Object-oriented versions of Prolog [66, 82, 115]

allow the list of facts to be grouped and to inherit from other groups of facts, but

their object-orientation exists primarily to create name spaces for groups of facts.

Various relationships between parts of facts can be found through unification,

but the search path is linear except when rules are followed. The Epitaxis

approach differs in that the facts are stored as a tree or graph of objects or can

exist virtually, as well as being formed on the fly, rather than as a simple

unstructured collection of facts and rules. Whereas Prolog finds logical

relationships between facts, Epitaxis finds structural and semantic relationships

between objects and execution states. Consequently, the search paths and targets

can be more contextually related, more creative, and much more expressive.

3.2 Parsing

Parsing came about as a means to bridge the gap between how humans

interact with source code and how machines interact with source code. Parsing

55

takes a sequence of tokens and converts it into a tree, such that the software’s

syntactic structure is directly represented. This process is so important that early

in the history of electronic computation, it was studied and vastly improved;

parsers became much more efficient in both time and space [52-54, 95]. Parser

generators were created that allowed a parser to be built from a language

specification [2, 33, 93].

Once parsing became commonplace, ASTs became a standard data

platform for further transformation of representation. Like lists of characters, or

lexemes, trees of syntactic entities are limited in what relationships they can

directly express. (However, they are good at expressing context or scope.)

Indicative of the chasm between syntactic and semantic structure, parsers and

parser generators are unable to go directly to a general semantic structure.

Analyzers are needed to create decorated ASTs, or abstract semantic graphs [15];

these, or equivalent data structures, were created to directly expose more

complex relationships within software such as data flow, control flow, and

dominance [21, 45, 46, 102].

Like the tip of an iceberg, this diversity of data structures and techniques

hints at an underlying difficulty. The problem is that these techniques are trying

56

to squeeze out semantic information from a static structure. This works well

enough in individual cases, but precludes easy integration of these analyses.

Every algorithm uses a different static structure to capture the behavioral

information that it needs.

The gap between syntactic and semantic representation is not just

quantitatively greater than the gap between lexical and syntactic representation

but is also qualitatively different. Semantic relationships are not just spatial but

also temporal. They are not fixed; they depend not only on where in the code, but

also on when in the code. In some cases, an abstract summary of information is

needed to enable the system to be efficient. This means that any fixed data

structure can capture only a small subset of the content.

The solution to bridge this gap between syntactic and semantic

representations lies not in a fixed data structure, but in a dynamic representation,

specifically, the virtual abstract semantic graphs. Rather than constructing

abstract semantic graphs as needed by each analysis, the Epitaxis approach

declaratively reifies the required ASG while traversing a representation of the

source code to provide the equivalent information. This approach has the

advantage of being able to represent an arbitrary set of abstract semantic graphs

57

simultaneously in a single data structure. The set of graphs is limited only by

traversal rules stored in the system and this collection of patterns, templates, and

functions is completely extensible.

3.3 Unification and Deductive Retrieval

First-order logic and logic programming is used across a wide range of

domains. One of the first suggestions of its use in computers dates back to

McCarthy [110] in 1959 for representation and reasoning in AI. Logic

programming also had an early start in mathematical theorem proving [68]. It

eventually found its way into a general-purpose standalone programming

language know as Prolog [51]. Prolog and its descendants have evolved and

there are now many systems with non-standard versions of logic, including

modal logic, temporal logic, many valued logic, default and non-monotonic

logic, fuzzy logic, etc. It has also been used in areas of program analysis such as

model checking. One of its benefits stems from the fact that it is declarative

instead of procedural. This makes writing Prolog like programs easier (at least

once you understand the paradigm). A drawback of Prolog type programming is

efficiency, completeness and termination issues. Some of this has been mitigated

using tabled or memoized systems [35, 133].

58

Typically, Prolog systems operate with an unstructured database of facts

and rules. In practice, there is a simple ordering structure imposed on the

database by the order in which the facts were entered and consequently, the

order in which the facts are searched. The facts represent what is known and the

rules express what can in addition be logically deduced. Prolog systems use

backward chaining to deduce if some assertion is true or not. It also uses

unification to bind the facts and terms that will make some assertion true. In this

way it performs a search. One of the difficulties of Prolog systems is that they are

"timeless" and "contextless". Like its Platonic ideal (logic), Prolog tends to see

truth independent of time or context. Since many man-made systems don’t meet

this ideal, Prolog variants have been created, such as, object oriented versions

[14, 65, 89, 90, 115], and non-monotonic versions [69] to help organize context or

time dependence.

In this research, an alternate form of unification and deductive retrieval is

explored. Instead of operating on a "flat" set of facts the Epitaxis system operates

on structured data. For program query and analysis this includes the AST and

CFG of the program. Here each fact is a node in a tree or graph. The node’s class

corresponds to the predicate indicator and the values in the slots of the node

59

correspond the terms. The slot names supply the term ordering. In this system,

unification binds variables to positions in the tree or graph, and rules express

movement through the tree or graph. In addition, rules can mandate the creation

of new nodes, which can have their slots filled through unification. With the

additional feature of unification by reference, where variables can bind to locations

within objects, the system can, by using rules to walk structures, build epitaxic

structures linked to the original structure bi-directionally. This mechanism is

used to create a CFG from the AST. In addition, the current research adds two

features to address the lack of context sensitivity in Prolog. The first is a

predicate that declares dynamically scoped variables. The variables in a Prolog

rule are statically scoped. By introducing a predicate that declares some variables

special they can capture the dynamic context that is expressed within many AST

structures1. For example, the semantics of an AST node for a while loop dictates

the scope of break and continue statements. Any rule fired within the body of a

rule processing while statements will want a dynamically declared target for any

processed break and continue statements. The second feature to address context

is that the rules are "methodized". Each rule is specialized based on the class of

1 A similar idea has been incorporated into the LALR(1) parser productions to create dynamic symbol tables
to handle the dynamic and messy way that C identifiers can be types or variables and shadow each other.

60

the first term in the head predicate. The signature can be generalized to honor

the class of all the terms, but this extra feature has not been needed for the

current application. Other non-standard mechanisms are used to structurally

memoize nodes as they bind to variables within certain contexts. Gatherers collect

the nodes the variable binds to and generators emit the nodes that have been

collected. The final enhancement to the system is the ability of the search routine

to call upon the symbolic interpreter to present execution states to be searched.

The idea here is that the system can "deduce" or find things not by just searching

what already exists in the database (the AST), but can also find things in

structures that it builds by virtue of searching other structures, or by searching

states in an executing program.

3.4 Program Queries and Analysis

There is a spectrum of program analysis techniques, including control

flow analysis, data flow analysis [78, 79, 114], program dependence graphs,

slicing [64, 80, 125, 136, 138, 139], pointer alias analysis [47, 81, 113, 128, 129], type

inference [19, 73], abstract interpretation [40, 85], symbolic execution [11, 38, 42,

43, 91, 92, 94] among others. They are often broadly divided into two classes:

static analysis and dynamic analysis [9, 60], although other taxonomies have

61

been suggested [145]. Static analysis techniques work on some fixed data

structure representing some aspect of the software [27, 56, 61-63]. Often

constructing this data structure is the bulk of the work, because it determines the

kinds of analyses that can be done easily. In some sense static analysis builds a

model of program state, which is an abstraction of the runtime states. The system

then reasons over the abstracted model. The nature of the abstraction determines

the type of static analysis performed and its properties. By being willing to throw

away information (creating the abstraction) the analysis trades precision for

soundness. The result is more accuracy (soundness) on a simpler (conservative)

problem. Static analysis can be said to focus on a subset of data structures.

Dynamic analysis is used to provide information about the program behavior at

run time. There are a variety of approaches, including producing an

instrumented version of the executable, and augmenting virtual machines [10, 13,

24, 112]. In dynamic analysis the program is executed and facts are collected.

Here the information is completely precise, but specific to the particular run (the

set of inputs). The results will not usually generalize. Here the analysis trades for

precision at the expense of generality (incomplete). The quality of the input and

number of different runs the data is gathered over determines the degree of

62

generality of the conclusions. Dynamic analysis can be sa id to focus on a subset

of executions.

Program analysis systems tend to be procedurally based, monolithic, and

complex. Typically, they are designed to be part of a compiler, used to determine

the appropriateness of various optimizations. On the other end of the spectrum,

there are program query systems. These systems tend to be more declaratively

based and interactive. A detailed description of some program query systems is

given in Section 2.1. They tend to transform the program to be queried into an

AST, a set of entity-relations in a database, or some form of crystallized execution

trace and lookup information in the transformed version.

There are a number of features that characterize the expressiveness of

program query languages: population, dimensionality, direction, grip, reach,

container, points of origin, and language. 1) Population is an expression of the

entities that make up the search space. It can be characters, lexemes, pieces of an

AST or CFG, some transformed version of these, a set of ER-tuples, or some

aspect of an execution trace or execution state. 2) Dimensionality refers to the

number of orthogonal directions that can be considered when moving through

the search space. This describes the structure of the search space, i.e. are we

63

searching down links of some node, are we searching up or down an inheritance

hierarchy, are we searching amongst logical relationships between items, are we

searching computed values, are we searching along an execution path, etc. 3)

Direction refers to the structure and number of different paths in which a search

can proceed within a given dimension at a given point. If we were searching

through links in nodes there would be one direction for each allowable field. If

we were searching inheritance relationships search can go either along sub-

classes or super-classes. If we are searching an execution path can it go either

forward or backward. If we are searching a logical space, we may only look

along true facts, or may also look along may-be-true facts, or even some more

general lattice [48] or bilattice [70] of states. 4) Grip refers to the quality of what

defines a match between the search description and a member of the population.

This can be a thing such as the objects identity, value range, class membership,

slot values, structural relationships, statistics, etc. 5) Given some reference point

or landmark reach refers to the range of possible search space between it and the

next point of consideration. Some methodologies can only look at the next point

along a path, some can also look backward, and others may be able to skip over a

large block of the search space to find what they are trying to match. This also

refers to the level of control in selecting or avoiding various dimensions or

64

directions. 6) Container refers to the shape or structure of results found. This can

be a single item, a set, a stack, a queue, a tree or a graph. 7) Points of origin

express the variety of possible starting points for the search. Do all searches start

at the beginning or root or can a search be started from any point in the search

space? 8) The final feature is the nature of the search language itself. Is it concise

or verbose? Is it procedural or declarative? Is it simple or complicated? Does it

admit recursion? Are their looping or other control constructs? In what forms can

it hold state or is it stateless? Is it sound? Is it complete? Is it precise? Is it

extensible?

From the point of view of information integration to support human

reasoning, the overhead cost of many queries and analyses are too high to be run

interactively. Typically, each time the code is changed, a new program or

executable needs to be analyzed from scratch. A more serious problem is the

discontinuity between syntactic and semantic information, because the latter

needs to incorporate information about behavior, temporal relations, states, and

data values. The two operate on different representations of the source code and

the premises underlying the analyses are radically different. There is no

mechanism that can be used to specify both types of query. The Epitaxis

65

approach will make use of a data representation and search engine that will

allow syntactic and semantic queries to co-occur naturally. Also the data

structure representing the program must have a very close structural

relationship to the program so the representations are intuitive, are very fast to

incrementally update, and allow for high bandwidth interaction. Although one

has to contend with learning a very expressive search language, this one

framework is capable of expressing queries over lexical, syntactic, semantic, and

abstracted views of the program. The current research project intends to push the

expressive power of program query near or into the zone of program analysis

while maintaining as much of the declarative nature as possible.

3.5 Symbolic Execution

Modern symbolic (and concolic) execution systems are an interesting

extension of dynamic analysis technology. The systems either instrument a

virtual machine (if the language uses one e.g. Java), write an instrumented

virtual machine for the assembly produced by the language's compiler or add

instrumentation to the source code. The instrumentation then allows the code to

execute with symbolic values in addition to the normal concrete execution. The

instrumentation collects the path condition, controls backtracking when

66

exploring alternative paths, and allows the use of concrete values when the

constraint solver fails. Framed in this dissertations' terminology symbolic

execution systems can be considered as a transformation from the program’s

static structure (the CFG) to the program’s dynamic structure (execution states).

Traditional symbolic execution systems search for input values to force execution

down specific paths. These values can then be used to drive testing to search for

bugs. Newer symbolic execution systems include specific bug tests with the

instrumentation and can find bugs such as division by zero, NULL dereferences,

and pointer dereferences lying outside a valid object.

In this research, the separate testing phase is completely done away with.

Instead of instrumenting the code or the virtual machine, a source level virtual

machine is created which detects violations of the language’s semantics and the

bugs are reported during the search of the control flow graph. What is detectable

is not limited by the specific instrumentation.

In addition, this research uses symbolic execution as a means to search the

semantic execution space of the program. This represents the execution tree of

the program. By building the symbolic interpreter (SI) to work on the ASG

directly instead of assembly code, and because the ASG contains syntactic and

67

type information, the SI has a more complete representation of the execution

state at each point in the execution tree. When the SI goes to write a value it is

not just pushing a number to an address, but it knows the type of the object

being written and it knows the type of the memory location, and even the

member name of the place. These can be tested to trigger an assertion or a

collector.

3.5.1 Constraint Solving

One of the key elements in a symbolic execution system is the constraint

solver (CS). By definition a symbolic execution system has symbolic values. This

really means that the system has to be able to compute with unknown or

partially determined (constrained) values. This becomes important when a

conditional which depends on symbolic values is being executed. This bears on

the system behavior in two ways. The first is in deciding which branch of the

conditional to take. There are three possibilities and one impossibility. The

second is being able to deduce the values of some of the unknowns in the

conditional.

The first possibility is when the CS can decide the conditional in spite of

unknown values. This is of two kinds: generally solvable and specifically

68

solvable. An example of the first case is if (x * x >= 0). This is always true

whatever the value of x (assuming real x) and represents a poor coding style. A

more subtle variation is with nested conditionals where the outer conditional

forces values on the inner conditional that then can be resolved only one way. An

example of this is if (!x) { if (x * y > 10) }. The second kind is where the solvability

depends on the particular run. An example of this is if (x * y >= 0) where during

a particular run both x and y are constrained to be positive by prior conditionals

but this is not always the case for all possible runs. The system must only follow

the "one true path".

The second possibility is when both values of the conditional are possible.

In this case there is simply not enough information to decide. The system must

follow both paths under their new respective constraints.

The third possibility is that the CS is not powerful enough to decide which

value(s) of the conditional is possible. Often constraint solvers only work on

linear constraints, quadratic constraints will be unsolvable. The problem here is

what to do? There are three choices: 1) take both paths, 2) take neither path, or 3)

randomly choose. This can create two problems: 1) taking a path that is really not

possible and 2) not taking a path that is possible. In the first case unsound results

can follow. The system will think it found a bug that is really not possible. In the

69

second case results can be incomplete. A path that may contain a problem will

not be explored.

The impossibility is when the CS thinks that neither condition is feasible.

This represents a bug in the CS.

In addition to deciding conditionals, the CS can also deduce values, or

further constrain values for the unknowns. Most systems just collect constraints

on the unknowns. So as the symbolic values make their way through code there

is an ever growing list of constraints attached to them. Systems often work to

simplify this list of constraints or recognize when the constraints have become

infeasible. There are also systems where sub-constraints (constraints that are

shared) are cached. Epitaxis does not explicitly represent constraint lists. Instead

it uses a weaker but faster system. The values themselves represent the

constraints. There is a symbol UNSPECIF IED-VALUE for a completely

unconstrained value. If a value is known to be greater than zero (i.e. it is inside a

conditional if (x > 0) instead of carrying around the constraint (x > 0) the value is

represented by an interval tree containing only the open interval (0, inf). If later

we cross if (x != 3) the value is represented by the interval tree with two intervals

(0, 3) and (3, inf). Epitaxis knows how to do math on a combination of concrete

values and interval-tree values. The simplification and weakening of the CS

70

system comes from how UNSPECIFIED-VALUE is handled. If x is

UNSPECIFIED-VALUE and y = x + 1 then y will have the value UNSPECIFIED-

VALUE. So later if the system executes if (y > x) Epitaxis will not know that this

has to be true and the system is stuck with the dilemma of choosing between

incomplete and unsound when it shouldn't have to. The nature and the power of

the CS largely determine the quality of the symbolic execution system.

71

"You think you know when you can learn, are

more sure when you can write, even more

when you can teach, but certain when you can

program."

--Alan Perlis

"What I cannot build I cannot understand"

--Richard Feynman

Chapter 4

4. Methodology: Epitaxis

More powerful program comprehension tools are needed to help software

developers understand and maintain increasingly complex legacy systems that

businesses and citizens rely on. Current program comprehension tools are

hampered by a number of limitations: they lack an appropriate data structure for

integrating information about a program from the character, lexical, syntactic,

and semantic levels; they lack a mechanism for specifying searches on all these

levels of abstraction; they perform syntactic and semantic program queries

72

separately; they tend to have limited expressiveness of search targets; and finally,

they tend to operate in batch mode, separately from interactive development

environments.

The solution is to build a software development tool, which can represent

software on character, lexical, syntactic, and semantic levels and search through

these representations, even interleaving them, to access arbitrary patterns. This

will allow software developers to integrate information from the widest range of

program queries, including lexical, syntactic, and static and dynamic semantic

queries. In addition, the system is embedded within a hybrid character/structure

editor enabling high bandwidth interaction and visualization.

The solution has four main parts: a data structure for representing

information about the source code at all levels of abstraction, a transformation

system to produce these representations and create new ones, a language for

specifying searches, and powerful search engine to process them.

The data structure is the Virtual Abstract Semantic Graph. While most

software query tools use a fixed data structure to represent semantic information,

such as a control flow graph or a data flow graph, this system has a set of

73

language-specific Prolog-like rules that reify arbitrary ASGs by traversing the

source complete AST. This way, as software is modified, and the memorizations

become stale, the semantic rules can recompute them whenever the data

structure is queried. The semantic rule base will describe how to walk the data

structures semantically, thereby allowing the information to be obtained

dynamically and interactively. The rules need only describe the relationships

between the data elements, the order of execution and the computation and flow

of data values.

A powerful search engine (with multi-pathed control flow) can extract any

semantic information expressible in its search language by walking the parse tree

or the control flow graph using the semantic rules; Semantic patterns can be

extracted via unification with variables in search templates. The semantic rules

can be tagged with side effects, which will allow the code to be executed

concretely, abstractly, and symbolically, or in any mix of the three. These

semantic rules with their attached method calls along with a symbolic multi-

pathed memory system constitute an open symbolic interpreter. All of these

components are built into a flexible, extensible interactive editor.

74

In the remainder of this chapter, these parts, and an initial prototype are

described.

4.1 Virtual Abstract Semantic Graphs

In order to make searching source code efficient and robust, the source

must be converted from its character-based representation into a representation

that more closely maps to its content. Since a program’s content exists on four

levels, lexical, syntactic, semantic, and via abstraction, the data structure needs to

be represented and must integrate information from all these levels. Each

representation is structured to map isomorphically to its content. The data

structure consists of a doubly linked list to represent information from the

character and lexical level that is intertwined with an AST and a CFG. Virtual

abstract semantic graphs are reified by traversing this data structure to yield the

information needed for queries. In addition the four levels have links between

them to allow easy transfer from one level to another.

75

Compound-Statement

:CONTEXT

:START

:END

:DECLARATIONS

:STATEMENTS

:CODE

If-Statement

:CONTEXT

:START

:END

:COND

:FALSE

:TRUE

:CODE

NOOP-Instruction

:SOURCE

:PREVIOUS

:NEXT

NOOP-Instruction

:SOURCE

:PREVIOUS

:NEXT

NOOP-Instruction

:SOURCE

:PREVIOUS

:NEXT

Null-Statement

:CONTEXT

:START

:END

:CODE

If-Conditional

:CONTEXT

:START

:END

:COND

If-Instruction

:SOURCE

:COND

:TRUE

:FALSE

Expression-Instruction

:SOURCE

:PREVIOUS

:NEXT

:ROOT

:LEAVES

a

{

Display Template

R 2 C 1 L 1

}

Display Template

R 2 C 21 L 1

;

Display Template

R 2 C 20 L 1

;

Display Template

R 2 C 18 L 1

else

Display Template

R 2 C 13 L 4

;

Display Template

R 2 C 11 L 1

i f

Display Template

R 2 C 3 L 2

(

Display Template

R 2 C 6 L 1

a

Display Template

R 2 C7 L 1

)

Display Template

R 2 C 9 L 1

Null-Statement

:CONTEXT

:START

:END

:CODE

Null-Statement

:CONTEXT

:START

:END

:CODE

Figure 2: Representation of fixed data structure of { if (a) ; else ; ; }

4.1.1 Character and Lexical Level: Linked List

The first level is simply a doubly linked list representing the sequence of

language tokens comprising the program. This sequence of tokens is a complete

lexical representation of the program. It includes tokens for blank lines, line

continuation characters, comments, pre-processing directives, and all the tokens

comprising the program code. Each lexical token not only contains the sequence

of characters determining how the token will display on the screen, but inherits

Static
Semantic
Level

Syntactic
Level

Lexical
Level

76

routines from its class describing how to display the token, what colors to use,

etc. In addition formatting information is stored in this level, that is, each tokens

source line and column information. This level is the entry point for the user

interface.

4.1.2 Syntactic Level: Tree

The second level is the source code syntax tree. Each node in the tree is

typed and bears an inheritance relationship. The tree is also doubly linked. Each

node has a link to its parent as well as all its child nodes. This way we can freely

move around the tree no matter where in the tree we may start. The user

interface can directly access any node. Each node in the lexical chain has an up-

link to the lowest level syntactic structure in which the token participates.

Because each lexical token also has screen-positioning information the code looks

like it has a text based editor user interface. One hop up and the syntactic

structure is available.

77

4.1.3 Semantic Level

4.1.3.1 Static Semantic Level: Graph

The third level is an executable control flow graph. Nodes in the AST are

of two types. The first comprise control flow structures. The second comprise

executable expressions. Each control flow structure will be traversed by the tree

parser to construct interconnecting links between the executable expressions.

Conditional expression processing nodes will be added to the execution graph as

determined by the control flow structures. This will form an executable

representation of the program. Each node in the graph will be linked both in the

forward and backward direction. In addition each node in the AST will have a bi-

directional link with the corresponding node in the CFG. This will allow

complete movement starting from any point in the program to any other point

via lexical, syntactic, and semantic orderings. This level can be traversed as a

static structure. Nodes can be visited forward or backward along static execution

paths. Here no accessibility of program values is available. This represents the

static execution connectivity. Not all these paths may be feasible under actual

execution. The feasibility of execution paths is determined by the solvability of

the accumulated constraints along the conditionals on the path.

78

4.1.3.2 Dynamic Semantic Level: Symbolic Execution

This level represents all the information that only comes into expression

during program execution. This part of the third level is accessed via an open

symbolic interpreter (described in Section 4.4). The interpretation is performed

symbolically so the entire execution space (within memory limits) is represented

instead of a particular or small set of individual execution states. This allows

more comprehensive questions to be asked. The level is reified by traversing the

CFG with a symbolic interpreter that can process navigation whether the

conditionals are resolved or not. This is one of the bridges to the abstract level.

4.1.4 Abstract Level: Virtual Graphs and Structuring
Memoization

The fourth level is virtual. The three levels above represent the entire fixed

information content of the program. However, because of the need for efficiency

and abstraction this is not sufficient. This fourth level allows data structures to be

built virtually and possibly reified via memoization. It is reified by Prolog-like

rules that specify how to move through the AST or the CFG. In the case of virtual

data, the data is never actually extant, but exist as parts gathered logically

through deduction or through interpretation. This abstract gathering can occur

over the AST, the CFG, elements exposed through the interpretation of the

79

program or some combination thereof. This is done by rules controlling traversal

of the data structure. The particular nodes of the AST or CFG inherit, through

their class membership, sets of rules describing how to walk the node or how to

execute the node. This way the nodes or results of executing the nodes can be

visited by the search routine binding to the pieces it is looking to find or relate.

In the case of structuring memoization, these bits of data will be captured in a

data structure. Depending on the usage, this data structure can be a set, stack,

queue, tree, or graph. It can be persistent or temporary. This structure can also be

passive or active. Active data structures are used to directly guide search paths

whereas passive data structures are just searched. An example of an active data

structure would be to stack nodes discovered during search then in a later phase

popping the nodes off and using them to direct the course of search. In Section

4.3.1 below an example of rule use also illustrates an example of memorizing

persistent, passive graph. This is the case of creating a control flow graph from

querying the AST. Another instance would be creating a static call graph. In this

case the graph is kept around and used as for memorized lookup. The rules can

also express execution at different levels. The simplest is concrete execution. This

mode acts as an interpreter, which directs execution of the code as the compiled

version would. The rules also will contain information on the computation of

80

values. This is implemented as a set of generic functions to produce and compute

on values that the reduction of rules will cause to execute. This set of functions

can easily be altered to work with not only concrete values, but also symbolic

values [38, 92], lattices and domains [41]. This way the interpreter can be scaled

up to perform symbolic execution or abstract interpretation.

The rules can describe hopping from one syntactic element to another

with functions to carry out the passing of values. Any point in execution is

immediately related to a position in source code along with values and program

conditions. This will allow for a natural user interface as the elements are in

terms of entities that the programmer directly relates to.

This entire three level structure can be “unzipped” at some lexical point

and new text entered. The text will be automatically tokenized and the parser

will parse the new tokens integrating the new sub-parse tree into the structured

program and “zip” it back up. This allows all the search machinery to be used

interactively during development, and invariants, style, and correctness can be

enforced at composition time.

81

4.2 Reparsing

A standard LALR(1) parser generator has been enhanced to accept a

grammar where the grammar rules specify a class based constructor to use to

create the AST node when the production reduces. The parser generator uses this

information to augment the exit arcs for the pushdown automata such that in

addition to the parser accepting the normal sequence of tokens to trigger a

reduction to create a node in the AST, AST nodes can be interspaced within the

token stream to also be matched. This way if a line of source code is modified,

only that line of text needs to be tokenized; the AST is spliced, creating a small

list of AST node objects that surround the tokenized text. This much smaller

sequence of objects (representing large parts of already parsed source code) and

tokens can then be parsed to quickly recreate the modified parse tree.

4.3 Epitaxic Deductive Retrieval

Epitaxic deductive retrieval is based on the concept of using a single

integrated data structure for all levels of source code representation, building

searchable data structures on the fly through deduction, a single language for

specifying program queries, and a single processing engine for all source code

queries. The data structure is the virtual abstract semantic graph described in the

82

Section 4.1. The language is Epitaxis using Prolog-like predicates. This processing

engine is a unification-based search routine in which queries are specified as

predicates.

The search engine operates by traversing the virtual ASG trying to unify

with nodes in that structure. The order and path of search, and the exact pattern

to be unified with are all under programmatic control. These can be pre-

determined or modified by what has already been found during an ongoing

search. The search successfully terminates when the search structure is fully

resolved, at which point the search goal is returned. If no such final resolution is

possible, the search fails and a NIL value is returned. Using the search patterns

and the unification variables the search can find parts by looking out in all

directions along all four levels relating the pieces in arbitrary ways. Some of the

pieces to be search upon or searched for may be constructed by the search

process itself. Epitaxis can query a program’s AST and retrieve its CFG.

4.3.1 Search Specifications

For a search to take place two things are needed, a structure to search and

a search specification, which can be a search template, a search predicate, a

search function, or a search rule. Search predicates and search functions are used

83

to compose search templates enforcing a control structure on when, where and

how the search patterns are sought. All searches are assumed to have a starting

position in the AST or CFG. This concept is similar to the this parameter in object-

oriented programming. Successful searches update this position. Table 1 shows

examples of elements of the search language and these are explained below.

84

Table 1: Elements of the Search Language

1) Unification Variable ?label

2) Unification By
Indirection Variable

?&variable

3) Compound
Unification Variable

?(identifier function-name :NAME ?”API_.*”)

4) Search Template $(:UP ?(iter iteration-conditional) (:SLOT :COND))

5) Search Predicates
and Function

(DEFINE-SEARCH find-undeclared-vars (?name)
 (PROG1 $((:IN $(function-declarator FAIL))
 ?(var variable :NAME ?name))
 (NOT (var-declaration ? ?var ?name))))

6) Rule Based Search (--->(COMPILE-STATEMENT
 ?(if-stat C:if-statement
 :COND ?(if-c C:if-conditional :COND ?cond)
 :TRUE ?(true C:statement :CODE ?&t-first)
 :FALSE ?(false C:statement :CODE ?&f-first)
 :CODE ?&c-first)
 ?prev
 #H(?t-last ?f-last)
 ?next)
 (AND (COMPILE-EXPRESSION
 ?cond ?prev ?c-first ?c-last ?if-instruction)
 (COMPILE-STATEMENT ?true ?if-instruction ?t-last ?next)
 (COMPILE-STATEMENT ?false ?if-instruction ?f-last ?next)
 (IS ?(if-instruction C:if-instruction
 :COND ?&c-last
 :TRUE ?&t-first
 :FALSE ?&f-first)
 (MAKE-INSTANCE C:IF-INSTRUCTION :SOURCE ?is))))

7) Execution Based
Search

(===> (EXECUTE-EXPRESSION #I(CLASSES-C::conditional-expression
 :COND ?cond
 :TRUE ?true
 :FALSE ?false)
 ?value)
 (IF (EXECUTE-EXPRESSION ?cond ?c-value)
 (EXECUTE-EXPRESSION ?true ?t-value)
 (EXECUTE-EXPRESSION ?false ?f-value))
 :VALUE (EXECUTE::QUESTION-MARK ?c-value ?t-value ?f-value))

A basic building block of searches is unification variables, which are not

searches by themselves, but are used within search patterns. A simple unification

85

variable is the ? symbol immediately followed by the variables’ name, as shown

in the first example. Compound unification variables allow for restriction on the

class of the object that can unify with it. It is also possible to specify constraints

on the slots within the object. The third example above is a complex unification

variable to find all function names matching the regular expression, “API_*”. The

unification variable is named identifier. It can only unify with an object of

class FUNCTION-NAME and the :NAME field must match the regular expression

“API_*”. A search template has three parts: a direction(s) of search; a target to

match; and an action to perform if the search is successful. The first specifies

which branches of the tree to look along given a starting point, for example, up

the tree to the parent node or down a sub-tree, or nodes of a specific type, etc.

The second part specifies what to look for. It can be some specific object, an

object that is an instance of some class, or an object that has certain specific

properties amongst its slots. The last part specifies something to do if the search

pattern is successful in finding an instance of the pattern. This usually specifies

movement in the search tree relative to the matched node, such as down one of

its slots. The fourth example in Table 1 shows a search template. Given any point

within the body of any type of ITERATION-CONDITIONAL, this search template

will find the corresponding conditional clause. Starting from some position in the

86

AST, it will look :UP the parent links trying to unify with a compound

unification variable to find an object of type ITERATION-CONDITIONAL. (Note

that via inheritance this will match a FOR-CONDITIONAL, a DO-CONDITIONAL or

a WHILE-CONDITIONAL, but not an IF or SWITCH-CONDITIONAL which inherit

from the class CONDITIONAL but not ITERATION-CONDITIONAL). If one is

found, the current context pointer moves to the conditional field of the matched

object.

Search predicates are the built-in primitive operations of the search

language, and are based on the built-in predicates available in Prolog. They

allow the search patterns to be composed, and include simple directives such as

simple sequencing of search patterns, a wide range of controlling search based

on whether other searches are successful or not, selection of search alternatives

based on the returned type of a previous search. The complexity of the search

predicates and consequently power of the searches go beyond Prolog because the

search is performed on a syntax tree, and not just a list of facts. Furthermore, the

search can use information about a node’s behavior and semantics, not just its

identity. Finally, search functions allow user-definable search predicates. A

sequence of search patterns, search predicates, and search functions can be

87

arbitrarily composed to create sophisticated searching control structures. Search

functions can call other search functions, so recursion is also possible.

The fifth example presents a search function that searches for variables

with no declaration. The built-in search predicate, PROG1, indicates that sub-

searches should be sequential, meaning it starts the next search where the

previous one completes, but ultimately returns the value of the first sub-search

(hence the 1 of PROG1). The first sub-search looks inside current context for a

variable, but will fail if it tries to look inside a declarator. Once this variable is

found, the second sub-search is initiated by calling a search function to find the

variable’s declaration. But since that search is embedded within a NOT predicate,

the search declaration has to fail for the NOT predicate to succeed. This will cause

the PROG1 predicate to succeed returning what was found by the first sub-clause

of the PROG1, i.e. the variable that has no declaration. The function is defined

with a parameter. If this parameter is bound at call time then the search will only

look for undefined variables with the given name. If this parameter is unbound

at call time then the parameter will become bound to the name of the variable

that was found. The search saves its context, so it can be called repeatedly to find

all the undefined variables.

88

The sixth example shows a rule used in rule based search. It also uses

unification by reference. This rule builds the CFG of an if statement from the C

language. By convention, the first argument supplied to the predicate is the

current node in the structure being searched, in this case the AST. This argument

and the other three are bound by the rule that triggered this one. Typically

?prev will be bound by the "compilation" of the previous statement and ?next

will be unbound but will be used as a holder for the last instruction created in

this rule "promising" to tell where to link to for the next instruction. The #H(?t-

last ?f-last) represents a hyper-edge and will eventually be bound to the

next instructions previous field. It is a hyper-edge because the previous

instruction to the next instruction could have come from either the last

instruction in the true clause or the last instruction of the false clause. If either of

these contains a branching instruction then the corresponding ?t-last or ?f-

last will be unbound and the hyper-edge machinery will remove it. The body

of the rule is responsible for building the instructions composing the if

statement. There are four predicates within an AND clause. These all have to

resolve or all the bindings made so far will be undone and the system will try

another rule. This might also happen if the head fails to unify. It will happen if

the particular if statement does not have a false statement. The rule will fail

89

because the compound variable ?(false C:statement :CODE ?&f-first)

will not unify with NIL. Assuming the head (LHS) does unify with the AST

node, the retriever will try to resolve the four sub-assertions. The first one will

process the conditional expression; the second one will process the true clause

statement; and the third one will process the false clause statement. The last is

the built-in IS predicate. As in Prolog, this predicate evaluates its second

argument and tries to unify it with its first argument. In this case an if-

instruction node is created, binding the :SOURCE slot with the value of the

?if-stat variable which was obtained when the head of the rule was unified.

The IS predicate mandated unification will cause bindings between the variables

and the slot locations within the if instruction node. When these variables bind

to values these slot locations will also take on the value because of unification by

reference. Note also that when the head of the rule is matched, it does

destructuring, binding the variables to the corresponding AST node structures

within the if statement. These variables are passed to the body (RHS) predicates

used to "compile" these corresponding parts of the if statement. The ?&t-

first and ?&f-first variables create bindings to the slots within the :CODE

fields of the statements within the if statement. This way when the COMPILE-

STATEMENT predicates for the statements eventually build instructions for

90

these statements, the first one will get stored in the :CODE slot for the source

AST node. In a similar manner, the retriever will call rules walking the entire

AST and in the process of this "search" instruction nodes will be created and the

variable bindings will insure that all the nodes links are properly linked up

creating the CFG of the AST. This CFG can later be queried/executed to find

additional facts about the AST that spawned it. This is described next.

Another kind of search specification indicated in Table 1 is execution-

based search. This type of search allows the search engine to visit nodes in the

order in which they will be executed. Here the search engine walks the CFG

instead of the AST. This search is aided by an open interpreter (described in

Section 4.4). This type of search is necessary to perform dynamic analysis and

symbolic execution. This search specification can express execution at different

levels of abstraction. The simplest is concrete execution. This mode acts as an

interpreter, which directs executing the code as the compiled version would

execute. The interpreter, in addition to following the CFG, is comprised of

methods, which implement the runtime system. These methods are called to

implement data creation and operator evaluation for the language being

interpreted. This set of methods already works with concrete values and

91

symbolic values and can easily be overridden to work with abstract values such

as lattices and domains [41]. This way the interpreter can be scaled up to perform

abstract interpretation. Because of the inter-level linking, any point in execution

is immediately related to a position in source code along with values and

program conditions. This will allow for a natural user interface as the elements

are in terms of entities that the programmer directly relates to.

4.3.2 Search Engine

In epitaxic deductive retrieval , the search engine uses the same concepts and

principles as Prolog, but applied to a tree or graph data structure rather than a

list of facts. Matching occurs through unification of variables to nodes in the

graph. Data values are bound to unification variables or AST node slots for

output. When sub-parts of the search fail, variables become unbound, so that

other matches can be found. Backtracking is used to unbind variables when sub-

searches fail or the tree needs to be searched exhaustively. These concepts as they

apply to epitaxic deductive retrieval will be described in more detail below.

The search specifications and the virtual ASG become linked via

unification variables. Unification variables are allowed within the elements of the

search specifications. An unbound unification variable will become bound to a

92

part of the tree that matches the search target. A bound unification variable must

be equal (EQL in LISP parlance) to a corresponding part of the tree structure or

else the search fails. When branches of the search fail, all unification variables

that were bound during that search are automatically unbound. Then as the

search tries other paths through the tree, new bindings are made. These

unification bindings can be passed as parameters to search predicates and search

functions allowing what is found during one sub-search to be consulted during

another sub-search. These, too, are unbound automatically if sub-searches

happen to fail. Ultimately, if a search succeeds the final node of the AST that is

matched is returned from the search. In addition, any unbound unification

variables passed as parameters to the initial search may now have bound values

corresponding to parts of the search tree located along the way to the final result.

As in Prolog, passed unification variable parameters are bi-directional. If they are

bound when calling the search function, they hold values input. If they are

unbound when calling the search function, they may become bound and hold

values for output. The bindings may be indirect, that is, a unification variable

may become bound to several unbound unification variables until one of them

finally becomes bound to some part of the search tree. Any restrictions on each of

those unification variables are all enforced.

93

Each pattern within a search form specifies its search field and any

restrictions within that search field. The search field defines what part of the tree

or graph will be searched. Each search field type also has an implicit search order

within that field. Restrictions can limit which class of nodes will be searched

from a given point in the search field. Also, for a given class, which slot or slots

should be searched next can also be specified. It is also possible to indicate a

search failure if a particular class is encountered. These restrictions can be

specified to occur at arbitrary depth of link traversal.

Search functions define relations between their parameters. If the search is

successful, then the relation specified by the function exists, otherwise it does

not. Because some or all of the parameter can be left unbound when the function

is invoked, the search function effectively goes looking for objects that will

satisfy the relation specified by the function. Run singly the search will find the

first instance that satisfies the function. But, since the search state is saved, and

the algorithm admits backtracking, the same search can be run until the entire

tree is exhausted to find all instances that satisfy the function. Using the search

engine, the search tree (e.g. the AST) becomes a database upon which arbitrary

logical relationships can be also found, verified, and/or extracted.

94

There are six possible levels of search. These correspond to the levels

within the data structure representing the program. They are 1) along the token

linked list, 2) along the AST, 3) along the CFG, 4) “logically” by following Prolog

deductive retrieval like rules, 5) dynamically by following the interpreter, and 6)

abstractly by creating structures via memoization and following pathways in

there. Since all the data structure representations of the program are

interconnected, the search engine can switch levels of search as needed. Brief

descriptions of these six levels of search are given below.

4.3.2.1 Lexical Search

In lexical search, the search engine simply walks the liked list of tokens,

either forward or backward, looking to match either on the class of the token,

and/or the name of the token using regular expressions.

4.3.2.2 Syntactic Search

In syntactic search, the search engine walks the AST. Here, nodes are

matched by class membership and structural relationships. This form of search is

complicated by the need to express which direction(s) through the tree to search.

95

4.3.2.3 Control Flow Graph Search

In static semantic search, the search engine walks the control flow graph.

The search can be configured to look down only true branches, only false

branches, all branches, or randomly chosen branches.

4.3.2.4 Logical Search

In logical search, the search engine "deduces" the search order via

predicate calculus like rules. Given some point in the program, using the nodes’

class, the search engine looks for a rule with a matching left hand side (LHS). If

one is found, the right hand side (RHS) contains specifications for the

continuation. This process continues as the RHS typically contains further rules.

Logical search is the foundation of the search methods listed below.

4.3.2.5 Symbolic Execution Search

In execution search, the search engine consults the symbolic interpreter as

a co-routine to determine where to go next. As the interpreter can process

symbolic values and consequently conditionals may not be resolvable, the search

path is a multi-pathed execution tree moving breath first. This is described in

more detail below in section 4.4.

96

4.3.2.6 Abstract Search

In abstract search, the search engine will search along a data structure

build by another search via memoization.

4.4 Symbolic Interpreter

The search engine makes use of an open symbolic interpreter. Sometimes

in the implementation of a compiler, the parser and the lexer are organized as co-

routines. Each run with their own internal state. Every time the parser needs

another lexeme it suspends itself and calls the lexer, who then resumes, finds

another lexeme, suspends itself, and gives the lexeme to the parser, which then

continues with the new lexeme. In a similar manner the interpreter and the

search engine are organized as co-routines. Every time the search engine needs

another node to search it suspends itself and calls the interpreter. The interpreter

then resumes its state, advances the state of execution, suspends itself, and

returns control back to the search engine. The search engine now has access to

the next state in the running program’s execution, including the current position

in the control flown graph, the corresponding syntactic structure that produced

the node in the CFG, and any value(s) that were input and are output by the

executing node in the CFG. All of these are available as targets of the search.

97

The interpreter operates on a control flow graph. In other words, a CFG is

an input (a program) to the interpreter which executes it. The symbolic

interpreter is comprised of six components. These components are 1) a set of

rules that walk the CFG and trigger the methods, 2) a collection of methods, 3) a

set of typed values, 4) a symbolic memory management system, 5) a propagation

of constraint system, and 6) a symbolic execution tree and the control system

which grows the tree.

4.4.1 Set of Rules

For each language that the system can work on a set of rules needs to be

written which describe how to walk the CFG and what to do as the nodes are

traversed. These rules are interpreted by the search engine. Instead of doing

logical deduction with the rules the engine does structural deduction. The engine

tries to match a rule head to a node in the control flow graph. If the rule head

and the CFG node unify, then the body of the rule is executed. This typically

causes an advancement through the CFG. Rules matching expression nodes have

clauses causing methods to be invoked on the return values of the rules which

traversed the expressions arguments, thereby executing the expression. The rules

for C are detailed in Appendix A.

98

4.4.2 Collection of Methods

The body of the interpreter is a collection of generic functions. For the

initial prototype they comprise all the operators of the C programming language

and a set of system functions such as malloc, free, setjmp, longjmp, etc. The

generic functions have predefined methods for standard data types of C such as

numbers, characters, and addresses. In addition there are predefined methods for

two forms of symbolic values (proxy values and interval sets) and error values. It

is also possible to define additional classes of values and to define methods that

operate on instances of those classes. The generic functions select on all

arguments so you can define different methods for the + operator which takes an

integer and a float versus an integer and an address versus two integers. You can

also define abstract classes such as PARITY with instances EVEN and ODD and

define methods for + which operate on type PARITY. The constant load operator

can be overridden to convert integers to their proper PARITY value.

4.4.3 Set of Values

There are several different types of values that the methods described

above and hence the interpreter can process. These are expandable using the

object system. The staple of the system are concrete values which are the

99

standard data types of C. These include different size and types of numbers,

characters, and addresses. In addition, the system recognizes symbols which

represent special values such as "UNINITIALIZED-VALUE", "UNSPECIFIED-

VALUE", "ILLEGAL-VALUE", "NULL-DEREFERENCED-VALUE", etc. These are

used in part to make the operators closed. That is all operations will return a

processable value no matter what input. Although, beyond indicating an error

these values are not very useful. Passing "ILLEGAL-VALUE" as an argument to

any operator will result in "ILLEGAL-VALUE" being produced. The one big

exception to this is "UNSPECIFIED-VALUE". This triggers symbolic values. The

system handles three types of symbolic values. The simplest are interval sets.

These represent arbitrary collections of intervals of numbers. Arithmetic can be

performed on them returning modified collections of intervals. There are also

proxy values and proxy addresses. Proxy values represent unknown values

which can later become concrete or an interval set. Proxy addresses represent

logical segments of memory. The content may or may not be known; what they

really represent is that the location of the segment of memory is unknown and its

size may also be unknown. A proxy value is created whenever a variable is read

whose value is not known. This happens whenever execution starts after the

point in which the variable was given a value such as executing a function

100

without a calling context. The function arguments will be unknown. Proxy

values are created as stand-ins for accessed but unknown concrete scalar values.

Proxy addresses are created for accessed but unknown pointer or compound

values. If a proxy address is dereferenced, proxy memory is created for it to point

to. Proxy values or addresses may become concrete. This can happen when

conditionals are assumed as described below in Section 4.4.5.

4.4.4 Symbolic Memory Management System

The memory management system is responsible for accessing and storing

values for all variables, heap memory, and proxy memory. In addition, it must

keep track of the different values they may have under different program paths.

Values which are set in ancestor paths are shared by all sibling paths unless one

overwrites it. That path and all its siblings will share the new value, while the

other paths still share the old value.

The system is implemented using a compound interval tree. The outer tree

is keyed by the address segment. The inner tree is keyed by the path the value is

current in. Paths are represented by intervals. The root path is the largest

interval, sibling paths by sub-intervals of their ancestors.

101

4.4.5 Propagation of Constraint System

The propagation of constraint (POC) system is used when determining the

consequences of assuming conditionals to be true or false or assuming switch

case selection. This system is modeled after that described in [1]. Whenever a

conditional is executed and it is not possible to determine its value because it

contains symbolic value(s) a POC system is built for the conditional and it is

processed for both possible truth values or all possible case values. The addition

of the assumed conditional value can be enough to determine the value of some

or all of the symbolic values. For each equivalence class of values which

determine a possible conditional value another program path is spawned. As an

example, assume that x and y are variables with symbolic value in the

conditional if (x == 0 && y != 1)... Since the values of x and y are

unknown the condition cannot be resolved so the POC system will assume (x

== 0 && y != 1) to be both true and false. Under the assumption that it is

true x will have the value 0 and y will have an interval set value of {(-inf, 1), (1,

inf)}. These values will be set in memory for the true program path. Under the

assumption it is false two different possibilities exist: 1) x = {-inf, 0), (0, inf)} and

y is still an unknown symbolic value 2) x is still an unknown symbolic value and

y = 1. In this case two different false paths will be spawned with their memory

102

set accordingly. This if-conditional will spawn three paths total with the

corresponding modifications to memory. If the POC system can prove that no

solution exists for an assumed conditional value, the path is infeasible and is

terminated.

The system also remembers which variables have had a proxy-value

assigned to it so if the POC system assigns a value to it, all the other variables

that were assigned the proxy-value will also get the assumed value. As an

example assume the following code exists with y a symbolic value:

 x = y;

if (y == 0) ...

...code involving x...

The if statement will spawn two paths. y will be 0 on one and not 0 on the

other. However, the system will also know that x will be 0 on the path where y is

zero and vice versa.

4.4.6 Symbolic Execution Tree

The interpreter can execute multiple paths of an executing program.

Because the interpreter can operate on symbolic values, conditional statements

103

may not be resolvable. In this case the interpreter forks another path and

continues with both executions, one assuming the condition is true and one

assuming the condition is false. This creates an execution tree. The leaves are all

the currently active program paths and the internal nodes are all the decision

points. The tree is not necessarily binary. Switch statements generate a branch for

every possible (feasible) case including default. In addition if-statements can also

generate more than two possible branches. If the condition includes an AND

operator with both symbolic arguments then in addition to both arguments

being non-zero to generate the true branch, there are two possible false branches,

one for each argument independently being false. For the OR operator there is

one possible false branch, all arguments being false and two possible true

branches, one for each argument independently being true. If ORs and ANDs are

combined then it is possible to have multiple true and multiple false branches for

one if-conditional.

The nodes of the execution tree are used as an indexing scheme to

remember what CFG nodes have been executed under what path. This allows

tracking of how many times a particular path has stepped on (executed) a

particular node in the CFG. This can be used to determine how many times

104

statements within a loop get executed and stop paths at a predetermined

number.

4.4.7 Collecting Semantic Information

Using menus attached to items in the AST, the user can select collect points

where dynamically produced information will be collected from. The interpreter

currently supports collecting information from three types of locations. These

are: 1) collecting information about values written into struct and union

members, 2) collecting information about function return values, and 3)

collecting information about function parameter values. In addition to collecting

information at these points, the user can attach assertions to be executed at these

points to verify values. Finally, function return values and function formal

parameter values can have tracers attached to them. When a function returns a

value, or an actual gets bound to a formal parameter, these values are marked by

the function name or the formal name respectively by the tracer. This enables

collect points to know where the value reaching it came from. This can be useful

to determine if a value being stored into a struct member has been processed

by some particular function.

105

The collectors can be set to collect information derived from the value as it

passes through the collect points. The value itself can be collected (useful for

members that get assigned enums), assuming a struct value, a value within a

member of the value can be collected, the type of the value can be collected, a

label attached to the value by a tracer can be collected, or a value produced by an

arbitrary filter function on the value can be collected.

The information is collected as a structured map of objects to attributes.

The actual struct data constitute the objects and the set of members and data

values written constitute the attributes. These maps are processed using formal

concept analysis [67] to create a partial order on the equivalence classes of

information collected. The resulting concept lattice can be very revealing about

how the program uses data. Examples of this are how union member access is

related to a type field within the struct or the structure of function call

signatures. This type of information can be used to help understand how to

restructure a program to be more object oriented.

4.5 Prototype

A prototype of Epitaxis has been implemented to conduct this research.

Epitaxis is embedded within an augmented LISP [127] environment. It has a large

106

complement of standard LISP features such as a subset of the Common Lisp

Object System (CLOS) [118], a package system, hash tables, generators, gatherers,

etc. In addition there are many non-standard LISP features such as support for

advanced data structures such as b-trees, interval trees, union-find-deunion,

tries, and suffix trees. There is an embedded Prolog system, an L system,

sequence and tree alignment algorithms, various machine learning algorithms, a

lexical analyzer generator and an LALR(1) parser generator. These have been

combined to form a platform upon which this research was conducted.

LISP was chosen as a foundation for this research for the following

reasons. First, the LISP environment is very robust. It is the second oldest

programming language and has been under evolution for over fifty years by

very bright people evolving it to solve very difficult programming problems. The

environment is interactive and reflexive, designed for exploratory evolution of

complex systems. LISP also has a very robust object-oriented system called

CLOS. CLOS has a meta-object protocol [87], which makes it reflexive, flexible and

very powerful. There is a synergy of parts based on its hybrid structure. The

system is implemented in C, which makes it efficient. All the heavy pieces of

machinery are directly implemented in C and given an outer wrapper to be

107

callable from LISP. The C code can directly call modules within the interpreter in

C for efficiency, but all the pieces have LISP interfaces so they can be called

interactively. In essence, LISP supplies the structure of the environment, a large

library of subsystems, and a very sophisticated scripting language, which can be

used for interactive unit testing.

User Interface

Text
Source
Code

Lexical
Analysis

LALR(1)
Parsing

Searching Routines Search Engine,

Interpreter,
And

Execution
Control

Structured Source Code

Language Specific Defs.
1) Node Classes
2) Lexical Spec.
3) Grammar
4) Semantic Rules

AST
Parsing

LISP

Figure 3: Architecture and Processing Pipeline for the Epitaxis Framework

108

Figure 3 shows the basic architecture and processing pipeline of the

system. The user interface allows the loading of an ASCII source file. If this

language has not been previously seen a lexical analyzer and parser are built

using its database of language specifications. The ASCII source code is then

converted into its AST and ASG. The user interface now has access to the

semantics of the program through menus associated with the lexical and

syntactic items in the AST. These can trigger the predefined searches associated

with the objects in the AST. It is also possible to build additional search routines

through the user interface and trigger those queries as well. The results of

searches are expressed by highlighting parts of the AST or by building other

views, which are “hot” clickable allowing navigation to the corresponding part

of the AST. The user interface also allows direct typing of characters to alter the

source code, which reparses the appropriate parts of the AST once the current

line is exited. In addition structure based alterations of the AST are possible by

dragging and dropping syntactic items. Having an editor type interface to the

query system and interpreter allow a high bandwidth interaction with the

program.

109

"In theory there is no difference between

theory and practice, in practice there is."

--Yogi Berra

Chapter 5

5. Findings

Epitaxis gives the programmer a language in which to ask questions of

software and supplies answers. In this chapter we will look at some of the kinds

of questions Epitaxis can answer and how well it can answer them. The first issue

is how expressive and relevant are the questions that Epitaxis can answer. Some

of the kinds of questions that Epitaxis is designed to answer are questions that

came up while implementing Epitaxis. There is also the issue of efficiency, that is,

was the answer returned in a timely manner. Lastly there is the issue of query

range. Some of the questions answered by Epitaxis can be answered by existing

110

query systems and some of them cannot. No system that we know of can answer

as wide a range of questions.

5.1 Representation

Before Epitaxis can answer any question about software it must first build

a transformation of the program text. This is the first factor affecting scalability.

How much memory does it take to represent a realistic size program and how

long does it take to build it. We let Epitaxis compile (build the AST and the CFG)

its entire code base to see how much memory it consumes and how long it takes

to load. The LISP system in which Epitaxis is embedded is 392,690 lines of C code

representing 12,180 functions in 205 .c files and 120 .h files. All of this needs to be

in memory for Epitaxis to perform syntactic search on the entire code base.

However, semantic search (or syntactic search for that matter) really only needs

the files being searched in memory, not the entire code base. Epitaxis took 88

seconds to scan and parse the system and consumed 1.3Gb bytes of memory. It

took an additional 86 seconds to produce the CFG (only needed for semantic

search) consuming an additional 97 Mb of memory. The memory figure includes

both the memory needed to hold the representation and the memory consumed

in the process (which would be recycled if the garbage collector was turned on).

111

Visual Studio 2005 took about 60 seconds to compile the same code. Averaging

out these numbers on a per file basis gives 7.1 Mb of memory to hold a 1915

lines of C code file, compiling in 0.85 seconds.

5.2 Syntactic Search

Syntactic questions involve the relationships between parts of the syntax

tree. These types of questions pertain to navigating code, that is, finding some

static location in the code base: some point in the AST. They also pertain to

finding structural abnormalities in the AST such as finding all variables that do

not have a declaration or finding all loop structures that do not modify at least

one of their loop conditional variables: something that is not in the AST but

should be there. The syntactic search language of Epitaxis is expressive enough to

answer any syntactic question. Although it is possible to give precise answers to

syntactic questions, in practice there are two difficulties with this. The first is that

it may be difficult to express the exact syntactic relationship that will answer

your question. You will get what you asked for, but it may not be what you

wanted. The second is that the question is really a semantic question and the

syntactic version of it is only an approximation of what the programmer rea lly

wants to ask. You will get what you want but not all of it. Assuming no bugs and

112

that you are asking the question you really want, Epitaxis has perfect precision

and recall on syntactic questions.

Epitaxis advances syntactic search in two ways beyond what currently

exists. The first is that the syntactic search engine is not just a finite state machine

but is a pushdown automata. This increases its expressive power (at the cost of a

more complex query language). An example of a search involving needing a

pushdown automata and not just a finite state machine is finding all places

where a struct member is referenced. It is not sufficient to find all the member

access expressions with the same name because they can belong to different

structs. You have to know the type of expression that the member applies to.

The difficulty is that this can be nested such as x->a->b->c. To know what

struct member c applies to you first have to climb down the expression tree

to x, stacking the member names as you go since these will be needed later. Once

at x you find the declaration of x, then find the actual struct definition (which

may involve looking through several typdefs). Now search the struct

definition for the declaration of a (we popped a off the stack of the member

names we collected as we walked down the expression tree). Now lookup for the

struct definition of the type that a points to, search its declarations for one

113

with member b (again popped off the stack). This continues until the stack is

exhausted and we found the declaration of member c. All other member

references to c have to be checked this way to find the actual declaration within

the struct definition to compare if it matches the original. So the search is not

just walking the syntax tree as a finite state machine can but requires stacking

states to refer to later to guide the search. This type of search is very common. If

a programmer is trying to understand code to enable him to modify a struct

definition he often needs to know all places that some members of that struct

are referenced. It is helpful to not have to weed through all the false positives a

simple match on the member name will make, especially for a very large

software system with many struct definitions.

The second advance that Epitaxis makes over other syntactic software

query systems is that it can not only find a single point in the syntax tree related

to another, or tell you that a point within the tree does not exist, it can extract an

entire structure related to the syntax tree (or some part of it). An example of this

is querying the syntax tree and retrieving the control flow graph. Not only is the

graph retrieved, but it can also be bidirectionally linked to the nodes in the

syntax tree related to the nodes in the control flow graph. This area of search has

114

not been further pursued, however it may be possible to use Epitaxis to retrieve a

dominance tree or some other structure related to the syntax tree.

Several syntactic searches were performed on the entire LISP code base.

The results are summarized in Table 2. Epitaxis can find syntactic information on

a large body of code in a an interactive time scale.

Table 2: Syntactic Search Performance on LISP System

Search
Number
Found

Time
(Seconds)

All Function Definitions 12,180 0.124
All Function Calls 88,581 1.235
All Variable Definitions 31,494 2.357
All Global Definitions 9150 0.2
All Unused Locals 1076 11.468

Unmodified Loop Conditionals 2 171 0.216

5.3 Semantic Search

Semantic questions involves relationships between data values produced

by executing code. Epitaxis can answer two different categories of questions

pertaining to executing code. The simplest is about runtime singularities or bugs.

These are found almost for free. As Epitaxis executes code it has to recognize

2 This is an example of a syntactic search that should really be semantic. Because of function calls and
pointers, loop variables can be modified without it being syntactically obvious. However, this search is
useful because programmers often forget to update the loop variable .

115

problems such as NULL dereference or indexing out of bounds if for no other

reason than to protect itself from crashing. These are reported to the user. There

are a whole set of these kinds of problems that Epitaxis finds; null dereference,

accessing memory out of bounds, reading uninitialized memory, etc...

The second category of questions is much more semantic in nature. Here

you direct Epitaxis what to look for. These questions have answers that are

collected over the execution space of the program. Because the system uses

symbolic execution and not just dynamic analysis to search the execution space

the answers have much higher recall. These are questions like: "What is the

collection of values or value types that a function returns? "What is the

collections of calling signatures that exist for a function?" "Did the value stored in

some member location come from some particular function?" "What is the set of

functions that can give a value to a member field of some struct?" "Has the value

been process by function x?" "Given some struct object what is the range or

structure of the relationship between values of members within the same struct?"

One of the difficulties of asking these kinds of questions is that you have

to know enough about the code to ask the question, or that the questions is

sensible to ask. It doesn't make sense to ask these types of questions on any piece

116

of code like it does to ask if a NULL pointer is ever dereferenced. These questions

presuppose some knowledge about the code that you are asking about.

5.3.1 Basic Semantic Search - Finding Bugs

We ran Epitaxis in its basic bug search mode to verify that it can find bugs

and to determine its scalability. Detecting bugs at their point of failure is easy if

the symbolic interpreter can reach that point in the code. The important question

is how efficiently can Epitaxis reach a high enough percent of code coverage to

find bugs? Or to put it in other terms, does it scale to real world examples. With

current technology, there is no way that symbolic execution can reach a

significant percent of code coverage on an entire application. The execution space

is simply too large. Unlike the symbolic execution systems which instrument

code and have to start from the beginning (or set up drivers for particular

functions), the user of Epitaxis can select any piece of code or function body

interactively and start executing from there (missing context is simply proxied).

This allows code to be searched/tested in manageable size pieces. We present

results of running Epitaxis on three different examples: 1) a toy program, 2) a

small (169 LOC) utility program, and 3) a large function (1294 LOC with 82

embedded function calls) within a large application. These examples

117

demonstrate the bug finding ability and the time and memory scalability of

Epitaxis. All examples were run on a 2.62 GHz AMD Athlon™ 64 FX-60 Dual

Core Processor with 2.50 GB of RAM.

We first ran Epitaxis on the testme() example of Figure 1. This example is

reported on in [106] as taking about two minutes to find the ERROR statement

using hybrid concolic testing with a 2 GHz Pentium M laptop with 1GB of RAM.

Epitaxis found the error in 0.312 seconds. It explored 528 paths of length 11,

consumed 19 MB of memory and executed 2,557 expressions and 9,374

conditionals. This is a toy example that is conditional heavy, designed to test

symbolic string input.

A second test was run on tr.c, a GNU core utility to translate characters.

This code is array pointer and array indexing intensive. The code has many loops

accessing elements of strings and character arrays. The particular version used

here comes from MINIX and can be found at [111]. Epitaxis was run on tr.c until it

ran out of memory. Epitaxis found 7 errors within 2 seconds, 6 pertaining to

accessing uninitialized memory and one index out of bounds, and ran for an

additional 48 seconds until it ran out of memory. It had about 85% code coverage

at that point. Six of the errors were all tracked down to the fact that Epitaxis

doesn't understand the structure of the argv input parameter to main(int

118

argc, char **argv). These are an array of input strings. Epitaxis assumes the

general case where they can possibly be null strings which is not possible in

argv pointers. Given the possibility of the strings being null, the errors are valid.

The other error is genuine caused by a malformed input string. It is the same

error reported in [28]. This error was found in 1.06 seconds. Code coverage

grows very quickly, then tapers off growing very slowly. The problem is that

once the interpreter advances far enough it is executing hundreds of thousands

of paths, so the movement through code slows down to a crawl. Currently,

Epitaxis runs breath first through the execution tree. By the time Epitaxis ran out

of memory it was executing 336,316 concurrent execution paths. Since Epitaxis

can keep track of how many times it has stepped on a piece of code, it should not

be difficult to add a heuristic to explore paths that have not been stepped on or

stepped on less times first, and use breath first when step counts are equal. This

should vastly improve coverage rates and is left for future research. Graphs of

code coverage and path growth are shown below.

119

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

Interpreter Steps (Millions)

C
ov

er
ag

e

Figure 4 Code Coverage for tr.c

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

Interpreter Steps (Millions)

N
um

be
r o

f P
at

hs

Figure 5 Path Growth for tr.c

120

A third test was run on the deductive retrieval function of a prolog

interpreter. It is a large unwieldy function converted from assembly language to

C code. The main retrieval loop function is 1294 lines of C code. There are an

additional 15 small auxiliary functions included and 67 functions not included

which were called by proxy (they return a proxy value of their return type). This

example contains messy code, and three large switch statements which switch on

the predefined prolog predicates. The code is also "pointer-to-structure"

intensive.

The test was run in four stop modes: 1) stopping when a path steps on

itself the first time, 2) stopping when a path steps on itself the second time, 3)

stopping when a path steps on itself the third time, and 4) executing all paths

without stopping. All cases were run until the system ran out of memory. The

results are summarized in Table 3 and the figures below.

Table 3: Symbolic Execution Statistics executing 5 million rules on retrieve()

Mode
Running

Rate
% Code

Coverage
Total
Paths

Active
Paths

Avg.
Length

Running
Time

Exprs.
Exec.

Errors
Found

1)One Step 8,933 53.57 138,474 80,154 31.19 561.48 s 810,245 2
2)Two Steps 9,110 91.41 183,926 129,807 25.82 551.47 s 816,081 16
3)Three Steps 5,126 88.66 187,727 123,466 25.45 975.84 s 896,333 15
4)All 94,006 68.78 265,777 258,028 31.27 54.13 s 1,093,615 10

121

The code contains two primary types of looping constructs. The first is

looping to walk lists. This structure hurts coverage. The system goes around

forever without covering new code unless the step count mode is turned on to

terminate the looping. The second is the main interpreter loop. The prolog

interpreter loops as it processes predicates. Some of these (such as AND, OR, NOT,

IF) are predicates on predicates and create complex stack structures. Because of

the predicate nesting, a large percentage of code will not be executed unless the

main loop runs at least twice. This is why the code coverage gets stuck at such a

low value when the paths are not allowed to step on themselves (loop bodies

execute only once (mode 1). The combination of these two looping constructs

make mode 2 have the best performance; it loops only enough to get coverage.

Mode 4 runs much faster since it doesn't have the overhead of checking step

counts.

Memory usage increases linearly per Epitaxis interpreter step (see Figure

7). The slope is steepest for mode 4 since it has tight loops where it keeps

growing lists. Mode 2, the most appropriate for this example, will run through

about 2 GB of RAM in 961 seconds. In this time it has explored 240,333 paths to

an average depth of 23.8 conditionals. It has executed 1,070,507 C expressions

and conditionals. 16 bugs were found, all NULL pointer dereferences.

122

In interesting effect is that the running rate of Epitaxis' interpreter

decreases over time (see Figure 6). This is due to increasing size of the data

structure that represents memory, and the data structure for the execution tree

used to detect paths stepping on themselves. Although memory is held in an

interval tree with log2 read and write times, the tree gets large. It may be worth

removing older values from the tree if they are completely covered by newer

values. Further research needs to be done to determine if older values get

completely covered by sibling paths enough to be worth the overhead of finding

them and removing them. As the execution tree grows, the algorithm which

records code step counts gets slower; it has a deeper tree to search. This

additional factor exists in the step count stop modes.

123

0

20,000

40,000

60,000

80,000

100,000

120,000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5

Interpreter Steps (Millions)

R
ul

es
 p

er
 S

ec
on

d

1 Step

2 Steps

3 Steps

All

Figure 6 Interpreter Running Rate for retrieve()

0

500

1,000

1,500

2,000

2,500

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

Interpreter Steps (Millions)

M
em

or
y

(M
B

)

1 step - total

1 step - rate

2 steps - total

2 steps - rate

3 steps - total

3 steps -rate

all steps - total

all steps - rate

Figure 7 Interpreter Memory Usage for retrieve()

124

5.3.2 Advanced Semantic Search - Collecting
Information

The acme of Epitaxis' search is its ability to answer questions through

collecting information from throughout the execution space of a program. We

present a couple of examples where Epitaxis analyzes the use of the struct that

comprise the elements of the stack from the retrieve() example above. The

structure of a stack element is shown in Figure 8.

125

struct P_STACK
{
 unsigned is_special : 1; // special processing on failure
 unsigned is_junction : 1; // junction point
 unsigned sub_clause : 1; // Indicates a clause in a junction
 unsigned if_clause : 1; // Indicates the IF conditional
 unsigned pred_num : 8; // Built in predicate number

 P_STACK *prev_stack; // Link to prior entry
 CONS_CELL *this_request; // Predicate being RETRIEVEd
 PC_BINDING *answer; // Bindings after unification
 PC_BINDING *bindings; // Bindings before unification
 P_STACK *junction; // previous junction
 // Points to the junction
 // Points to the subclause
 union
 {
 CONS_CELL *back_bindings; // Undo if fail
 P_STACK *prev_sub_clause; // previous sub-clause
 } x;

 union
 {
 FACT *next_assertion; // Next predicate to RETRIEVE
 GENERATOR *next_object; // Next object to RETRIEVE
 CONS_CELL *recover_clause; // Recover on CATCH or HANDLER
 CONS_CELL *findall_list; // Accumulated list
 S_EXPRESSION *saved_value; // Generated value
 } y;
};

Figure 8 struct definition for stack element

The pred_num member field indicates the type of built-in prolog

predicate and determines which union fields are appropriate. Also the bit fields

is_special, is_junction, sub_clause, if_clause are set for various

types of predicates. These indicators are necessary since C does not support

polymorphism and has to be implemented manually. The problem is to

determine if all these member fields are being used consistently. In the first

126

example Epitaxis is set to gather all the writes to these five member fields. This

information is passed to a formal concept analysis algorithm to produce a concept

lattice representing the equivalence classes of writes to the struct elements. The

resulting concept lattice is shown in Figure 9.

Figure 9: Concept lattice for writes to type fields within a struct

The lattice shows that there is no overlap of predicates between

is_special and is_junction. It also shows that some entries marked

sub_clause can also be marked if_clause and that these are not built-in

predicates (as they have no pred_num written). Finally it shows that pred_num

T

⊥

pred_num =
1,2,3,4,5,20,22,26,37,38

 is_special = 1 sub_clause = 1 is_junction = 1

 pred_num = 50

pred_num =
19, 25, 32, 34

 if_clause = 1

127

50 is neither is_special, is_junction, a sub_clause nor within an

if_clause.

As another example, we use the feature where Epitaxis can also look at a

member field within a member field. Certain predicates such as AND, OR, NOT,

etc. take other predicates as parameters. The junction field of the sub clause's

P_STACK entry (which should have member sub_clause = 1) is supposed to

point to the containing AND, OR, NOT, etc. predicate. We can test for this by

analyzing the pred_num member field of the struct in the junction field. It

should contain only predicate numbers of junction type predicates. Figure 10

shows the resulting concept lattice. We also check for correct use of union x.

When a stack element is a junction the x.prev_sub_clause member field

should be used, otherwise x.back_bindings member field should be used.

128

Figure 10 Concept lattice for nested member access and union use

The resulting concept lattice shows that all elements marked sub_clause

(meaning they are a clause within a junction) have a value in their junction

member field and lists the corresponding pred_num of that stack element. All

the listed pred_num are junction predicates. The other chain shows stack entries

that have no value in the junction member field (these are not sub-clauses). A

subset of these are marked as junction elements, and have had their

prev_sub_clause member field initialized to NULL. The test was not run far

enough for there to be previous sub clauses so only an initialization value is

present. Note also that all stack elements created are initialized as non-junctions

T

⊥

sub_clause = 1

junction->pred_number =
1,2,3,4,5,20,22,26,37,38

is_junction = 1
prev_sub_clause = NULL

back_bindings = CONS -CELL
junction = NULL

129

and hence the back_bindings member field shows its CONS-CELL value.

However, any element subsequently marked as is_junction has that same

field (under the union name prev_sub_clause) initialized to NULL. Had the

example run further nodes showing values of type P_STACK would be in the

junction and prev_sub_clause member fields.

130

"Good judgment comes from experience. And

where does experience come from? Experience

comes from bad judgment."

--Mark Twain

"The universe is full of magical things

patiently waiting for our wits to grow sharper."

--Eden Phillpots

Chapter 6

6. Conclusion
6.1 Reflections

The goal of Epitaxis is twofold. First to implement a modeling language

that can be used to build a model1 of software such that it faithfully represents

and exposes those aspects of software a programmer wants to understand.

Second to implement a query language that automates extracting that

information. It is extremely useful to be able to automate this as a programmer’s

memory and attention span impose severe limits on his ability to do this

1 Model of the software itself, not of the application domain using the software

131

unaided. Any deficiency in the programmer’s ability to follow code generally

results in the introduction of bugs.

This is an interesting problem for several reasons. Given that software is

represented to the human as a string of text characters, most of the information

content in it is implicit. Not only is the information implicit, it exists on different

levels of abstraction. It is therefore necessary to make several transformations to

the original source code to expose the content. Parsing, control flow graph

generation, and even execution state space generation (using symbolic execution)

are transformations used to generate representations of these levels. These

different transformations require different data structures to represent the result

as well as different methodologies to search these representations. However

much is gained if these levels are integrated.

One of the hallmarks of human intelligence is the ability to abstract and to

create further abstract representations of representations to use to thereby

leverage the reasoning process. This is one of the key design goals of the Epitaxis

system. That is, to be able to take entities within the model of the software

system, abstract them, represent them, and then use them for a higher (more

leveraged) level of reasoning. The actual decision as to the when and what of these

abstractions are currently left to the programmer. What Epitaxis is designed to do

132

is to give the programmer the ability to do this, by providing the machinery to

create the abstractions and then query them within the modeling environment.

6.1.1 Modeling

One of the difficulties of finding information or bugs using symbolic

execution systems that execute on assembly or machine code is that the

executable code, while a transformation of the source code into a more semantic

representation, has had a lot of information thrown out. An important thing to

remember is that running C code is already a form of abstract interpretation. All

addresses of the same location, even if read or written as different types are

abstracted to the same value, i.e. the address. The type information is abstracted

away. The key to Epitaxis' symbolic execution is to keep this information. It has a

bearing on correct semantics. It is used to find a broader range of content.

There are many levels of modeling going on here. There is of course what

the program is intended to model: the application. There is the source code.

There is also the model that the compiler produces, the CPU model, which is a

translation of the source code into a model that the CPU understands. This

model is designed for efficiency; anything unneeded has been removed. This

model also has singularities, i.e. states that have no valid continuation (division

133

by zero, dereferencing of non-existent memory, dereferencing of ill-formatted

data, etc.). It is up to the programmer to ensure that these singularities never

occur. This is extremely difficult. Ultimately, bugs represent an inconsistency in

the application model of the software. However, bugs can express themselves on

different levels of the modeling hierarchy. There is a correlation between how

soon a bug expresses itself and how low in the modeling hierarchy the bug is.

Inconsistencies in the application domain might express as incorrect results and

not become noticed for a long time. Some might later express as singularities in

the CPU model. They eventually become obvious, but may not for a while. The

moral is that the higher the modeling level of the inconsistency detected the

better.

There are two main ways a model can deviate from what it is modeling.

The first way is the simple fact that the model is an abstraction, which means that

things from reality have been removed from the model. This is done for two

reasons: 1) the detail is irrelevant 2) having the detail is too representationally

expensive. The second way is that the model might remember history that the

reality has no way to hold. This might be called adstraction rather than abstraction.

Certain facts might only become apparent by knowing the objects history that are

134

not apparent from knowing the objects current state. (Often various histories can

reach the same state). In Epitaxis, some semantic history is maintained that has no

representation in current state of executing C code. An example of this is in

conversions between integers and pointers. If something gets casted into an

integer the fact that it is the valid address of something and what that something

is has no representation within an integer. However this information is crucial if

the integer is casted back to an address and dereferenced. Without this history it

is not possible to distinguish between an integer that can be safely casted to an

address and dereferenced and one that cannot. Until the system crashes, a lot of

damage can happen to the structure.

Another example of adstraction is remembering "spatial" context. In

computing a reference to a member within some structure C only represents the

address. The fact that the address is within some struct with various properties

is lost. However this information can be useful because it implies information

about the semantics of values stored nearby and conceptually related.

What makes this interesting from the perspective of this work is that

knowing the history of some value can allow a bug to be identified sooner than

that bug would manifest in the CPU model. A difficulty of debugging is that

because history is abstracted away in the CPU model, numerous CPU states are

135

compressions of various correct and non-correct states into one state. So the bug

will not manifest until this compressed state collides with some other decision

point that differentiates between the histories far removed from the source.

6.1.2 Querying

This research is driven by a real practical need. As programmers write,

understand, refactor, and debug code they ask various kinds of questions about

the code. This research is about automating the answering of these questions.

These questions can broadly be characterized as lexical, syntactic, and semantic

based. It is interesting to reflect on how the nature of search changes as the

search goes from lexical to syntactic to semantic.

 In lexical search there is really no choice of direction. The search starts at

the beginning and goes until the object is found. Here the search is looking for an

object of some type and with some name. The most sophisticated variant is wild

carding on the name and finding a set of objects with a particular pattern to their

name. Here the search is about identity. There is no context, which may be what

is needed if the query is to understand naming conventions in the software.

In syntactic search the search usually involves finding an entity or set of

entities in contextual (or structural) relationship to another entity or set of

136

entities. It matters where you start and it matters how you choose what direction

to take. The search is in large part determined by choosing what direct to take.

You still have a finite search space. You are walking a tree and choosing what

branch to take based on the type of node you are at (finite state machine) and/or

based also on nodes collected before and their relation to the type of node you

are at (pushdown automata). Syntactic search is about understanding context.

Things get much more interesting in semantic search; you need to go

everywhere. You are searching amongst cause and effect relationships. The cause

and effect relations unfold over time and since it is not possible to know what

eventually effects what, you are generally forced to explore the entire search

space. The search space is usually infinite. Structurally you are walking a graph

(the control flow graph), but conceptually you are walking a tree (the execution

tree). At the semantic level there is a value space that controls the relationship

between the graph and the tree. In general there are four kinds of things you can

look for: 1) semantic violations, 2) cause and effect relationships, 3) value

relationships, and 4) functional relationships.

Semantic violations are a breakdown of the cause and effect in execution

i.e. a point in execution does not have a valid continuation or an inconsistent

137

data state i.e. a state that system was not designed to model. These can be CPU

model based, program model based, or application model based. CPU model

violations are the most straight forward. These include division by zero, null

value dereference, and array index out of bounds. They represent operators that

have no result for the set of arguments. They are generally easy to spot since the

CPU often throws an exception when one is reached. Program model violations

are a little more abstract. They are often the bug that eventually leads to an CPU

model violation. These include bugs in the implementation of a data structure, an

improper calculation, or an unanticipated range of input value. Application model

violations are a mistake in the model that the software implements. These are

beyond the scope of this research.

Questions involving cause and effect relationships are about where a

value or effect came from. These are useful to understand semantic violations.

Generally a programmer works backwards from a symptom (the effect) to the

cause.

Questions involving value relationships have to do with relationships

between values. (Is the type of the value in field x always y when field z == 3).

These are useful to understand the data representations in the model. Valid data

138

representations typically mandate certain relationships between its parts.

Knowing if and where these are violated help to find bugs and to refine the data

model.

Questions involving functional relations have to do with the relationship

between a function, its arguments, and its result. Functions are defined in code

for a number of reasons. From mundane reasons like packaging up often

repeated code sequences, to representing programming domain features like

getting the value associated with a key, to modeling application domain features

like representing the behavior of an agent. A function often models information

extraction. The useful idea here is that a function often is the means to

answering a query if it could just be executed in the correct context. A future

feature for Epitaxis is to allow functions (from the program under query) to be

called in user specified semantic contexts to answer a question or to extract

information to be collected.

The usefulness of Epitaxis is in part due to the ephemeral nature of

semantic access points. Syntactic structures are static and well defined. Locating

features in them or instrumenting them is relatively straight forward. It is much

harder to locate or to even find a way to name a point in semantic structures.

139

These are by nature dynamic and conceptual (as opposed to static and

contextual). Epitaxis supplies a way to name points in semantic space and either

ask a question there or collect information from it (which often only have

meaning as an ensemble collected over the execution space).

140

6.2 Further Research

6.2.1 Further Opening Of The Interpreter

A long standing dichotomy in computer science is between the writer of

software and the user of software. Typically the writer defines what the software

can do and the user is stuck with it. He might like to change how some small

aspect works, but is out of luck. Open program design (sometimes called metaobject

protocol) allows the user to also become author. This is particularly suitable in the

present application as the user of this system is a programmer. The idea behind

open program design is to structure the implementation as an object oriented

program so that various aspects of the implementation can be modified by

overriding methods that define the behavior of the system.

Epitaxis' symbolic interpreter is open. All the operators of the interpreter

are defined as methods selected by the types of the arguments. Other functions

of the interpreter such as signaling errors, detecting if and how to collect

information, binding function parameters, and allocating memory are also

implemented as overridable methods. Improvement is needed to make this

system much more systematic and complete. Not all the execution points that

141

should be open have been identified and methodized; these need to be increased.

Some of the overridable methods need to be broken down into sub-methods so it

is possible to keep most of the functionality and change only part of it. These

improvements will make Epitaxis more flexible in practice, not just in theory.

6.2.2 Automated Refactoring

Since Epitaxis is very good at locating structural relationships and Epitaxis

has a search methodology that can build and attach structures based on that

search, it should be possible to make Epitaxis find and change code in a

systematic way. A whole library of refactoring searches can be implemented. It

will be an interesting research challenge to see how far this refactoring can be

pushed into code writing.

6.2.3 Multi-Threaded Support

Epitaxis' symbolic interpreter already has multi-path support. It can run

multiple paths of the program in “parallel”. This support is used internally. It is

just a hair's breath away to externalize this machinery such that the software

under symbolic execution can be multi-threaded. Interpreter operators for fork,

join, wait, sleep, resume, etc, need to be added. These would be straight forward

142

to add; the interpreter would then be able to symbolically execute multi-threaded

code. The real work would be to add the query ability to ask questions of the

multi-threaded code.

6.2.4 Object Oriented Language Support

Epitaxis currently supports querying programs in C. Adding the grammar,

CFG generation rules, and execution rules for an object oriented language such

as C++ would be straight forward. In addition, execution support would have to

be added to the interpreter. It needs to be determined what additional query

support would need to be added to handle the types of questions that could be

asked of object oriented code.

6.2.5 Improving The Constraint Solver

As in every symbolic execution system, the constraint solver is never

powerful enough. Improving this is a research field in itself. A more contained

improvement would be to add "constrained" proxy-values. This would allow for

relationships between different proxy-values such as x is 3 greater than y. This

would allow for more accurate determination of feasible paths.

143

6.2.6 Understand The External Environment

Currently, Epitaxis has no awareness of the external environment. It has

no way to represent an external state that a program might store in the file

system. Reading these values back in may constrain execution behavior and

reduce false positives. Epitaxis also has only a very limited knowledge of

standard C library routines. It currently only has representations for malloc, free,

longjmp, and setjmp. At a minimum the various string access functions such as

memcpy, memset, memchr, etc. functions should have representation since many

bugs manifest in these calls. One could always include the library code source

but this is cumbersome and many of these routines are in assembly. Epitaxis has

no ability to handle embedded assembly code. Epitaxis also does not understand

the semantics of argc and argv.

6.2.7 Further Forms Of Analysis

The semantic level query of Epitaxis is only a starting point. Much more

intelligence can be built into where and how to collect information. There needs

to be a wider choice of collect points, a wider range of filters, and more ways to

collect or relate or pieces of linked data structures. It would be useful if functions

within the application were also available to be used for assertions or filters. In

144

addition, other forms of processing the information collected (besides FCA) can

be developed.

145

Appendix A

Rules for the execution of C code:

;;;;;;;;;;;;;;;;;;;;;;;;;;;; Instructions ;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(===> (EXECUTE-INSTRUCTION #I(CLASSES-C::noop-instruction :NEXT ?next))
 (EXECUTE-INSTRUCTION ?next))

(===> (EXECUTE-INSTRUCTION #I(CLASSES-C::break-instruction :NEXT ?next))
 (EXECUTE-INSTRUCTION ?next))

(===> (EXECUTE-INSTRUCTION #I(CLASSES-C::continue-instruction :NEXT ?next))
 (EXECUTE-INSTRUCTION ?next))

(===> (EXECUTE-INSTRUCTION #I(CLASSES-C::goto-instruction :NEXT ?next))
 (EXECUTE-INSTRUCTION ?next))

(===> (EXECUTE-INSTRUCTION #I(CLASSES-C::expression-instruction
 :ROOT ?root
 :LEAVES ?leaves
 :NEXT ?next))
 (SEQUENCE (EXECUTE-EXPRESSION ?root ?e-value)
 (EXECUTE-INSTRUCTION ?next)))

(===> (EXECUTE-INSTRUCTION ?(di CLASSES-C::declaration-instruction
 :TYPE ?type
 :NEXT ?next))
 (SEQUENCE (DECLARE ?di ?type)
 (EXECUTE-INSTRUCTION ?next)))

(===> (EXECUTE-INSTRUCTION ?(sdi CLASSES-C::scalar-declaration-instruction
 :NEXT ?next))
 (SEQUENCE (DECLARE-SCALAR ?sdi)
 (EXECUTE-INSTRUCTION ?next)))

(===> (EXECUTE-INSTRUCTION ?(pdi CLASSES-C::pointer-declaration-instruction
 :NEXT ?next))
 (SEQUENCE (DECLARE-POINTER ?pdi)
 (EXECUTE-INSTRUCTION ?next)))

(===> (EXECUTE-INSTRUCTION ?(adi CLASSES-C::array-declaration-instruction
 :NEXT ?next))
 (SEQUENCE (DECLARE-ARRAY ?adi)
 (EXECUTE-INSTRUCTION ?next)))

(===> (EXECUTE-INSTRUCTION ?(fdi CLASSES-C::function-declaration-instruction
 :NEXT ?next))
 (SEQUENCE (DECLARE-FUNCTION ?fdi)
 (EXECUTE-INSTRUCTION ?next)))

(===> (EXECUTE-INSTRUCTION ?(rdi CLASSES-C::reference-declaration-instruction
 :NEXT ?next))

146

 (SEQUENCE (DECLARE-REFERENCE ?rdi)
 (EXECUTE-INSTRUCTION ?next)))

(===> (EXECUTE-INSTRUCTION ?(bi CLASSES-C::bind-instruction
 :SOURCE ?fdo
 :NEXT ?next))
 (SEQUENCE (BIND ?fdo)
 (EXECUTE-INSTRUCTION ?next)))
(===> (EXECUTE-INSTRUCTION ?(ui CLASSES-C::unbind-instruction
 :SOURCE ?fdo
 :NEXT ?next))
 (SEQUENCE (UNBIND ?fdo)
 (EXECUTE-INSTRUCTION ?next)))

(===> (EXECUTE-INSTRUCTION #I(CLASSES-C::return-value-instruction :NEXT ?next))
 (SEQUENCE (RETURN T)
 (EXECUTE-INSTRUCTION ?next)))

(===> (EXECUTE-INSTRUCTION #I(CLASSES-C::allocate-instruction
 :LABEL ?label
 :NEXT ?next))
 (SEQUENCE (ALLOCATE ?label)
 (EXECUTE-INSTRUCTION ?next)))

(===> (EXECUTE-INSTRUCTION #I(CLASSES-C::deallocate-instruction
 :LABEL ?label
 :NEXT ?next))
 (SEQUENCE (DEALLOCATE ?label)
 (EXECUTE-INSTRUCTION ?next)))

(===> (EXECUTE-INSTRUCTION #I(CLASSES-C::catch-instruction
 :LABEL ?label
 :NEXT ?next))
 (CATCH ?label ?next))

(===> (EXECUTE-INSTRUCTION #I(CLASSES-C::initialize-variable-instructio
 :LVALUE ?lvalue
 :NEXT ?next))
 (SEQUENCE (EXECUTE::INITIALIZE-VARIABLE ?lvalue $0)
 (EXECUTE-INSTRUCTION ?next)))

(===> (EXECUTE-INSTRUCTION #I(CLASSES-C::set-variable-instruction
 :LVALUE ?lvalue
 :VALUE ?value
 :NEXT ?next))
 (SEQUENCE (EXECUTE::SET-VALUE ?lvalue ?value)
 (EXECUTE-INSTRUCTION ?next)))

(===> (EXECUTE-INSTRUCTION #I(CLASSES-C::if-instruction
 :TRUE ?true
 :FALSE ?false))
 (TEST (EXECUTE-INSTRUCTION ?true) (EXECUTE-INSTRUCTION ?false)))

(===> (EXECUTE-INSTRUCTION #I(CLASSES-C::switch-instruction
 :CASES ?cases
 :DEFAULT ?default))
 (SELECT (EXECUTE-INSTRUCTION ?cases) (EXECUTE-INSTRUCTION ?default)))

(===> (EXECUTE-INSTRUCTION #I(CLASSES-C::fork-instruction :CLAUSES ?clauses))

147

 (FORK ?clauses))

(===> (EXECUTE-INSTRUCTION #I(CLASSES-C::halt-instruction))
 (HALT))

(===> (EXECUTE-INSTRUCTION #I(CLASSES-C::error-instruction :ERROR ?error))
 (ERROR ?error))

(===> (EXECUTE-INSTRUCTION #I(CLASSES-C::throw-instruction
 :LABEL ?label
 :VALUE ?value))
 (THROW ?label ?value))

(===> (EXECUTE-INSTRUCTION #I(CLASSES-C::return-instruction))
 (RETURN))

;;;;;;;;;;;;;;;;;;;;;;;;;;;; Expressions ;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(===> (EXECUTE-EXPRESSION-LIST (?expr) ?gather)
 (EXECUTE-EXPRESSION ?expr ?gather))

(===> (EXECUTE-EXPRESSION-LIST (?expr . ?next-expr) ?gather)
 (SEQUENCE (EXECUTE-EXPRESSION ?expr ?gather)
 (EXECUTE-EXPRESSION-LIST ?next-expr ?gather)))

(===> (BIND-PARAMETER-LIST (?formal) (?actual . ?))
 (BIND-PARAMETER ?formal ?actual))

(===> (BIND-PARAMETER-LIST (?formal . ?next-formal) (?actual . ?next-actual))
 (SEQUENCE (BIND-PARAMETER ?formal ?actual)
 (BIND-PARAMETER-LIST ?next-formal ?next-actual)))

(===> (BIND-PARAMETER-LIST (?formal . ?next-formal) NIL))
(===> (BIND-PARAMETER ?(pd CLASSES-C::parameter-declaration
 :SPECIFIER ?(ds declaration-specifier
 :TYPE ?type)
 :DECLARATOR ?decl) ?a-value)
 (EXECUTE-DECLARATOR ?decl ?type ?var)
 :SIDE-EFFECT (EXECUTE::SET-VALUE ?var ?a-value))

(===> (BIND-PARAMETER ?(var CLASSES-C::variable) ?a-value)
 :SIDE-EFFECT (EXECUTE::SET-VARIABLE-VALUE ?var ?a-value))

(===> (EXECUTE-EXPRESSION ?(il CLASSES-C::initializer-list) ?value)
 :VALUE ?il)

(===> (EXECUTE-EXPRESSION #I(CLASSES-C::if-conditional :COND ?cond-1)
 ?value-1)
 (EXECUTE-EXPRESSION ?cond-1 ?c-value-1)
 :VALUE ?c-value-1)

(===> (EXECUTE-EXPRESSION #I(CLASSES-C::comma-expression
 :LEFT ?left-2
 :RIGHT ?right-2)
 ?value-2)
 (SEQUENCE (EXECUTE-EXPRESSION ?left-2 ?l-value-2)

148

 (EXECUTE-EXPRESSION ?right-2 ?r-value-2))
 :VALUE ?l-value-2)

(===> (EXECUTE-EXPRESSION #I(CLASSES-C::conditional-expression
 :COND ?cond-3
 :TRUE ?true-3
 :FALSE ?false-3)
 ?value-3)
 (IF (EXECUTE-EXPRESSION ?cond-3 ?c-value-3)
 (EXECUTE-EXPRESSION ?true-3 ?t-value-3)
 (EXECUTE-EXPRESSION ?false-3 ?f-value-3))
 :VALUE (EXECUTE::QUESTION-MARK ?c-value-3 ?t-value-3 ?f-value-3))

(===> (EXECUTE-EXPRESSION #I(CLASSES-C::assignment
 :LVALUE ?lhs-4
 :EXPRESSION ?expr-4)
 ?value-4)
 (SET (EXECUTE-REFERENCE ?lhs-4 ?location-4)
 (EXECUTE-EXPRESSION ?expr-4 ?e-value-4))
 :VALUE ?e-value-4
 :SIDE-EFFECT (EXECUTE::SET-VALUE ?location-4 ?e-value-4))

(===> (EXECUTE-EXPRESSION #I(CLASSES-C::add-assignment
 :LVALUE ?lhs
 :EXPRESSION ?expr)
 ?value)
 (SET (EXECUTE-REFERENCE ?lhs ?location)
 (EXECUTE-EXPRESSION ?expr ?e-value))
 :VALUE (EXECUTE::|+| (EXECUTE::GET-VALUE ?location) ?e-value)
 :SIDE-EFFECT (EXECUTE::SET-VALUE ?location ?value))

(===> (EXECUTE-EXPRESSION #I(CLASSES-C::sub-assignment
 :LVALUE ?lhs
 :EXPRESSION ?expr)
 ?value)
 (SET (EXECUTE-REFERENCE ?lhs ?location)
 (EXECUTE-EXPRESSION ?expr ?e-value))
 :VALUE (EXECUTE::|-| (EXECUTE::GET-VALUE ?location) ?e-value)
 :SIDE-EFFECT (EXECUTE::SET-VALUE ?location ?value))

(===> (EXECUTE-EXPRESSION #I(CLASSES-C::mul-assignment
 :LVALUE ?lhs
 :EXPRESSION ?expr) ?value)
 (SET (EXECUTE-REFERENCE ?lhs ?location)
 (EXECUTE-EXPRESSION ?expr ?e-value))
 :VALUE (EXECUTE::|*| (EXECUTE::GET-VALUE ?location) ?e-value)
 :SIDE-EFFECT (EXECUTE::SET-VALUE ?location ?value))

(===> (EXECUTE-EXPRESSION #I(CLASSES-C::div-assignment
 :LVALUE ?lhs
 :EXPRESSION ?expr)
 ?value)
 (SET (EXECUTE-REFERENCE ?lhs ?location)
 (EXECUTE-EXPRESSION ?expr ?e-value))
 :VALUE (EXECUTE::|/| (EXECUTE::GET-VALUE ?location) ?e-value)
 :SIDE-EFFECT (EXECUTE::SET-VALUE ?location ?value))

149

(===> (EXECUTE-EXPRESSION #I(CLASSES-C::mod-assignment
 :LVALUE ?lhs
 :EXPRESSION ?expr)
 ?value)
 (SET (EXECUTE-REFERENCE ?lhs ?location)
 (EXECUTE-EXPRESSION ?expr ?e-value))
 :VALUE (EXECUTE::|%| (EXECUTE::GET-VALUE ?location) ?e-value)
 :SIDE-EFFECT (EXECUTE::SET-VALUE ?location ?value))

(===> (EXECUTE-EXPRESSION #I(CLASSES-C::lsh-assignment
 :LVALUE ?lhs
 :EXPRESSION ?expr)
 ?value)
 (SET (EXECUTE-REFERENCE ?lhs ?location)
 (EXECUTE-EXPRESSION ?expr ?e-value))
 :VALUE (EXECUTE::|<<| (EXECUTE::GET-VALUE ?location) ?e-value)
 :SIDE-EFFECT (EXECUTE::SET-VALUE ?location ?value))

(===> (EXECUTE-EXPRESSION #I(CLASSES-C::rsh-assignment
 :LVALUE ?lhs
 :EXPRESSION ?expr)
 ?value)
 (SET (EXECUTE-REFERENCE ?lhs ?location)
 (EXECUTE-EXPRESSION ?expr ?e-value))
 :VALUE (EXECUTE::|>>| (EXECUTE::GET-VALUE ?location) ?e-value)
 :SIDE-EFFECT (EXECUTE::SET-VALUE ?location ?value))

(===> (EXECUTE-EXPRESSION #I(CLASSES-C::and-assignment
 :LVALUE ?lhs
 :EXPRESSION ?expr)
 ?value)
 (SET (EXECUTE-REFERENCE ?lhs ?location)
 (EXECUTE-EXPRESSION ?expr ?e-value))
 :VALUE (EXECUTE::|&| (EXECUTE::GET-VALUE ?location) ?e-value)
 :SIDE-EFFECT (EXECUTE::SET-VALUE ?location ?value))

(===> (EXECUTE-EXPRESSION #I(CLASSES-C::eor-assignment
 :LVALUE ?lhs
 :EXPRESSION ?expr)
 ?value)
 (SET (EXECUTE-REFERENCE ?lhs ?location)
 (EXECUTE-EXPRESSION ?expr ?e-value))
 :VALUE (EXECUTE::|^| (EXECUTE::GET-VALUE ?location) ?e-value)
 :SIDE-EFFECT (EXECUTE::SET-VALUE ?location ?value))

(===> (EXECUTE-EXPRESSION #I(CLASSES-C::or-assignment
 :LVALUE ?lhs
 :EXPRESSION ?expr)
 ?value)
 (SET (EXECUTE-REFERENCE ?lhs ?location)
 (EXECUTE-EXPRESSION ?expr ?e-value))
 :VALUE (EXECUTE::\| (EXECUTE::GET-VALUE ?location) ?e-value)
 :SIDE-EFFECT (EXECUTE::SET-VALUE ?location ?value))

(===> (EXECUTE-EXPRESSION #I(CLASSES-C::logical-or-expression
 :LEFT ?left
 :RIGHT ?right)
 ?value)

150

 (AND (EXECUTE-EXPRESSION ?left ?l-value)
 (EXECUTE-EXPRESSION ?right ?r-value))
 :VALUE (EXECUTE::\|\| ?l-value ?r-value))

(===> (EXECUTE-EXPRESSION #I(CLASSES-C::logical-and-expression
 :LEFT ?left
 :RIGHT ?right)
 ?value)
 (AND (EXECUTE-EXPRESSION ?left ?l-value)
 (EXECUTE-EXPRESSION ?right ?r-value))
 :VALUE (EXECUTE::|&&| ?l-value ?r-value))

(===> (EXECUTE-EXPRESSION #I(CLASSES-C::bit-or-expression
 :LEFT ?left
 :RIGHT ?right)
 ?value)
 (AND (EXECUTE-EXPRESSION ?left ?l-value)
 (EXECUTE-EXPRESSION ?right ?r-value))
 :VALUE (EXECUTE::\| ?l-value ?r-value))

(===> (EXECUTE-EXPRESSION #I(CLASSES-C::bit-eor-expression
 :LEFT ?left
 :RIGHT ?right)
 ?value)
 (AND (EXECUTE-EXPRESSION ?left ?l-value)
 (EXECUTE-EXPRESSION ?right ?r-value))
 :VALUE (EXECUTE::|^| ?l-value ?r-value))

(===> (EXECUTE-EXPRESSION #I(CLASSES-C::bit-and-expression
 :LEFT ?left
 :RIGHT ?right)
 ?value)
 (AND (EXECUTE-EXPRESSION ?left ?l-value)
 (EXECUTE-EXPRESSION ?right ?r-value))
 :VALUE (EXECUTE::|&| ?l-value ?r-value))

(===> (EXECUTE-EXPRESSION #I(CLASSES-C::eq-expression
 :LEFT ?left
 :RIGHT ?right)
 ?value)
 (AND (EXECUTE-EXPRESSION ?left ?l-value)
 (EXECUTE-EXPRESSION ?right ?r-value)
 :VALUE (EXECUTE::|==| ?l-value ?r-value))

(===> (EXECUTE-EXPRESSION #I(CLASSES-C::neq-expression
 :LEFT ? left
 :RIGHT ?right)
 ?value)
 (AND (EXECUTE-EXPRESSION ?left ?l-value)
 (EXECUTE-EXPRESSION ?right ?r-value))
 :VALUE (EXECUTE::|!=| ?l-value ?r-value))

(===> (EXECUTE-EXPRESSION #I(CLASSES-C::lt-expression
 :LEFT ?left
 :RIGHT ?right)
 ?value)
 (AND (EXECUTE-EXPRESSION ?left ?l-value)
 (EXECUTE-EXPRESSION ?right ?r-value))
 :VALUE (EXECUTE::|<| ?l-value ?r-value))

151

(===> (EXECUTE-EXPRESSION #I(CLASSES-C::le-expression
 :LEFT ?left
 :RIGHT ?right)
 ?value)
 (AND (EXECUTE-EXPRESSION ?left ?l-value)
 (EXECUTE-EXPRESSION ?right ?r-value))
 :VALUE (EXECUTE::|<=| ?l-value ?r-value))

(===> (EXECUTE-EXPRESSION #I(CLASSES-C::gt-expression
 :LEFT ?left
 :RIGHT ?right)
 ?value)
 (AND (EXECUTE-EXPRESSION ?left ?l-value)
 (EXECUTE-EXPRESSION ?right ?r-value))
 :VALUE (EXECUTE::|>| ?l-value ?r-value))

(===> (EXECUTE-EXPRESSION #I(CLASSES-C::ge-expression
 :LEFT ?left
 :RIGHT ?right)
 ?value)
 (AND (EXECUTE-EXPRESSION ?left ?l-value)
 (EXECUTE-EXPRESSION ?right ?r-value))
 :VALUE (EXECUTE::|>=| ?l-value ?r-value))

(===> (EXECUTE-EXPRESSION #I(CLASSES-C::rsh-expression
 :LEFT ?left
 :RIGHT ?right)
 ?value)
 (AND (EXECUTE-EXPRESSION ?left ?l-value)
 (EXECUTE-EXPRESSION ?right ?r-value))
 :VALUE (EXECUTE::|>>| ?l-value ?r-value))

(===> (EXECUTE-EXPRESSION #I(CLASSES-C::lsh-expression
 :LEFT ?left
 :RIGHT ?right)
 ?value)
 (AND (EXECUTE-EXPRESSION ?left ?l-value)
 (EXECUTE-EXPRESSION ?right ?r-value))
 :VALUE (EXECUTE::|<<| ?l-value ?r-value))

(===> (EXECUTE-EXPRESSION #I(CLASSES-C::add-expression
 :LEFT ?left
 :RIGHT ?right)
 ?value)
 (AND (EXECUTE-EXPRESSION ?left ?l-value)
 (EXECUTE-EXPRESSION ?right ?r-value))
 :VALUE (EXECUTE::|+| ?l-value ?r-value))

(===> (EXECUTE-EXPRESSION #I(CLASSES-C::sub-expression
 :LEFT ?left
 :RIGHT ?right)
 ?value)
 (AND (EXECUTE-EXPRESSION ?left ?l-value)
 (EXECUTE-EXPRESSION ?right ?r-value))
 :VALUE (EXECUTE::|-| ?l-value ?r-value))

152

(===> (EXECUTE-EXPRESSION #I(CLASSES-C::mul-expression
 :LEFT ?left
 :RIGHT ?right)
 ?value)
 (AND (EXECUTE-EXPRESSION ?left ?l-value)
 (EXECUTE-EXPRESSION ?right ?r-value))
 :VALUE (EXECUTE::|*| ?l-value ?r-value))

(===> (EXECUTE-EXPRESSION #I(CLASSES-C::div-expression
 :LEFT ?left
 :RIGHT ?right)
 ?value)
 (AND (EXECUTE-EXPRESSION ?left ?l-value)
 (EXECUTE-EXPRESSION ?right ?r-value))
 :VALUE (EXECUTE::|/| ?l-value ?r-value))

(===> (EXECUTE-EXPRESSION #I(CLASSES-C::mod-expression
 :LEFT ?left
 :RIGHT ?right)
 ?value)
 (AND (EXECUTE-EXPRESSION ?left ?l-value)
 (EXECUTE-EXPRESSION ?right ?r-value))
 :VALUE (EXECUTE::|%| ?l-value ?r-value))

(===> (EXECUTE-EXPRESSION #I(CLASSES-C::not-expression :ARG ?arg) ?value)
 (EXECUTE-EXPRESSION ?arg ?a-value)
 :VALUE (EXECUTE::|!| ?a-value))

(===> (EXECUTE-EXPRESSION #I(CLASSES-C::complement-expression :ARG ?arg)
 ?value)
 (EXECUTE-EXPRESSION ?arg ?a-value)
 :VALUE (EXECUTE::|~| ?a-value))

(===> (EXECUTE-EXPRESSION #I(CLASSES-C::negate-expression :ARG ?arg) ?value)
 (EXECUTE-EXPRESSION ?arg ?a-value)
 :VALUE (EXECUTE::NEGATE ?a-value))

(===> (EXECUTE-EXPRESSION #I(CLASSES-C::plus-expression :ARG ?arg) ?value)
 (EXECUTE-EXPRESSION ?arg ?a-value)
 :VALUE ?a-value)

(===> (EXECUTE-EXPRESSION #I(CLASSES-C::pre-incr-expression :ARG ?lhs) ?value)
 (SET (EXECUTE-REFERENCE ?lhs ?location))
 :VALUE (EXECUTE::|+| (EXECUTE::GET-VALUE ?location) 1)
 :SIDE-EFFECT (EXECUTE::SET-VALUE ?location ?value))

(===> (EXECUTE-EXPRESSION #I(CLASSES-C::pre-decr-expression :ARG ?lhs) ?value)
 (SET (EXECUTE-REFERENCE ?lhs ?location))
 :VALUE (EXECUTE::|-| (EXECUTE::GET-VALUE ?location) 1)
 :SIDE-EFFECT (EXECUTE::SET-VALUE ?location ?value))

(===> (EXECUTE-EXPRESSION #I(CLASSES-C::post-incr-expression :ARG ?lhs) ?value)
 (SET (EXECUTE-REFERENCE ?lhs ?location))
 :VALUE (EXECUTE::GET-VALUE ?location)
 :SIDE-EFFECT (EXECUTE::SET-VALUE ?location (EXECUTE::|+| ?value 1)))

153

(===> (EXECUTE-EXPRESSION #I(CLASSES-C::post-decr-expression :ARG ?lhs) ?value)
 (SET (EXECUTE-REFERENCE ?lhs ?location))
 :VALUE (EXECUTE::GET-VALUE ?location)
 :SIDE-EFFECT (EXECUTE::SET-VALUE ?location (EXECUTE::|-| ?value 1)))

(===> (EXECUTE-EXPRESSION #I(CLASSES-C::sizeof-expression :ARG ?arg) ?value)
 (EXECUTE-EXPRESSION ?arg ?a-value)
 :VALUE (EXECUTE::SIZEOF ?a-value))

(===> (EXECUTE-EXPRESSION #I(CLASSES-C::cast-expression
 :CAST ?cast
 :EXPRESSION ?expr)
 ?value)
 (EXECUTE-EXPRESSION ?expr ?e-value)
 :VALUE (EXECUTE::CAST ?e-value ?cast))

(===> (EXECUTE-EXPRESSION #I(CLASSES-C::addr-of-expression
 :ARG ?(fn CLASSES-C::function-name))
 ?value)
 :VALUE (EXECUTE::GET-FUNCTION-ADDRESS ?fn))

(===> (EXECUTE-EXPRESSION #I(CLASSES-C::addr-of-expression :ARG ?arg) ?value)
 (EXECUTE-REFERENCE ?arg ?a-value)
 :VALUE (EXECUTE:ADDRESS-OF ?a-value))

(===> (EXECUTE-EXPRESSION #I(CLASSES-C::pointer-expression :ARG ?arg) ?value)
 (EXECUTE-EXPRESSION ?arg ?a-value)
 :VALUE (EXECUTE::INDIRECT ?a-value))

(===> (EXECUTE-EXPRESSION #I(CLASSES-C::pointer-access-expression
 :TAG ?tag
 :MEMBER ?member)
 ?value)
 (EXECUTE-EXPRESSION ?tag ?t-value)
 :VALUE (EXECUTE::GET-MEMBER-INDIRECT-VALUE ?t-value ?member))

(===> (EXECUTE-EXPRESSION #I(CLASSES-C::direct-access-expression
 :TAG ?tag
 :MEMBER ?member)
 ?value)
 (EXECUTE-EXPRESSION ?tag ?t-value)
 :VALUE (EXECUTE::GET-MEMBER-VALUE ?t-value ?member))

(===> (EXECUTE-EXPRESSION #I(CLASSES-C::array-expression
 :ARRAY ?array
 :INDEX ?index)
 ?value)
 (AND (EXECUTE-EXPRESSION ?array ?a-value)
 (EXECUTE-EXPRESSION ?index ?i-value))
 :VALUE (EXECUTE::GET-ARRAY-VALUE ?a-value ?i-value))

(===> (EXECUTE-EXPRESSION #I(CLASSES-C::paren-expression :EXPRESSION ?expr)
 ?value)
 (EXECUTE-EXPRESSION ?expr ?e-value)
 :VALUE ?e-value)

154

(===> (EXECUTE-EXPRESSION #I(CLASSES-C::function-expression
 :FUN ?fun
 :ARGS NIL)
 ?value)
 (SEQUENCE (EXECUTE-EXPRESSION ?fun ?f-value)
 (CALL ?c-value ?f-value))
 :VALUE ?c-value)

(===> (EXECUTE-EXPRESSION #I(CLASSES-C::function-expression
 :FUN ?fun
 :ARGS ?actuals)
 ?value)
 (SEQUENCE (EXECUTE-EXPRESSION ?fun ?f-value)
 (COLLECT ?a-value :DIRECTION :QUEUE)
 (EXECUTE-EXPRESSION-LIST ?actuals ?a-value)
 (IS ?a-values (RESULT-OF ?a-value))
 (CALL ?c-value ?f-value ?a-values))
 :VALUE ?c-value)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; Primarys ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(===> (EXECUTE-EXPRESSION ?(var variable) ?value)
 :VALUE (EXECUTE::GET-VARIABLE-VALUE ?var))

(===> (EXECUTE-EXPRESSION ?(fp CLASSES-C::formal-parameter) ?value)
 :VALUE (EXECUTE::GET-VARIABLE-VALUE ?fp))

(===> (EXECUTE-EXPRESSION ?(uv CLASSES-C::undeclared-variable) ?value)
 :VALUE (make-instance CLASSES-C::unspecified-value))

(===> (EXECUTE-EXPRESSION ?(mn CLASSES-C::member-name) ?value)
 :VALUE ?mn)

(===> (EXECUTE-EXPRESSION ?(fn CLASSES-C::function-name) ?value)
 :VALUE (EXECUTE::GET-FUNCTION-ADDRESS ?fn))

(===> (EXECUTE-EXPRESSION ?(ufn CLASSES-C::undeclared-function-name) ?value)
 :VALUE (make-instance CLASSES-C::unspecified-value))

(===> (EXECUTE-EXPRESSION ?(tn CLASSES-C::tag-name) ?value)
 :VALUE ?tn)

(===> (EXECUTE-EXPRESSION ?(tn CLASSES-C::type-name) ?value)
 :VALUE ?tn)

(===> (EXECUTE-EXPRESSION ?(tn CLASSES-C::typedef-name) ?value)
 :VALUE ?tn)

(===> (EXECUTE-EXPRESSION ?(ec CLASSES-C::enum-constant) ?value)
 :VALUE (EXECUTE::ENUM-CONSTANT ?ec))

(===> (EXECUTE-EXPRESSION ?(fc CLASSES-C::float-constant :VALUE ?c-value)
 ?value)
 :VALUE (EXECUTE::CONSTANT ?c-value))

(===> (EXECUTE-EXPRESSION ?(dc CLASSES-C::double-constant :VALUE ?c-value)
 ?value)
 :VALUE (EXECUTE::CONSTANT ?c-value))

155

(===> (EXECUTE-EXPRESSION ?(ldc CLASSES-C::long-double-constant
 :VALUE ?c-value)
 ?value)
 :VALUE (EXECUTE::CONSTANT ?c-value))

(===> (EXECUTE-EXPRESSION ?(ic CLASSES-C::integer-constant :VALUE ?c-value)
 ?value)
 :VALUE (EXECUTE::CONSTANT ?c-value))

(===> (EXECUTE-EXPRESSION ?(uic CLASSES-C::unsigned-integer-constant
 :VALUE ?c-value)
 ?value)
 :VALUE (EXECUTE::CONSTANT ?c-value))

(===> (EXECUTE-EXPRESSION ?(lic CLASSES-C::long-integer-constant
 :VALUE ?c-value)
 ?value)
 :VALUE (EXECUTE::CONSTANT ?c-value))

(===> (EXECUTE-EXPRESSION ?(ulic CLASSES-C::unsigned-long-integer-constant
 :VALUE ?c-value)
 ?value)
 :VALUE (EXECUTE::CONSTANT ?c-value))

(===> (EXECUTE-EXPRESSION ?(cc CLASSES-C::character-constant :VALUE ?c-value)
 ?value)
 :VALUE (EXECUTE::CONSTANT ?c-value))

(===> (EXECUTE-EXPRESSION ?(lcc CLASSES-C::long-character-constant
 :VALUE ?c-value)
 ?value)
 :VALUE (EXECUTE::CONSTANT ?c-value))

(===> (EXECUTE-EXPRESSION ?(sc CLASSES-C::string-constant :NAME ?c-value)
 ?value)
 :VALUE (EXECUTE::CONSTANT ?c-value))

(===> (EXECUTE-EXPRESSION ?(lsc CLASSES-C::long-string-constant :NAME ?c-value)
 ?value)
 :VALUE (EXECUTE::CONSTANT ?c-value))

;;;;;;;;;;;;;;;;;;;;;;; References for LHS writes ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(===> (EXECUTE-REFERENCE ?(var CLASSES-C::variable) ?value)
 :VALUE (EXECUTE::GET-VARIABLE-ADDRESS ?var))

(===> (EXECUTE-REFERENCE #I(CLASSES-C::array-expression
 :ARRAY ?array
 :INDEX ?index)
 ?value)
 (SEQUENCE (EXECUTE-EXPRESSION ?array ?a-value)
 (EXECUTE-EXPRESSION ?index ?i-value))
 :VALUE (EXECUTE::GET-ARRAY-ADDRESS ?a-value ?i-value))

156

(===> (EXECUTE-REFERENCE #I(CLASSES-C::direct-access-expression
 :TAG ?tag
 :MEMBER ?member)
 ?value)
 (EXECUTE-EXPRESSION ?tag ?t-value)
 :VALUE (EXECUTE::GET-MEMBER-ADDRESS ?t-value ?member))

(===> (EXECUTE-REFERENCE #I(CLASSES-C::pointer-access-expression
 :TAG ?tag
 :MEMBER ?member)
 ?value)
 (EXECUTE-EXPRESSION ?tag ?t-value)
 :VALUE (EXECUTE::GET-MEMBER-INDIRECT-ADDRESS ?t-value ?member))

(===> (EXECUTE-REFERENCE #I(CLASSES-C:pointer-expression :ARG ?arg) ?value)
 (EXECUTE-EXPRESSION ?arg ?a-value)
 :VALUE (EXECUTE::GET-INDIRECT-ADDRESS ?a-value))

(===> (EXECUTE-REFERENCE #I(CLASSES-C::cast-expression
 :CAST ?cast
 :EXPRESSION ?expr)
 ?value)
 (EXECUTE-REFERENCE ?expr ?e-value)
 :VALUE (EXECUTE::CAST ?e-value ?cast))

(===> (EXECUTE-REFERENCE #I(CLASSES-C::add-expression
 :LEFT ?left
 :RIGHT ?right)
 ?value)
 (AND (EXECUTE-REFERENCE ?left ?l-value)
 (EXECUTE-REFERENCE ?right ?r-value))
 :VALUE (EXECUTE::|+| ?l-value ?r-value))

(===> (EXECUTE-REFERENCE #I(CLASSES-C::sub-expression
 :LEFT ?left
 :RIGHT ?right)
 ?value)
 (AND (EXECUTE-REFERENCE ?left ?l-value)
 (EXECUTE-REFERENCE ?right ?r-value))
 :VALUE (EXECUTE::|-| ?l-value ?r-value))

(===> (EXECUTE-REFERENCE #I(CLASSES-C::paren-expression :EXPRESSION ?expr)
 ?value)
 (EXECUTE-REFERENCE ?expr ?e-value)
 :VALUE ?e-value)

(===> (EXECUTE-REFERENCE ?(expr CLASSES-C::expression) ?value)
 (EXECUTE-EXPRESSION ?expr ?value)
 :VALUE ?value)

157

"A couple of months in the laboratory can

frequently save a couple of hours in the

library."

--Frank Westheimer

References

[1] Harold Abelson, Gerald Jay Sussman, and Julie Sussman, “Propagation of
Constraints,” in The Structure and Interpretation of Computer Programs: MIT
Press, pp. 542, 1985.

[2] A. V. Aho and S. C. Johnson, “LR Parsing,” Computing Surveys, vol. 6, no. 2, pp.
99-124, 1974.

[3] Alfred V. Aho, Brian W. Kernighan, and Peter J. Weinberger, The AWK
Programmin Language: Addison-Wesley, 1988.

[4] Alexander Aiken and Brian R. Murphy, “Implementing Regular Tree
Expressions,” in FPCA 1991, 1991, pp. 427-447.

[5] Vladimir Alexiev, “A (Not Very Much) Annotated Bibliography on Integrating
Object-Oriented and Logic Programming,”
ftp://menaik.cs.ualberta.ca/pub/oolog/oolog-bib.ps

[6] James Ambras and Vicki O'Day, “Microscope: A Knowledge-Based
Programming Environment,” IEEE Software, vol. 5, no. 3, pp. 50-58, May, 1988.

[7] Paul Anderson, Thomas Reps, and Tim Teitelbaum, “Design and Implementation
of a Fine-Grained Software Inspection Tool,” IEEE Transactions on Software
Engineering, vol. 29, no. 8, pp. 721-733, August, 2003.

[8] Paul Anderson and Tim Teitelbaum, “Software Inspection Using CodeSurfer,”
presented at Proceedings of the First Workshop on Inspection in Software
Engineering 2001, Paris, pp. 1-9.

[9] Cyrille Artho and Armin Biere, “Combined Static and Dynamic Analysis,” Electr.
Notes Theor. Comput. Sci., vol. 131, pp. 3-14, 2005.

158

[10] Cyrille Artho, Viktor Schuppan, Armin Biere, Pascal Eugster, Marcel Baur, and
Boris Zweimüller, “JNuke: Efficient Dynamic Analysis for Java.,” in CAV, 2004,
pp. 462-465.

[11] Patrizia Asirelli, Pierpaolo Degano, Giorgio Levi, Alberto Martelli, Ugo
Montanari, Giuliano Pacini, Franco Sirovich, and Franco Turini, “A Flexible
Environment for Program Development Based on a Symbolic Interpreter,” ICSE,
pp. 251-264, 1979.

[12] Llya Bagrak and Olin Shivers, “trx: Regular-Tree Expressions, Now in Scheme,”
in Fifth Workshop on Scheme and Functional Programming, 2004, pp. 21-32.

[13] Thomas Ball, “The Concept of Dynamic Analysis,” ESEC / SIGSOFT FSE, pp.
216-234, 1999.

[14] Francois Bancilhon, “A logic-programming/object-oriented cocktail,” ACM
SIGMOD Record, vol. 15, no. 3, pp. 11-21, September 1986, 1986.

[15] Bell Canada Inc., “DATRIX Abstract Semantic Graph Reference Manual ”, 2000.

[16] David Binkley, “Souce Code Analysis: A Road Map,” in FOSE 2007: IEEE,
2007.

[17] Barry W. Boehm, “Software Engineering,” IEEE Transactions on Computers,
vol. 25, no. 12, pp. 1226-1241, December, 1976.

[18] Patrice Boizumault, The Implementation Of Prolog: Princeton University Press,
1993.

[19] Robert Bowdidge and William Griswold, “Automated Support for Encapsulating
Abstract Data Types,” in Proceedings of the 2nd ACM SIGSOFT Symposium on
Foundations of Software Engineering, 1994, pp. 97-110.

[20] Robert S. Boyer, Bernard Elspas, and Karl N. Levitt, “SELECT—a formal system
for testing and debugging programs by symbolic execution,” presented at
Proceedings of the international conference on Reliable software, Los Angeles,
California, pp. 234 - 245.

[21] Marc M. Brandis and Hanspeter Mössenböck, “Single-Pass Generation of Static
Single-Assignment Form for Structured Languages,” ACM Transactions on
Programming Languages and Systems, vol. 16, no. 6, pp. 1684-1698, 1994.

[22] Johan Brichau, Coen De Roover, and Kim Mens, “Open Unification for Program
Query Languages,” in XXVI International Conference of the Chilean Society of
Computer Science (SCCC'07). Iquique, Chile, 2007.

[23] Frederick P. Brooks, “No Silver Bullet,” Computer, vol. 20, no. 4, pp. 10-19,
April, 1987.

[24] Bernd Bruegge, Tim Gottschalk, and Bin Luo, “A Framework for Dynamic
Program Analyzers,” in Proceedings of the Eighth Annual Conference on Object-

159

Oriented Programming Systems, Languages, and Applications. Washington, D.C.,
United States: ACM Press, 1993, pp. 65-82.

[25] R.I. Bull, A. Trevors, A.J. Malton, and M.W. Godfrey, “Semantic Grep: Regular
Expressions + Relational Abstraction,” presented at Ninth Working Conference
on Reverse Engineering (WCRE'02).

[26] S. Burson, G.B. Kotik, and L.Z. Markosian, “A program transformation approach
to automating software re-engineering,” presented at Proceedings of the
Fourteenth Annual International Computer Software and Applications
Conference, 1990. COMPSAC 90., pp. 314 - 322.

[27] William R. Bush, Jonathan D. Pincus, and David J. Sielaff, “A Static Analyzer for
Finding Dynamic Programming Errors,” Software Practice and Experience, vol.
30, pp. 775-802, 2000.

[28] Cristian Cadar, Daniel Dunbar, and Dawson Engler, “KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex Systems Programs,”
presented at 8th USENIX Symposium on Operating Systems Design and
Implementation, San Diego, California, USA, pp. 209-224, December 8-10, 2008.

[29] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and Dawson
Engler, “EXE: automatically generating inputs of death,” in Proceedings of the
13th ACM conference on Computer and communications security. Alexandria,
Virginia, USA: ACM, 2006.

[30] J.A. Campbell and S. Hardy, “Should Prolog be list or record oriented?,” in
Implementations of PROLOG, J.A. Campball, Ed.: Ellis Horwood, 1984.

[31] Stefano Ceri, Georg Gottlob, and Letizia Tanca, “What You Always Wanted to
Know About Datalog (And Never Dared to Ask),” IEEE Transactions on
Knowledge and Data Engineering, vol. 1, no. 1, pp. 146-166, March 1989, 1989.

[32] Pui-Shan Chan and Malcolm Munro, “PUI: A Tool to Support Program
Understanding,” in Proceedings of the IEEE 5th International Workshop on
Program Comprehension, 1997, pp. 192-198.

[33] Nigel P. Chapman, LR Parsing: Theory and Practice: Cambridge University
Press, 1987.

[34] Peter Pin-Shan Chen, “The Entity-Relationship Model – Toward a Unified View
of Data,” ACM Transactions on Database Systems, vol. 1, no. 1, pp. 9-36, March,
1976.

[35] Weidong Chen and David Scott Warren, “Tabled Evaluation With Delaying for
General Logic Programs,” Journal of the Association for Computing Machinery,
vol. 43, no. 1, pp. 20-74, January 1996, 1996.

160

[36] Yih-Farn Chen, Michael Y. Nishimoto, and C. V. Ramamoorthy, “The C
Information Abstraction System,” IEEE Transactions on Software Engineering,
vol. 16, no. 3, March, 1990.

[37] Lori A. Clarke, “A System to Generate Test Data and Symbolically Execute
Programs,” IEEE Transactions on Software Engineering, vol. 2, no. 3, pp. 215-
222, September, 1976, 1976.

[38] Lori A. Clarke and Debra J. Richardson, “Applications of Symbolic Evaluation,”
Journal of Systems and Software, vol. 5, no. 1, pp. 15-35, 1985.

[39] Tal Cohen, Joseph Gil, and Itay Maman, “JTL - the Java Tools Language,” in
OOPSLA '06. Portland, Oregon: ACM, 2006.

[40] Patrick Cousot, “Abstract Interpretation Based Formal Methods and Future
Challenges,” Informatics, pp. 183-156, 2001.

[41] Patrick Cousot and Radhia Cousot, “Abstract Interpretation: a Unified Lattice
Model for Static Analysis of Programs by Construction or Approximation of
Fixpoints,” in Proc. 4th ACM Symposium on Principles of Programming
Languages, 1977, pp. 238-252.

[42] David Coward and Darrel Ince, The Symbolic Execution of Software: The SYM-
BOL system: Chapman & Hall, 1995.

[43] P. David Coward, “Symbolic Execution Sys tems – a review,” Software
Engineering Journal November, pp. 229-239, 1988.

[44] Roger F. Crew, “ASTLOG: A Language for Examining Abstract Syntax Trees,”
in Proc. USENIX Conf. Domain-Specific Languages, 1997.

[45] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth
Zadeck, “Efficiently Computing Static Single Assignment Form and the Control
Dependence Graph,” ACM Transactions on Programming Languages and
Systems, vol. 13, no. 4, pp. 451-490, 1991.

[46] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth
Zadeck, “An Efficient Method of Computing Static Single Assignment Form,”
presented at POPL 1989, pp. 25-35.

[47] Manuvir Das, “Unification-Based Pointer Analysis with Directional
Assignments,” ACM SIGPLAN Notices, vol. 35, no. 4, pp. 35-46, 2000.

[48] B.A. Davey and H.A. Priestley, Introduction to Lattices and Order, 2nd Edition
ed: Cambridge University Press, 2002.

[49] Kris De Volder, Type-Oriented Logic Meta Programming. Programming
Technology Department, Vrije Universiteit Brussel, 1998.

[50] Kris De Volder, “JQuery: A Generic Code Browser with a Declarative
Configuration Language,” presented at PADL 2006, pp. 88-102.

161

[51] P. Deransart, A. Ed-Dbali, and L. Cervoni, Prolog: The Standard: Springer, 1996.

[52] Franklin L. DeRemer, Practical Translators for LR(k) Languages. Dep. Electrical
Engineering, MIT, 1969.

[53] Franklin L. DeRemer, “Simple LR(k) grammars,” Communications of the ACM,
vol. 14, no. 7, pp. 453 - 460, July, 1971.

[54] Franklin L. DeRemer and Thomas Pennello, “Efficient Computation of LALR(1)
Look-Ahead Sets,” ACM Transactions on Programming Languages and Systems,
vol. 4, no. 4, pp. 615-649, October, 1982.

[55] Francoise Detienne, Software Design – Cognitive Aspects: Springer, 2001.

[56] David L. Detlefs, K. Rustan M. Leino, Greg Nelson, and James B. Saxe,
“Extended Static Checking,” COMPAQ December 18, 1998 1998.

[57] Premkumar T. Devanbu, “GENOA—a customizable, front-end-retargetable
source code analysis framework,” ACM Transactions on Software Engineering
and Methodology, vol. 8, no. 2, pp. 177-212, 1999.

[58] Edsger W. Djikstra, “The Humble Programmer,” Communications of the ACM,
vol. 15, no. 10, 1972.

[59] Jurgen Ebert, Bernt Kullbach, Volker Riediger, and Andreas Winter, “GUPRO
Generic Understanding of Programs: An Overview,” June, 2002.

[60] Thomas Eisenbarth, Rainer Koschke, and Daniel Simon, “Aiding Program
Comprehension by Static and Dynamic Feature Analysis,” in Proceedings of the
International Conference on Software Maintenance, ICSM ‘2001, 2001.

[61] David Evans, “Static Detection of Dynamic Memory Errors,” PLDI, pp. 44-53,
1996.

[62] David Evans, John Guttag, James Horning, and Yang Meng Tan, “LCLint: A
Tool for Using Specifications to Check Code,” in Proceedings of the ACM
SIGSOFT Symposium on the Foundations of Software Engineering: ACM, 1994.

[63] Cormac Flanagan, K. Rustan, M. Leino, Mark Lillibridge, Greg Nelson, James B.
Saxe, and Raymie Stata, “Extended Static Checking for Java.,” PLDI, pp. 234-
245, 2002.

[64] Margaret Ann Francel and Spencer Rugaber, “The Relationship of Slicing and
Debugging to Program Understanding,” IWPC, pp. 106-113, 1999.

[65] Koichi Fukunaga and Shin'ichi Hirose, “An Experience with a Prolog-based
Object-Oriented Language,” in OOPSLA 1986: ACM, 1986.

[66] Koichi Fukunaga and Shin- ichi Hirose, “An Experience with a Prolog-based
Object-Oriented Language,” OOPSLA 1986, pp. 224-231, 1986.

162

[67] Bernhard Ganter and Rudolf Wille, Formal Concept Analysis: Mathematical
Foundations: Springer Verlag, 1999.

[68] Paul C. Gilmore, “A program for the production from axioms, of proofs for
theorems derivable within the first order predicate calculus.,” presented at
Proceedings of the IFIP Congress (1959), pp. 265-273.

[69] Matthew L. Ginsberg, “Multivalued logics: a uniform approach to reasoning in
artificial intelligence,” Computational Intelligence, vol. 4, pp. 265-316, 1988.

[70] Matthew L. Ginsberg, “Bilattices and modal operators,” presented at Proceedings
of the 3rd conference on Theoretical aspects of reasoning about kno wledge,
Pacific Grove, California pp. 273-287.

[71] Patrice Godefroid, Nils Klarlund, and Koushik Sen, “DART: Directed Automated
Random Testing,” in PLDI 2005. Chicago, Illnois, USA: ACM, 2005.

[72] W.G. Griswold, D.C. Atkinson, and C. McCurdy, “Fast, flexible syntactic pattern
matching and processing,” presented at Proceedings of the Fourth Workshop on
Program Comprehension, 1996, Berlin, Germany, pp. 144-153.

[73] Philip J. Guo, Jeff H. Perkins, Stephen McCamant, and Michael D. Ernst,
“Dynamic Inference of Abstract Types,” in Proceedings of the 2006 International
Symposium on Software Testing and Analysis. Portland, ME, USA, 2006, pp. 255-
265.

[74] Elnar Hajiyev, CodeQuest - Source Code Querying with Datalog. Computing
Laboratory, Oxford University, 2005.

[75] Elnar Hajiyev, Mathieu Verbaere, and Oege de Moor, “CodeQuest: Scalable
Source Code Queries with DataLog,” in Procs. of the European Conference on
Object-Oriented Programming (ECOOP), 2006.

[76] M.T. Harandi and J.Q Ning, “Knowledge-Based Program Analysis,” IEEE
Software, vol. 7, no. 1, pp. 74-81, Janurary, 1990.

[77] Mary Jean Harrold, Loren Larsen, John Lloyd, David Nedved, Melanie Page,
Gregg Rothermel, Manvinder Singh, and Michael Smith, “Aristotle: A System for
Development of Program Analysis Based Tools,” in Proceedings of the ACM
33rd Annual Southeast Conference, 1995, pp. 110-119.

[78] Matthew Hetch, Flow Analysis of Computer Programs: Elsevier North-Holland,
1977.

[79] Susan Horwitz, Alan J. Demers, and Tim Teitelbaum, “An Efficient General
Iterative Algorithm for Dataflow Analysis,” Acta Informatica, vol. 24, no. 6, pp.
679-694, 1987.

[80] Susan Horwitz, Thomas W. Reps, and David Binkley, “Interprocedural Slicing
Using Dependence Graphs,” presented at PLDI, pp. 35-46.

163

[81] Joseph Hummel, Alexandru Nicolau, and Laurie J. Hendren, “A Language for
Conveying the Aliasing Properties of Dynamic, Pointer-Based Data Structures,”
IPPS, pp. 1994, 1994.

[82] Mamdouh H. Ibrahim and Fred A. Cummins, “Objects with Logic,” in ACM
Conference on Computer Science 1990, 1990, pp. 122-133.

[83] Doug Janzen and Kris De Volder, “Navigating and querying code without getting
lost,” presented at AOSD 2003, Boston, MA USA, pp. 178-187.

[84] James Jenista and Brian Demsky, “Disjointness Analysis for Java-Like
Languages,” 2009.

[85] Neil D. Jones and Flemming Nielson, “Abstract Interpretation: a Semantics-Based
Tool for Program Analysis,” in Handbook of logic in computer science: semantic
modeling, vol. 4, pp. 527-636, 1995.

[86] Sarfraz Khurshid, Corina S. Pasareanu, and Willem Visser, “Generalized
Symbolic Execution for Model Checking and Testing,” presented at Tools and
Algorithms for the Construction and Analysis of Systems, Warsaw, Poland, pp.
553-568, April 7-11, 2003.

[87] Greger Kiczales, Jim des Rivieres, and Daniel G. Bobrow, The Art of the
Metaobject Protocol. Cambridge, Massachusetts: MIT Press, 1991.

[88] Greger Kiczales and Andreas Paepcke, Open Implementations and Metaobject
Protocols: Xerox Corporation, 1994.

[89] Gregor Kiczales, John Lamping, Cristina Videira Lopes, Chris Maeda, Anurag
Mendhekar, and Gail C. Murphy, “Open Implementation Design Guidelines,” in
International Conference on Software Engineering 1997. Boston, Massachusetts:
ACM Press, 1997.

[90] Michael Kifer, “Deductive and Object Data Languages: A Quest for Integration,”
presented at Proceedings of the International Conference on Deductive and
Object-Oriented Databases, pp. 187-212.

[91] Michael Kifer, Georg Lausen, and James Wu, “Logical Foundations of Object-
Oriented and Frame-Based Languages,” Journal of the Association for Computing
Machinery, vol. 42, no. 4, pp. 741-843, 1995.

[92] James C. King, “New Approach to Program Testing,” Programming
Methodology, pp. 278-290, 1974.

[93] James C. King, “Symbolic Execution and Program Testing,” Communications of
the ACM, vol. 19, no. 7, pp. 385-394, 1976.

[94] Paul Klint, Ralf Lämmel, and Chris Verhoef, “Toward an Engineering Discipline
for Grammarware,” ACM Transactions on Software Engineering and
Methodology, vol. 14, no. 3, pp. 331-380, 2005.

164

[95] Ralf Kneuper, “Symbolic Execution: A Semantic Approach,” Science of
Computer Programming, vol. 16, pp. 207-249, 1991.

[96] Donald E. Knuth, “On the translation of languages from left to right,” Information
and Control, vol. 8, no. 6, pp. 607-639, December, 1965.

[97] Gordon B. Kotik and Lawrence Z. Markosian, “Automating software analysis and
testing using a program transformation system,” presented at Proceedings of the
ACM SIGSOFT '89 third symposium on Software testing, analysis, and
verification, pp. 74-84.

[98] Jens Krinke, Mirko Streckenback, Maximilian Storzer, and Christan Hammer,
“Using Program Analysis Infrastructure for Software Maintenance,” Universität
Passau, March, 2003.

[99] David A. Ladd and J.Christopher Ramming, “A*: a Language for Implementing
Language Processors,” IEEE Transactions on Software Engineering, vol. 21, no.
11, pp. 894-901, 1995.

[100] Monica S. Lam, John Whaley, V. Benjamin Livshits, Michael C. Martin, Dzintars
Avots, Michael Carbin, and Christopher Unkel:, “Context-sensitive program
analysis as database queries,” presented at PODS 2005, pp. 1-12.

[101] Chris Lattner and Vikram Adve, “LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation,” presented at International Symposium on
Code Generation and Optimization, San Jose, California, March 20-24.

[102] B. P. Leintz and E. Burton Swanson, Software Maintenance Management:
Addison-Wesley, 1980.

[103] Thomas Lengauer and Robert Endre Tarjan, “A Fast Algorithm for Findinge
Dominators in a Flograph,” ACM Transactions on Programming Languages and
Systems, vol. 1, no. 1, pp. 121-141, July, 1979.

[104] Yuan Lin, Richard C. Holt, and Andrew J. Malton, “Completeness of a Fact
Extractor,” in Proceedings of the 10th Working Conference on Reverse
Engineering (WCRE’03), 2003.

[105] Mark A. Linton, “Implementing Relational Views of Programs,” in Software
Engineering Symposium on Practical Software Development Environments, 1984,
pp. 132 - 140.

[106] Panos E. Livadas and Scott D. Alden, “A Toolset for Program Understanding,” in
Proceedings of the 2nd Workshop on Program Comprehension. Capri, Italy,
1993, pp. 110-118.

[107] Rupak Majumdar and Koushik Sen, “Hybrid Concolic Testing,” in 29th
International Conference on Software Engineering. Minneapolis, MN, USA:
IEEE Computer Society, 2007, pp. 416-426.

165

[108] Michael Martin, Benjamin Livshits, and Monica S. Lam, “Finding Application
Errors and Security Flaws Using PQL: a Program Query Language,” presented at
Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2005, San
Diego, CA, USA.

[109] Anneliese von Mayrhauser and A. Marie Vans, “Program Understanding – A
Survey,” Colorado State University August 1994.

[110] Anneliese von Mayrhauser and A. Marie Vans, “Program Understanding
Behavior During Adaptation of Large Scale Software,” IWPC, 1998.

[111] John McCarthy, “Programs with Common Sense,” presented at Proceedings of the
Teddington Conference on the Mechanization of Thought Processes, pp. 75-91.

[112] minix-Documentation, “www.raspberryginger.com/jbailey/minix/html/tr_8c-
source.html”

[113] Markus Mock, “Dynamic Analysis from the Bottom Up,” in Icse Workshop On
WODA 2003 ICSE Workshop on Dynamic Analysis ICSE'03, 2003, pp. 13-16.

[114] Markus Mock, Manuvir Das, Craig Chambers, and Susan J. Eggers, “Dynamic
Points-to Sets: a Comparison with Static Analyses and Potential Applications in
Program Understanding and Optimization,” in Proceedings of the 2001 ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and
Engineering. Snowbird, Utah, United States, 2001, pp. 66-72.

[115] Markus Mohnen, “A Graph-Free Approach to Data-Flow Analysis,” CC, pp. 46-
61, 2002.

[116] Chris Moss, Prolog++ The Power of Object -Oriented and Logic Programming:
Addison-Wesley, 1994.

[117] Gail C. Murphy and David Notkin, “Lightweight Lexical Source Model
Extraction,” ACM Transactions on Software Engineering and Methodology, vol.
5, no. 3, pp. 262-292, July, 1996.

[118] Flemming Nielson, “Perspectives on Program Analysis,” ACM Comput. Surv.,
vol. 28, no. 4, 1996.

[119] Andreas Paepcke, Object-Oriented Programming The CLOS Perspective.
Cambridge, Massachusetts: MIT Press, 1993.

[120] Santanu Paul, “SCRUPLE: a Reengineer's Tool for Source Code Search,” in
CASCON, 1992, pp. 329-346.

[121] Santanu Paul and Atul Prakash, “A Framework for Source Code Search Using
Program Patterns,” IEEE Transactions on Software Engineering, vol. 20, no. 6,
pp. 463-475, 1994.

166

[122] Santanu Paul, Atul Prakash, Erich Buss, and John Henshaw, “Theories and
Techniques of Program Understanding,” presented at Proceedings of the 1991
conference of the Centre for Advanced Studies on Collaborative research, pp. 37-
53.

[123] D. J. Robson, K. H. Bennett, B. J. Cornelius, and M. Munro, “Approaches to
Program Comprehension,” Journal Systems Software, vol. 14, pp. 79-84, 1991.

[124] Spencer Rugaber, “Program Comprehension,” in Encyclopedia of Computer
Science and Technology Vol. 32, No.20: Marcel Dekker, Inc., pp. 341-368, 1995.

[125] Koushik Sen, Darko Marinov, and Gul Agha, “CUTE: a concolic unit testing
engine for C,” presented at Proceedings of the 10th European Software
Engineering Conference, Lisbon, Portugal, pp. 263-272, September 5-9, 2005.

[126] Josep Silva and Olaf Chitil, “Combining Algorithmic Debugging and Program
Slicing,” in PPDP'06. Venice, Italy: ACM, 2006, pp. 157-166.

[127] Janice Singer and Timothy C. Lethbridge, “What's so great about `grep'?
Implications for program comprehension tools,” 1997.

[128] Guy L. Steele, Common LISP: The Language: Digital Press, 1990.

[129] Bjarne Steensgaard, “Points-to Analysis by Type Inference of Programs with
Structures and Unions,” CC, pp. 136-150, 1996.

[130] Bjarne Steensgaard, “Points-to Analysis in Almost Linear Time,” POPL, pp. 32-
41, 1996.

[131] Maximilan Stoerzer and Stefan Hanenberg, “A Classification of Pointcut
Language Constructs,” presented at SPLAT'05: Workshop on Software-
Engineering Properties of Languages and Aspect Technologie, Chicago, Illinois,
March 14-18, 2005.

[132] Margaret-Anne D. Storey, “Theories, Tools and Research Methods in Program
Comprehension: Past, Present, and Future,” Software Qual J, vol. 14, pp. 187-
208, 2006.

[133] Margaret-Anne D. Storey, Kenny Wong, and Hausi A. Müller:, “How Do
Program Understanding Tools Affect How Programmers Understand Programs?
,” in WRCE '97, 1997.

[134] Hisao Tamaki and Taisuke Sato, “OLD Resolution with Tabulation,” in ICLP
1986, 1986.

[135] Scott R. Tilley and Dennis B. Smith, “Coming Attractions in Program
Understanding,” December 1996.

[136] Scott R. Tilley, Dennis B. Smith, and Santanu Paul, “Towards a Framework for
Program Understanding,” in WPC 1009, 1996.

167

[137] Frank Tip, “A Survey of Program Slicing Techniques,” Journal of Programming
Languages, vol. 3, no. 3, 1995.

[138] Peter Wegner, “Introduction and Overview,” in Research Directions In Software
Technology, Peter Wegner, Ed. Cambridge, Massachusetts: MIT Press, pp. 1-36,
1980.

[139] Mark Weiser, “Program Slicing,” ICSE, pp. 439-449, 1981.

[140] Mark Weiser, “Programmers use slices when debugging,” Communications of the
ACM, vol. 25, no. 7, pp. 446 - 452, 1982.

[141] Christopher A. Welty, An Integrated Representation for Software Development
and Discovery. RPI Computer Science Dept., Rensselaer Polytechnic Institute,
1995.

[142] Reinhard Wilhelm, “Program Analysis - A Toolmaker's Perspective,” ACM
Comput. Surv., vol. 28, no. 4, 1996.

[143] Roel Wuyts, “Declarative Reasoning about the Structure of Object Oriented
Systems,” presented at TOOLS USA 1998, Santa Barbara, California, pp. 112-
124, August 3-7, 1998.

[144] Roel Wuyts, A Logic Meta-Programming Approach to Support the Co-Evolution
of Object-Oriented Design and Implementation. Programming Technology
Department, Vrije Universiteit, 2001.

[145] Ru-Gang Xu, Symbolic Execution Algorithms for Test Generation. Computer
Science, University of California, Los Angeles, 2009.

[146] Michal Young and Richard N. Taylor, “Rethinking the Taxonomy of Fault
Detection Techniques,” in ICSE, 1989, pp. 53-62.

